PeepholeOptimizer.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Perform peephole optimizations on the machine code:
11//
12// - Optimize Extensions
13//
14//     Optimization of sign / zero extension instructions. It may be extended to
15//     handle other instructions with similar properties.
16//
17//     On some targets, some instructions, e.g. X86 sign / zero extension, may
18//     leave the source value in the lower part of the result. This optimization
19//     will replace some uses of the pre-extension value with uses of the
20//     sub-register of the results.
21//
22// - Optimize Comparisons
23//
24//     Optimization of comparison instructions. For instance, in this code:
25//
26//       sub r1, 1
27//       cmp r1, 0
28//       bz  L1
29//
30//     If the "sub" instruction all ready sets (or could be modified to set) the
31//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
32//     eliminate the "cmp" instruction.
33//
34//     Another instance, in this code:
35//
36//       sub r1, r3 | sub r1, imm
37//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38//       bge L1
39//
40//     If the branch instruction can use flag from "sub", then we can replace
41//     "sub" with "subs" and eliminate the "cmp" instruction.
42//
43// - Optimize Loads:
44//
45//     Loads that can be folded into a later instruction. A load is foldable
46//     if it loads to virtual registers and the virtual register defined has
47//     a single use.
48//
49// - Optimize Copies and Bitcast:
50//
51//     Rewrite copies and bitcasts to avoid cross register bank copies
52//     when possible.
53//     E.g., Consider the following example, where capital and lower
54//     letters denote different register file:
55//     b = copy A <-- cross-bank copy
56//     C = copy b <-- cross-bank copy
57//   =>
58//     b = copy A <-- cross-bank copy
59//     C = copy A <-- same-bank copy
60//
61//     E.g., for bitcast:
62//     b = bitcast A <-- cross-bank copy
63//     C = bitcast b <-- cross-bank copy
64//   =>
65//     b = bitcast A <-- cross-bank copy
66//     C = copy A    <-- same-bank copy
67//===----------------------------------------------------------------------===//
68
69#include "llvm/CodeGen/Passes.h"
70#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/SmallPtrSet.h"
72#include "llvm/ADT/SmallSet.h"
73#include "llvm/ADT/Statistic.h"
74#include "llvm/CodeGen/MachineDominators.h"
75#include "llvm/CodeGen/MachineInstrBuilder.h"
76#include "llvm/CodeGen/MachineRegisterInfo.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Target/TargetInstrInfo.h"
80#include "llvm/Target/TargetRegisterInfo.h"
81using namespace llvm;
82
83#define DEBUG_TYPE "peephole-opt"
84
85// Optimize Extensions
86static cl::opt<bool>
87Aggressive("aggressive-ext-opt", cl::Hidden,
88           cl::desc("Aggressive extension optimization"));
89
90static cl::opt<bool>
91DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
92                cl::desc("Disable the peephole optimizer"));
93
94static cl::opt<bool>
95DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(true),
96                  cl::desc("Disable advanced copy optimization"));
97
98STATISTIC(NumReuse,      "Number of extension results reused");
99STATISTIC(NumCmps,       "Number of compares eliminated");
100STATISTIC(NumImmFold,    "Number of move immediate folded");
101STATISTIC(NumLoadFold,   "Number of loads folded");
102STATISTIC(NumSelects,    "Number of selects optimized");
103STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized");
104
105namespace {
106  class PeepholeOptimizer : public MachineFunctionPass {
107    const TargetMachine   *TM;
108    const TargetInstrInfo *TII;
109    MachineRegisterInfo   *MRI;
110    MachineDominatorTree  *DT;  // Machine dominator tree
111
112  public:
113    static char ID; // Pass identification
114    PeepholeOptimizer() : MachineFunctionPass(ID) {
115      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
116    }
117
118    bool runOnMachineFunction(MachineFunction &MF) override;
119
120    void getAnalysisUsage(AnalysisUsage &AU) const override {
121      AU.setPreservesCFG();
122      MachineFunctionPass::getAnalysisUsage(AU);
123      if (Aggressive) {
124        AU.addRequired<MachineDominatorTree>();
125        AU.addPreserved<MachineDominatorTree>();
126      }
127    }
128
129  private:
130    bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
131    bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
132                          SmallPtrSet<MachineInstr*, 8> &LocalMIs);
133    bool optimizeSelect(MachineInstr *MI);
134    bool optimizeCopyOrBitcast(MachineInstr *MI);
135    bool isMoveImmediate(MachineInstr *MI,
136                         SmallSet<unsigned, 4> &ImmDefRegs,
137                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
138    bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
139                       SmallSet<unsigned, 4> &ImmDefRegs,
140                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
141    bool isLoadFoldable(MachineInstr *MI,
142                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
143  };
144
145  /// \brief Helper class to track the possible sources of a value defined by
146  /// a (chain of) copy related instructions.
