1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <algorithm>
40using namespace llvm;
41
42#define DEBUG_TYPE "dagcombine"
43
44STATISTIC(NodesCombined   , "Number of dag nodes combined");
45STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
46STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
47STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
48STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
49STATISTIC(SlicedLoads, "Number of load sliced");
50
51namespace {
52  static cl::opt<bool>
53    CombinerAA("combiner-alias-analysis", cl::Hidden,
54               cl::desc("Enable DAG combiner alias-analysis heuristics"));
55
56  static cl::opt<bool>
57    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
58               cl::desc("Enable DAG combiner's use of IR alias analysis"));
59
60  static cl::opt<bool>
61    UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
62               cl::desc("Enable DAG combiner's use of TBAA"));
63
64#ifndef NDEBUG
65  static cl::opt<std::string>
66    CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
67               cl::desc("Only use DAG-combiner alias analysis in this"
68                        " function"));
69#endif
70
71  /// Hidden option to stress test load slicing, i.e., when this option
72  /// is enabled, load slicing bypasses most of its profitability guards.
73  static cl::opt<bool>
74  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
75                    cl::desc("Bypass the profitability model of load "
76                             "slicing"),
77                    cl::init(false));
78
79//------------------------------ DAGCombiner ---------------------------------//
80
81  class DAGCombiner {
82    SelectionDAG &DAG;
83    const TargetLowering &TLI;
84    CombineLevel Level;
85    CodeGenOpt::Level OptLevel;
86    bool LegalOperations;
87    bool LegalTypes;
88    bool ForCodeSize;
89
90    // Worklist of all of the nodes that need to be simplified.
91    //
92    // This has the semantics that when adding to the worklist,
93    // the item added must be next to be processed. It should
94    // also only appear once. The naive approach to this takes
95    // linear time.
96    //
97    // To reduce the insert/remove time to logarithmic, we use
98    // a set and a vector to maintain our worklist.
99    //
100    // The set contains the items on the worklist, but does not
101    // maintain the order they should be visited.
102    //
103    // The vector maintains the order nodes should be visited, but may
104    // contain duplicate or removed nodes. When choosing a node to
105    // visit, we pop off the order stack until we find an item that is
106    // also in the contents set. All operations are O(log N).
107    SmallPtrSet<SDNode*, 64> WorkListContents;
108    SmallVector<SDNode*, 64> WorkListOrder;
109
110    // AA - Used for DAG load/store alias analysis.
111    AliasAnalysis &AA;
112
113    /// AddUsersToWorkList - When an instruction is simplified, add all users of
114    /// the instruction to the work lists because they might get more simplified
115    /// now.
116    ///
117    void AddUsersToWorkList(SDNode *N) {
118      for (SDNode *Node : N->uses())
119        AddToWorkList(Node);
120    }
121
122    /// visit - call the node-specific routine that knows how to fold each
123    /// particular type of node.
124    SDValue visit(SDNode *N);
125
126  public:
127    /// AddToWorkList - Add to the work list making sure its instance is at the
128    /// back (next to be processed.)
129    void AddToWorkList(SDNode *N) {
130      WorkListContents.insert(N);
131      WorkListOrder.push_back(N);
132    }
133
134    /// removeFromWorkList - remove all instances of N from the worklist.
135    ///
136    void removeFromWorkList(SDNode *N) {
137      WorkListContents.erase(N);
138    }
139
140    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
141                      bool AddTo = true);
142
143    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
144      return CombineTo(N, &Res, 1, AddTo);
145    }
146
147    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
148                      bool AddTo = true) {
149      SDValue To[] = { Res0, Res1 };
150      return CombineTo(N, To, 2, AddTo);
151    }
152
153    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
154
155  private:
156
157    /// SimplifyDemandedBits - Check the specified integer node value to see if
158    /// it can be simplified or if things it uses can be simplified by bit
159    /// propagation.  If so, return true.
160    bool SimplifyDemandedBits(SDValue Op) {
161      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
162      APInt Demanded = APInt::getAllOnesValue(BitWidth);
163      return SimplifyDemandedBits(Op, Demanded);
164    }
165
166    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
167
168    bool CombineToPreIndexedLoadStore(SDNode *N);
169    bool CombineToPostIndexedLoadStore(SDNode *N);
170    bool SliceUpLoad(SDNode *N);
171
172    /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
173    ///   load.
174    ///
175    /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
176    /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
177    /// \param EltNo index of the vector element to load.
