ScheduleDAGInstrs.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineMemOperand.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/RegisterPressure.h"
29#include "llvm/CodeGen/ScheduleDFS.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/MC/MCInstrItineraries.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/Format.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <queue>
41
42using namespace llvm;
43
44static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
45    cl::ZeroOrMore, cl::init(false),
46    cl::desc("Enable use of AA during MI GAD construction"));
47
48// FIXME: Enable the use of TBAA. There are two known issues preventing this:
49//   1. Stack coloring does not update TBAA when merging allocas
50//   2. CGP inserts ptrtoint/inttoptr pairs when sinking address computations.
51//      Because BasicAA does not handle inttoptr, we'll often miss basic type
52//      punning idioms that we need to catch so we don't miscompile real-world
53//      code.
54static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
55    cl::init(false), cl::desc("Enable use of TBAA during MI GAD construction"));
56
57ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
58                                     const MachineLoopInfo &mli,
59                                     const MachineDominatorTree &mdt,
60                                     bool IsPostRAFlag,
61                                     bool RemoveKillFlags,
62                                     LiveIntervals *lis)
63  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
64    IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
65    CanHandleTerminators(false), FirstDbgValue(0) {
66  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
67  DbgValues.clear();
68  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
69         "Virtual registers must be removed prior to PostRA scheduling");
70
71  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
72  SchedModel.init(*ST.getSchedModel(), &ST, TII);
73}
74
75/// getUnderlyingObjectFromInt - This is the function that does the work of
76/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
77static const Value *getUnderlyingObjectFromInt(const Value *V) {
78  do {
79    if (const Operator *U = dyn_cast<Operator>(V)) {
80      // If we find a ptrtoint, we can transfer control back to the
81      // regular getUnderlyingObjectFromInt.
82      if (U->getOpcode() == Instruction::PtrToInt)
83        return U->getOperand(0);
84      // If we find an add of a constant, a multiplied value, or a phi, it's
85      // likely that the other operand will lead us to the base
86      // object. We don't have to worry about the case where the
87      // object address is somehow being computed by the multiply,
88      // because our callers only care when the result is an
89      // identifiable object.
90      if (U->getOpcode() != Instruction::Add ||
91          (!isa<ConstantInt>(U->getOperand(1)) &&
92           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
93           !isa<PHINode>(U->getOperand(1))))
94        return V;
95      V = U->getOperand(0);
96    } else {
97      return V;
98    }
99    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
100  } while (1);
101}
102
103/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
104/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
105static void getUnderlyingObjects(const Value *V,
106                                 SmallVectorImpl<Value *> &Objects) {
107  SmallPtrSet<const Value*, 16> Visited;
108  SmallVector<const Value *, 4> Working(1, V);
109  do {
110    V = Working.pop_back_val();
111
112    SmallVector<Value *, 4> Objs;
113    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
114
115    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
116         I != IE; ++I) {
117      V = *I;
118      if (!Visited.insert(V))
119        continue;
120      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
121        const Value *O =
122          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
123        if (O->getType()->isPointerTy()) {
124          Working.push_back(O);
125          continue;
126        }
127      }
128      Objects.push_back(const_cast<Value *>(V));
129    }
130  } while (!Working.empty());
131}
132
133typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
134UnderlyingObjectsVector;
135
136/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
137/// information and it can be tracked to a normal reference to a known
138/// object, return the Value for that object.
139static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
140                                         const MachineFrameInfo *MFI,
141                                         UnderlyingObjectsVector &Objects) {
142  if (!MI->hasOneMemOperand() ||
143      !(*MI->memoperands_begin())->getValue() ||
144      (*MI->memoperands_begin())->isVolatile())
145    return;
146
147  const Value *V = (*MI->memoperands_begin())->getValue();
148  if (!V)
149    return;
150
151  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
152    // For now, ignore PseudoSourceValues which may alias LLVM IR values
153    // because the code that uses this function has no way to cope with
154    // such aliases.
155    if (!PSV->isAliased(MFI)) {
156      bool MayAlias = PSV->mayAlias(MFI);
157      Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
158    }
159    return;
160  }
161
162  SmallVector<Value *, 4> Objs;
163  getUnderlyingObjects(V, Objs);
164
165  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
166         I != IE; ++I) {
167    V = *I;
168
169    assert(!isa<PseudoSourceValue>(V) && "Underlying value is a stack slot!");
170
171    if (!isIdentifiedObject(V)) {
172      Objects.clear();
173      return;
174    }
175
176    Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
177  }
178}
179
180void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181  BB = bb;
182}
183
184void ScheduleDAGInstrs::finishBlock() {
185  // Subclasses should no longer refer to the old block.
186  BB = 0;
187}
188
189/// Initialize the DAG and common scheduler state for the current scheduling
190/// region. This does not actually create the DAG, only clears it. The
191/// scheduling driver may call BuildSchedGraph multiple times per scheduling
192/// region.
193void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
194                                    MachineBasicBlock::iterator begin,
195                                    MachineBasicBlock::iterator end,
196                                    unsigned regioninstrs) {
197  assert(bb == BB && "startBlock should set BB");
198  RegionBegin = begin;
199  RegionEnd = end;
200  NumRegionInstrs = regioninstrs;
201}
202
203/// Close the current scheduling region. Don't clear any state in case the
204/// driver wants to refer to the previous scheduling region.
205void ScheduleDAGInstrs::exitRegion() {
206  // Nothing to do.
207}
208
209/// addSchedBarrierDeps - Add dependencies from instructions in the current
210/// list of instructions being scheduled to scheduling barrier by adding
211/// the exit SU to the register defs and use list. This is because we want to
212/// make sure instructions which define registers that are either used by
213/// the terminator or are live-out are properly scheduled. This is
214/// especially important when the definition latency of the return value(s)
215/// are too high to be hidden by the branch or when the liveout registers
216/// used by instructions in the fallthrough block.
