RegisterCoalescer.cpp revision c8db087b3b6d8767db4fa54057ac8fa448d812ca
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#include "RegisterCoalescer.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveRangeEdit.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/RegisterClassInfo.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44#define DEBUG_TYPE "regalloc"
45
46STATISTIC(numJoins    , "Number of interval joins performed");
47STATISTIC(numCrossRCs , "Number of cross class joins performed");
48STATISTIC(numCommutes , "Number of instruction commuting performed");
49STATISTIC(numExtends  , "Number of copies extended");
50STATISTIC(NumReMats   , "Number of instructions re-materialized");
51STATISTIC(NumInflated , "Number of register classes inflated");
52STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
54
55static cl::opt<bool>
56EnableJoining("join-liveintervals",
57              cl::desc("Coalesce copies (default=true)"),
58              cl::init(true));
59
60// Temporary flag to test critical edge unsplitting.
61static cl::opt<bool>
62EnableJoinSplits("join-splitedges",
63  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
64
65// Temporary flag to test global copy optimization.
66static cl::opt<cl::boolOrDefault>
67EnableGlobalCopies("join-globalcopies",
68  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
69  cl::init(cl::BOU_UNSET), cl::Hidden);
70
71static cl::opt<bool>
72VerifyCoalescing("verify-coalescing",
73         cl::desc("Verify machine instrs before and after register coalescing"),
74         cl::Hidden);
75
76namespace {
77  class RegisterCoalescer : public MachineFunctionPass,
78                            private LiveRangeEdit::Delegate {
79    MachineFunction* MF;
80    MachineRegisterInfo* MRI;
81    const TargetMachine* TM;
82    const TargetRegisterInfo* TRI;
83    const TargetInstrInfo* TII;
84    LiveIntervals *LIS;
85    const MachineLoopInfo* Loops;
86    AliasAnalysis *AA;
87    RegisterClassInfo RegClassInfo;
88
89    /// \brief True if the coalescer should aggressively coalesce global copies
90    /// in favor of keeping local copies.
91    bool JoinGlobalCopies;
92
93    /// \brief True if the coalescer should aggressively coalesce fall-thru
94    /// blocks exclusively containing copies.
95    bool JoinSplitEdges;
96
97    /// WorkList - Copy instructions yet to be coalesced.
98    SmallVector<MachineInstr*, 8> WorkList;
99    SmallVector<MachineInstr*, 8> LocalWorkList;
100
101    /// ErasedInstrs - Set of instruction pointers that have been erased, and
102    /// that may be present in WorkList.
103    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
104
105    /// Dead instructions that are about to be deleted.
106    SmallVector<MachineInstr*, 8> DeadDefs;
107
108    /// Virtual registers to be considered for register class inflation.
109    SmallVector<unsigned, 8> InflateRegs;
110
111    /// Recursively eliminate dead defs in DeadDefs.
112    void eliminateDeadDefs();
113
114    /// LiveRangeEdit callback.
115    void LRE_WillEraseInstruction(MachineInstr *MI) override;
116
117    /// coalesceLocals - coalesce the LocalWorkList.
118    void coalesceLocals();
119
120    /// joinAllIntervals - join compatible live intervals
121    void joinAllIntervals();
122
123    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
124    /// copies that cannot yet be coalesced into WorkList.
125    void copyCoalesceInMBB(MachineBasicBlock *MBB);
126
127    /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
128    /// true if any progress was made.
129    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
130
131    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
132    /// which are the src/dst of the copy instruction CopyMI.  This returns
133    /// true if the copy was successfully coalesced away. If it is not
134    /// currently possible to coalesce this interval, but it may be possible if
135    /// other things get coalesced, then it returns true by reference in
136    /// 'Again'.
137    bool joinCopy(MachineInstr *TheCopy, bool &Again);
138
139    /// joinIntervals - Attempt to join these two intervals.  On failure, this
140    /// returns false.  The output "SrcInt" will not have been modified, so we
141    /// can use this information below to update aliases.
142    bool joinIntervals(CoalescerPair &CP);
143
144    /// Attempt joining two virtual registers. Return true on success.
145    bool joinVirtRegs(CoalescerPair &CP);
146
147    /// Attempt joining with a reserved physreg.
148    bool joinReservedPhysReg(CoalescerPair &CP);
149
150    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
151    /// the source value number is defined by a copy from the destination reg
152    /// see if we can merge these two destination reg valno# into a single
153    /// value number, eliminating a copy.
154    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
155
156    /// hasOtherReachingDefs - Return true if there are definitions of IntB
157    /// other than BValNo val# that can reach uses of AValno val# of IntA.
158    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
159                              VNInfo *AValNo, VNInfo *BValNo);
160
161    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
162    /// If the source value number is defined by a commutable instruction and
163    /// its other operand is coalesced to the copy dest register, see if we
164    /// can transform the copy into a noop by commuting the definition.
165    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
166
167    /// reMaterializeTrivialDef - If the source of a copy is defined by a
168    /// trivial computation, replace the copy by rematerialize the definition.
169    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
170                                 bool &IsDefCopy);
171
172    /// canJoinPhys - Return true if a physreg copy should be joined.
173    bool canJoinPhys(const CoalescerPair &CP);
174
175    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
176    /// update the subregister number if it is not zero. If DstReg is a
177    /// physical register and the existing subregister number of the def / use
178    /// being updated is not zero, make sure to set it to the correct physical
179    /// subregister.
180    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
181
182    /// eliminateUndefCopy - Handle copies of undef values.
183    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
184
185  public:
186    static char ID; // Class identification, replacement for typeinfo
187    RegisterCoalescer() : MachineFunctionPass(ID) {
188      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
189    }
190
191    void getAnalysisUsage(AnalysisUsage &AU) const override;
192
193    void releaseMemory() override;
194
195    /// runOnMachineFunction - pass entry point
196    bool runOnMachineFunction(MachineFunction&) override;
197
198    /// print - Implement the dump method.
199    void print(raw_ostream &O, const Module* = nullptr) const override;
200  };
201} /// end anonymous namespace
202
203char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
204
205INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
206                      "Simple Register Coalescing", false, false)
207INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
208INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
210INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
211INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
212                    "Simple Register Coalescing", false, false)
213
214char RegisterCoalescer::ID = 0;
215
216static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217                        unsigned &Src, unsigned &Dst,
218                        unsigned &SrcSub, unsigned &DstSub) {
219  if (MI->isCopy()) {
220    Dst = MI->getOperand(0).getReg();
221    DstSub = MI->getOperand(0).getSubReg();
222    Src = MI->getOperand(1).getReg();
223    SrcSub = MI->getOperand(1).getSubReg();
224  } else if (MI->isSubregToReg()) {
225    Dst = MI->getOperand(0).getReg();
226    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
227                                      MI->getOperand(3).getImm());
228    Src = MI->getOperand(2).getReg();
229    SrcSub = MI->getOperand(2).getSubReg();
230  } else
231    return false;
232  return true;
233}
234
235// Return true if this block should be vacated by the coalescer to eliminate
236// branches. The important cases to handle in the coalescer are critical edges
237// split during phi elimination which contain only copies. Simple blocks that
238// contain non-branches should also be vacated, but this can be handled by an
239// earlier pass similar to early if-conversion.
240static bool isSplitEdge(const MachineBasicBlock *MBB) {
241  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
242    return false;
243
244  for (const auto &MI : *MBB) {
245    if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
246      return false;
247  }
248  return true;
249}
250
251bool CoalescerPair::setRegisters(const MachineInstr *MI) {
252  SrcReg = DstReg = 0;
253  SrcIdx = DstIdx = 0;
254  NewRC = nullptr;
255  Flipped = CrossClass = false;
256
257  unsigned Src, Dst, SrcSub, DstSub;
258  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
259    return false;
260  Partial = SrcSub || DstSub;
261
262  // If one register is a physreg, it must be Dst.
263  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
264    if (TargetRegisterInfo::isPhysicalRegister(Dst))
265      return false;
266    std::swap(Src, Dst);
267    std::swap(SrcSub, DstSub);
268    Flipped = true;
269  }
270
271  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
272
273  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
274    // Eliminate DstSub on a physreg.
275    if (DstSub) {
276      Dst = TRI.getSubReg(Dst, DstSub);
277      if (!Dst) return false;
278      DstSub = 0;
279    }
280
281    // Eliminate SrcSub by picking a corresponding Dst superregister.
282    if (SrcSub) {
283      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
284      if (!Dst) return false;
285    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
286      return false;
287    }
288  } else {
289    // Both registers are virtual.
290    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
291    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
292
293    // Both registers have subreg indices.
294    if (SrcSub && DstSub) {
295      // Copies between different sub-registers are never coalescable.
296      if (Src == Dst && SrcSub != DstSub)
297        return false;
298
299      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
300                                         SrcIdx, DstIdx);
301      if (!NewRC)
302        return false;
303    } else if (DstSub) {
304      // SrcReg will be merged with a sub-register of DstReg.
305      SrcIdx = DstSub;
306      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
307    } else if (SrcSub) {
308      // DstReg will be merged with a sub-register of SrcReg.
