PeepholeOptimizer.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Perform peephole optimizations on the machine code:
11//
12// - Optimize Extensions
13//
14//     Optimization of sign / zero extension instructions. It may be extended to
15//     handle other instructions with similar properties.
16//
17//     On some targets, some instructions, e.g. X86 sign / zero extension, may
18//     leave the source value in the lower part of the result. This optimization
19//     will replace some uses of the pre-extension value with uses of the
20//     sub-register of the results.
21//
22// - Optimize Comparisons
23//
24//     Optimization of comparison instructions. For instance, in this code:
25//
26//       sub r1, 1
27//       cmp r1, 0
28//       bz  L1
29//
30//     If the "sub" instruction all ready sets (or could be modified to set) the
31//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
32//     eliminate the "cmp" instruction.
33//
34//     Another instance, in this code:
35//
36//       sub r1, r3 | sub r1, imm
37//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38//       bge L1
39//
40//     If the branch instruction can use flag from "sub", then we can replace
41//     "sub" with "subs" and eliminate the "cmp" instruction.
42//
43// - Optimize Loads:
44//
45//     Loads that can be folded into a later instruction. A load is foldable
46//     if it loads to virtual registers and the virtual register defined has
47//     a single use.
48//
49// - Optimize Copies and Bitcast:
50//
51//     Rewrite copies and bitcasts to avoid cross register bank copies
52//     when possible.
53//     E.g., Consider the following example, where capital and lower
54//     letters denote different register file:
55//     b = copy A <-- cross-bank copy
56//     C = copy b <-- cross-bank copy
57//   =>
58//     b = copy A <-- cross-bank copy
59//     C = copy A <-- same-bank copy
60//
61//     E.g., for bitcast:
62//     b = bitcast A <-- cross-bank copy
63//     C = bitcast b <-- cross-bank copy
64//   =>
65//     b = bitcast A <-- cross-bank copy
66//     C = copy A    <-- same-bank copy
67//===----------------------------------------------------------------------===//
68
69#define DEBUG_TYPE "peephole-opt"
70#include "llvm/CodeGen/Passes.h"
71#include "llvm/ADT/DenseMap.h"
72#include "llvm/ADT/SmallPtrSet.h"
73#include "llvm/ADT/SmallSet.h"
74#include "llvm/ADT/Statistic.h"
75#include "llvm/CodeGen/MachineDominators.h"
76#include "llvm/CodeGen/MachineInstrBuilder.h"
77#include "llvm/CodeGen/MachineRegisterInfo.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Target/TargetInstrInfo.h"
81#include "llvm/Target/TargetRegisterInfo.h"
82using namespace llvm;
83
84// Optimize Extensions
85static cl::opt<bool>
86Aggressive("aggressive-ext-opt", cl::Hidden,
87           cl::desc("Aggressive extension optimization"));
88
89static cl::opt<bool>
90DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
91                cl::desc("Disable the peephole optimizer"));
92
93STATISTIC(NumReuse,      "Number of extension results reused");
94STATISTIC(NumCmps,       "Number of compares eliminated");
95STATISTIC(NumImmFold,    "Number of move immediate folded");
96STATISTIC(NumLoadFold,   "Number of loads folded");
97STATISTIC(NumSelects,    "Number of selects optimized");
98STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized");
99
100namespace {
101  class PeepholeOptimizer : public MachineFunctionPass {
102    const TargetMachine   *TM;
103    const TargetInstrInfo *TII;
104    MachineRegisterInfo   *MRI;
105    MachineDominatorTree  *DT;  // Machine dominator tree
106
107  public:
108    static char ID; // Pass identification
109    PeepholeOptimizer() : MachineFunctionPass(ID) {
110      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
111    }
112
113    bool runOnMachineFunction(MachineFunction &MF) override;
114
115    void getAnalysisUsage(AnalysisUsage &AU) const override {
116      AU.setPreservesCFG();
117      MachineFunctionPass::getAnalysisUsage(AU);
118      if (Aggressive) {
119        AU.addRequired<MachineDominatorTree>();
120        AU.addPreserved<MachineDominatorTree>();
121      }
122    }
123
124  private:
125    bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
126    bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
127                          SmallPtrSet<MachineInstr*, 8> &LocalMIs);
128    bool optimizeSelect(MachineInstr *MI);
129    bool optimizeCopyOrBitcast(MachineInstr *MI);
130    bool isMoveImmediate(MachineInstr *MI,
131                         SmallSet<unsigned, 4> &ImmDefRegs,
132                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
133    bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
134                       SmallSet<unsigned, 4> &ImmDefRegs,
135                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
136    bool isLoadFoldable(MachineInstr *MI,
137                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
138  };
139}
140
141char PeepholeOptimizer::ID = 0;
142char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
143INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
144                "Peephole Optimizations", false, false)
145INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
146INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
147                "Peephole Optimizations", false, false)
148
149/// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
150/// a single register and writes a single register and it does not modify the
151/// source, and if the source value is preserved as a sub-register of the
152/// result, then replace all reachable uses of the source with the subreg of the
153/// result.