217void ScheduleDAGInstrs::addSchedBarrierDeps() {
218  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
219  ExitSU.setInstr(ExitMI);
220  bool AllDepKnown = ExitMI &&
221    (ExitMI->isCall() || ExitMI->isBarrier());
222  if (ExitMI && AllDepKnown) {
223    // If it's a call or a barrier, add dependencies on the defs and uses of
224    // instruction.
225    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
226      const MachineOperand &MO = ExitMI->getOperand(i);
227      if (!MO.isReg() || MO.isDef()) continue;
228      unsigned Reg = MO.getReg();
229      if (Reg == 0) continue;
230
231      if (TRI->isPhysicalRegister(Reg))
232        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
233      else {
234        assert(!IsPostRA && "Virtual register encountered after regalloc.");
235        if (MO.readsReg()) // ignore undef operands
236          addVRegUseDeps(&ExitSU, i);
237      }
238    }
239  } else {
240    // For others, e.g. fallthrough, conditional branch, assume the exit
241    // uses all the registers that are livein to the successor blocks.
242    assert(Uses.empty() && "Uses in set before adding deps?");
243    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
244           SE = BB->succ_end(); SI != SE; ++SI)
245      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
246             E = (*SI)->livein_end(); I != E; ++I) {
247        unsigned Reg = *I;
248        if (!Uses.contains(Reg))
249          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
250      }
251  }
252}
253
254/// MO is an operand of SU's instruction that defines a physical register. Add
255/// data dependencies from SU to any uses of the physical register.
256void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
257  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
258  assert(MO.isDef() && "expect physreg def");
259
260  // Ask the target if address-backscheduling is desirable, and if so how much.
261  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
262
263  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
264       Alias.isValid(); ++Alias) {
265    if (!Uses.contains(*Alias))
266      continue;
267    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
268      SUnit *UseSU = I->SU;
269      if (UseSU == SU)
270        continue;
271
272      // Adjust the dependence latency using operand def/use information,
273      // then allow the target to perform its own adjustments.
274      int UseOp = I->OpIdx;
275      MachineInstr *RegUse = 0;
276      SDep Dep;
277      if (UseOp < 0)
278        Dep = SDep(SU, SDep::Artificial);
279      else {
280        // Set the hasPhysRegDefs only for physreg defs that have a use within
281        // the scheduling region.
282        SU->hasPhysRegDefs = true;
283        Dep = SDep(SU, SDep::Data, *Alias);
284        RegUse = UseSU->getInstr();
285      }
286      Dep.setLatency(
287        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
288                                         UseOp));
289
290      ST.adjustSchedDependency(SU, UseSU, Dep);
291      UseSU->addPred(Dep);
292    }
293  }
294}
295
296/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
297/// this SUnit to following instructions in the same scheduling region that
298/// depend the physical register referenced at OperIdx.
299void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
300  MachineInstr *MI = SU->getInstr();
301  MachineOperand &MO = MI->getOperand(OperIdx);
302
303  // Optionally add output and anti dependencies. For anti
304  // dependencies we use a latency of 0 because for a multi-issue
305  // target we want to allow the defining instruction to issue
306  // in the same cycle as the using instruction.
307  // TODO: Using a latency of 1 here for output dependencies assumes
308  //       there's no cost for reusing registers.
309  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
310  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
311       Alias.isValid(); ++Alias) {
312    if (!Defs.contains(*Alias))
313      continue;
314    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
315      SUnit *DefSU = I->SU;
316      if (DefSU == &ExitSU)
317        continue;
318      if (DefSU != SU &&
319          (Kind != SDep::Output || !MO.isDead() ||
320           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
321        if (Kind == SDep::Anti)
322          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
323        else {
324          SDep Dep(SU, Kind, /*Reg=*/*Alias);
325          Dep.setLatency(
326            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
327          DefSU->addPred(Dep);
328        }
329      }
330    }
331  }
332
333  if (!MO.isDef()) {
334    SU->hasPhysRegUses = true;
335    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
336    // retrieve the existing SUnits list for this register's uses.
337    // Push this SUnit on the use list.
338    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
339    if (RemoveKillFlags)
340      MO.setIsKill(false);
341  }
342  else {
343    addPhysRegDataDeps(SU, OperIdx);
344    unsigned Reg = MO.getReg();
345
346    // clear this register's use list
347    if (Uses.contains(Reg))
348      Uses.eraseAll(Reg);
349
350    if (!MO.isDead()) {
351      Defs.eraseAll(Reg);
352    } else if (SU->isCall) {
353      // Calls will not be reordered because of chain dependencies (see
354      // below). Since call operands are dead, calls may continue to be added
355      // to the DefList making dependence checking quadratic in the size of
356      // the block. Instead, we leave only one call at the back of the
357      // DefList.
358      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
359      Reg2SUnitsMap::iterator B = P.first;
360      Reg2SUnitsMap::iterator I = P.second;
361      for (bool isBegin = I == B; !isBegin; /* empty */) {
362        isBegin = (--I) == B;
363        if (!I->SU->isCall)
364          break;
365        I = Defs.erase(I);
366      }
367    }
368
369    // Defs are pushed in the order they are visited and never reordered.
370    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
371  }
372}
373
374/// addVRegDefDeps - Add register output and data dependencies from this SUnit
375/// to instructions that occur later in the same scheduling region if they read
376/// from or write to the virtual register defined at OperIdx.
377///
378/// TODO: Hoist loop induction variable increments. This has to be
379/// reevaluated. Generally, IV scheduling should be done before coalescing.
380void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
381  const MachineInstr *MI = SU->getInstr();
382  unsigned Reg = MI->getOperand(OperIdx).getReg();
383
384  // Singly defined vregs do not have output/anti dependencies.
385  // The current operand is a def, so we have at least one.
386  // Check here if there are any others...
387  if (MRI.hasOneDef(Reg))
388    return;
389
390  // Add output dependence to the next nearest def of this vreg.
391  //
392  // Unless this definition is dead, the output dependence should be
393  // transitively redundant with antidependencies from this definition's
394  // uses. We're conservative for now until we have a way to guarantee the uses
395  // are not eliminated sometime during scheduling. The output dependence edge
396  // is also useful if output latency exceeds def-use latency.