178    /// \param OriginalLoad load that EVE came from to be replaced.
179    /// \returns EVE on success SDValue() on failure.
180    SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
181        SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
182    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
183    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
184    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
185    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
186    SDValue PromoteIntBinOp(SDValue Op);
187    SDValue PromoteIntShiftOp(SDValue Op);
188    SDValue PromoteExtend(SDValue Op);
189    bool PromoteLoad(SDValue Op);
190
191    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
192                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
193                         ISD::NodeType ExtType);
194
195    /// combine - call the node-specific routine that knows how to fold each
196    /// particular type of node. If that doesn't do anything, try the
197    /// target-specific DAG combines.
198    SDValue combine(SDNode *N);
199
200    // Visitation implementation - Implement dag node combining for different
201    // node types.  The semantics are as follows:
202    // Return Value:
203    //   SDValue.getNode() == 0 - No change was made
204    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
205    //   otherwise              - N should be replaced by the returned Operand.
206    //
207    SDValue visitTokenFactor(SDNode *N);
208    SDValue visitMERGE_VALUES(SDNode *N);
209    SDValue visitADD(SDNode *N);
210    SDValue visitSUB(SDNode *N);
211    SDValue visitADDC(SDNode *N);
212    SDValue visitSUBC(SDNode *N);
213    SDValue visitADDE(SDNode *N);
214    SDValue visitSUBE(SDNode *N);
215    SDValue visitMUL(SDNode *N);
216    SDValue visitSDIV(SDNode *N);
217    SDValue visitUDIV(SDNode *N);
218    SDValue visitSREM(SDNode *N);
219    SDValue visitUREM(SDNode *N);
220    SDValue visitMULHU(SDNode *N);
221    SDValue visitMULHS(SDNode *N);
222    SDValue visitSMUL_LOHI(SDNode *N);
223    SDValue visitUMUL_LOHI(SDNode *N);
224    SDValue visitSMULO(SDNode *N);
225    SDValue visitUMULO(SDNode *N);
226    SDValue visitSDIVREM(SDNode *N);
227    SDValue visitUDIVREM(SDNode *N);
228    SDValue visitAND(SDNode *N);
229    SDValue visitOR(SDNode *N);
230    SDValue visitXOR(SDNode *N);
231    SDValue SimplifyVBinOp(SDNode *N);
232    SDValue SimplifyVUnaryOp(SDNode *N);
233    SDValue visitSHL(SDNode *N);
234    SDValue visitSRA(SDNode *N);
235    SDValue visitSRL(SDNode *N);
236    SDValue visitRotate(SDNode *N);
237    SDValue visitCTLZ(SDNode *N);
238    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
239    SDValue visitCTTZ(SDNode *N);
240    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
241    SDValue visitCTPOP(SDNode *N);
242    SDValue visitSELECT(SDNode *N);
243    SDValue visitVSELECT(SDNode *N);
244    SDValue visitSELECT_CC(SDNode *N);
245    SDValue visitSETCC(SDNode *N);
246    SDValue visitSIGN_EXTEND(SDNode *N);
247    SDValue visitZERO_EXTEND(SDNode *N);
248    SDValue visitANY_EXTEND(SDNode *N);
249    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
250    SDValue visitTRUNCATE(SDNode *N);
251    SDValue visitBITCAST(SDNode *N);
252    SDValue visitBUILD_PAIR(SDNode *N);
253    SDValue visitFADD(SDNode *N);
254    SDValue visitFSUB(SDNode *N);
255    SDValue visitFMUL(SDNode *N);
256    SDValue visitFMA(SDNode *N);
257    SDValue visitFDIV(SDNode *N);
258    SDValue visitFREM(SDNode *N);
259    SDValue visitFCOPYSIGN(SDNode *N);
260    SDValue visitSINT_TO_FP(SDNode *N);
261    SDValue visitUINT_TO_FP(SDNode *N);
262    SDValue visitFP_TO_SINT(SDNode *N);
263    SDValue visitFP_TO_UINT(SDNode *N);
264    SDValue visitFP_ROUND(SDNode *N);
265    SDValue visitFP_ROUND_INREG(SDNode *N);
266    SDValue visitFP_EXTEND(SDNode *N);
267    SDValue visitFNEG(SDNode *N);
268    SDValue visitFABS(SDNode *N);
269    SDValue visitFCEIL(SDNode *N);
270    SDValue visitFTRUNC(SDNode *N);
271    SDValue visitFFLOOR(SDNode *N);
272    SDValue visitBRCOND(SDNode *N);
273    SDValue visitBR_CC(SDNode *N);
274    SDValue visitLOAD(SDNode *N);
275    SDValue visitSTORE(SDNode *N);
276    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
277    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
278    SDValue visitBUILD_VECTOR(SDNode *N);
279    SDValue visitCONCAT_VECTORS(SDNode *N);
280    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
281    SDValue visitVECTOR_SHUFFLE(SDNode *N);
282    SDValue visitINSERT_SUBVECTOR(SDNode *N);
283
284    SDValue XformToShuffleWithZero(SDNode *N);
285    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
286
287    SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
288
289    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