309      DstIdx = SrcSub;
310      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
311    } else {
312      // This is a straight copy without sub-registers.
313      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
314    }
315
316    // The combined constraint may be impossible to satisfy.
317    if (!NewRC)
318      return false;
319
320    // Prefer SrcReg to be a sub-register of DstReg.
321    // FIXME: Coalescer should support subregs symmetrically.
322    if (DstIdx && !SrcIdx) {
323      std::swap(Src, Dst);
324      std::swap(SrcIdx, DstIdx);
325      Flipped = !Flipped;
326    }
327
328    CrossClass = NewRC != DstRC || NewRC != SrcRC;
329  }
330  // Check our invariants
331  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
332  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
333         "Cannot have a physical SubIdx");
334  SrcReg = Src;
335  DstReg = Dst;
336  return true;
337}
338
339bool CoalescerPair::flip() {
340  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
341    return false;
342  std::swap(SrcReg, DstReg);
343  std::swap(SrcIdx, DstIdx);
344  Flipped = !Flipped;
345  return true;
346}
347
348bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
349  if (!MI)
350    return false;
351  unsigned Src, Dst, SrcSub, DstSub;
352  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
353    return false;
354
355  // Find the virtual register that is SrcReg.
356  if (Dst == SrcReg) {
357    std::swap(Src, Dst);
358    std::swap(SrcSub, DstSub);
359  } else if (Src != SrcReg) {
360    return false;
361  }
362
363  // Now check that Dst matches DstReg.
364  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
365    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
366      return false;
367    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
368    // DstSub could be set for a physreg from INSERT_SUBREG.
369    if (DstSub)
370      Dst = TRI.getSubReg(Dst, DstSub);
371    // Full copy of Src.
372    if (!SrcSub)
373      return DstReg == Dst;
374    // This is a partial register copy. Check that the parts match.
375    return TRI.getSubReg(DstReg, SrcSub) == Dst;
376  } else {
377    // DstReg is virtual.
378    if (DstReg != Dst)
379      return false;
380    // Registers match, do the subregisters line up?
381    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
382           TRI.composeSubRegIndices(DstIdx, DstSub);
383  }
384}
385
386void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
387  AU.setPreservesCFG();
388  AU.addRequired<AliasAnalysis>();
389  AU.addRequired<LiveIntervals>();
390  AU.addPreserved<LiveIntervals>();
391  AU.addPreserved<SlotIndexes>();
392  AU.addRequired<MachineLoopInfo>();
393  AU.addPreserved<MachineLoopInfo>();
394  AU.addPreservedID(MachineDominatorsID);
395  MachineFunctionPass::getAnalysisUsage(AU);
396}
397
398void RegisterCoalescer::eliminateDeadDefs() {
399  SmallVector<unsigned, 8> NewRegs;
400  LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
401                nullptr, this).eliminateDeadDefs(DeadDefs);
402}
403
404// Callback from eliminateDeadDefs().
405void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
406  // MI may be in WorkList. Make sure we don't visit it.
407  ErasedInstrs.insert(MI);
408}
409
410/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
411/// being the source and IntB being the dest, thus this defines a value number
412/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
413/// see if we can merge these two pieces of B into a single value number,
414/// eliminating a copy.  For example:
415///
416///  A3 = B0
417///    ...
418///  B1 = A3      <- this copy
419///
420/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
421/// value number to be replaced with B0 (which simplifies the B liveinterval).
422///
423/// This returns true if an interval was modified.
424///
425bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
426                                             MachineInstr *CopyMI) {
427  assert(!CP.isPartial() && "This doesn't work for partial copies.");
428  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
429
430  LiveInterval &IntA =
431    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
432  LiveInterval &IntB =
433    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
434  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
435
436  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
437  // the example above.
438  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
439  if (BS == IntB.end()) return false;
440  VNInfo *BValNo = BS->valno;
441
442  // Get the location that B is defined at.  Two options: either this value has
443  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
444  // can't process it.
445  if (BValNo->def != CopyIdx) return false;
446
447  // AValNo is the value number in A that defines the copy, A3 in the example.
448  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
449  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
450  // The live segment might not exist after fun with physreg coalescing.
451  if (AS == IntA.end()) return false;
452  VNInfo *AValNo = AS->valno;
453
454  // If AValNo is defined as a copy from IntB, we can potentially process this.
455  // Get the instruction that defines this value number.
456  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
457  // Don't allow any partial copies, even if isCoalescable() allows them.
458  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
459    return false;
460
461  // Get the Segment in IntB that this value number starts with.
462  LiveInterval::iterator ValS =
463    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
464  if (ValS == IntB.end())
465    return false;
466
467  // Make sure that the end of the live segment is inside the same block as
468  // CopyMI.
469  MachineInstr *ValSEndInst =
470    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
471  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
472    return false;
473
474  // Okay, we now know that ValS ends in the same block that the CopyMI
475  // live-range starts.  If there are no intervening live segments between them
476  // in IntB, we can merge them.
477  if (ValS+1 != BS) return false;
478
479  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
480
481  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
482  // We are about to delete CopyMI, so need to remove it as the 'instruction
483  // that defines this value #'. Update the valnum with the new defining
484  // instruction #.
485  BValNo->def = FillerStart;
486
487  // Okay, we can merge them.  We need to insert a new liverange:
488  // [ValS.end, BS.begin) of either value number, then we merge the
489  // two value numbers.
490  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
491
492  // Okay, merge "B1" into the same value number as "B0".
493  if (BValNo != ValS->valno)
494    IntB.MergeValueNumberInto(BValNo, ValS->valno);
495  DEBUG(dbgs() << "   result = " << IntB << '\n');
496
497  // If the source instruction was killing the source register before the
498  // merge, unset the isKill marker given the live range has been extended.
499  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
500  if (UIdx != -1) {
501    ValSEndInst->getOperand(UIdx).setIsKill(false);
502  }
503
504  // Rewrite the copy. If the copy instruction was killing the destination
505  // register before the merge, find the last use and trim the live range. That
506  // will also add the isKill marker.
507  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
508  if (AS->end == CopyIdx)
509    LIS->shrinkToUses(&IntA);
510
511  ++numExtends;
512  return true;
513}
514
515/// hasOtherReachingDefs - Return true if there are definitions of IntB
516/// other than BValNo val# that can reach uses of AValno val# of IntA.
517bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
518                                             LiveInterval &IntB,
519                                             VNInfo *AValNo,
520                                             VNInfo *BValNo) {
521  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
522  // the PHI values.
523  if (LIS->hasPHIKill(IntA, AValNo))
524    return true;
525
526  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
527       AI != AE; ++AI) {
528    if (AI->valno != AValNo) continue;
529    LiveInterval::iterator BI =
530      std::upper_bound(IntB.begin(), IntB.end(), AI->start);
531    if (BI != IntB.begin())
532      --BI;
533    for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
534      if (BI->valno == BValNo)
535        continue;
536      if (BI->start <= AI->start && BI->end > AI->start)
537        return true;
538      if (BI->start > AI->start && BI->start < AI->end)
539        return true;
540    }
541  }
542  return false;
543}
544
545/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
546/// IntA being the source and IntB being the dest, thus this defines a value
547/// number in IntB.  If the source value number (in IntA) is defined by a
548/// commutable instruction and its other operand is coalesced to the copy dest
549/// register, see if we can transform the copy into a noop by commuting the
550/// definition. For example,
551///
552///  A3 = op A2 B0<kill>
553///    ...
554///  B1 = A3      <- this copy
555///    ...
556///     = op A3   <- more uses
557///
558/// ==>
559///
560///  B2 = op B0 A2<kill>
561///    ...
562///  B1 = B2      <- now an identify copy
563///    ...
564///     = op B2   <- more uses
565///
566/// This returns true if an interval was modified.
567///
568bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
569                                                 MachineInstr *CopyMI) {
570  assert (!CP.isPhys());
571
572  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
573
574  LiveInterval &IntA =
575    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
576  LiveInterval &IntB =
577    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
578
579  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
580  // the example above.
581  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
582  if (!BValNo || BValNo->def != CopyIdx)
583    return false;
584
585  // AValNo is the value number in A that defines the copy, A3 in the example.
586  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
587  assert(AValNo && "COPY source not live");
588  if (AValNo->isPHIDef() || AValNo->isUnused())
589    return false;
590  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
591  if (!DefMI)
592    return false;
593  if (!DefMI->isCommutable())
594    return false;
595  // If DefMI is a two-address instruction then commuting it will change the
596  // destination register.
597  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
598  assert(DefIdx != -1);
599  unsigned UseOpIdx;
600  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
601    return false;
602  unsigned Op1, Op2, NewDstIdx;
603  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
604    return false;
605  if (Op1 == UseOpIdx)
606    NewDstIdx = Op2;
607  else if (Op2 == UseOpIdx)
608    NewDstIdx = Op1;
609  else
610    return false;
611
612  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
613  unsigned NewReg = NewDstMO.getReg();
614  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
615    return false;
616
617  // Make sure there are no other definitions of IntB that would reach the
618  // uses which the new definition can reach.