397  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
398  if (DefI == VRegDefs.end())
399    VRegDefs.insert(VReg2SUnit(Reg, SU));
400  else {
401    SUnit *DefSU = DefI->SU;
402    if (DefSU != SU && DefSU != &ExitSU) {
403      SDep Dep(SU, SDep::Output, Reg);
404      Dep.setLatency(
405        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
406      DefSU->addPred(Dep);
407    }
408    DefI->SU = SU;
409  }
410}
411
412/// addVRegUseDeps - Add a register data dependency if the instruction that
413/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
414/// register antidependency from this SUnit to instructions that occur later in
415/// the same scheduling region if they write the virtual register.
416///
417/// TODO: Handle ExitSU "uses" properly.
418void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
419  MachineInstr *MI = SU->getInstr();
420  unsigned Reg = MI->getOperand(OperIdx).getReg();
421
422  // Record this local VReg use.
423  VReg2UseMap::iterator UI = VRegUses.find(Reg);
424  for (; UI != VRegUses.end(); ++UI) {
425    if (UI->SU == SU)
426      break;
427  }
428  if (UI == VRegUses.end())
429    VRegUses.insert(VReg2SUnit(Reg, SU));
430
431  // Lookup this operand's reaching definition.
432  assert(LIS && "vreg dependencies requires LiveIntervals");
433  LiveQueryResult LRQ
434    = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
435  VNInfo *VNI = LRQ.valueIn();
436
437  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
438  assert(VNI && "No value to read by operand");
439  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
440  // Phis and other noninstructions (after coalescing) have a NULL Def.
441  if (Def) {
442    SUnit *DefSU = getSUnit(Def);
443    if (DefSU) {
444      // The reaching Def lives within this scheduling region.
445      // Create a data dependence.
446      SDep dep(DefSU, SDep::Data, Reg);
447      // Adjust the dependence latency using operand def/use information, then
448      // allow the target to perform its own adjustments.
449      int DefOp = Def->findRegisterDefOperandIdx(Reg);
450      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
451
452      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
453      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
454      SU->addPred(dep);
455    }
456  }
457
458  // Add antidependence to the following def of the vreg it uses.
459  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
460  if (DefI != VRegDefs.end() && DefI->SU != SU)
461    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
462}
463
464/// Return true if MI is an instruction we are unable to reason about
465/// (like a call or something with unmodeled side effects).
466static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
467  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
468      (MI->hasOrderedMemoryRef() &&
469       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
470    return true;
471  return false;
472}
473
474// This MI might have either incomplete info, or known to be unsafe
475// to deal with (i.e. volatile object).
476static inline bool isUnsafeMemoryObject(MachineInstr *MI,
477                                        const MachineFrameInfo *MFI) {
478  if (!MI || MI->memoperands_empty())
479    return true;
480  // We purposefully do no check for hasOneMemOperand() here
481  // in hope to trigger an assert downstream in order to
482  // finish implementation.
483  if ((*MI->memoperands_begin())->isVolatile() ||
484       MI->hasUnmodeledSideEffects())
485    return true;
486  const Value *V = (*MI->memoperands_begin())->getValue();
487  if (!V)
488    return true;
489
490  SmallVector<Value *, 4> Objs;
491  getUnderlyingObjects(V, Objs);
492  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
493         IE = Objs.end(); I != IE; ++I) {
494    V = *I;
495
496    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
497      // Similarly to getUnderlyingObjectForInstr:
498      // For now, ignore PseudoSourceValues which may alias LLVM IR values
499      // because the code that uses this function has no way to cope with
500      // such aliases.
501      if (PSV->isAliased(MFI))
502        return true;
503    }
504
505    // Does this pointer refer to a distinct and identifiable object?
506    if (!isIdentifiedObject(V))
507      return true;
508  }
509
510  return false;
511}
512
513/// This returns true if the two MIs need a chain edge betwee them.
514/// If these are not even memory operations, we still may need
515/// chain deps between them. The question really is - could
516/// these two MIs be reordered during scheduling from memory dependency
517/// point of view.
518static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
519                             MachineInstr *MIa,
520                             MachineInstr *MIb) {
521  // Cover a trivial case - no edge is need to itself.
522  if (MIa == MIb)
523    return false;
524
525  // FIXME: Need to handle multiple memory operands to support all targets.
526  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
527    return true;
528
529  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
530    return true;
531
532  // If we are dealing with two "normal" loads, we do not need an edge
533  // between them - they could be reordered.
534  if (!MIa->mayStore() && !MIb->mayStore())
535    return false;
536
537  // To this point analysis is generic. From here on we do need AA.
538  if (!AA)
539    return true;
540
541  MachineMemOperand *MMOa = *MIa->memoperands_begin();
542  MachineMemOperand *MMOb = *MIb->memoperands_begin();
543
544  // The following interface to AA is fashioned after DAGCombiner::isAlias
545  // and operates with MachineMemOperand offset with some important
546  // assumptions:
547  //   - LLVM fundamentally assumes flat address spaces.
548  //   - MachineOperand offset can *only* result from legalization and
549  //     cannot affect queries other than the trivial case of overlap
550  //     checking.
551  //   - These offsets never wrap and never step outside
552  //     of allocated objects.
553  //   - There should never be any negative offsets here.
554  //
555  // FIXME: Modify API to hide this math from "user"
556  // FIXME: Even before we go to AA we can reason locally about some
557  // memory objects. It can save compile time, and possibly catch some
558  // corner cases not currently covered.
559
560  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
561  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
562
563  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
564  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
565  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
566
567  AliasAnalysis::AliasResult AAResult = AA->alias(
568      AliasAnalysis::Location(MMOa->getValue(), Overlapa,
569                              UseTBAA ? MMOa->getTBAAInfo() : 0),
570      AliasAnalysis::Location(MMOb->getValue(), Overlapb,
571                              UseTBAA ? MMOb->getTBAAInfo() : 0));
572
573  return (AAResult != AliasAnalysis::NoAlias);
574}
575
576/// This recursive function iterates over chain deps of SUb looking for
577/// "latest" node that needs a chain edge to SUa.