290    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
291    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
292    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
293                             SDValue N3, ISD::CondCode CC,
294                             bool NotExtCompare = false);
295    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
296                          SDLoc DL, bool foldBooleans = true);
297
298    bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
299                           SDValue &CC) const;
300    bool isOneUseSetCC(SDValue N) const;
301
302    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
303                                         unsigned HiOp);
304    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
305    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
306    SDValue BuildSDIV(SDNode *N);
307    SDValue BuildUDIV(SDNode *N);
308    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
309                               bool DemandHighBits = true);
310    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
311    SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
312                              SDValue InnerPos, SDValue InnerNeg,
313                              unsigned PosOpcode, unsigned NegOpcode,
314                              SDLoc DL);
315    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
316    SDValue ReduceLoadWidth(SDNode *N);
317    SDValue ReduceLoadOpStoreWidth(SDNode *N);
318    SDValue TransformFPLoadStorePair(SDNode *N);
319    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
320    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
321
322    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
323
324    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
325    /// looking for aliasing nodes and adding them to the Aliases vector.
326    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
327                          SmallVectorImpl<SDValue> &Aliases);
328
329    /// isAlias - Return true if there is any possibility that the two addresses
330    /// overlap.
331    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
332
333    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
334    /// looking for a better chain (aliasing node.)
335    SDValue FindBetterChain(SDNode *N, SDValue Chain);
336
337    /// Merge consecutive store operations into a wide store.
338    /// This optimization uses wide integers or vectors when possible.
339    /// \return True if some memory operations were changed.
340    bool MergeConsecutiveStores(StoreSDNode *N);
341
342    /// \brief Try to transform a truncation where C is a constant:
343    ///     (trunc (and X, C)) -> (and (trunc X), (trunc C))
344    ///
345    /// \p N needs to be a truncation and its first operand an AND. Other
346    /// requirements are checked by the function (e.g. that trunc is
347    /// single-use) and if missed an empty SDValue is returned.
348    SDValue distributeTruncateThroughAnd(SDNode *N);
349
350  public:
351    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
352        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
353          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
354      AttributeSet FnAttrs =
355          DAG.getMachineFunction().getFunction()->getAttributes();
356      ForCodeSize =
357          FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
358                               Attribute::OptimizeForSize) ||
359          FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
360    }
361
362    /// Run - runs the dag combiner on all nodes in the work list
363    void Run(CombineLevel AtLevel);
364
365    SelectionDAG &getDAG() const { return DAG; }
366
367    /// getShiftAmountTy - Returns a type large enough to hold any valid
368    /// shift amount - before type legalization these can be huge.
369    EVT getShiftAmountTy(EVT LHSTy) {
370      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
371      if (LHSTy.isVector())
372        return LHSTy;
373      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
374                        : TLI.getPointerTy();
375    }
376
377    /// isTypeLegal - This method returns true if we are running before type
378    /// legalization or if the specified VT is legal.
379    bool isTypeLegal(const EVT &VT) {
380      if (!LegalTypes) return true;
381      return TLI.isTypeLegal(VT);
382    }
383
384    /// getSetCCResultType - Convenience wrapper around
385    /// TargetLowering::getSetCCResultType
386    EVT getSetCCResultType(EVT VT) const {
387      return TLI.getSetCCResultType(*DAG.getContext(), VT);
388    }
389  };
390}
391
392
393namespace {
394/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
395/// nodes from the worklist.