147  /// Given a definition (instruction and definition index), this class
148  /// follows the use-def chain to find successive suitable sources.
149  /// The given source can be used to rewrite the definition into
150  /// def = COPY src.
151  ///
152  /// For instance, let us consider the following snippet:
153  /// v0 =
154  /// v2 = INSERT_SUBREG v1, v0, sub0
155  /// def = COPY v2.sub0
156  ///
157  /// Using a ValueTracker for def = COPY v2.sub0 will give the following
158  /// suitable sources:
159  /// v2.sub0 and v0.
160  /// Then, def can be rewritten into def = COPY v0.
161  class ValueTracker {
162  private:
163    /// The current point into the use-def chain.
164    const MachineInstr *Def;
165    /// The index of the definition in Def.
166    unsigned DefIdx;
167    /// The sub register index of the definition.
168    unsigned DefSubReg;
169    /// The register where the value can be found.
170    unsigned Reg;
171    /// Specifiy whether or not the value tracking looks through
172    /// complex instructions. When this is false, the value tracker
173    /// bails on everything that is not a copy or a bitcast.
174    ///
175    /// Note: This could have been implemented as a specialized version of
176    /// the ValueTracker class but that would have complicated the code of
177    /// the users of this class.
178    bool UseAdvancedTracking;
179    /// Optional MachineRegisterInfo used to perform some complex
180    /// tracking.
181    const MachineRegisterInfo *MRI;
182
183    /// \brief Dispatcher to the right underlying implementation of
184    /// getNextSource.
185    bool getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg);
186    /// \brief Specialized version of getNextSource for Copy instructions.
187    bool getNextSourceFromCopy(unsigned &SrcIdx, unsigned &SrcSubReg);
188    /// \brief Specialized version of getNextSource for Bitcast instructions.
189    bool getNextSourceFromBitcast(unsigned &SrcIdx, unsigned &SrcSubReg);
190    /// \brief Specialized version of getNextSource for RegSequence
191    /// instructions.
192    bool getNextSourceFromRegSequence(unsigned &SrcIdx, unsigned &SrcSubReg);
193    /// \brief Specialized version of getNextSource for InsertSubreg
194    /// instructions.
195    bool getNextSourceFromInsertSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
196    /// \brief Specialized version of getNextSource for ExtractSubreg
197    /// instructions.
198    bool getNextSourceFromExtractSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
199    /// \brief Specialized version of getNextSource for SubregToReg
200    /// instructions.
201    bool getNextSourceFromSubregToReg(unsigned &SrcIdx, unsigned &SrcSubReg);
202
203  public:
204    /// \brief Create a ValueTracker instance for the value defines by \p MI
205    /// at the operand index \p DefIdx.
206    /// \p DefSubReg represents the sub register index the value tracker will
207    /// track. It does not need to match the sub register index used in \p MI.
208    /// \p UseAdvancedTracking specifies whether or not the value tracker looks
209    /// through complex instructions. By default (false), it handles only copy
210    /// and bitcast instructions.
211    /// \p MRI useful to perform some complex checks.
212    ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
213                 bool UseAdvancedTracking = false,
214                 const MachineRegisterInfo *MRI = nullptr)
215        : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
216          UseAdvancedTracking(UseAdvancedTracking), MRI(MRI) {
217      assert(Def->getOperand(DefIdx).isDef() &&
218             Def->getOperand(DefIdx).isReg() &&
219             "Definition does not match machine instruction");
220      // Initially the value is in the defined register.
221      Reg = Def->getOperand(DefIdx).getReg();
222    }
223
224    /// \brief Following the use-def chain, get the next available source
225    /// for the tracked value.
226    /// When the returned value is not nullptr, getReg() gives the register
227    /// that contain the tracked value.
228    /// \note The sub register index returned in \p SrcSubReg must be used
229    /// on that getReg() to access the actual value.
230    /// \return Unless the returned value is nullptr (i.e., no source found),
231    /// \p SrcIdx gives the index of the next source in the returned
232    /// instruction and \p SrcSubReg the index to be used on that source to
233    /// get the tracked value. When nullptr is returned, no alternative source
234    /// has been found.
235    const MachineInstr *getNextSource(unsigned &SrcIdx, unsigned &SrcSubReg);
236
237    /// \brief Get the last register where the initial value can be found.