578static unsigned
579iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
580                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
581                 SmallPtrSet<const SUnit*, 16> &Visited) {
582  if (!SUa || !SUb || SUb == ExitSU)
583    return *Depth;
584
585  // Remember visited nodes.
586  if (!Visited.insert(SUb))
587      return *Depth;
588  // If there is _some_ dependency already in place, do not
589  // descend any further.
590  // TODO: Need to make sure that if that dependency got eliminated or ignored
591  // for any reason in the future, we would not violate DAG topology.
592  // Currently it does not happen, but makes an implicit assumption about
593  // future implementation.
594  //
595  // Independently, if we encounter node that is some sort of global
596  // object (like a call) we already have full set of dependencies to it
597  // and we can stop descending.
598  if (SUa->isSucc(SUb) ||
599      isGlobalMemoryObject(AA, SUb->getInstr()))
600    return *Depth;
601
602  // If we do need an edge, or we have exceeded depth budget,
603  // add that edge to the predecessors chain of SUb,
604  // and stop descending.
605  if (*Depth > 200 ||
606      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
607    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
608    return *Depth;
609  }
610  // Track current depth.
611  (*Depth)++;
612  // Iterate over chain dependencies only.
613  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
614       I != E; ++I)
615    if (I->isCtrl())
616      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
617  return *Depth;
618}
619
620/// This function assumes that "downward" from SU there exist
621/// tail/leaf of already constructed DAG. It iterates downward and
622/// checks whether SU can be aliasing any node dominated
623/// by it.
624static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
625                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
626                            unsigned LatencyToLoad) {
627  if (!SU)
628    return;
629
630  SmallPtrSet<const SUnit*, 16> Visited;
631  unsigned Depth = 0;
632
633  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
634       I != IE; ++I) {
635    if (SU == *I)
636      continue;
637    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
638      SDep Dep(SU, SDep::MayAliasMem);
639      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
640      (*I)->addPred(Dep);
641    }
642    // Now go through all the chain successors and iterate from them.
643    // Keep track of visited nodes.
644    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
645         JE = (*I)->Succs.end(); J != JE; ++J)
646      if (J->isCtrl())
647        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
648                          ExitSU, &Depth, Visited);
649  }
650}
651
652/// Check whether two objects need a chain edge, if so, add it
653/// otherwise remember the rejected SU.
654static inline
655void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
656                         SUnit *SUa, SUnit *SUb,
657                         std::set<SUnit *> &RejectList,
658                         unsigned TrueMemOrderLatency = 0,
659                         bool isNormalMemory = false) {
660  // If this is a false dependency,
661  // do not add the edge, but rememeber the rejected node.
662  if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
663    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
664    Dep.setLatency(TrueMemOrderLatency);
665    SUb->addPred(Dep);
666  }
667  else {
668    // Duplicate entries should be ignored.
669    RejectList.insert(SUb);
670    DEBUG(dbgs() << "\tReject chain dep between SU("
671          << SUa->NodeNum << ") and SU("
672          << SUb->NodeNum << ")\n");
673  }
674}
675
676/// Create an SUnit for each real instruction, numbered in top-down toplological
677/// order. The instruction order A < B, implies that no edge exists from B to A.
678///
679/// Map each real instruction to its SUnit.
680///
681/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
682/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
683/// instead of pointers.
684///
685/// MachineScheduler relies on initSUnits numbering the nodes by their order in
686/// the original instruction list.
687void ScheduleDAGInstrs::initSUnits() {
688  // We'll be allocating one SUnit for each real instruction in the region,
689  // which is contained within a basic block.
690  SUnits.reserve(NumRegionInstrs);
691
692  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
693    MachineInstr *MI = I;
694    if (MI->isDebugValue())
695      continue;
696
697    SUnit *SU = newSUnit(MI);
698    MISUnitMap[MI] = SU;
699
700    SU->isCall = MI->isCall();
701    SU->isCommutable = MI->isCommutable();
702
703    // Assign the Latency field of SU using target-provided information.
704    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
705
706    // If this SUnit uses an unbuffered resource, mark it as such.
707    // These resources are used for in-order execution pipelines within an
708    // out-of-order core and are identified by BufferSize=1. BufferSize=0 is
709    // used for dispatch/issue groups and is not considered here.
710    if (SchedModel.hasInstrSchedModel()) {
711      const MCSchedClassDesc *SC = getSchedClass(SU);
712      for (TargetSchedModel::ProcResIter
713             PI = SchedModel.getWriteProcResBegin(SC),
714             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
715        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
716        case 0:
717          SU->hasReservedResource = true;
718          break;
719        case 1:
720          SU->isUnbuffered = true;
721          break;
722        default:
723          break;
724        }
725      }
726    }
727  }
728}
729
730/// If RegPressure is non-null, compute register pressure as a side effect. The
731/// DAG builder is an efficient place to do it because it already visits
732/// operands.
733void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
734                                        RegPressureTracker *RPTracker,
735                                        PressureDiffs *PDiffs) {
736  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
737  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
738                                                       : ST.useAA();
739  AliasAnalysis *AAForDep = UseAA ? AA : 0;
740
741  MISUnitMap.clear();
742  ScheduleDAG::clearDAG();
743
744  // Create an SUnit for each real instruction.
745  initSUnits();
746
747  if (PDiffs)
748    PDiffs->init(SUnits.size());
749
750  // We build scheduling units by walking a block's instruction list from bottom
751  // to top.
752
753  // Remember where a generic side-effecting instruction is as we procede.
754  SUnit *BarrierChain = 0, *AliasChain = 0;
755
756  // Memory references to specific known memory locations are tracked
757  // so that they can be given more precise dependencies. We track
758  // separately the known memory locations that may alias and those
759  // that are known not to alias
760  MapVector<const Value *, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
761  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
762  std::set<SUnit*> RejectMemNodes;
763
764  // Remove any stale debug info; sometimes BuildSchedGraph is called again
765  // without emitting the info from the previous call.