154///
155/// Do not generate an EXTRACT that is used only in a debug use, as this changes
156/// the code. Since this code does not currently share EXTRACTs, just ignore all
157/// debug uses.
158bool PeepholeOptimizer::
159optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
160                 SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
161  unsigned SrcReg, DstReg, SubIdx;
162  if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
163    return false;
164
165  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
166      TargetRegisterInfo::isPhysicalRegister(SrcReg))
167    return false;
168
169  if (MRI->hasOneNonDBGUse(SrcReg))
170    // No other uses.
171    return false;
172
173  // Ensure DstReg can get a register class that actually supports
174  // sub-registers. Don't change the class until we commit.
175  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
176  DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
177  if (!DstRC)
178    return false;
179
180  // The ext instr may be operating on a sub-register of SrcReg as well.
181  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
182  // register.
183  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
184  // SrcReg:SubIdx should be replaced.
185  bool UseSrcSubIdx = TM->getRegisterInfo()->
186    getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != 0;
187
188  // The source has other uses. See if we can replace the other uses with use of
189  // the result of the extension.
190  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
191  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
192    ReachedBBs.insert(UI.getParent());
193
194  // Uses that are in the same BB of uses of the result of the instruction.
195  SmallVector<MachineOperand*, 8> Uses;
196
197  // Uses that the result of the instruction can reach.
198  SmallVector<MachineOperand*, 8> ExtendedUses;
199
200  bool ExtendLife = true;
201  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
202    MachineInstr *UseMI = UseMO.getParent();
203    if (UseMI == MI)
204      continue;
205
206    if (UseMI->isPHI()) {
207      ExtendLife = false;
208      continue;
209    }
210
211    // Only accept uses of SrcReg:SubIdx.
212    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
213      continue;
214
215    // It's an error to translate this:
216    //
217    //    %reg1025 = <sext> %reg1024
218    //     ...
219    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
220    //
221    // into this:
222    //
223    //    %reg1025 = <sext> %reg1024
224    //     ...
225    //    %reg1027 = COPY %reg1025:4
226    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
227    //
228    // The problem here is that SUBREG_TO_REG is there to assert that an
229    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
230    // the COPY here, it will give us the value after the <sext>, not the
231    // original value of %reg1024 before <sext>.
232    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
233      continue;
234
235    MachineBasicBlock *UseMBB = UseMI->getParent();
236    if (UseMBB == MBB) {
237      // Local uses that come after the extension.
238      if (!LocalMIs.count(UseMI))
239        Uses.push_back(&UseMO);
240    } else if (ReachedBBs.count(UseMBB)) {
241      // Non-local uses where the result of the extension is used. Always
242      // replace these unless it's a PHI.
243      Uses.push_back(&UseMO);
244    } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
245      // We may want to extend the live range of the extension result in order
246      // to replace these uses.
247      ExtendedUses.push_back(&UseMO);
248    } else {
249      // Both will be live out of the def MBB anyway. Don't extend live range of
250      // the extension result.
251      ExtendLife = false;
252      break;
253    }
254  }
255
256  if (ExtendLife && !ExtendedUses.empty())
257    // Extend the liveness of the extension result.
258    std::copy(ExtendedUses.begin(), ExtendedUses.end(),
259              std::back_inserter(Uses));
260
261  // Now replace all uses.
262  bool Changed = false;
263  if (!Uses.empty()) {
264    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
265
266    // Look for PHI uses of the extended result, we don't want to extend the
267    // liveness of a PHI input. It breaks all kinds of assumptions down
268    // stream. A PHI use is expected to be the kill of its source values.
269    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
270      if (UI.isPHI())
271        PHIBBs.insert(UI.getParent());
272
273    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
274    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
275      MachineOperand *UseMO = Uses[i];
276      MachineInstr *UseMI = UseMO->getParent();
277      MachineBasicBlock *UseMBB = UseMI->getParent();
278      if (PHIBBs.count(UseMBB))
279        continue;
280
281      // About to add uses of DstReg, clear DstReg's kill flags.