238    /// Initially this is the register of the definition.
239    /// Then, after each successful call to getNextSource, this is the
240    /// register of the last source.
241    unsigned getReg() const { return Reg; }
242  };
243}
244
245char PeepholeOptimizer::ID = 0;
246char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
247INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
248                "Peephole Optimizations", false, false)
249INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
250INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
251                "Peephole Optimizations", false, false)
252
253/// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
254/// a single register and writes a single register and it does not modify the
255/// source, and if the source value is preserved as a sub-register of the
256/// result, then replace all reachable uses of the source with the subreg of the
257/// result.
258///
259/// Do not generate an EXTRACT that is used only in a debug use, as this changes
260/// the code. Since this code does not currently share EXTRACTs, just ignore all
261/// debug uses.
262bool PeepholeOptimizer::
263optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
264                 SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
265  unsigned SrcReg, DstReg, SubIdx;
266  if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
267    return false;
268
269  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
270      TargetRegisterInfo::isPhysicalRegister(SrcReg))
271    return false;
272
273  if (MRI->hasOneNonDBGUse(SrcReg))
274    // No other uses.
275    return false;
276
277  // Ensure DstReg can get a register class that actually supports
278  // sub-registers. Don't change the class until we commit.
279  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
280  DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
281  if (!DstRC)
282    return false;
283
284  // The ext instr may be operating on a sub-register of SrcReg as well.
285  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
286  // register.
287  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
288  // SrcReg:SubIdx should be replaced.
289  bool UseSrcSubIdx = TM->getRegisterInfo()->
290    getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
291
292  // The source has other uses. See if we can replace the other uses with use of
293  // the result of the extension.
294  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
295  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
296    ReachedBBs.insert(UI.getParent());
297
298  // Uses that are in the same BB of uses of the result of the instruction.
299  SmallVector<MachineOperand*, 8> Uses;
300
301  // Uses that the result of the instruction can reach.
302  SmallVector<MachineOperand*, 8> ExtendedUses;
303
304  bool ExtendLife = true;
305  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
306    MachineInstr *UseMI = UseMO.getParent();
307    if (UseMI == MI)
308      continue;
309
310    if (UseMI->isPHI()) {
311      ExtendLife = false;
312      continue;
313    }
314
315    // Only accept uses of SrcReg:SubIdx.
316    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
317      continue;
318
319    // It's an error to translate this:
320    //
321    //    %reg1025 = <sext> %reg1024
322    //     ...
323    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
324    //
325    // into this:
326    //
327    //    %reg1025 = <sext> %reg1024
328    //     ...
329    //    %reg1027 = COPY %reg1025:4
330    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
331    //
332    // The problem here is that SUBREG_TO_REG is there to assert that an
333    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
334    // the COPY here, it will give us the value after the <sext>, not the
335    // original value of %reg1024 before <sext>.
336    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
337      continue;
338
339    MachineBasicBlock *UseMBB = UseMI->getParent();
340    if (UseMBB == MBB) {
341      // Local uses that come after the extension.
342      if (!LocalMIs.count(UseMI))
343        Uses.push_back(&UseMO);
344    } else if (ReachedBBs.count(UseMBB)) {
345      // Non-local uses where the result of the extension is used. Always
346      // replace these unless it's a PHI.
347      Uses.push_back(&UseMO);
348    } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
349      // We may want to extend the live range of the extension result in order
350      // to replace these uses.
351      ExtendedUses.push_back(&UseMO);
352    } else {
353      // Both will be live out of the def MBB anyway. Don't extend live range of
354      // the extension result.
355      ExtendLife = false;
356      break;
357    }
358  }
359
360  if (ExtendLife && !ExtendedUses.empty())
361    // Extend the liveness of the extension result.
362    std::copy(ExtendedUses.begin(), ExtendedUses.end(),
363              std::back_inserter(Uses));
364
365  // Now replace all uses.
366  bool Changed = false;
367  if (!Uses.empty()) {
368    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
369
370    // Look for PHI uses of the extended result, we don't want to extend the
371    // liveness of a PHI input. It breaks all kinds of assumptions down
372    // stream. A PHI use is expected to be the kill of its source values.
373    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
374      if (UI.isPHI())
375        PHIBBs.insert(UI.getParent());
376
377    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
378    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
379      MachineOperand *UseMO = Uses[i];
380      MachineInstr *UseMI = UseMO->getParent();
381      MachineBasicBlock *UseMBB = UseMI->getParent();
382      if (PHIBBs.count(UseMBB))
383        continue;
384
385      // About to add uses of DstReg, clear DstReg's kill flags.