396class WorkListRemover : public SelectionDAG::DAGUpdateListener {
397  DAGCombiner &DC;
398public:
399  explicit WorkListRemover(DAGCombiner &dc)
400    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
401
402  void NodeDeleted(SDNode *N, SDNode *E) override {
403    DC.removeFromWorkList(N);
404  }
405};
406}
407
408//===----------------------------------------------------------------------===//
409//  TargetLowering::DAGCombinerInfo implementation
410//===----------------------------------------------------------------------===//
411
412void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
413  ((DAGCombiner*)DC)->AddToWorkList(N);
414}
415
416void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
417  ((DAGCombiner*)DC)->removeFromWorkList(N);
418}
419
420SDValue TargetLowering::DAGCombinerInfo::
421CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
422  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
423}
424
425SDValue TargetLowering::DAGCombinerInfo::
426CombineTo(SDNode *N, SDValue Res, bool AddTo) {
427  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
428}
429
430
431SDValue TargetLowering::DAGCombinerInfo::
432CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
433  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
434}
435
436void TargetLowering::DAGCombinerInfo::
437CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
438  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
439}
440
441//===----------------------------------------------------------------------===//
442// Helper Functions
443//===----------------------------------------------------------------------===//
444
445/// isNegatibleForFree - Return 1 if we can compute the negated form of the
446/// specified expression for the same cost as the expression itself, or 2 if we
447/// can compute the negated form more cheaply than the expression itself.
448static char isNegatibleForFree(SDValue Op, bool LegalOperations,
449                               const TargetLowering &TLI,
450                               const TargetOptions *Options,
451                               unsigned Depth = 0) {
452  // fneg is removable even if it has multiple uses.
453  if (Op.getOpcode() == ISD::FNEG) return 2;
454
455  // Don't allow anything with multiple uses.
456  if (!Op.hasOneUse()) return 0;
457
458  // Don't recurse exponentially.
459  if (Depth > 6) return 0;
460
461  switch (Op.getOpcode()) {
462  default: return false;
463  case ISD::ConstantFP:
464    // Don't invert constant FP values after legalize.  The negated constant
465    // isn't necessarily legal.
466    return LegalOperations ? 0 : 1;
467  case ISD::FADD:
468    // FIXME: determine better conditions for this xform.
469    if (!Options->UnsafeFPMath) return 0;
470
471    // After operation legalization, it might not be legal to create new FSUBs.
472    if (LegalOperations &&
473        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
474      return 0;
475
476    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
477    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
478                                    Options, Depth + 1))
479      return V;
480    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
481    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
482                              Depth + 1);
483  case ISD::FSUB:
484    // We can't turn -(A-B) into B-A when we honor signed zeros.
485    if (!Options->UnsafeFPMath) return 0;
486
487    // fold (fneg (fsub A, B)) -> (fsub B, A)
488    return 1;
489
490  case ISD::FMUL:
491  case ISD::FDIV:
492    if (Options->HonorSignDependentRoundingFPMath()) return 0;
493
494    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
495    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
496                                    Options, Depth + 1))
497      return V;
498
499    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
500                              Depth + 1);
501
502  case ISD::FP_EXTEND:
503  case ISD::FP_ROUND:
504  case ISD::FSIN:
505    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
506                              Depth + 1);
507  }
508}
509
510/// GetNegatedExpression - If isNegatibleForFree returns true, this function
511/// returns the newly negated expression.
512static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
513                                    bool LegalOperations, unsigned Depth = 0) {
514  // fneg is removable even if it has multiple uses.
515  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
516
517  // Don't allow anything with multiple uses.
518  assert(Op.hasOneUse() && "Unknown reuse!");
519
520  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
521  switch (Op.getOpcode()) {
522  default: llvm_unreachable("Unknown code");
523  case ISD::ConstantFP: {
524    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
525    V.changeSign();
526    return DAG.getConstantFP(V, Op.getValueType());
527  }
528  case ISD::FADD:
529    // FIXME: determine better conditions for this xform.
530    assert(DAG.getTarget().Options.UnsafeFPMath);
531
532    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
533    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
534                           DAG.getTargetLoweringInfo(),
535                           &DAG.getTarget().Options, Depth+1))
536      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
537                         GetNegatedExpression(Op.getOperand(0), DAG,
538                                              LegalOperations, Depth+1),
539                         Op.getOperand(1));
540    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
541    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
542                       GetNegatedExpression(Op.getOperand(1), DAG,
543                                            LegalOperations, Depth+1),
544                       Op.getOperand(0));
545  case ISD::FSUB:
546    // We can't turn -(A-B) into B-A when we honor signed zeros.