766  DbgValues.clear();
767  FirstDbgValue = NULL;
768
769  assert(Defs.empty() && Uses.empty() &&
770         "Only BuildGraph should update Defs/Uses");
771  Defs.setUniverse(TRI->getNumRegs());
772  Uses.setUniverse(TRI->getNumRegs());
773
774  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
775  VRegUses.clear();
776  VRegDefs.setUniverse(MRI.getNumVirtRegs());
777  VRegUses.setUniverse(MRI.getNumVirtRegs());
778
779  // Model data dependencies between instructions being scheduled and the
780  // ExitSU.
781  addSchedBarrierDeps();
782
783  // Walk the list of instructions, from bottom moving up.
784  MachineInstr *DbgMI = NULL;
785  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
786       MII != MIE; --MII) {
787    MachineInstr *MI = std::prev(MII);
788    if (MI && DbgMI) {
789      DbgValues.push_back(std::make_pair(DbgMI, MI));
790      DbgMI = NULL;
791    }
792
793    if (MI->isDebugValue()) {
794      DbgMI = MI;
795      continue;
796    }
797    SUnit *SU = MISUnitMap[MI];
798    assert(SU && "No SUnit mapped to this MI");
799
800    if (RPTracker) {
801      PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0;
802      RPTracker->recede(/*LiveUses=*/0, PDiff);
803      assert(RPTracker->getPos() == std::prev(MII) &&
804             "RPTracker can't find MI");
805    }
806
807    assert(
808        (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
809        "Cannot schedule terminators or labels!");
810
811    // Add register-based dependencies (data, anti, and output).
812    bool HasVRegDef = false;
813    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
814      const MachineOperand &MO = MI->getOperand(j);
815      if (!MO.isReg()) continue;
816      unsigned Reg = MO.getReg();
817      if (Reg == 0) continue;
818
819      if (TRI->isPhysicalRegister(Reg))
820        addPhysRegDeps(SU, j);
821      else {
822        assert(!IsPostRA && "Virtual register encountered!");
823        if (MO.isDef()) {
824          HasVRegDef = true;
825          addVRegDefDeps(SU, j);
826        }
827        else if (MO.readsReg()) // ignore undef operands
828          addVRegUseDeps(SU, j);
829      }
830    }
831    // If we haven't seen any uses in this scheduling region, create a
832    // dependence edge to ExitSU to model the live-out latency. This is required
833    // for vreg defs with no in-region use, and prefetches with no vreg def.
834    //
835    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
836    // check currently relies on being called before adding chain deps.
837    if (SU->NumSuccs == 0 && SU->Latency > 1
838        && (HasVRegDef || MI->mayLoad())) {
839      SDep Dep(SU, SDep::Artificial);
840      Dep.setLatency(SU->Latency - 1);
841      ExitSU.addPred(Dep);
842    }
843
844    // Add chain dependencies.
845    // Chain dependencies used to enforce memory order should have
846    // latency of 0 (except for true dependency of Store followed by
847    // aliased Load... we estimate that with a single cycle of latency
848    // assuming the hardware will bypass)
849    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
850    // after stack slots are lowered to actual addresses.
851    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
852    // produce more precise dependence information.
853    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
854    if (isGlobalMemoryObject(AA, MI)) {
855      // Be conservative with these and add dependencies on all memory
856      // references, even those that are known to not alias.
857      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
858             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
859        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
860          I->second[i]->addPred(SDep(SU, SDep::Barrier));
861        }
862      }
863      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
864             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
865        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
866          SDep Dep(SU, SDep::Barrier);
867          Dep.setLatency(TrueMemOrderLatency);
868          I->second[i]->addPred(Dep);
869        }
870      }
871      // Add SU to the barrier chain.
872      if (BarrierChain)
873        BarrierChain->addPred(SDep(SU, SDep::Barrier));
874      BarrierChain = SU;
875      // This is a barrier event that acts as a pivotal node in the DAG,
876      // so it is safe to clear list of exposed nodes.
877      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
878                      TrueMemOrderLatency);
879      RejectMemNodes.clear();
880      NonAliasMemDefs.clear();
881      NonAliasMemUses.clear();
882
883      // fall-through
884    new_alias_chain:
885      // Chain all possibly aliasing memory references though SU.
886      if (AliasChain) {
887        unsigned ChainLatency = 0;
888        if (AliasChain->getInstr()->mayLoad())
889          ChainLatency = TrueMemOrderLatency;
890        addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
891                           ChainLatency);
892      }
893      AliasChain = SU;
894      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
895        addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
896                           TrueMemOrderLatency);
897      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
898           AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
899        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
900          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes);
901      }
902      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
903           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
904        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
905          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
906                             TrueMemOrderLatency);
907      }
908      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
909                      TrueMemOrderLatency);
910      PendingLoads.clear();
911      AliasMemDefs.clear();
912      AliasMemUses.clear();
913    } else if (MI->mayStore()) {
914      UnderlyingObjectsVector Objs;
915      getUnderlyingObjectsForInstr(MI, MFI, Objs);
916
917      if (Objs.empty()) {
918        // Treat all other stores conservatively.
919        goto new_alias_chain;
920      }
921
922      bool MayAlias = false;
923      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
924           K != KE; ++K) {
925        const Value *V = K->getPointer();
926        bool ThisMayAlias = K->getInt();
927        if (ThisMayAlias)
928          MayAlias = true;
929
930        // A store to a specific PseudoSourceValue. Add precise dependencies.
931        // Record the def in MemDefs, first adding a dep if there is
932        // an existing def.
933        MapVector<const Value *, std::vector<SUnit *> >::iterator I =
934          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
935        MapVector<const Value *, std::vector<SUnit *> >::iterator IE =
936          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
937        if (I != IE) {
938          for (unsigned i = 0, e = I->second.size(); i != e; ++i)
939            addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
940                               0, true);
941
942          // If we're not using AA, then we only need one store per object.
943          if (!AAForDep)
944            I->second.clear();
945          I->second.push_back(SU);
946        } else {
947          if (ThisMayAlias) {
948            if (!AAForDep)
949              AliasMemDefs[V].clear();
950            AliasMemDefs[V].push_back(SU);
951          } else {
952            if (!AAForDep)
953              NonAliasMemDefs[V].clear();
954            NonAliasMemDefs[V].push_back(SU);
955          }
956        }
957        // Handle the uses in MemUses, if there are any.