386      if (!Changed) {
387        MRI->clearKillFlags(DstReg);
388        MRI->constrainRegClass(DstReg, DstRC);
389      }
390
391      unsigned NewVR = MRI->createVirtualRegister(RC);
392      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
393                                   TII->get(TargetOpcode::COPY), NewVR)
394        .addReg(DstReg, 0, SubIdx);
395      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
396      if (UseSrcSubIdx) {
397        Copy->getOperand(0).setSubReg(SubIdx);
398        Copy->getOperand(0).setIsUndef();
399      }
400      UseMO->setReg(NewVR);
401      ++NumReuse;
402      Changed = true;
403    }
404  }
405
406  return Changed;
407}
408
409/// optimizeCmpInstr - If the instruction is a compare and the previous
410/// instruction it's comparing against all ready sets (or could be modified to
411/// set) the same flag as the compare, then we can remove the comparison and use
412/// the flag from the previous instruction.
413bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
414                                         MachineBasicBlock *MBB) {
415  // If this instruction is a comparison against zero and isn't comparing a
416  // physical register, we can try to optimize it.
417  unsigned SrcReg, SrcReg2;
418  int CmpMask, CmpValue;
419  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
420      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
421      (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
422    return false;
423
424  // Attempt to optimize the comparison instruction.
425  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
426    ++NumCmps;
427    return true;
428  }
429
430  return false;
431}
432
433/// Optimize a select instruction.
434bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
435  unsigned TrueOp = 0;
436  unsigned FalseOp = 0;
437  bool Optimizable = false;
438  SmallVector<MachineOperand, 4> Cond;
439  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
440    return false;
441  if (!Optimizable)
442    return false;
443  if (!TII->optimizeSelect(MI))
444    return false;
445  MI->eraseFromParent();
446  ++NumSelects;
447  return true;
448}
449
450/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
451/// share the same register file.
452static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
453                                  const TargetRegisterClass *DefRC,
454                                  unsigned DefSubReg,
455                                  const TargetRegisterClass *SrcRC,
456                                  unsigned SrcSubReg) {
457  // Same register class.
458  if (DefRC == SrcRC)
459    return true;
460
461  // Both operands are sub registers. Check if they share a register class.
462  unsigned SrcIdx, DefIdx;
463  if (SrcSubReg && DefSubReg)
464    return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
465                                      SrcIdx, DefIdx) != nullptr;
466  // At most one of the register is a sub register, make it Src to avoid
467  // duplicating the test.
468  if (!SrcSubReg) {
469    std::swap(DefSubReg, SrcSubReg);
470    std::swap(DefRC, SrcRC);
471  }
472
473  // One of the register is a sub register, check if we can get a superclass.
474  if (SrcSubReg)
475    return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
476  // Plain copy.
477  return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
478}
479
480/// \brief Get the index of the definition and source for \p Copy
481/// instruction.
482/// \pre Copy.isCopy() or Copy.isBitcast().
483/// \return True if the Copy instruction has only one register source
484/// and one register definition. Otherwise, \p DefIdx and \p SrcIdx
485/// are invalid.
486static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy,
487                                      unsigned &DefIdx, unsigned &SrcIdx) {
488  assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type.");
489  if (Copy.isCopy()) {
490    // Copy instruction are supposed to be: Def = Src.
491     if (Copy.getDesc().getNumOperands() != 2)
492       return false;
493     DefIdx = 0;
494     SrcIdx = 1;
495     assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!");
496     return true;
497  }
498  // Bitcast case.
499  // Bitcasts with more than one def are not supported.
500  if (Copy.getDesc().getNumDefs() != 1)
501    return false;
502  // Initialize SrcIdx to an undefined operand.
503  SrcIdx = Copy.getDesc().getNumOperands();
504  for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) {
505    const MachineOperand &MO = Copy.getOperand(OpIdx);
506    if (!MO.isReg() || !MO.getReg())
507      continue;
508    if (MO.isDef())
509      DefIdx = OpIdx;
510    else if (SrcIdx != EndOpIdx)
511      // Multiple sources?
512      return false;
513    SrcIdx = OpIdx;
514  }
515  return true;
516}
517
518/// \brief Optimize a copy or bitcast instruction to avoid cross
519/// register bank copy. The optimization looks through a chain of
520/// copies and try to find a source that has a compatible register
521/// class.
522/// Two register classes are considered to be compatible if they share
523/// the same register bank.