547    assert(DAG.getTarget().Options.UnsafeFPMath);
548
549    // fold (fneg (fsub 0, B)) -> B
550    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
551      if (N0CFP->getValueAPF().isZero())
552        return Op.getOperand(1);
553
554    // fold (fneg (fsub A, B)) -> (fsub B, A)
555    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
556                       Op.getOperand(1), Op.getOperand(0));
557
558  case ISD::FMUL:
559  case ISD::FDIV:
560    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
561
562    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
563    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
564                           DAG.getTargetLoweringInfo(),
565                           &DAG.getTarget().Options, Depth+1))
566      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
567                         GetNegatedExpression(Op.getOperand(0), DAG,
568                                              LegalOperations, Depth+1),
569                         Op.getOperand(1));
570
571    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
572    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
573                       Op.getOperand(0),
574                       GetNegatedExpression(Op.getOperand(1), DAG,
575                                            LegalOperations, Depth+1));
576
577  case ISD::FP_EXTEND:
578  case ISD::FSIN:
579    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
580                       GetNegatedExpression(Op.getOperand(0), DAG,
581                                            LegalOperations, Depth+1));
582  case ISD::FP_ROUND:
583      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
584                         GetNegatedExpression(Op.getOperand(0), DAG,
585                                              LegalOperations, Depth+1),
586                         Op.getOperand(1));
587  }
588}
589
590// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
591// that selects between the target values used for true and false, making it
592// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
593// the appropriate nodes based on the type of node we are checking. This
594// simplifies life a bit for the callers.
595bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
596                                    SDValue &CC) const {
597  if (N.getOpcode() == ISD::SETCC) {
598    LHS = N.getOperand(0);
599    RHS = N.getOperand(1);
600    CC  = N.getOperand(2);
601    return true;
602  }
603
604  if (N.getOpcode() != ISD::SELECT_CC ||
605      !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
606      !TLI.isConstFalseVal(N.getOperand(3).getNode()))
607    return false;
608
609  LHS = N.getOperand(0);
610  RHS = N.getOperand(1);
611  CC  = N.getOperand(4);
612  return true;
613}
614
615// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
616// one use.  If this is true, it allows the users to invert the operation for
617// free when it is profitable to do so.
618bool DAGCombiner::isOneUseSetCC(SDValue N) const {
619  SDValue N0, N1, N2;
620  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
621    return true;
622  return false;
623}
624
625/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
626/// elements are all the same constant or undefined.
627static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
628  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
629  if (!C)
630    return false;
631
632  APInt SplatUndef;
633  unsigned SplatBitSize;
634  bool HasAnyUndefs;
635  EVT EltVT = N->getValueType(0).getVectorElementType();
636  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
637                             HasAnyUndefs) &&
638          EltVT.getSizeInBits() >= SplatBitSize);
639}
640
641// \brief Returns the SDNode if it is a constant BuildVector or constant.
642static SDNode *isConstantBuildVectorOrConstantInt(SDValue N) {
643  if (isa<ConstantSDNode>(N))
644    return N.getNode();
645  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
646  if(BV && BV->isConstant())
647    return BV;
648  return nullptr;
649}
650
651// \brief Returns the SDNode if it is a constant splat BuildVector or constant
652// int.
653static ConstantSDNode *isConstOrConstSplat(SDValue N) {
654  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
655    return CN;
656
657  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
658    BitVector UndefElements;
659    ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
660
661    // BuildVectors can truncate their operands. Ignore that case here.
662    // FIXME: We blindly ignore splats which include undef which is overly
663    // pessimistic.