619  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
620    return false;
621
622  // If some of the uses of IntA.reg is already coalesced away, return false.
623  // It's not possible to determine whether it's safe to perform the coalescing.
624  for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
625    MachineInstr *UseMI = MO.getParent();
626    unsigned OpNo = &MO - &UseMI->getOperand(0);
627    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
628    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
629    if (US == IntA.end() || US->valno != AValNo)
630      continue;
631    // If this use is tied to a def, we can't rewrite the register.
632    if (UseMI->isRegTiedToDefOperand(OpNo))
633      return false;
634  }
635
636  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
637               << *DefMI);
638
639  // At this point we have decided that it is legal to do this
640  // transformation.  Start by commuting the instruction.
641  MachineBasicBlock *MBB = DefMI->getParent();
642  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
643  if (!NewMI)
644    return false;
645  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
646      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
647      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
648    return false;
649  if (NewMI != DefMI) {
650    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
651    MachineBasicBlock::iterator Pos = DefMI;
652    MBB->insert(Pos, NewMI);
653    MBB->erase(DefMI);
654  }
655  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
656  NewMI->getOperand(OpIdx).setIsKill();
657
658  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
659  // A = or A, B
660  // ...
661  // B = A
662  // ...
663  // C = A<kill>
664  // ...
665  //   = B
666
667  // Update uses of IntA of the specific Val# with IntB.
668  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
669         UE = MRI->use_end(); UI != UE;) {
670    MachineOperand &UseMO = *UI;
671    MachineInstr *UseMI = UseMO.getParent();
672    ++UI;
673    if (UseMI->isDebugValue()) {
674      // FIXME These don't have an instruction index.  Not clear we have enough
675      // info to decide whether to do this replacement or not.  For now do it.
676      UseMO.setReg(NewReg);
677      continue;
678    }
679    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
680    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
681    if (US == IntA.end() || US->valno != AValNo)
682      continue;
683    // Kill flags are no longer accurate. They are recomputed after RA.
684    UseMO.setIsKill(false);
685    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
686      UseMO.substPhysReg(NewReg, *TRI);
687    else
688      UseMO.setReg(NewReg);
689    if (UseMI == CopyMI)
690      continue;
691    if (!UseMI->isCopy())
692      continue;
693    if (UseMI->getOperand(0).getReg() != IntB.reg ||
694        UseMI->getOperand(0).getSubReg())
695      continue;
696
697    // This copy will become a noop. If it's defining a new val#, merge it into
698    // BValNo.
699    SlotIndex DefIdx = UseIdx.getRegSlot();
700    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
701    if (!DVNI)
702      continue;
703    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
704    assert(DVNI->def == DefIdx);
705    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
706    ErasedInstrs.insert(UseMI);
707    LIS->RemoveMachineInstrFromMaps(UseMI);
708    UseMI->eraseFromParent();
709  }
710
711  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
712  // is updated.
713  VNInfo *ValNo = BValNo;
714  ValNo->def = AValNo->def;
715  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
716       AI != AE; ++AI) {
717    if (AI->valno != AValNo) continue;
718    IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo));
719  }
720  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
721
722  IntA.removeValNo(AValNo);
723  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
724  ++numCommutes;
725  return true;
726}
727
728/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
729/// computation, replace the copy by rematerialize the definition.
730bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
731                                                MachineInstr *CopyMI,
732                                                bool &IsDefCopy) {
733  IsDefCopy = false;
734  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
735  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
736  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
737  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
738  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
739    return false;
740
741  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
742  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
743  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
744  assert(ValNo && "CopyMI input register not live");
745  if (ValNo->isPHIDef() || ValNo->isUnused())
746    return false;
747  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
748  if (!DefMI)
749    return false;
750  if (DefMI->isCopyLike()) {
751    IsDefCopy = true;
752    return false;
753  }
754  if (!DefMI->isAsCheapAsAMove())
755    return false;
756  if (!TII->isTriviallyReMaterializable(DefMI, AA))
757    return false;
758  bool SawStore = false;
759  if (!DefMI->isSafeToMove(TII, AA, SawStore))
760    return false;
761  const MCInstrDesc &MCID = DefMI->getDesc();
762  if (MCID.getNumDefs() != 1)
763    return false;
764  // Only support subregister destinations when the def is read-undef.
765  MachineOperand &DstOperand = CopyMI->getOperand(0);
766  unsigned CopyDstReg = DstOperand.getReg();
767  if (DstOperand.getSubReg() && !DstOperand.isUndef())
768    return false;
769
770  // If both SrcIdx and DstIdx are set, correct rematerialization would widen
771  // the register substantially (beyond both source and dest size). This is bad
772  // for performance since it can cascade through a function, introducing many
773  // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
774  // around after a few subreg copies).
775  if (SrcIdx && DstIdx)
776    return false;
777
778  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
779  if (!DefMI->isImplicitDef()) {
780    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
781      unsigned NewDstReg = DstReg;
782
783      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
784                                              DefMI->getOperand(0).getSubReg());
785      if (NewDstIdx)
786        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
787
788      // Finally, make sure that the physical subregister that will be
789      // constructed later is permitted for the instruction.
790      if (!DefRC->contains(NewDstReg))
791        return false;
792    } else {
793      // Theoretically, some stack frame reference could exist. Just make sure
794      // it hasn't actually happened.
795      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
796             "Only expect to deal with virtual or physical registers");
797    }
798  }
799
800  MachineBasicBlock *MBB = CopyMI->getParent();
801  MachineBasicBlock::iterator MII =
802    std::next(MachineBasicBlock::iterator(CopyMI));
803  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
804  MachineInstr *NewMI = std::prev(MII);
805
806  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
807  CopyMI->eraseFromParent();
808  ErasedInstrs.insert(CopyMI);
809
810  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
811  // We need to remember these so we can add intervals once we insert
812  // NewMI into SlotIndexes.
813  SmallVector<unsigned, 4> NewMIImplDefs;
814  for (unsigned i = NewMI->getDesc().getNumOperands(),
815         e = NewMI->getNumOperands(); i != e; ++i) {
816    MachineOperand &MO = NewMI->getOperand(i);
817    if (MO.isReg()) {
818      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
819             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
820      NewMIImplDefs.push_back(MO.getReg());
821    }
822  }
823
824  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
825    const TargetRegisterClass *NewRC = CP.getNewRC();
826    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
827
828    if (NewIdx)
829      NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
830    else
831      NewRC = TRI->getCommonSubClass(NewRC, DefRC);
832
833    assert(NewRC && "subreg chosen for remat incompatible with instruction");
834    MRI->setRegClass(DstReg, NewRC);
835
836    updateRegDefsUses(DstReg, DstReg, DstIdx);
837    NewMI->getOperand(0).setSubReg(NewIdx);
838  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
839    // The New instruction may be defining a sub-register of what's actually
840    // been asked for. If so it must implicitly define the whole thing.
841    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
842           "Only expect virtual or physical registers in remat");
843    NewMI->getOperand(0).setIsDead(true);
844    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
845                                                true  /*IsDef*/,
846                                                true  /*IsImp*/,
847                                                false /*IsKill*/));
848    // Record small dead def live-ranges for all the subregisters
849    // of the destination register.
850    // Otherwise, variables that live through may miss some
851    // interferences, thus creating invalid allocation.
852    // E.g., i386 code:
853    // vreg1 = somedef ; vreg1 GR8
854    // vreg2 = remat ; vreg2 GR32
855    // CL = COPY vreg2.sub_8bit
856    // = somedef vreg1 ; vreg1 GR8
857    // =>
858    // vreg1 = somedef ; vreg1 GR8
859    // ECX<def, dead> = remat ; CL<imp-def>
860    // = somedef vreg1 ; vreg1 GR8
861    // vreg1 will see the inteferences with CL but not with CH since
862    // no live-ranges would have been created for ECX.
863    // Fix that!
864    SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
865    for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
866         Units.isValid(); ++Units)
867      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
868        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
869  }
870
871  if (NewMI->getOperand(0).getSubReg())
872    NewMI->getOperand(0).setIsUndef();
873
874  // CopyMI may have implicit operands, transfer them over to the newly
875  // rematerialized instruction. And update implicit def interval valnos.
876  for (unsigned i = CopyMI->getDesc().getNumOperands(),
877         e = CopyMI->getNumOperands(); i != e; ++i) {
878    MachineOperand &MO = CopyMI->getOperand(i);
879    if (MO.isReg()) {
880      assert(MO.isImplicit() && "No explicit operands after implict operands.");
881      // Discard VReg implicit defs.
882      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
883        NewMI->addOperand(MO);
884      }
885    }
886  }
887
888  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
889  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
890    unsigned Reg = NewMIImplDefs[i];
891    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
892      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
893        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
894  }
895
896  DEBUG(dbgs() << "Remat: " << *NewMI);
897  ++NumReMats;
898
899  // The source interval can become smaller because we removed a use.