524/// New copies issued by this optimization are register allocator
525/// friendly. This optimization does not remove any copy as it may
526/// overconstraint the register allocator, but replaces some when
527/// possible.
528/// \pre \p MI is a Copy (MI->isCopy() is true)
529/// \return True, when \p MI has been optimized. In that case, \p MI has
530/// been removed from its parent.
531bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
532  unsigned DefIdx, SrcIdx;
533  if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx))
534    return false;
535
536  const MachineOperand &MODef = MI->getOperand(DefIdx);
537  assert(MODef.isReg() && "Copies must be between registers.");
538  unsigned Def = MODef.getReg();
539
540  if (TargetRegisterInfo::isPhysicalRegister(Def))
541    return false;
542
543  const TargetRegisterClass *DefRC = MRI->getRegClass(Def);
544  unsigned DefSubReg = MODef.getSubReg();
545
546  unsigned Src;
547  unsigned SrcSubReg;
548  bool ShouldRewrite = false;
549  const TargetRegisterInfo &TRI = *TM->getRegisterInfo();
550
551  // Follow the chain of copies until we reach the top of the use-def chain
552  // or find a more suitable source.
553  ValueTracker ValTracker(*MI, DefIdx, DefSubReg, !DisableAdvCopyOpt, MRI);
554  do {
555    unsigned CopySrcIdx, CopySrcSubReg;
556    if (!ValTracker.getNextSource(CopySrcIdx, CopySrcSubReg))
557      break;
558    Src = ValTracker.getReg();
559    SrcSubReg = CopySrcSubReg;
560
561    // Do not extend the live-ranges of physical registers as they add
562    // constraints to the register allocator.
563    // Moreover, if we want to extend the live-range of a physical register,
564    // unlike SSA virtual register, we will have to check that they are not
565    // redefine before the related use.
566    if (TargetRegisterInfo::isPhysicalRegister(Src))
567      break;
568
569    const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
570
571    // If this source does not incur a cross register bank copy, use it.
572    ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC,
573                                          SrcSubReg);
574  } while (!ShouldRewrite);
575
576  // If we did not find a more suitable source, there is nothing to optimize.
577  if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg())
578    return false;
579
580  // Rewrite the copy to avoid a cross register bank penalty.
581  unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def :
582    MRI->createVirtualRegister(DefRC);
583  MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
584                                  TII->get(TargetOpcode::COPY), NewVR)
585    .addReg(Src, 0, SrcSubReg);
586  NewCopy->getOperand(0).setSubReg(DefSubReg);
587
588  MRI->replaceRegWith(Def, NewVR);
589  MRI->clearKillFlags(NewVR);
590  // We extended the lifetime of Src.
591  // Clear the kill flags to account for that.
592  MRI->clearKillFlags(Src);
593  MI->eraseFromParent();
594  ++NumCopiesBitcasts;
595  return true;
596}
597
598/// isLoadFoldable - Check whether MI is a candidate for folding into a later
599/// instruction. We only fold loads to virtual registers and the virtual
600/// register defined has a single use.
601bool PeepholeOptimizer::isLoadFoldable(
602                              MachineInstr *MI,
603                              SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
604  if (!MI->canFoldAsLoad() || !MI->mayLoad())
605    return false;
606  const MCInstrDesc &MCID = MI->getDesc();
607  if (MCID.getNumDefs() != 1)
608    return false;
609
610  unsigned Reg = MI->getOperand(0).getReg();
611  // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
612  // loads. It should be checked when processing uses of the load, since
613  // uses can be removed during peephole.
614  if (!MI->getOperand(0).getSubReg() &&
615      TargetRegisterInfo::isVirtualRegister(Reg) &&
616      MRI->hasOneNonDBGUse(Reg)) {
617    FoldAsLoadDefCandidates.insert(Reg);
618    return true;
619  }
620  return false;
621}
622
623bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
624                                        SmallSet<unsigned, 4> &ImmDefRegs,
625                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
626  const MCInstrDesc &MCID = MI->getDesc();
627  if (!MI->isMoveImmediate())
628    return false;
629  if (MCID.getNumDefs() != 1)
630    return false;
631  unsigned Reg = MI->getOperand(0).getReg();
632  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
633    ImmDefMIs.insert(std::make_pair(Reg, MI));
634    ImmDefRegs.insert(Reg);
635    return true;
636  }
637
638  return false;
639}
640
641/// foldImmediate - Try folding register operands that are defined by move
642/// immediate instructions, i.e. a trivial constant folding optimization, if
643/// and only if the def and use are in the same BB.
644bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
645                                      SmallSet<unsigned, 4> &ImmDefRegs,
646                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
647  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
648    MachineOperand &MO = MI->getOperand(i);
649    if (!MO.isReg() || MO.isDef())
650      continue;
651    unsigned Reg = MO.getReg();
652    if (!TargetRegisterInfo::isVirtualRegister(Reg))
653      continue;
654    if (ImmDefRegs.count(Reg) == 0)
655      continue;
656    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
657    assert(II != ImmDefMIs.end());
658    if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
659      ++NumImmFold;
660      return true;
661    }
662  }
663  return false;
664}
665
666bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
667  if (skipOptnoneFunction(*MF.getFunction()))
668    return false;
669
670  DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
671  DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
672
673  if (DisablePeephole)
674    return false;
675
676  TM  = &MF.getTarget();
677  TII = TM->getInstrInfo();
678  MRI = &MF.getRegInfo();
679  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
680
681  bool Changed = false;
682
683  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
684    MachineBasicBlock *MBB = &*I;
685
686    bool SeenMoveImm = false;
687    SmallPtrSet<MachineInstr*, 8> LocalMIs;
688    SmallSet<unsigned, 4> ImmDefRegs;
689    DenseMap<unsigned, MachineInstr*> ImmDefMIs;
690    SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
691
692    for (MachineBasicBlock::iterator
693           MII = I->begin(), MIE = I->end(); MII != MIE; ) {
694      MachineInstr *MI = &*MII;
695      // We may be erasing MI below, increment MII now.
696      ++MII;
697      LocalMIs.insert(MI);
698
699      // Skip debug values. They should not affect this peephole optimization.
700      if (MI->isDebugValue())
701          continue;
702
703      // If there exists an instruction which belongs to the following
704      // categories, we will discard the load candidates.
705      if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
706          MI->isKill() || MI->isInlineAsm() ||
707          MI->hasUnmodeledSideEffects()) {
708        FoldAsLoadDefCandidates.clear();
709        continue;
710      }
711      if (MI->mayStore() || MI->isCall())
712        FoldAsLoadDefCandidates.clear();
713
714      if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) ||
715          (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
716          (MI->isSelect() && optimizeSelect(MI))) {
717        // MI is deleted.
718        LocalMIs.erase(MI);
719        Changed = true;
720        continue;
721      }
722
723      if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
724        SeenMoveImm = true;
725      } else {
726        Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
727        // optimizeExtInstr might have created new instructions after MI
728        // and before the already incremented MII. Adjust MII so that the
729        // next iteration sees the new instructions.
730        MII = MI;
731        ++MII;
732        if (SeenMoveImm)
733          Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
734      }
735
736      // Check whether MI is a load candidate for folding into a later
737      // instruction. If MI is not a candidate, check whether we can fold an
738      // earlier load into MI.
739      if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
740          !FoldAsLoadDefCandidates.empty()) {
741        const MCInstrDesc &MIDesc = MI->getDesc();
742        for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
743             ++i) {
744          const MachineOperand &MOp = MI->getOperand(i);
745          if (!MOp.isReg())
746            continue;
747          unsigned FoldAsLoadDefReg = MOp.getReg();
748          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
749            // We need to fold load after optimizeCmpInstr, since
750            // optimizeCmpInstr can enable folding by converting SUB to CMP.
751            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
752            // we need it for markUsesInDebugValueAsUndef().
753            unsigned FoldedReg = FoldAsLoadDefReg;
754            MachineInstr *DefMI = nullptr;
755            MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
756                                                          FoldAsLoadDefReg,
757                                                          DefMI);
758            if (FoldMI) {
759              // Update LocalMIs since we replaced MI with FoldMI and deleted
760              // DefMI.
761              DEBUG(dbgs() << "Replacing: " << *MI);
762              DEBUG(dbgs() << "     With: " << *FoldMI);
763              LocalMIs.erase(MI);
764              LocalMIs.erase(DefMI);
765              LocalMIs.insert(FoldMI);
766              MI->eraseFromParent();
767              DefMI->eraseFromParent();
768              MRI->markUsesInDebugValueAsUndef(FoldedReg);
769              FoldAsLoadDefCandidates.erase(FoldedReg);
770              ++NumLoadFold;
771              // MI is replaced with FoldMI.
772              Changed = true;
773              break;
774            }
775          }
776        }
777      }
778    }
779  }
780
781  return Changed;
782}
783
784bool ValueTracker::getNextSourceFromCopy(unsigned &SrcIdx,
785                                         unsigned &SrcSubReg) {
786  assert(Def->isCopy() && "Invalid definition");
787  // Copy instruction are supposed to be: Def = Src.