958        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
959          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
960        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
961          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
962        if (J != JE) {
963          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
964            addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
965                               TrueMemOrderLatency, true);
966          J->second.clear();
967        }
968      }
969      if (MayAlias) {
970        // Add dependencies from all the PendingLoads, i.e. loads
971        // with no underlying object.
972        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
973          addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
974                             TrueMemOrderLatency);
975        // Add dependence on alias chain, if needed.
976        if (AliasChain)
977          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
978        // But we also should check dependent instructions for the
979        // SU in question.
980        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
981                        TrueMemOrderLatency);
982      }
983      // Add dependence on barrier chain, if needed.
984      // There is no point to check aliasing on barrier event. Even if
985      // SU and barrier _could_ be reordered, they should not. In addition,
986      // we have lost all RejectMemNodes below barrier.
987      if (BarrierChain)
988        BarrierChain->addPred(SDep(SU, SDep::Barrier));
989
990      if (!ExitSU.isPred(SU))
991        // Push store's up a bit to avoid them getting in between cmp
992        // and branches.
993        ExitSU.addPred(SDep(SU, SDep::Artificial));
994    } else if (MI->mayLoad()) {
995      bool MayAlias = true;
996      if (MI->isInvariantLoad(AA)) {
997        // Invariant load, no chain dependencies needed!
998      } else {
999        UnderlyingObjectsVector Objs;
1000        getUnderlyingObjectsForInstr(MI, MFI, Objs);
1001
1002        if (Objs.empty()) {
1003          // A load with no underlying object. Depend on all
1004          // potentially aliasing stores.
1005          for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
1006                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1007            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1008              addChainDependency(AAForDep, MFI, SU, I->second[i],
1009                                 RejectMemNodes);
1010
1011          PendingLoads.push_back(SU);
1012          MayAlias = true;
1013        } else {
1014          MayAlias = false;
1015        }
1016
1017        for (UnderlyingObjectsVector::iterator
1018             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1019          const Value *V = J->getPointer();
1020          bool ThisMayAlias = J->getInt();
1021
1022          if (ThisMayAlias)
1023            MayAlias = true;
1024
1025          // A load from a specific PseudoSourceValue. Add precise dependencies.
1026          MapVector<const Value *, std::vector<SUnit *> >::iterator I =
1027            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1028          MapVector<const Value *, std::vector<SUnit *> >::iterator IE =
1029            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1030          if (I != IE)
1031            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1032              addChainDependency(AAForDep, MFI, SU, I->second[i],
1033                                 RejectMemNodes, 0, true);
1034          if (ThisMayAlias)
1035            AliasMemUses[V].push_back(SU);
1036          else
1037            NonAliasMemUses[V].push_back(SU);
1038        }
1039        if (MayAlias)
1040          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
1041        // Add dependencies on alias and barrier chains, if needed.
1042        if (MayAlias && AliasChain)
1043          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
1044        if (BarrierChain)
1045          BarrierChain->addPred(SDep(SU, SDep::Barrier));
1046      }
1047    }
1048  }
1049  if (DbgMI)
1050    FirstDbgValue = DbgMI;
1051
1052  Defs.clear();
1053  Uses.clear();
1054  VRegDefs.clear();
1055  PendingLoads.clear();
1056}
1057
1058/// \brief Initialize register live-range state for updating kills.
1059void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1060  // Start with no live registers.
1061  LiveRegs.reset();
1062
1063  // Examine the live-in regs of all successors.
1064  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1065       SE = BB->succ_end(); SI != SE; ++SI) {
1066    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
1067         E = (*SI)->livein_end(); I != E; ++I) {
1068      unsigned Reg = *I;
1069      // Repeat, for reg and all subregs.
1070      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1071           SubRegs.isValid(); ++SubRegs)
1072        LiveRegs.set(*SubRegs);
1073    }
1074  }
1075}
1076
1077bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1078  // Setting kill flag...
1079  if (!MO.isKill()) {
1080    MO.setIsKill(true);
1081    return false;
1082  }
1083
1084  // If MO itself is live, clear the kill flag...
1085  if (LiveRegs.test(MO.getReg())) {
1086    MO.setIsKill(false);
1087    return false;
1088  }
1089
1090  // If any subreg of MO is live, then create an imp-def for that
1091  // subreg and keep MO marked as killed.
1092  MO.setIsKill(false);
1093  bool AllDead = true;
1094  const unsigned SuperReg = MO.getReg();
1095  MachineInstrBuilder MIB(MF, MI);
1096  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1097    if (LiveRegs.test(*SubRegs)) {
1098      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1099      AllDead = false;
1100    }
1101  }
1102
1103  if(AllDead)
1104    MO.setIsKill(true);
1105  return false;
1106}
1107
1108// FIXME: Reuse the LivePhysRegs utility for this.
1109void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1110  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1111
1112  LiveRegs.resize(TRI->getNumRegs());
1113  BitVector killedRegs(TRI->getNumRegs());
1114
1115  startBlockForKills(MBB);
1116
1117  // Examine block from end to start...
1118  unsigned Count = MBB->size();
1119  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1120       I != E; --Count) {
1121    MachineInstr *MI = --I;
1122    if (MI->isDebugValue())
1123      continue;
1124
1125    // Update liveness.  Registers that are defed but not used in this
1126    // instruction are now dead. Mark register and all subregs as they
1127    // are completely defined.
1128    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1129      MachineOperand &MO = MI->getOperand(i);
1130      if (MO.isRegMask())
1131        LiveRegs.clearBitsNotInMask(MO.getRegMask());
1132      if (!MO.isReg()) continue;
1133      unsigned Reg = MO.getReg();
1134      if (Reg == 0) continue;
1135      if (!MO.isDef()) continue;
1136      // Ignore two-addr defs.
1137      if (MI->isRegTiedToUseOperand(i)) continue;
1138
1139      // Repeat for reg and all subregs.