282      if (!Changed) {
283        MRI->clearKillFlags(DstReg);
284        MRI->constrainRegClass(DstReg, DstRC);
285      }
286
287      unsigned NewVR = MRI->createVirtualRegister(RC);
288      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
289                                   TII->get(TargetOpcode::COPY), NewVR)
290        .addReg(DstReg, 0, SubIdx);
291      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
292      if (UseSrcSubIdx) {
293        Copy->getOperand(0).setSubReg(SubIdx);
294        Copy->getOperand(0).setIsUndef();
295      }
296      UseMO->setReg(NewVR);
297      ++NumReuse;
298      Changed = true;
299    }
300  }
301
302  return Changed;
303}
304
305/// optimizeCmpInstr - If the instruction is a compare and the previous
306/// instruction it's comparing against all ready sets (or could be modified to
307/// set) the same flag as the compare, then we can remove the comparison and use
308/// the flag from the previous instruction.
309bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
310                                         MachineBasicBlock *MBB) {
311  // If this instruction is a comparison against zero and isn't comparing a
312  // physical register, we can try to optimize it.
313  unsigned SrcReg, SrcReg2;
314  int CmpMask, CmpValue;
315  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
316      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
317      (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
318    return false;
319
320  // Attempt to optimize the comparison instruction.
321  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
322    ++NumCmps;
323    return true;
324  }
325
326  return false;
327}
328
329/// Optimize a select instruction.
330bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
331  unsigned TrueOp = 0;
332  unsigned FalseOp = 0;
333  bool Optimizable = false;
334  SmallVector<MachineOperand, 4> Cond;
335  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
336    return false;
337  if (!Optimizable)
338    return false;
339  if (!TII->optimizeSelect(MI))
340    return false;
341  MI->eraseFromParent();
342  ++NumSelects;
343  return true;
344}
345
346/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
347/// share the same register file.
348static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
349                                  const TargetRegisterClass *DefRC,
350                                  unsigned DefSubReg,
351                                  const TargetRegisterClass *SrcRC,
352                                  unsigned SrcSubReg) {
353  // Same register class.
354  if (DefRC == SrcRC)
355    return true;
356
357  // Both operands are sub registers. Check if they share a register class.
358  unsigned SrcIdx, DefIdx;
359  if (SrcSubReg && DefSubReg)
360    return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
361                                      SrcIdx, DefIdx) != NULL;
362  // At most one of the register is a sub register, make it Src to avoid
363  // duplicating the test.
364  if (!SrcSubReg) {
365    std::swap(DefSubReg, SrcSubReg);
366    std::swap(DefRC, SrcRC);
367  }
368
369  // One of the register is a sub register, check if we can get a superclass.
370  if (SrcSubReg)
371    return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != NULL;
372  // Plain copy.
373  return TRI.getCommonSubClass(DefRC, SrcRC) != NULL;
374}
375
376/// \brief Get the index of the definition and source for \p Copy
377/// instruction.
378/// \pre Copy.isCopy() or Copy.isBitcast().
379/// \return True if the Copy instruction has only one register source
380/// and one register definition. Otherwise, \p DefIdx and \p SrcIdx
381/// are invalid.
382static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy,
383                                      unsigned &DefIdx, unsigned &SrcIdx) {
384  assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type.");
385  if (Copy.isCopy()) {
386    // Copy instruction are supposed to be: Def = Src.
387     if (Copy.getDesc().getNumOperands() != 2)
388       return false;
389     DefIdx = 0;
390     SrcIdx = 1;
391     assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!");
392     return true;
393  }
394  // Bitcast case.
395  // Bitcasts with more than one def are not supported.
396  if (Copy.getDesc().getNumDefs() != 1)
397    return false;
398  // Initialize SrcIdx to an undefined operand.
399  SrcIdx = Copy.getDesc().getNumOperands();
400  for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) {
401    const MachineOperand &MO = Copy.getOperand(OpIdx);
402    if (!MO.isReg() || !MO.getReg())
403      continue;
404    if (MO.isDef())
405      DefIdx = OpIdx;
406    else if (SrcIdx != EndOpIdx)
407      // Multiple sources?
408      return false;
409    SrcIdx = OpIdx;
410  }
411  return true;
412}
413
414/// \brief Optimize a copy or bitcast instruction to avoid cross
415/// register bank copy. The optimization looks through a chain of
416/// copies and try to find a source that has a compatible register
417/// class.