900  LIS->shrinkToUses(&SrcInt, &DeadDefs);
901  if (!DeadDefs.empty())
902    eliminateDeadDefs();
903
904  return true;
905}
906
907/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
908/// values, it only removes local variables. When we have a copy like:
909///
910///   %vreg1 = COPY %vreg2<undef>
911///
912/// We delete the copy and remove the corresponding value number from %vreg1.
913/// Any uses of that value number are marked as <undef>.
914bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
915                                           const CoalescerPair &CP) {
916  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
917  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
918  if (SrcInt->liveAt(Idx))
919    return false;
920  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
921  if (DstInt->liveAt(Idx))
922    return false;
923
924  // No intervals are live-in to CopyMI - it is undef.
925  if (CP.isFlipped())
926    DstInt = SrcInt;
927  SrcInt = nullptr;
928
929  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
930  assert(DeadVNI && "No value defined in DstInt");
931  DstInt->removeValNo(DeadVNI);
932
933  // Find new undef uses.
934  for (MachineOperand &MO : MRI->reg_nodbg_operands(DstInt->reg)) {
935    if (MO.isDef() || MO.isUndef())
936      continue;
937    MachineInstr *MI = MO.getParent();
938    SlotIndex Idx = LIS->getInstructionIndex(MI);
939    if (DstInt->liveAt(Idx))
940      continue;
941    MO.setIsUndef(true);
942    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
943  }
944  return true;
945}
946
947/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
948/// update the subregister number if it is not zero. If DstReg is a
949/// physical register and the existing subregister number of the def / use
950/// being updated is not zero, make sure to set it to the correct physical
951/// subregister.
952void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
953                                          unsigned DstReg,
954                                          unsigned SubIdx) {
955  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
956  LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
957
958  SmallPtrSet<MachineInstr*, 8> Visited;
959  for (MachineRegisterInfo::reg_instr_iterator
960       I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
961       I != E; ) {
962    MachineInstr *UseMI = &*(I++);
963
964    // Each instruction can only be rewritten once because sub-register
965    // composition is not always idempotent. When SrcReg != DstReg, rewriting
966    // the UseMI operands removes them from the SrcReg use-def chain, but when
967    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
968    // operands mentioning the virtual register.
969    if (SrcReg == DstReg && !Visited.insert(UseMI))
970      continue;
971
972    SmallVector<unsigned,8> Ops;
973    bool Reads, Writes;
974    std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
975
976    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
977    // because SrcReg is a sub-register.
978    if (DstInt && !Reads && SubIdx)
979      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
980
981    // Replace SrcReg with DstReg in all UseMI operands.
982    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
983      MachineOperand &MO = UseMI->getOperand(Ops[i]);
984
985      // Adjust <undef> flags in case of sub-register joins. We don't want to
986      // turn a full def into a read-modify-write sub-register def and vice
987      // versa.
988      if (SubIdx && MO.isDef())
989        MO.setIsUndef(!Reads);
990
991      if (DstIsPhys)
992        MO.substPhysReg(DstReg, *TRI);
993      else
994        MO.substVirtReg(DstReg, SubIdx, *TRI);
995    }
996
997    DEBUG({
998        dbgs() << "\t\tupdated: ";
999        if (!UseMI->isDebugValue())
1000          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
1001        dbgs() << *UseMI;
1002      });
1003  }
1004}
1005
1006/// canJoinPhys - Return true if a copy involving a physreg should be joined.
1007bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1008  /// Always join simple intervals that are defined by a single copy from a
1009  /// reserved register. This doesn't increase register pressure, so it is
1010  /// always beneficial.
1011  if (!MRI->isReserved(CP.getDstReg())) {
1012    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1013    return false;
1014  }
1015
1016  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1017  if (CP.isFlipped() && JoinVInt.containsOneValue())
1018    return true;
1019
1020  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
1021  return false;
1022}
1023
1024/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1025/// which are the src/dst of the copy instruction CopyMI.  This returns true
1026/// if the copy was successfully coalesced away. If it is not currently
1027/// possible to coalesce this interval, but it may be possible if other
1028/// things get coalesced, then it returns true by reference in 'Again'.
1029bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1030
1031  Again = false;
1032  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1033
1034  CoalescerPair CP(*TRI);
1035  if (!CP.setRegisters(CopyMI)) {
1036    DEBUG(dbgs() << "\tNot coalescable.\n");
1037    return false;
1038  }
1039
1040  // Dead code elimination. This really should be handled by MachineDCE, but
1041  // sometimes dead copies slip through, and we can't generate invalid live
1042  // ranges.
1043  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1044    DEBUG(dbgs() << "\tCopy is dead.\n");
1045    DeadDefs.push_back(CopyMI);
1046    eliminateDeadDefs();
1047    return true;
1048  }
1049
1050  // Eliminate undefs.
1051  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1052    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1053    LIS->RemoveMachineInstrFromMaps(CopyMI);
1054    CopyMI->eraseFromParent();
1055    return false;  // Not coalescable.
1056  }
1057
1058  // Coalesced copies are normally removed immediately, but transformations
1059  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1060  // When that happens, just join the values and remove the copy.
1061  if (CP.getSrcReg() == CP.getDstReg()) {
1062    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1063    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1064    LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI));
1065    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1066      VNInfo *ReadVNI = LRQ.valueIn();
1067      assert(ReadVNI && "No value before copy and no <undef> flag.");
1068      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1069      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1070      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1071    }
1072    LIS->RemoveMachineInstrFromMaps(CopyMI);
1073    CopyMI->eraseFromParent();
1074    return true;
1075  }
1076
1077  // Enforce policies.
1078  if (CP.isPhys()) {
1079    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1080                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1081                 << '\n');
1082    if (!canJoinPhys(CP)) {
1083      // Before giving up coalescing, if definition of source is defined by
1084      // trivial computation, try rematerializing it.
1085      bool IsDefCopy;
1086      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1087        return true;
1088      if (IsDefCopy)
1089        Again = true;  // May be possible to coalesce later.
1090      return false;
1091    }
1092  } else {
1093    DEBUG({
1094      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1095             << " with ";
1096      if (CP.getDstIdx() && CP.getSrcIdx())
1097        dbgs() << PrintReg(CP.getDstReg()) << " in "
1098               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1099               << PrintReg(CP.getSrcReg()) << " in "
1100               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1101      else
1102        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1103               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1104    });
1105
1106    // When possible, let DstReg be the larger interval.
1107    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1108                           LIS->getInterval(CP.getDstReg()).size())
1109      CP.flip();
1110  }
1111
1112  // Okay, attempt to join these two intervals.  On failure, this returns false.
1113  // Otherwise, if one of the intervals being joined is a physreg, this method
1114  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1115  // been modified, so we can use this information below to update aliases.
1116  if (!joinIntervals(CP)) {
1117    // Coalescing failed.
1118
1119    // If definition of source is defined by trivial computation, try
1120    // rematerializing it.
1121    bool IsDefCopy;
1122    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1123      return true;
1124
1125    // If we can eliminate the copy without merging the live segments, do so
1126    // now.
1127    if (!CP.isPartial() && !CP.isPhys()) {
1128      if (adjustCopiesBackFrom(CP, CopyMI) ||
1129          removeCopyByCommutingDef(CP, CopyMI)) {
1130        LIS->RemoveMachineInstrFromMaps(CopyMI);
1131        CopyMI->eraseFromParent();
1132        DEBUG(dbgs() << "\tTrivial!\n");
1133        return true;
1134      }
1135    }
1136
1137    // Otherwise, we are unable to join the intervals.
1138    DEBUG(dbgs() << "\tInterference!\n");
1139    Again = true;  // May be possible to coalesce later.
1140    return false;
1141  }
1142
1143  // Coalescing to a virtual register that is of a sub-register class of the
1144  // other. Make sure the resulting register is set to the right register class.
1145  if (CP.isCrossClass()) {
1146    ++numCrossRCs;
1147    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1148  }
1149
1150  // Removing sub-register copies can ease the register class constraints.
1151  // Make sure we attempt to inflate the register class of DstReg.
1152  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1153    InflateRegs.push_back(CP.getDstReg());
1154
1155  // CopyMI has been erased by joinIntervals at this point. Remove it from
1156  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1157  // to the work list. This keeps ErasedInstrs from growing needlessly.
1158  ErasedInstrs.erase(CopyMI);
1159
1160  // Rewrite all SrcReg operands to DstReg.
1161  // Also update DstReg operands to include DstIdx if it is set.
1162  if (CP.getDstIdx())
1163    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1164  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1165
1166  // SrcReg is guaranteed to be the register whose live interval that is
1167  // being merged.
1168  LIS->removeInterval(CP.getSrcReg());
1169
1170  // Update regalloc hint.
1171  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1172
1173  DEBUG({
1174    dbgs() << "\tJoined. Result = ";
1175    if (CP.isPhys())
1176      dbgs() << PrintReg(CP.getDstReg(), TRI);
1177    else
1178      dbgs() << LIS->getInterval(CP.getDstReg());
1179    dbgs() << '\n';
1180  });
1181
1182  ++numJoins;
1183  return true;
1184}
1185
1186/// Attempt joining with a reserved physreg.