788  // If someone breaks this assumption, bad things will happen everywhere.
789  assert(Def->getDesc().getNumOperands() == 2 && "Invalid number of operands");
790
791  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
792    // If we look for a different subreg, it means we want a subreg of src.
793    // Bails as we do not support composing subreg yet.
794    return false;
795  // Otherwise, we want the whole source.
796  SrcIdx = 1;
797  SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
798  return true;
799}
800
801bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx,
802                                            unsigned &SrcSubReg) {
803  assert(Def->isBitcast() && "Invalid definition");
804
805  // Bail if there are effects that a plain copy will not expose.
806  if (Def->hasUnmodeledSideEffects())
807    return false;
808
809  // Bitcasts with more than one def are not supported.
810  if (Def->getDesc().getNumDefs() != 1)
811    return false;
812  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
813    // If we look for a different subreg, it means we want a subreg of the src.
814    // Bails as we do not support composing subreg yet.
815    return false;
816
817  SrcIdx = Def->getDesc().getNumOperands();
818  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
819       ++OpIdx) {
820    const MachineOperand &MO = Def->getOperand(OpIdx);
821    if (!MO.isReg() || !MO.getReg())
822      continue;
823    assert(!MO.isDef() && "We should have skipped all the definitions by now");
824    if (SrcIdx != EndOpIdx)
825      // Multiple sources?
826      return false;
827    SrcIdx = OpIdx;
828  }
829  SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
830  return true;
831}
832
833bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx,
834                                                unsigned &SrcSubReg) {
835  assert(Def->isRegSequence() && "Invalid definition");
836
837  if (Def->getOperand(DefIdx).getSubReg())
838    // If we are composing subreg, bails out.
839    // The case we are checking is Def.<subreg> = REG_SEQUENCE.
840    // This should almost never happen as the SSA property is tracked at
841    // the register level (as opposed to the subreg level).
842    // I.e.,
843    // Def.sub0 =
844    // Def.sub1 =
845    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
846    // Def. Thus, it must not be generated.
847    // However, some code could theoretically generates a single
848    // Def.sub0 (i.e, not defining the other subregs) and we would
849    // have this case.
850    // If we can ascertain (or force) that this never happens, we could
851    // turn that into an assertion.
852    return false;
853
854  // We are looking at:
855  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
856  // Check if one of the operand defines the subreg we are interested in.
857  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = Def->getNumOperands();
858       OpIdx != EndOpIdx; OpIdx += 2) {
859    const MachineOperand &MOSubIdx = Def->getOperand(OpIdx + 1);
860    assert(MOSubIdx.isImm() &&
861           "One of the subindex of the reg_sequence is not an immediate");
862    if (MOSubIdx.getImm() == DefSubReg) {
863      assert(Def->getOperand(OpIdx).isReg() &&
864             "One of the source of the reg_sequence is not a register");
865      SrcIdx = OpIdx;
866      SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
867      return true;
868    }
869  }
870
871  // If the subreg we are tracking is super-defined by another subreg,
872  // we could follow this value. However, this would require to compose
873  // the subreg and we do not do that for now.
874  return false;
875}
876
877bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcIdx,
878                                                 unsigned &SrcSubReg) {
879  assert(Def->isInsertSubreg() && "Invalid definition");
880  if (Def->getOperand(DefIdx).getSubReg())
881    // If we are composing subreg, bails out.
882    // Same remark as getNextSourceFromRegSequence.
883    // I.e., this may be turned into an assert.
884    return false;
885
886  // We are looking at:
887  // Def = INSERT_SUBREG v0, v1, sub1
888  // There are two cases:
889  // 1. DefSubReg == sub1, get v1.
890  // 2. DefSubReg != sub1, the value may be available through v0.
891
892  // #1 Check if the inserted register matches the require sub index.
893  unsigned InsertedSubReg = Def->getOperand(3).getImm();
894  if (InsertedSubReg == DefSubReg) {
895    SrcIdx = 2;
896    SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
897    return true;
898  }
899  // #2 Otherwise, if the sub register we are looking for is not partial
900  // defined by the inserted element, we can look through the main
901  // register (v0).
902  // To check the overlapping we need a MRI and a TRI.
903  if (!MRI)
904    return false;
905
906  const MachineOperand &MODef = Def->getOperand(DefIdx);
907  const MachineOperand &MOBase = Def->getOperand(1);
908  // If the result register (Def) and the base register (v0) do not
909  // have the same register class or if we have to compose
910  // subregisters, bails out.