664    if (CN && UndefElements.none() &&
665        CN->getValueType(0) == N.getValueType().getScalarType())
666      return CN;
667  }
668
669  return nullptr;
670}
671
672SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
673                                    SDValue N0, SDValue N1) {
674  EVT VT = N0.getValueType();
675  if (N0.getOpcode() == Opc) {
676    if (SDNode *L = isConstantBuildVectorOrConstantInt(N0.getOperand(1))) {
677      if (SDNode *R = isConstantBuildVectorOrConstantInt(N1)) {
678        // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
679        SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, L, R);
680        if (!OpNode.getNode())
681          return SDValue();
682        return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
683      }
684      if (N0.hasOneUse()) {
685        // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
686        // use
687        SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
688        if (!OpNode.getNode())
689          return SDValue();
690        AddToWorkList(OpNode.getNode());
691        return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
692      }
693    }
694  }
695
696  if (N1.getOpcode() == Opc) {
697    if (SDNode *R = isConstantBuildVectorOrConstantInt(N1.getOperand(1))) {
698      if (SDNode *L = isConstantBuildVectorOrConstantInt(N0)) {
699        // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
700        SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, R, L);
701        if (!OpNode.getNode())
702          return SDValue();
703        return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
704      }
705      if (N1.hasOneUse()) {
706        // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one
707        // use
708        SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0);
709        if (!OpNode.getNode())
710          return SDValue();
711        AddToWorkList(OpNode.getNode());
712        return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
713      }
714    }
715  }
716
717  return SDValue();
718}
719
720SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
721                               bool AddTo) {
722  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
723  ++NodesCombined;
724  DEBUG(dbgs() << "\nReplacing.1 ";
725        N->dump(&DAG);
726        dbgs() << "\nWith: ";
727        To[0].getNode()->dump(&DAG);
728        dbgs() << " and " << NumTo-1 << " other values\n";
729        for (unsigned i = 0, e = NumTo; i != e; ++i)
730          assert((!To[i].getNode() ||
731                  N->getValueType(i) == To[i].getValueType()) &&
732                 "Cannot combine value to value of different type!"));
733  WorkListRemover DeadNodes(*this);
734  DAG.ReplaceAllUsesWith(N, To);
735  if (AddTo) {
736    // Push the new nodes and any users onto the worklist
737    for (unsigned i = 0, e = NumTo; i != e; ++i) {
738      if (To[i].getNode()) {
739        AddToWorkList(To[i].getNode());
740        AddUsersToWorkList(To[i].getNode());
741      }
742    }
743  }
744
745  // Finally, if the node is now dead, remove it from the graph.  The node
746  // may not be dead if the replacement process recursively simplified to
747  // something else needing this node.
748  if (N->use_empty()) {
749    // Nodes can be reintroduced into the worklist.  Make sure we do not
750    // process a node that has been replaced.
751    removeFromWorkList(N);
752
753    // Finally, since the node is now dead, remove it from the graph.
754    DAG.DeleteNode(N);
755  }
756  return SDValue(N, 0);
757}
758
759void DAGCombiner::
760CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
761  // Replace all uses.  If any nodes become isomorphic to other nodes and
762  // are deleted, make sure to remove them from our worklist.
763  WorkListRemover DeadNodes(*this);
764  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
765
766  // Push the new node and any (possibly new) users onto the worklist.
767  AddToWorkList(TLO.New.getNode());
768  AddUsersToWorkList(TLO.New.getNode());
769
770  // Finally, if the node is now dead, remove it from the graph.  The node
771  // may not be dead if the replacement process recursively simplified to
772  // something else needing this node.
773  if (TLO.Old.getNode()->use_empty()) {
774    removeFromWorkList(TLO.Old.getNode());
775
776    // If the operands of this node are only used by the node, they will now
777    // be dead.  Make sure to visit them first to delete dead nodes early.
778    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
779      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
780        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
781
782    DAG.DeleteNode(TLO.Old.getNode());
783  }
784}
785
786/// SimplifyDemandedBits - Check the specified integer node value to see if
787/// it can be simplified or if things it uses can be simplified by bit
788/// propagation.  If so, return true.
789bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
790  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
791  APInt KnownZero, KnownOne;
792  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
793    return false;
794
795  // Revisit the node.
796  AddToWorkList(Op.getNode());
797
798  // Replace the old value with the new one.