1187bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1188  assert(CP.isPhys() && "Must be a physreg copy");
1189  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
1190  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1191  DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1192
1193  assert(CP.isFlipped() && RHS.containsOneValue() &&
1194         "Invalid join with reserved register");
1195
1196  // Optimization for reserved registers like ESP. We can only merge with a
1197  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1198  // The live range of the reserved register will look like a set of dead defs
1199  // - we don't properly track the live range of reserved registers.
1200
1201  // Deny any overlapping intervals.  This depends on all the reserved
1202  // register live ranges to look like dead defs.
1203  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1204    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1205      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1206      return false;
1207    }
1208
1209  // Skip any value computations, we are not adding new values to the
1210  // reserved register.  Also skip merging the live ranges, the reserved
1211  // register live range doesn't need to be accurate as long as all the
1212  // defs are there.
1213
1214  // Delete the identity copy.
1215  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1216  LIS->RemoveMachineInstrFromMaps(CopyMI);
1217  CopyMI->eraseFromParent();
1218
1219  // We don't track kills for reserved registers.
1220  MRI->clearKillFlags(CP.getSrcReg());
1221
1222  return true;
1223}
1224
1225//===----------------------------------------------------------------------===//
1226//                 Interference checking and interval joining
1227//===----------------------------------------------------------------------===//
1228//
1229// In the easiest case, the two live ranges being joined are disjoint, and
1230// there is no interference to consider. It is quite common, though, to have
1231// overlapping live ranges, and we need to check if the interference can be
1232// resolved.
1233//
1234// The live range of a single SSA value forms a sub-tree of the dominator tree.
1235// This means that two SSA values overlap if and only if the def of one value
1236// is contained in the live range of the other value. As a special case, the
1237// overlapping values can be defined at the same index.
1238//
1239// The interference from an overlapping def can be resolved in these cases:
1240//
1241// 1. Coalescable copies. The value is defined by a copy that would become an
1242//    identity copy after joining SrcReg and DstReg. The copy instruction will
1243//    be removed, and the value will be merged with the source value.
1244//
1245//    There can be several copies back and forth, causing many values to be
1246//    merged into one. We compute a list of ultimate values in the joined live
1247//    range as well as a mappings from the old value numbers.
1248//
1249// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1250//    predecessors have a live out value. It doesn't cause real interference,
1251//    and can be merged into the value it overlaps. Like a coalescable copy, it
1252//    can be erased after joining.
1253//
1254// 3. Copy of external value. The overlapping def may be a copy of a value that
1255//    is already in the other register. This is like a coalescable copy, but
1256//    the live range of the source register must be trimmed after erasing the
1257//    copy instruction:
1258//
1259//      %src = COPY %ext
1260//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1261//
1262// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1263//    defining one lane at a time:
1264//
1265//      %dst:ssub0<def,read-undef> = FOO
1266//      %src = BAR
1267//      %dst:ssub1<def> = COPY %src
1268//
1269//    The live range of %src overlaps the %dst value defined by FOO, but
1270//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1271//    which was undef anyway.
1272//
1273//    The value mapping is more complicated in this case. The final live range
1274//    will have different value numbers for both FOO and BAR, but there is no
1275//    simple mapping from old to new values. It may even be necessary to add
1276//    new PHI values.
1277//
1278// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1279//    is live, but never read. This can happen because we don't compute
1280//    individual live ranges per lane.
1281//
1282//      %dst<def> = FOO
1283//      %src = BAR
1284//      %dst:ssub1<def> = COPY %src
1285//
1286//    This kind of interference is only resolved locally. If the clobbered
1287//    lane value escapes the block, the join is aborted.
1288
1289namespace {
1290/// Track information about values in a single virtual register about to be
1291/// joined. Objects of this class are always created in pairs - one for each
1292/// side of the CoalescerPair.
1293class JoinVals {
1294  LiveInterval &LI;
1295
1296  // Location of this register in the final joined register.
1297  // Either CP.DstIdx or CP.SrcIdx.
1298  unsigned SubIdx;
1299
1300  // Values that will be present in the final live range.
1301  SmallVectorImpl<VNInfo*> &NewVNInfo;
1302
1303  const CoalescerPair &CP;
1304  LiveIntervals *LIS;
1305  SlotIndexes *Indexes;
1306  const TargetRegisterInfo *TRI;
1307
1308  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1309  // This is suitable for passing to LiveInterval::join().
1310  SmallVector<int, 8> Assignments;
1311
1312  // Conflict resolution for overlapping values.
1313  enum ConflictResolution {
1314    // No overlap, simply keep this value.
1315    CR_Keep,
1316
1317    // Merge this value into OtherVNI and erase the defining instruction.
1318    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1319    // values.
1320    CR_Erase,
1321
1322    // Merge this value into OtherVNI but keep the defining instruction.
1323    // This is for the special case where OtherVNI is defined by the same
1324    // instruction.
1325    CR_Merge,
1326
1327    // Keep this value, and have it replace OtherVNI where possible. This
1328    // complicates value mapping since OtherVNI maps to two different values
1329    // before and after this def.
1330    // Used when clobbering undefined or dead lanes.
1331    CR_Replace,
1332
1333    // Unresolved conflict. Visit later when all values have been mapped.
1334    CR_Unresolved,
1335
1336    // Unresolvable conflict. Abort the join.
1337    CR_Impossible
1338  };
1339
1340  // Per-value info for LI. The lane bit masks are all relative to the final
1341  // joined register, so they can be compared directly between SrcReg and
1342  // DstReg.
1343  struct Val {
1344    ConflictResolution Resolution;
1345
1346    // Lanes written by this def, 0 for unanalyzed values.
1347    unsigned WriteLanes;
1348
1349    // Lanes with defined values in this register. Other lanes are undef and
1350    // safe to clobber.
1351    unsigned ValidLanes;
1352
1353    // Value in LI being redefined by this def.
1354    VNInfo *RedefVNI;
1355
1356    // Value in the other live range that overlaps this def, if any.
1357    VNInfo *OtherVNI;
1358
1359    // Is this value an IMPLICIT_DEF that can be erased?
1360    //
1361    // IMPLICIT_DEF values should only exist at the end of a basic block that
1362    // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1363    // safely erased if they are overlapping a live value in the other live
1364    // interval.
1365    //
1366    // Weird control flow graphs and incomplete PHI handling in
1367    // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1368    // longer live ranges. Such IMPLICIT_DEF values should be treated like
1369    // normal values.
1370    bool ErasableImplicitDef;
1371
1372    // True when the live range of this value will be pruned because of an
1373    // overlapping CR_Replace value in the other live range.
1374    bool Pruned;
1375
1376    // True once Pruned above has been computed.
1377    bool PrunedComputed;
1378
1379    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1380            RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1381            Pruned(false), PrunedComputed(false) {}
1382
1383    bool isAnalyzed() const { return WriteLanes != 0; }
1384  };
1385
1386  // One entry per value number in LI.
1387  SmallVector<Val, 8> Vals;
1388
1389  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1390  VNInfo *stripCopies(VNInfo *VNI);
1391  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1392  void computeAssignment(unsigned ValNo, JoinVals &Other);
1393  bool taintExtent(unsigned, unsigned, JoinVals&,
1394                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1395  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1396  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1397
1398public:
1399  JoinVals(LiveInterval &li, unsigned subIdx,
1400           SmallVectorImpl<VNInfo*> &newVNInfo,
1401           const CoalescerPair &cp,
1402           LiveIntervals *lis,
1403           const TargetRegisterInfo *tri)
1404    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1405      Indexes(LIS->getSlotIndexes()), TRI(tri),
1406      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1407  {}
1408
1409  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1410  /// Returns false if any conflicts were impossible to resolve.
1411  bool mapValues(JoinVals &Other);
1412
1413  /// Try to resolve conflicts that require all values to be mapped.
1414  /// Returns false if any conflicts were impossible to resolve.
1415  bool resolveConflicts(JoinVals &Other);
1416
1417  /// Prune the live range of values in Other.LI where they would conflict with
1418  /// CR_Replace values in LI. Collect end points for restoring the live range
1419  /// after joining.
1420  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1421
1422  /// Erase any machine instructions that have been coalesced away.
1423  /// Add erased instructions to ErasedInstrs.
1424  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1425  /// the erased instrs.
1426  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1427                   SmallVectorImpl<unsigned> &ShrinkRegs);
1428
1429  /// Get the value assignments suitable for passing to LiveInterval::join.
1430  const int *getAssignments() const { return Assignments.data(); }
1431};
1432} // end anonymous namespace
1433
1434/// Compute the bitmask of lanes actually written by DefMI.
1435/// Set Redef if there are any partial register definitions that depend on the
1436/// previous value of the register.
1437unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1438  unsigned L = 0;
1439  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1440    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1441      continue;
1442    L |= TRI->getSubRegIndexLaneMask(
1443           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1444    if (MO->readsReg())
1445      Redef = true;
1446  }
1447  return L;
1448}
1449
1450/// Find the ultimate value that VNI was copied from.