418/// Two register classes are considered to be compatible if they share
419/// the same register bank.
420/// New copies issued by this optimization are register allocator
421/// friendly. This optimization does not remove any copy as it may
422/// overconstraint the register allocator, but replaces some when
423/// possible.
424/// \pre \p MI is a Copy (MI->isCopy() is true)
425/// \return True, when \p MI has been optimized. In that case, \p MI has
426/// been removed from its parent.
427bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
428  unsigned DefIdx, SrcIdx;
429  if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx))
430    return false;
431
432  const MachineOperand &MODef = MI->getOperand(DefIdx);
433  assert(MODef.isReg() && "Copies must be between registers.");
434  unsigned Def = MODef.getReg();
435
436  if (TargetRegisterInfo::isPhysicalRegister(Def))
437    return false;
438
439  const TargetRegisterClass *DefRC = MRI->getRegClass(Def);
440  unsigned DefSubReg = MODef.getSubReg();
441
442  unsigned Src;
443  unsigned SrcSubReg;
444  bool ShouldRewrite = false;
445  MachineInstr *Copy = MI;
446  const TargetRegisterInfo &TRI = *TM->getRegisterInfo();
447
448  // Follow the chain of copies until we reach the top or find a
449  // more suitable source.
450  do {
451    unsigned CopyDefIdx, CopySrcIdx;
452    if (!getCopyOrBitcastDefUseIdx(*Copy, CopyDefIdx, CopySrcIdx))
453      break;
454    const MachineOperand &MO = Copy->getOperand(CopySrcIdx);
455    assert(MO.isReg() && "Copies must be between registers.");
456    Src = MO.getReg();
457
458    if (TargetRegisterInfo::isPhysicalRegister(Src))
459      break;
460
461    const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
462    SrcSubReg = MO.getSubReg();
463
464    // If this source does not incur a cross register bank copy, use it.
465    ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC,
466                                          SrcSubReg);
467    // Follow the chain of copies: get the definition of Src.
468    Copy = MRI->getVRegDef(Src);
469  } while (!ShouldRewrite && Copy && (Copy->isCopy() || Copy->isBitcast()));
470
471  // If we did not find a more suitable source, there is nothing to optimize.
472  if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg())
473    return false;
474
475  // Rewrite the copy to avoid a cross register bank penalty.
476  unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def :
477    MRI->createVirtualRegister(DefRC);
478  MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
479                                  TII->get(TargetOpcode::COPY), NewVR)
480    .addReg(Src, 0, SrcSubReg);
481  NewCopy->getOperand(0).setSubReg(DefSubReg);
482
483  MRI->replaceRegWith(Def, NewVR);
484  MRI->clearKillFlags(NewVR);
485  MI->eraseFromParent();
486  ++NumCopiesBitcasts;
487  return true;
488}
489
490/// isLoadFoldable - Check whether MI is a candidate for folding into a later
491/// instruction. We only fold loads to virtual registers and the virtual
492/// register defined has a single use.
493bool PeepholeOptimizer::isLoadFoldable(
494                              MachineInstr *MI,
495                              SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
496  if (!MI->canFoldAsLoad() || !MI->mayLoad())
497    return false;
498  const MCInstrDesc &MCID = MI->getDesc();
499  if (MCID.getNumDefs() != 1)
500    return false;
501
502  unsigned Reg = MI->getOperand(0).getReg();
503  // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
504  // loads. It should be checked when processing uses of the load, since
505  // uses can be removed during peephole.
506  if (!MI->getOperand(0).getSubReg() &&
507      TargetRegisterInfo::isVirtualRegister(Reg) &&
508      MRI->hasOneNonDBGUse(Reg)) {
509    FoldAsLoadDefCandidates.insert(Reg);
510    return true;
511  }
512  return false;
513}
514
515bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
516                                        SmallSet<unsigned, 4> &ImmDefRegs,
517                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
518  const MCInstrDesc &MCID = MI->getDesc();
519  if (!MI->isMoveImmediate())
520    return false;
521  if (MCID.getNumDefs() != 1)
522    return false;
523  unsigned Reg = MI->getOperand(0).getReg();
524  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
525    ImmDefMIs.insert(std::make_pair(Reg, MI));
526    ImmDefRegs.insert(Reg);
527    return true;
528  }
529
530  return false;
531}
532
533/// foldImmediate - Try folding register operands that are defined by move
534/// immediate instructions, i.e. a trivial constant folding optimization, if
535/// and only if the def and use are in the same BB.
536bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
537                                      SmallSet<unsigned, 4> &ImmDefRegs,
538                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
539  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
540    MachineOperand &MO = MI->getOperand(i);
541    if (!MO.isReg() || MO.isDef())
542      continue;
543    unsigned Reg = MO.getReg();
544    if (!TargetRegisterInfo::isVirtualRegister(Reg))
545      continue;
546    if (ImmDefRegs.count(Reg) == 0)
547      continue;
548    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
549    assert(II != ImmDefMIs.end());
550    if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
551      ++NumImmFold;
552      return true;
553    }
554  }
555  return false;
556}
557
558bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
559  if (skipOptnoneFunction(*MF.getFunction()))
560    return false;
561
562  DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
563  DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
564
565  if (DisablePeephole)
566    return false;
567
568  TM  = &MF.getTarget();
569  TII = TM->getInstrInfo();
570  MRI = &MF.getRegInfo();
571  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
572
573  bool Changed = false;
574
575  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
576    MachineBasicBlock *MBB = &*I;
577
578    bool SeenMoveImm = false;
579    SmallPtrSet<MachineInstr*, 8> LocalMIs;
580    SmallSet<unsigned, 4> ImmDefRegs;
581    DenseMap<unsigned, MachineInstr*> ImmDefMIs;
582    SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
583
584    for (MachineBasicBlock::iterator
585           MII = I->begin(), MIE = I->end(); MII != MIE; ) {
586      MachineInstr *MI = &*MII;
587      // We may be erasing MI below, increment MII now.
588      ++MII;
589      LocalMIs.insert(MI);
590
591      // Skip debug values. They should not affect this peephole optimization.
592      if (MI->isDebugValue())
593          continue;
594
595      // If there exists an instruction which belongs to the following
596      // categories, we will discard the load candidates.
597      if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
598          MI->isKill() || MI->isInlineAsm() ||
599          MI->hasUnmodeledSideEffects()) {
600        FoldAsLoadDefCandidates.clear();
601        continue;
602      }
603      if (MI->mayStore() || MI->isCall())
604        FoldAsLoadDefCandidates.clear();
605
606      if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) ||
607          (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
608          (MI->isSelect() && optimizeSelect(MI))) {
609        // MI is deleted.
610        LocalMIs.erase(MI);
611        Changed = true;
612        continue;
613      }
614
615      if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
616        SeenMoveImm = true;
617      } else {
618        Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
619        // optimizeExtInstr might have created new instructions after MI
620        // and before the already incremented MII. Adjust MII so that the
621        // next iteration sees the new instructions.
622        MII = MI;
623        ++MII;
624        if (SeenMoveImm)
625          Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
626      }
627
628      // Check whether MI is a load candidate for folding into a later
629      // instruction. If MI is not a candidate, check whether we can fold an
630      // earlier load into MI.
631      if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
632          !FoldAsLoadDefCandidates.empty()) {
633        const MCInstrDesc &MIDesc = MI->getDesc();
634        for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
635             ++i) {
636          const MachineOperand &MOp = MI->getOperand(i);
637          if (!MOp.isReg())
638            continue;
639          unsigned FoldAsLoadDefReg = MOp.getReg();
640          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
641            // We need to fold load after optimizeCmpInstr, since
642            // optimizeCmpInstr can enable folding by converting SUB to CMP.
643            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
644            // we need it for markUsesInDebugValueAsUndef().
645            unsigned FoldedReg = FoldAsLoadDefReg;
646            MachineInstr *DefMI = 0;
647            MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
648                                                          FoldAsLoadDefReg,
649                                                          DefMI);
650            if (FoldMI) {
651              // Update LocalMIs since we replaced MI with FoldMI and deleted
652              // DefMI.
653              DEBUG(dbgs() << "Replacing: " << *MI);
654              DEBUG(dbgs() << "     With: " << *FoldMI);
655              LocalMIs.erase(MI);
656              LocalMIs.erase(DefMI);
657              LocalMIs.insert(FoldMI);
658              MI->eraseFromParent();
659              DefMI->eraseFromParent();
660              MRI->markUsesInDebugValueAsUndef(FoldedReg);
661              FoldAsLoadDefCandidates.erase(FoldedReg);
662              ++NumLoadFold;
663              // MI is replaced with FoldMI.
664              Changed = true;
665              break;
666            }
667          }
668        }
669      }
670    }
671  }
672
673  return Changed;
674}
675