799  ++NodesCombined;
800  DEBUG(dbgs() << "\nReplacing.2 ";
801        TLO.Old.getNode()->dump(&DAG);
802        dbgs() << "\nWith: ";
803        TLO.New.getNode()->dump(&DAG);
804        dbgs() << '\n');
805
806  CommitTargetLoweringOpt(TLO);
807  return true;
808}
809
810void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
811  SDLoc dl(Load);
812  EVT VT = Load->getValueType(0);
813  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
814
815  DEBUG(dbgs() << "\nReplacing.9 ";
816        Load->dump(&DAG);
817        dbgs() << "\nWith: ";
818        Trunc.getNode()->dump(&DAG);
819        dbgs() << '\n');
820  WorkListRemover DeadNodes(*this);
821  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
822  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
823  removeFromWorkList(Load);
824  DAG.DeleteNode(Load);
825  AddToWorkList(Trunc.getNode());
826}
827
828SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
829  Replace = false;
830  SDLoc dl(Op);
831  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
832    EVT MemVT = LD->getMemoryVT();
833    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
834      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
835                                                  : ISD::EXTLOAD)
836      : LD->getExtensionType();
837    Replace = true;
838    return DAG.getExtLoad(ExtType, dl, PVT,
839                          LD->getChain(), LD->getBasePtr(),
840                          MemVT, LD->getMemOperand());
841  }
842
843  unsigned Opc = Op.getOpcode();
844  switch (Opc) {
845  default: break;
846  case ISD::AssertSext:
847    return DAG.getNode(ISD::AssertSext, dl, PVT,
848                       SExtPromoteOperand(Op.getOperand(0), PVT),
849                       Op.getOperand(1));
850  case ISD::AssertZext:
851    return DAG.getNode(ISD::AssertZext, dl, PVT,
852                       ZExtPromoteOperand(Op.getOperand(0), PVT),
853                       Op.getOperand(1));
854  case ISD::Constant: {
855    unsigned ExtOpc =
856      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
857    return DAG.getNode(ExtOpc, dl, PVT, Op);
858  }
859  }
860
861  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
862    return SDValue();
863  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
864}
865
866SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
867  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
868    return SDValue();
869  EVT OldVT = Op.getValueType();
870  SDLoc dl(Op);
871  bool Replace = false;
872  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
873  if (!NewOp.getNode())
874    return SDValue();
875  AddToWorkList(NewOp.getNode());
876
877  if (Replace)
878    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
879  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
880                     DAG.getValueType(OldVT));
881}
882
883SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
884  EVT OldVT = Op.getValueType();
885  SDLoc dl(Op);
886  bool Replace = false;
887  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
888  if (!NewOp.getNode())
889    return SDValue();
890  AddToWorkList(NewOp.getNode());
891
892  if (Replace)
893    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
894  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
895}
896
897/// PromoteIntBinOp - Promote the specified integer binary operation if the
898/// target indicates it is beneficial. e.g. On x86, it's usually better to
899/// promote i16 operations to i32 since i16 instructions are longer.
900SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
901  if (!LegalOperations)
902    return SDValue();
903
904  EVT VT = Op.getValueType();
905  if (VT.isVector() || !VT.isInteger())
906    return SDValue();
907
908  // If operation type is 'undesirable', e.g. i16 on x86, consider
909  // promoting it.
910  unsigned Opc = Op.getOpcode();
911  if (TLI.isTypeDesirableForOp(Opc, VT))
912    return SDValue();
913
914  EVT PVT = VT;
915  // Consult target whether it is a good idea to promote this operation and
916  // what's the right type to promote it to.
917  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
918    assert(PVT != VT && "Don't know what type to promote to!");
919
920    bool Replace0 = false;
921    SDValue N0 = Op.getOperand(0);
922    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
923    if (!NN0.getNode())
924      return SDValue();
925
926    bool Replace1 = false;
927    SDValue N1 = Op.getOperand(1);
928    SDValue NN1;
929    if (N0 == N1)
930      NN1 = NN0;
931    else {
932      NN1 = PromoteOperand(N1, PVT, Replace1);
933      if (!NN1.getNode())
934        return SDValue();
935    }
936
937    AddToWorkList(NN0.getNode());
938    if (NN1.getNode())
939      AddToWorkList(NN1.getNode());
940
941    if (Replace0)
942      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
943    if (Replace1)
944      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
945
946    DEBUG(dbgs() << "\nPromoting ";
947          Op.getNode()->dump(&DAG));
948    SDLoc dl(Op);
949    return DAG.getNode(ISD::TRUNCATE, dl, VT,
950                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
951  }
952  return SDValue();
953}
954
955/// PromoteIntShiftOp - Promote the specified integer shift operation if the
956/// target indicates it is beneficial. e.g. On x86, it's usually better to
957/// promote i16 operations to i32 since i16 instructions are longer.
958SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
959  if (!LegalOperations)
960    return SDValue();
961
962  EVT VT = Op.getValueType();
963  if (VT.isVector() || !VT.isInteger())
964    return SDValue();
965
966  // If operation type is 'undesirable', e.g. i16 on x86, consider
967  // promoting it.
968  unsigned Opc = Op.getOpcode();
969  if (TLI.isTypeDesirableForOp(Opc, VT))
970    return SDValue();
971
972  EVT PVT = VT;
973  // Consult target whether it is a good idea to promote this operation and
974  // what's the right type to promote it to.