1451VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1452  while (!VNI->isPHIDef()) {
1453    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1454    assert(MI && "No defining instruction");
1455    if (!MI->isFullCopy())
1456      break;
1457    unsigned Reg = MI->getOperand(1).getReg();
1458    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1459      break;
1460    LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def);
1461    if (!LRQ.valueIn())
1462      break;
1463    VNI = LRQ.valueIn();
1464  }
1465  return VNI;
1466}
1467
1468/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1469/// Return a conflict resolution when possible, but leave the hard cases as
1470/// CR_Unresolved.
1471/// Recursively calls computeAssignment() on this and Other, guaranteeing that
1472/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1473/// The recursion always goes upwards in the dominator tree, making loops
1474/// impossible.
1475JoinVals::ConflictResolution
1476JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1477  Val &V = Vals[ValNo];
1478  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1479  VNInfo *VNI = LI.getValNumInfo(ValNo);
1480  if (VNI->isUnused()) {
1481    V.WriteLanes = ~0u;
1482    return CR_Keep;
1483  }
1484
1485  // Get the instruction defining this value, compute the lanes written.
1486  const MachineInstr *DefMI = nullptr;
1487  if (VNI->isPHIDef()) {
1488    // Conservatively assume that all lanes in a PHI are valid.
1489    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1490  } else {
1491    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1492    bool Redef = false;
1493    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1494
1495    // If this is a read-modify-write instruction, there may be more valid
1496    // lanes than the ones written by this instruction.
1497    // This only covers partial redef operands. DefMI may have normal use
1498    // operands reading the register. They don't contribute valid lanes.
1499    //
1500    // This adds ssub1 to the set of valid lanes in %src:
1501    //
1502    //   %src:ssub1<def> = FOO
1503    //
1504    // This leaves only ssub1 valid, making any other lanes undef:
1505    //
1506    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1507    //
1508    // The <read-undef> flag on the def operand means that old lane values are
1509    // not important.
1510    if (Redef) {
1511      V.RedefVNI = LI.Query(VNI->def).valueIn();
1512      assert(V.RedefVNI && "Instruction is reading nonexistent value");
1513      computeAssignment(V.RedefVNI->id, Other);
1514      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1515    }
1516
1517    // An IMPLICIT_DEF writes undef values.
1518    if (DefMI->isImplicitDef()) {
1519      // We normally expect IMPLICIT_DEF values to be live only until the end
1520      // of their block. If the value is really live longer and gets pruned in
1521      // another block, this flag is cleared again.
1522      V.ErasableImplicitDef = true;
1523      V.ValidLanes &= ~V.WriteLanes;
1524    }
1525  }
1526
1527  // Find the value in Other that overlaps VNI->def, if any.
1528  LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def);
1529
1530  // It is possible that both values are defined by the same instruction, or
1531  // the values are PHIs defined in the same block. When that happens, the two
1532  // values should be merged into one, but not into any preceding value.
1533  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1534  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1535    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1536
1537    // One value stays, the other is merged. Keep the earlier one, or the first
1538    // one we see.
1539    if (OtherVNI->def < VNI->def)
1540      Other.computeAssignment(OtherVNI->id, *this);
1541    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1542      // This is an early-clobber def overlapping a live-in value in the other
1543      // register. Not mergeable.
1544      V.OtherVNI = OtherLRQ.valueIn();
1545      return CR_Impossible;
1546    }
1547    V.OtherVNI = OtherVNI;
1548    Val &OtherV = Other.Vals[OtherVNI->id];
1549    // Keep this value, check for conflicts when analyzing OtherVNI.
1550    if (!OtherV.isAnalyzed())
1551      return CR_Keep;
1552    // Both sides have been analyzed now.
1553    // Allow overlapping PHI values. Any real interference would show up in a
1554    // predecessor, the PHI itself can't introduce any conflicts.
1555    if (VNI->isPHIDef())
1556      return CR_Merge;
1557    if (V.ValidLanes & OtherV.ValidLanes)
1558      // Overlapping lanes can't be resolved.
1559      return CR_Impossible;
1560    else
1561      return CR_Merge;
1562  }
1563
1564  // No simultaneous def. Is Other live at the def?
1565  V.OtherVNI = OtherLRQ.valueIn();
1566  if (!V.OtherVNI)
1567    // No overlap, no conflict.
1568    return CR_Keep;
1569
1570  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1571
1572  // We have overlapping values, or possibly a kill of Other.
1573  // Recursively compute assignments up the dominator tree.
1574  Other.computeAssignment(V.OtherVNI->id, *this);
1575  Val &OtherV = Other.Vals[V.OtherVNI->id];
1576
1577  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1578  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1579  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1580  // technically.
1581  //
1582  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1583  // to erase the IMPLICIT_DEF instruction.
1584  if (OtherV.ErasableImplicitDef && DefMI &&
1585      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1586    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1587                 << " extends into BB#" << DefMI->getParent()->getNumber()
1588                 << ", keeping it.\n");
1589    OtherV.ErasableImplicitDef = false;
1590  }
1591
1592  // Allow overlapping PHI values. Any real interference would show up in a
1593  // predecessor, the PHI itself can't introduce any conflicts.
1594  if (VNI->isPHIDef())
1595    return CR_Replace;
1596
1597  // Check for simple erasable conflicts.
1598  if (DefMI->isImplicitDef())
1599    return CR_Erase;
1600
1601  // Include the non-conflict where DefMI is a coalescable copy that kills
1602  // OtherVNI. We still want the copy erased and value numbers merged.
1603  if (CP.isCoalescable(DefMI)) {
1604    // Some of the lanes copied from OtherVNI may be undef, making them undef
1605    // here too.
1606    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1607    return CR_Erase;
1608  }
1609
1610  // This may not be a real conflict if DefMI simply kills Other and defines
1611  // VNI.
1612  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1613    return CR_Keep;
1614
1615  // Handle the case where VNI and OtherVNI can be proven to be identical:
1616  //
1617  //   %other = COPY %ext
1618  //   %this  = COPY %ext <-- Erase this copy
1619  //
1620  if (DefMI->isFullCopy() && !CP.isPartial() &&
1621      stripCopies(VNI) == stripCopies(V.OtherVNI))
1622    return CR_Erase;
1623
1624  // If the lanes written by this instruction were all undef in OtherVNI, it is
1625  // still safe to join the live ranges. This can't be done with a simple value
1626  // mapping, though - OtherVNI will map to multiple values:
1627  //
1628  //   1 %dst:ssub0 = FOO                <-- OtherVNI
1629  //   2 %src = BAR                      <-- VNI
1630  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
1631  //   4 BAZ %dst<kill>
1632  //   5 QUUX %src<kill>
1633  //
1634  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1635  // handles this complex value mapping.
1636  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1637    return CR_Replace;
1638
1639  // If the other live range is killed by DefMI and the live ranges are still
1640  // overlapping, it must be because we're looking at an early clobber def:
1641  //
1642  //   %dst<def,early-clobber> = ASM %src<kill>
1643  //
1644  // In this case, it is illegal to merge the two live ranges since the early
1645  // clobber def would clobber %src before it was read.
1646  if (OtherLRQ.isKill()) {
1647    // This case where the def doesn't overlap the kill is handled above.
1648    assert(VNI->def.isEarlyClobber() &&
1649           "Only early clobber defs can overlap a kill");
1650    return CR_Impossible;
1651  }
1652
1653  // VNI is clobbering live lanes in OtherVNI, but there is still the
1654  // possibility that no instructions actually read the clobbered lanes.
1655  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1656  // Otherwise Other.LI wouldn't be live here.
1657  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1658    return CR_Impossible;
1659
1660  // We need to verify that no instructions are reading the clobbered lanes. To
1661  // save compile time, we'll only check that locally. Don't allow the tainted
1662  // value to escape the basic block.
1663  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1664  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1665    return CR_Impossible;
1666
1667  // There are still some things that could go wrong besides clobbered lanes
1668  // being read, for example OtherVNI may be only partially redefined in MBB,
1669  // and some clobbered lanes could escape the block. Save this analysis for
1670  // resolveConflicts() when all values have been mapped. We need to know
1671  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1672  // that now - the recursive analyzeValue() calls must go upwards in the
1673  // dominator tree.
1674  return CR_Unresolved;
1675}
1676
1677/// Compute the value assignment for ValNo in LI.
1678/// This may be called recursively by analyzeValue(), but never for a ValNo on
1679/// the stack.
1680void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1681  Val &V = Vals[ValNo];
1682  if (V.isAnalyzed()) {
1683    // Recursion should always move up the dominator tree, so ValNo is not
1684    // supposed to reappear before it has been assigned.
1685    assert(Assignments[ValNo] != -1 && "Bad recursion?");
1686    return;
1687  }
1688  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1689  case CR_Erase:
1690  case CR_Merge:
1691    // Merge this ValNo into OtherVNI.
1692    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1693    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1694    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1695    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1696                 << LI.getValNumInfo(ValNo)->def << " into "
1697                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1698                 << V.OtherVNI->def << " --> @"
1699                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
1700    break;
1701  case CR_Replace:
1702  case CR_Unresolved:
1703    // The other value is going to be pruned if this join is successful.