1140      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1141           SubRegs.isValid(); ++SubRegs)
1142        LiveRegs.reset(*SubRegs);
1143    }
1144
1145    // Examine all used registers and set/clear kill flag. When a
1146    // register is used multiple times we only set the kill flag on
1147    // the first use. Don't set kill flags on undef operands.
1148    killedRegs.reset();
1149    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1150      MachineOperand &MO = MI->getOperand(i);
1151      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1152      unsigned Reg = MO.getReg();
1153      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1154
1155      bool kill = false;
1156      if (!killedRegs.test(Reg)) {
1157        kill = true;
1158        // A register is not killed if any subregs are live...
1159        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1160          if (LiveRegs.test(*SubRegs)) {
1161            kill = false;
1162            break;
1163          }
1164        }
1165
1166        // If subreg is not live, then register is killed if it became
1167        // live in this instruction
1168        if (kill)
1169          kill = !LiveRegs.test(Reg);
1170      }
1171
1172      if (MO.isKill() != kill) {
1173        DEBUG(dbgs() << "Fixing " << MO << " in ");
1174        // Warning: toggleKillFlag may invalidate MO.
1175        toggleKillFlag(MI, MO);
1176        DEBUG(MI->dump());
1177      }
1178
1179      killedRegs.set(Reg);
1180    }
1181
1182    // Mark any used register (that is not using undef) and subregs as
1183    // now live...
1184    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1185      MachineOperand &MO = MI->getOperand(i);
1186      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1187      unsigned Reg = MO.getReg();
1188      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1189
1190      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1191           SubRegs.isValid(); ++SubRegs)
1192        LiveRegs.set(*SubRegs);
1193    }
1194  }
1195}
1196
1197void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1198#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1199  SU->getInstr()->dump();
1200#endif
1201}
1202
1203std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1204  std::string s;
1205  raw_string_ostream oss(s);
1206  if (SU == &EntrySU)
1207    oss << "<entry>";
1208  else if (SU == &ExitSU)
1209    oss << "<exit>";
1210  else
1211    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1212  return oss.str();
1213}
1214
1215/// Return the basic block label. It is not necessarilly unique because a block
1216/// contains multiple scheduling regions. But it is fine for visualization.
1217std::string ScheduleDAGInstrs::getDAGName() const {
1218  return "dag." + BB->getFullName();
1219}
1220
1221//===----------------------------------------------------------------------===//
1222// SchedDFSResult Implementation
1223//===----------------------------------------------------------------------===//
1224
1225namespace llvm {
1226/// \brief Internal state used to compute SchedDFSResult.
1227class SchedDFSImpl {
1228  SchedDFSResult &R;
1229
1230  /// Join DAG nodes into equivalence classes by their subtree.
1231  IntEqClasses SubtreeClasses;
1232  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1233  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1234
1235  struct RootData {
1236    unsigned NodeID;
1237    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1238    unsigned SubInstrCount; // Instr count in this tree only, not children.
1239
1240    RootData(unsigned id): NodeID(id),
1241                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1242                           SubInstrCount(0) {}
1243
1244    unsigned getSparseSetIndex() const { return NodeID; }
1245  };
1246
1247  SparseSet<RootData> RootSet;
1248
1249public:
1250  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1251    RootSet.setUniverse(R.DFSNodeData.size());
1252  }
1253
1254  /// Return true if this node been visited by the DFS traversal.
1255  ///
1256  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1257  /// ID. Later, SubtreeID is updated but remains valid.
1258  bool isVisited(const SUnit *SU) const {
1259    return R.DFSNodeData[SU->NodeNum].SubtreeID
1260      != SchedDFSResult::InvalidSubtreeID;
1261  }
1262
1263  /// Initialize this node's instruction count. We don't need to flag the node
1264  /// visited until visitPostorder because the DAG cannot have cycles.
1265  void visitPreorder(const SUnit *SU) {
1266    R.DFSNodeData[SU->NodeNum].InstrCount =
1267      SU->getInstr()->isTransient() ? 0 : 1;
1268  }
1269
1270  /// Called once for each node after all predecessors are visited. Revisit this
1271  /// node's predecessors and potentially join them now that we know the ILP of
1272  /// the other predecessors.
1273  void visitPostorderNode(const SUnit *SU) {
1274    // Mark this node as the root of a subtree. It may be joined with its
1275    // successors later.
1276    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1277    RootData RData(SU->NodeNum);
1278    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1279
1280    // If any predecessors are still in their own subtree, they either cannot be
1281    // joined or are large enough to remain separate. If this parent node's
1282    // total instruction count is not greater than a child subtree by at least
1283    // the subtree limit, then try to join it now since splitting subtrees is
1284    // only useful if multiple high-pressure paths are possible.
1285    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1286    for (SUnit::const_pred_iterator
1287           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1288      if (PI->getKind() != SDep::Data)
1289        continue;
1290      unsigned PredNum = PI->getSUnit()->NodeNum;
1291      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1292        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1293
1294      // Either link or merge the TreeData entry from the child to the parent.
1295      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1296        // If the predecessor's parent is invalid, this is a tree edge and the
1297        // current node is the parent.
1298        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1299          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1300      }
1301      else if (RootSet.count(PredNum)) {
1302        // The predecessor is not a root, but is still in the root set. This
1303        // must be the new parent that it was just joined to. Note that
1304        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1305        // set to the original parent.
1306        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1307        RootSet.erase(PredNum);
1308      }
1309    }
1310    RootSet[SU->NodeNum] = RData;
1311  }
1312
1313  /// Called once for each tree edge after calling visitPostOrderNode on the
1314  /// predecessor. Increment the parent node's instruction count and
1315  /// preemptively join this subtree to its parent's if it is small enough.
1316  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1317    R.DFSNodeData[Succ->NodeNum].InstrCount
1318      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1319    joinPredSubtree(PredDep, Succ);
1320  }
1321
1322  /// Add a connection for cross edges.
1323  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1324    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1325  }
1326
1327  /// Set each node's subtree ID to the representative ID and record connections
1328  /// between trees.