911  if (MRI->getRegClass(MODef.getReg()) != MRI->getRegClass(MOBase.getReg()) ||
912      MOBase.getSubReg())
913    return false;
914
915  // Get the TRI and check if inserted sub register overlaps with the
916  // sub register we are tracking.
917  const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
918  if (!TRI ||
919      (TRI->getSubRegIndexLaneMask(DefSubReg) &
920       TRI->getSubRegIndexLaneMask(InsertedSubReg)) != 0)
921    return false;
922  // At this point, the value is available in v0 via the same subreg
923  // we used for Def.
924  SrcIdx = 1;
925  SrcSubReg = DefSubReg;
926  return true;
927}
928
929bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcIdx,
930                                                  unsigned &SrcSubReg) {
931  assert(Def->isExtractSubreg() && "Invalid definition");
932  // We are looking at:
933  // Def = EXTRACT_SUBREG v0, sub0
934
935  // Bails if we have to compose sub registers.
936  // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
937  if (DefSubReg)
938    return false;
939
940  // Bails if we have to compose sub registers.
941  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
942  if (Def->getOperand(1).getSubReg())
943    return false;
944  // Otherwise, the value is available in the v0.sub0.
945  SrcIdx = 1;
946  SrcSubReg = Def->getOperand(2).getImm();
947  return true;
948}
949
950bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcIdx,
951                                                unsigned &SrcSubReg) {
952  assert(Def->isSubregToReg() && "Invalid definition");
953  // We are looking at:
954  // Def = SUBREG_TO_REG Imm, v0, sub0
955
956  // Bails if we have to compose sub registers.
957  // If DefSubReg != sub0, we would have to check that all the bits
958  // we track are included in sub0 and if yes, we would have to
959  // determine the right subreg in v0.
960  if (DefSubReg != Def->getOperand(3).getImm())
961    return false;
962  // Bails if we have to compose sub registers.
963  // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
964  if (Def->getOperand(2).getSubReg())
965    return false;
966
967  SrcIdx = 2;
968  SrcSubReg = Def->getOperand(3).getImm();
969  return true;
970}
971
972bool ValueTracker::getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg) {
973  assert(Def && "This method needs a valid definition");
974
975  assert(
976      (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
977      Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
978  if (Def->isCopy())
979    return getNextSourceFromCopy(SrcIdx, SrcSubReg);
980  if (Def->isBitcast())
981    return getNextSourceFromBitcast(SrcIdx, SrcSubReg);
982  // All the remaining cases involve "complex" instructions.
983  // Bails if we did not ask for the advanced tracking.
984  if (!UseAdvancedTracking)
985    return false;
986  if (Def->isRegSequence())
987    return getNextSourceFromRegSequence(SrcIdx, SrcSubReg);
988  if (Def->isInsertSubreg())
989    return getNextSourceFromInsertSubreg(SrcIdx, SrcSubReg);
990  if (Def->isExtractSubreg())
991    return getNextSourceFromExtractSubreg(SrcIdx, SrcSubReg);
992  if (Def->isSubregToReg())
993    return getNextSourceFromSubregToReg(SrcIdx, SrcSubReg);
994  return false;
995}
996
997const MachineInstr *ValueTracker::getNextSource(unsigned &SrcIdx,
998                                                unsigned &SrcSubReg) {
999  // If we reach a point where we cannot move up in the use-def chain,
1000  // there is nothing we can get.
1001  if (!Def)
1002    return nullptr;
1003
1004  const MachineInstr *PrevDef = nullptr;
1005  // Try to find the next source.
1006  if (getNextSourceImpl(SrcIdx, SrcSubReg)) {
1007    // Update definition, definition index, and subregister for the
1008    // next call of getNextSource.
1009    const MachineOperand &MO = Def->getOperand(SrcIdx);
1010    assert(MO.isReg() && !MO.isDef() && "Source is invalid");
1011    // Update the current register.
1012    Reg = MO.getReg();
1013    // Update the return value before moving up in the use-def chain.
1014    PrevDef = Def;
1015    // If we can still move up in the use-def chain, move to the next
1016    // defintion.
1017    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
1018      Def = MRI->getVRegDef(Reg);
1019      DefIdx = MRI->def_begin(Reg).getOperandNo();
1020      DefSubReg = SrcSubReg;
1021      return PrevDef;
1022    }
1023  }
1024  // If we end up here, this means we will not be able to find another source
1025  // for the next iteration.
1026  // Make sure any new call to getNextSource bails out early by cutting the
1027  // use-def chain.
1028  Def = nullptr;
1029  return PrevDef;
1030}
1031