1704    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1705    Other.Vals[V.OtherVNI->id].Pruned = true;
1706    // Fall through.
1707  default:
1708    // This value number needs to go in the final joined live range.
1709    Assignments[ValNo] = NewVNInfo.size();
1710    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1711    break;
1712  }
1713}
1714
1715bool JoinVals::mapValues(JoinVals &Other) {
1716  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1717    computeAssignment(i, Other);
1718    if (Vals[i].Resolution == CR_Impossible) {
1719      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1720                   << '@' << LI.getValNumInfo(i)->def << '\n');
1721      return false;
1722    }
1723  }
1724  return true;
1725}
1726
1727/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1728/// the extent of the tainted lanes in the block.
1729///
1730/// Multiple values in Other.LI can be affected since partial redefinitions can
1731/// preserve previously tainted lanes.
1732///
1733///   1 %dst = VLOAD           <-- Define all lanes in %dst
1734///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1735///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1736///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1737///
1738/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1739/// entry to TaintedVals.
1740///
1741/// Returns false if the tainted lanes extend beyond the basic block.
1742bool JoinVals::
1743taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1744            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1745  VNInfo *VNI = LI.getValNumInfo(ValNo);
1746  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1747  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1748
1749  // Scan Other.LI from VNI.def to MBBEnd.
1750  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1751  assert(OtherI != Other.LI.end() && "No conflict?");
1752  do {
1753    // OtherI is pointing to a tainted value. Abort the join if the tainted
1754    // lanes escape the block.
1755    SlotIndex End = OtherI->end;
1756    if (End >= MBBEnd) {
1757      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1758                   << OtherI->valno->id << '@' << OtherI->start << '\n');
1759      return false;
1760    }
1761    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1762                 << OtherI->valno->id << '@' << OtherI->start
1763                 << " to " << End << '\n');
1764    // A dead def is not a problem.
1765    if (End.isDead())
1766      break;
1767    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1768
1769    // Check for another def in the MBB.
1770    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1771      break;
1772
1773    // Lanes written by the new def are no longer tainted.
1774    const Val &OV = Other.Vals[OtherI->valno->id];
1775    TaintedLanes &= ~OV.WriteLanes;
1776    if (!OV.RedefVNI)
1777      break;
1778  } while (TaintedLanes);
1779  return true;
1780}
1781
1782/// Return true if MI uses any of the given Lanes from Reg.
1783/// This does not include partial redefinitions of Reg.
1784bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1785                         unsigned Lanes) {
1786  if (MI->isDebugValue())
1787    return false;
1788  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1789    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1790      continue;
1791    if (!MO->readsReg())
1792      continue;
1793    if (Lanes & TRI->getSubRegIndexLaneMask(
1794                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
1795      return true;
1796  }
1797  return false;
1798}
1799
1800bool JoinVals::resolveConflicts(JoinVals &Other) {
1801  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1802    Val &V = Vals[i];
1803    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1804    if (V.Resolution != CR_Unresolved)
1805      continue;
1806    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1807                 << '@' << LI.getValNumInfo(i)->def << '\n');
1808    ++NumLaneConflicts;
1809    assert(V.OtherVNI && "Inconsistent conflict resolution.");
1810    VNInfo *VNI = LI.getValNumInfo(i);
1811    const Val &OtherV = Other.Vals[V.OtherVNI->id];
1812
1813    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1814    // join, those lanes will be tainted with a wrong value. Get the extent of
1815    // the tainted lanes.
1816    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1817    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
1818    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1819      // Tainted lanes would extend beyond the basic block.
1820      return false;
1821
1822    assert(!TaintExtent.empty() && "There should be at least one conflict.");
1823
1824    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1825    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1826    MachineBasicBlock::iterator MI = MBB->begin();
1827    if (!VNI->isPHIDef()) {
1828      MI = Indexes->getInstructionFromIndex(VNI->def);
1829      // No need to check the instruction defining VNI for reads.
1830      ++MI;
1831    }
1832    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1833           "Interference ends on VNI->def. Should have been handled earlier");
1834    MachineInstr *LastMI =
1835      Indexes->getInstructionFromIndex(TaintExtent.front().first);
1836    assert(LastMI && "Range must end at a proper instruction");
1837    unsigned TaintNum = 0;
1838    for(;;) {
1839      assert(MI != MBB->end() && "Bad LastMI");
1840      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1841        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1842        return false;
1843      }
1844      // LastMI is the last instruction to use the current value.
1845      if (&*MI == LastMI) {
1846        if (++TaintNum == TaintExtent.size())
1847          break;
1848        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1849        assert(LastMI && "Range must end at a proper instruction");
1850        TaintedLanes = TaintExtent[TaintNum].second;
1851      }
1852      ++MI;
1853    }
1854
1855    // The tainted lanes are unused.
1856    V.Resolution = CR_Replace;
1857    ++NumLaneResolves;
1858  }
1859  return true;
1860}
1861
1862// Determine if ValNo is a copy of a value number in LI or Other.LI that will
1863// be pruned:
1864//
1865//   %dst = COPY %src
1866//   %src = COPY %dst  <-- This value to be pruned.
1867//   %dst = COPY %src  <-- This value is a copy of a pruned value.
1868//
1869bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1870  Val &V = Vals[ValNo];
1871  if (V.Pruned || V.PrunedComputed)
1872    return V.Pruned;
1873
1874  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1875    return V.Pruned;
1876
1877  // Follow copies up the dominator tree and check if any intermediate value
1878  // has been pruned.
1879  V.PrunedComputed = true;
1880  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1881  return V.Pruned;
1882}
1883
1884void JoinVals::pruneValues(JoinVals &Other,
1885                           SmallVectorImpl<SlotIndex> &EndPoints) {
1886  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1887    SlotIndex Def = LI.getValNumInfo(i)->def;
1888    switch (Vals[i].Resolution) {
1889    case CR_Keep:
1890      break;
1891    case CR_Replace: {
1892      // This value takes precedence over the value in Other.LI.
1893      LIS->pruneValue(&Other.LI, Def, &EndPoints);
1894      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
1895      // instructions are only inserted to provide a live-out value for PHI
1896      // predecessors, so the instruction should simply go away once its value
1897      // has been replaced.
1898      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
1899      bool EraseImpDef = OtherV.ErasableImplicitDef &&
1900                         OtherV.Resolution == CR_Keep;
1901      if (!Def.isBlock()) {
1902        // Remove <def,read-undef> flags. This def is now a partial redef.
1903        // Also remove <def,dead> flags since the joined live range will
1904        // continue past this instruction.
1905        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1906             MO.isValid(); ++MO)
1907          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
1908            MO->setIsUndef(EraseImpDef);
1909            MO->setIsDead(false);
1910          }
1911        // This value will reach instructions below, but we need to make sure
1912        // the live range also reaches the instruction at Def.
1913        if (!EraseImpDef)
1914          EndPoints.push_back(Def);
1915      }
1916      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1917                   << ": " << Other.LI << '\n');
1918      break;
1919    }
1920    case CR_Erase:
1921    case CR_Merge:
1922      if (isPrunedValue(i, Other)) {
1923        // This value is ultimately a copy of a pruned value in LI or Other.LI.
1924        // We can no longer trust the value mapping computed by
1925        // computeAssignment(), the value that was originally copied could have
1926        // been replaced.
1927        LIS->pruneValue(&LI, Def, &EndPoints);
1928        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1929                     << Def << ": " << LI << '\n');
1930      }
1931      break;
1932    case CR_Unresolved:
1933    case CR_Impossible:
1934      llvm_unreachable("Unresolved conflicts");
1935    }
1936  }
1937}
1938
1939void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1940                           SmallVectorImpl<unsigned> &ShrinkRegs) {
1941  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1942    // Get the def location before markUnused() below invalidates it.
1943    SlotIndex Def = LI.getValNumInfo(i)->def;
1944    switch (Vals[i].Resolution) {
1945    case CR_Keep:
1946      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
1947      // longer. The IMPLICIT_DEF instructions are only inserted by
1948      // PHIElimination to guarantee that all PHI predecessors have a value.
1949      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
1950        break;
1951      // Remove value number i from LI. Note that this VNInfo is still present
1952      // in NewVNInfo, so it will appear as an unused value number in the final
1953      // joined interval.
1954      LI.getValNumInfo(i)->markUnused();
1955      LI.removeValNo(LI.getValNumInfo(i));
1956      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
1957      // FALL THROUGH.
1958
1959    case CR_Erase: {
1960      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1961      assert(MI && "No instruction to erase");
1962      if (MI->isCopy()) {
1963        unsigned Reg = MI->getOperand(1).getReg();
1964        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
1965            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1966          ShrinkRegs.push_back(Reg);
1967      }
1968      ErasedInstrs.insert(MI);
1969      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1970      LIS->RemoveMachineInstrFromMaps(MI);
1971      MI->eraseFromParent();
1972      break;
1973    }
1974    default:
1975      break;
1976    }
1977  }
1978}
1979
1980bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1981  SmallVector<VNInfo*, 16> NewVNInfo;
1982  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1983  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1984  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1985  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1986
1987  DEBUG(dbgs() << "\t\tRHS = " << RHS
1988               << "\n\t\tLHS = " << LHS
1989               << '\n');
1990
1991  // First compute NewVNInfo and the simple value mappings.