1329  void finalize() {
1330    SubtreeClasses.compress();
1331    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1332    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1333           && "number of roots should match trees");
1334    for (SparseSet<RootData>::const_iterator
1335           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1336      unsigned TreeID = SubtreeClasses[RI->NodeID];
1337      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1338        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1339      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1340      // Note that SubInstrCount may be greater than InstrCount if we joined
1341      // subtrees across a cross edge. InstrCount will be attributed to the
1342      // original parent, while SubInstrCount will be attributed to the joined
1343      // parent.
1344    }
1345    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1346    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1347    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1348    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1349      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1350      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1351            << R.DFSNodeData[Idx].SubtreeID << '\n');
1352    }
1353    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1354           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1355         I != E; ++I) {
1356      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1357      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1358      if (PredTree == SuccTree)
1359        continue;
1360      unsigned Depth = I->first->getDepth();
1361      addConnection(PredTree, SuccTree, Depth);
1362      addConnection(SuccTree, PredTree, Depth);
1363    }
1364  }
1365
1366protected:
1367  /// Join the predecessor subtree with the successor that is its DFS
1368  /// parent. Apply some heuristics before joining.
1369  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1370                       bool CheckLimit = true) {
1371    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1372
1373    // Check if the predecessor is already joined.
1374    const SUnit *PredSU = PredDep.getSUnit();
1375    unsigned PredNum = PredSU->NodeNum;
1376    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1377      return false;
1378
1379    // Four is the magic number of successors before a node is considered a
1380    // pinch point.
1381    unsigned NumDataSucs = 0;
1382    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1383           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1384      if (SI->getKind() == SDep::Data) {
1385        if (++NumDataSucs >= 4)
1386          return false;
1387      }
1388    }
1389    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1390      return false;
1391    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1392    SubtreeClasses.join(Succ->NodeNum, PredNum);
1393    return true;
1394  }
1395
1396  /// Called by finalize() to record a connection between trees.
1397  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1398    if (!Depth)
1399      return;
1400
1401    do {
1402      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1403        R.SubtreeConnections[FromTree];
1404      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1405             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1406        if (I->TreeID == ToTree) {
1407          I->Level = std::max(I->Level, Depth);
1408          return;
1409        }
1410      }
1411      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1412      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1413    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1414  }
1415};
1416} // namespace llvm
1417
1418namespace {
1419/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1420class SchedDAGReverseDFS {
1421  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1422public:
1423  bool isComplete() const { return DFSStack.empty(); }
1424
1425  void follow(const SUnit *SU) {
1426    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1427  }
1428  void advance() { ++DFSStack.back().second; }
1429
1430  const SDep *backtrack() {
1431    DFSStack.pop_back();
1432    return DFSStack.empty() ? 0 : std::prev(DFSStack.back().second);
1433  }
1434
1435  const SUnit *getCurr() const { return DFSStack.back().first; }
1436
1437  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1438
1439  SUnit::const_pred_iterator getPredEnd() const {
1440    return getCurr()->Preds.end();
1441  }
1442};
1443} // anonymous
1444
1445static bool hasDataSucc(const SUnit *SU) {
1446  for (SUnit::const_succ_iterator
1447         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1448    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1449      return true;
1450  }
1451  return false;
1452}
1453
1454/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1455/// search from this root.
1456void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1457  if (!IsBottomUp)
1458    llvm_unreachable("Top-down ILP metric is unimplemnted");
1459
1460  SchedDFSImpl Impl(*this);
1461  for (ArrayRef<SUnit>::const_iterator
1462         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1463    const SUnit *SU = &*SI;
1464    if (Impl.isVisited(SU) || hasDataSucc(SU))
1465      continue;
1466
1467    SchedDAGReverseDFS DFS;
1468    Impl.visitPreorder(SU);
1469    DFS.follow(SU);
1470    for (;;) {
1471      // Traverse the leftmost path as far as possible.
1472      while (DFS.getPred() != DFS.getPredEnd()) {
1473        const SDep &PredDep = *DFS.getPred();
1474        DFS.advance();
1475        // Ignore non-data edges.
1476        if (PredDep.getKind() != SDep::Data
1477            || PredDep.getSUnit()->isBoundaryNode()) {
1478          continue;
1479        }
1480        // An already visited edge is a cross edge, assuming an acyclic DAG.
1481        if (Impl.isVisited(PredDep.getSUnit())) {
1482          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1483          continue;
1484        }
1485        Impl.visitPreorder(PredDep.getSUnit());
1486        DFS.follow(PredDep.getSUnit());
1487      }
1488      // Visit the top of the stack in postorder and backtrack.
1489      const SUnit *Child = DFS.getCurr();
1490      const SDep *PredDep = DFS.backtrack();
1491      Impl.visitPostorderNode(Child);
1492      if (PredDep)
1493        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1494      if (DFS.isComplete())
1495        break;
1496    }
1497  }
1498  Impl.finalize();
1499}
1500
1501/// The root of the given SubtreeID was just scheduled. For all subtrees
1502/// connected to this tree, record the depth of the connection so that the
1503/// nearest connected subtrees can be prioritized.
1504void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1505  for (SmallVectorImpl<Connection>::const_iterator
1506         I = SubtreeConnections[SubtreeID].begin(),
1507         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1508    SubtreeConnectLevels[I->TreeID] =
1509      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1510    DEBUG(dbgs() << "  Tree: " << I->TreeID
1511          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1512  }
1513}
1514
1515#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1516void ILPValue::print(raw_ostream &OS) const {
1517  OS << InstrCount << " / " << Length << " = ";
1518  if (!Length)
1519    OS << "BADILP";
1520  else
1521    OS << format("%g", ((double)InstrCount / Length));
1522}
1523
1524void ILPValue::dump() const {
1525  dbgs() << *this << '\n';
1526}
1527
1528namespace llvm {
1529
1530raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1531  Val.print(OS);
1532  return OS;
1533}
1534
1535} // namespace llvm
1536#endif // !NDEBUG || LLVM_ENABLE_DUMP
1537