1992  // Detect impossible conflicts early.
1993  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1994    return false;
1995
1996  // Some conflicts can only be resolved after all values have been mapped.
1997  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1998    return false;
1999
2000  // All clear, the live ranges can be merged.
2001
2002  // The merging algorithm in LiveInterval::join() can't handle conflicting
2003  // value mappings, so we need to remove any live ranges that overlap a
2004  // CR_Replace resolution. Collect a set of end points that can be used to
2005  // restore the live range after joining.
2006  SmallVector<SlotIndex, 8> EndPoints;
2007  LHSVals.pruneValues(RHSVals, EndPoints);
2008  RHSVals.pruneValues(LHSVals, EndPoints);
2009
2010  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2011  // registers to require trimming.
2012  SmallVector<unsigned, 8> ShrinkRegs;
2013  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2014  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2015  while (!ShrinkRegs.empty())
2016    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2017
2018  // Join RHS into LHS.
2019  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2020
2021  // Kill flags are going to be wrong if the live ranges were overlapping.
2022  // Eventually, we should simply clear all kill flags when computing live
2023  // ranges. They are reinserted after register allocation.
2024  MRI->clearKillFlags(LHS.reg);
2025  MRI->clearKillFlags(RHS.reg);
2026
2027  if (EndPoints.empty())
2028    return true;
2029
2030  // Recompute the parts of the live range we had to remove because of
2031  // CR_Replace conflicts.
2032  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2033               << " points: " << LHS << '\n');
2034  LIS->extendToIndices(LHS, EndPoints);
2035  return true;
2036}
2037
2038/// joinIntervals - Attempt to join these two intervals.  On failure, this
2039/// returns false.
2040bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2041  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2042}
2043
2044namespace {
2045// Information concerning MBB coalescing priority.
2046struct MBBPriorityInfo {
2047  MachineBasicBlock *MBB;
2048  unsigned Depth;
2049  bool IsSplit;
2050
2051  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2052    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2053};
2054}
2055
2056// C-style comparator that sorts first based on the loop depth of the basic
2057// block (the unsigned), and then on the MBB number.
2058//
2059// EnableGlobalCopies assumes that the primary sort key is loop depth.
2060static int compareMBBPriority(const MBBPriorityInfo *LHS,
2061                              const MBBPriorityInfo *RHS) {
2062  // Deeper loops first
2063  if (LHS->Depth != RHS->Depth)
2064    return LHS->Depth > RHS->Depth ? -1 : 1;
2065
2066  // Try to unsplit critical edges next.
2067  if (LHS->IsSplit != RHS->IsSplit)
2068    return LHS->IsSplit ? -1 : 1;
2069
2070  // Prefer blocks that are more connected in the CFG. This takes care of
2071  // the most difficult copies first while intervals are short.
2072  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2073  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2074  if (cl != cr)
2075    return cl > cr ? -1 : 1;
2076
2077  // As a last resort, sort by block number.
2078  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2079}
2080
2081/// \returns true if the given copy uses or defines a local live range.
2082static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2083  if (!Copy->isCopy())
2084    return false;
2085
2086  if (Copy->getOperand(1).isUndef())
2087    return false;
2088
2089  unsigned SrcReg = Copy->getOperand(1).getReg();
2090  unsigned DstReg = Copy->getOperand(0).getReg();
2091  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2092      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2093    return false;
2094
2095  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2096    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2097}
2098
2099// Try joining WorkList copies starting from index From.
2100// Null out any successful joins.
2101bool RegisterCoalescer::
2102copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2103  bool Progress = false;
2104  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2105    if (!CurrList[i])
2106      continue;
2107    // Skip instruction pointers that have already been erased, for example by
2108    // dead code elimination.
2109    if (ErasedInstrs.erase(CurrList[i])) {
2110      CurrList[i] = nullptr;
2111      continue;
2112    }
2113    bool Again = false;
2114    bool Success = joinCopy(CurrList[i], Again);
2115    Progress |= Success;
2116    if (Success || !Again)
2117      CurrList[i] = nullptr;
2118  }
2119  return Progress;
2120}
2121
2122void
2123RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2124  DEBUG(dbgs() << MBB->getName() << ":\n");
2125
2126  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2127  // yet, it might invalidate the iterator.
2128  const unsigned PrevSize = WorkList.size();
2129  if (JoinGlobalCopies) {
2130    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2131    // are not inherently easier to resolve, but slightly preferable until we
2132    // have local live range splitting. In particular this is required by
2133    // cmp+jmp macro fusion.
2134    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2135         MII != E; ++MII) {
2136      if (!MII->isCopyLike())
2137        continue;
2138      if (isLocalCopy(&(*MII), LIS))
2139        LocalWorkList.push_back(&(*MII));
2140      else
2141        WorkList.push_back(&(*MII));
2142    }
2143  }
2144  else {
2145     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2146          MII != E; ++MII)
2147       if (MII->isCopyLike())
2148         WorkList.push_back(MII);
2149  }
2150  // Try coalescing the collected copies immediately, and remove the nulls.
2151  // This prevents the WorkList from getting too large since most copies are
2152  // joinable on the first attempt.
2153  MutableArrayRef<MachineInstr*>
2154    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2155  if (copyCoalesceWorkList(CurrList))
2156    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2157                               (MachineInstr*)nullptr), WorkList.end());
2158}
2159
2160void RegisterCoalescer::coalesceLocals() {
2161  copyCoalesceWorkList(LocalWorkList);
2162  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2163    if (LocalWorkList[j])
2164      WorkList.push_back(LocalWorkList[j]);
2165  }
2166  LocalWorkList.clear();
2167}
2168
2169void RegisterCoalescer::joinAllIntervals() {
2170  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2171  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2172
2173  std::vector<MBBPriorityInfo> MBBs;
2174  MBBs.reserve(MF->size());
2175  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2176    MachineBasicBlock *MBB = I;
2177    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2178                                   JoinSplitEdges && isSplitEdge(MBB)));
2179  }
2180  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2181
2182  // Coalesce intervals in MBB priority order.
2183  unsigned CurrDepth = UINT_MAX;
2184  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2185    // Try coalescing the collected local copies for deeper loops.
2186    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2187      coalesceLocals();
2188      CurrDepth = MBBs[i].Depth;
2189    }
2190    copyCoalesceInMBB(MBBs[i].MBB);
2191  }
2192  coalesceLocals();
2193
2194  // Joining intervals can allow other intervals to be joined.  Iteratively join
2195  // until we make no progress.
2196  while (copyCoalesceWorkList(WorkList))
2197    /* empty */ ;
2198}
2199
2200void RegisterCoalescer::releaseMemory() {
2201  ErasedInstrs.clear();
2202  WorkList.clear();
2203  DeadDefs.clear();
2204  InflateRegs.clear();
2205}
2206
2207bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2208  MF = &fn;
2209  MRI = &fn.getRegInfo();
2210  TM = &fn.getTarget();
2211  TRI = TM->getRegisterInfo();
2212  TII = TM->getInstrInfo();
2213  LIS = &getAnalysis<LiveIntervals>();
2214  AA = &getAnalysis<AliasAnalysis>();
2215  Loops = &getAnalysis<MachineLoopInfo>();
2216
2217  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
2218  if (EnableGlobalCopies == cl::BOU_UNSET)
2219    JoinGlobalCopies = ST.useMachineScheduler();
2220  else
2221    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2222
2223  // The MachineScheduler does not currently require JoinSplitEdges. This will
2224  // either be enabled unconditionally or replaced by a more general live range
2225  // splitting optimization.
2226  JoinSplitEdges = EnableJoinSplits;
2227
2228  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2229               << "********** Function: " << MF->getName() << '\n');
2230
2231  if (VerifyCoalescing)
2232    MF->verify(this, "Before register coalescing");
2233
2234  RegClassInfo.runOnMachineFunction(fn);
2235
2236  // Join (coalesce) intervals if requested.
2237  if (EnableJoining)
2238    joinAllIntervals();
2239
2240  // After deleting a lot of copies, register classes may be less constrained.
2241  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2242  // DPR inflation.
2243  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2244  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2245                    InflateRegs.end());
2246  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2247  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2248    unsigned Reg = InflateRegs[i];
2249    if (MRI->reg_nodbg_empty(Reg))
2250      continue;
2251    if (MRI->recomputeRegClass(Reg, *TM)) {
2252      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2253                   << MRI->getRegClass(Reg)->getName() << '\n');
2254      ++NumInflated;
2255    }
2256  }
2257
2258  DEBUG(dump());
2259  if (VerifyCoalescing)
2260    MF->verify(this, "After register coalescing");
2261  return true;
2262}
2263
2264/// print - Implement the dump method.
2265void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2266   LIS->print(O, m);
2267}
2268