975  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
976    assert(PVT != VT && "Don't know what type to promote to!");
977
978    bool Replace = false;
979    SDValue N0 = Op.getOperand(0);
980    if (Opc == ISD::SRA)
981      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
982    else if (Opc == ISD::SRL)
983      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
984    else
985      N0 = PromoteOperand(N0, PVT, Replace);
986    if (!N0.getNode())
987      return SDValue();
988
989    AddToWorkList(N0.getNode());
990    if (Replace)
991      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
992
993    DEBUG(dbgs() << "\nPromoting ";
994          Op.getNode()->dump(&DAG));
995    SDLoc dl(Op);
996    return DAG.getNode(ISD::TRUNCATE, dl, VT,
997                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
998  }
999  return SDValue();
1000}
1001
1002SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1003  if (!LegalOperations)
1004    return SDValue();
1005
1006  EVT VT = Op.getValueType();
1007  if (VT.isVector() || !VT.isInteger())
1008    return SDValue();
1009
1010  // If operation type is 'undesirable', e.g. i16 on x86, consider
1011  // promoting it.
1012  unsigned Opc = Op.getOpcode();
1013  if (TLI.isTypeDesirableForOp(Opc, VT))
1014    return SDValue();
1015
1016  EVT PVT = VT;
1017  // Consult target whether it is a good idea to promote this operation and
1018  // what's the right type to promote it to.
1019  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1020    assert(PVT != VT && "Don't know what type to promote to!");
1021    // fold (aext (aext x)) -> (aext x)
1022    // fold (aext (zext x)) -> (zext x)
1023    // fold (aext (sext x)) -> (sext x)
1024    DEBUG(dbgs() << "\nPromoting ";
1025          Op.getNode()->dump(&DAG));
1026    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1027  }
1028  return SDValue();
1029}
1030
1031bool DAGCombiner::PromoteLoad(SDValue Op) {
1032  if (!LegalOperations)
1033    return false;
1034
1035  EVT VT = Op.getValueType();
1036  if (VT.isVector() || !VT.isInteger())
1037    return false;
1038
1039  // If operation type is 'undesirable', e.g. i16 on x86, consider
1040  // promoting it.
1041  unsigned Opc = Op.getOpcode();
1042  if (TLI.isTypeDesirableForOp(Opc, VT))
1043    return false;
1044
1045  EVT PVT = VT;
1046  // Consult target whether it is a good idea to promote this operation and
1047  // what's the right type to promote it to.
1048  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1049    assert(PVT != VT && "Don't know what type to promote to!");
1050
1051    SDLoc dl(Op);
1052    SDNode *N = Op.getNode();
1053    LoadSDNode *LD = cast<LoadSDNode>(N);
1054    EVT MemVT = LD->getMemoryVT();
1055    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
1056      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
1057                                                  : ISD::EXTLOAD)
1058      : LD->getExtensionType();
1059    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
1060                                   LD->getChain(), LD->getBasePtr(),
1061                                   MemVT, LD->getMemOperand());
1062    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
1063
1064    DEBUG(dbgs() << "\nPromoting ";
1065          N->dump(&DAG);
1066          dbgs() << "\nTo: ";
1067          Result.getNode()->dump(&DAG);
1068          dbgs() << '\n');
1069    WorkListRemover DeadNodes(*this);
1070    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1071    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1072    removeFromWorkList(N);
1073    DAG.DeleteNode(N);
1074    AddToWorkList(Result.getNode());
1075    return true;
1076  }
1077  return false;
1078}
1079
1080
1081//===----------------------------------------------------------------------===//
1082//  Main DAG Combiner implementation
1083//===----------------------------------------------------------------------===//
1084
1085void DAGCombiner::Run(CombineLevel AtLevel) {
1086  // set the instance variables, so that the various visit routines may use it.
1087  Level = AtLevel;
1088  LegalOperations = Level >= AfterLegalizeVectorOps;
1089  LegalTypes = Level >= AfterLegalizeTypes;
1090
1091  // Add all the dag nodes to the worklist.
1092  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1093       E = DAG.allnodes_end(); I != E; ++I)
1094    AddToWorkList(I);
1095
1096  // Create a dummy node (which is not added to allnodes), that adds a reference
1097  // to the root node, preventing it from being deleted, and tracking any
1098  // changes of the root.
1099  HandleSDNode Dummy(DAG.getRoot());
1100
1101  // The root of the dag may dangle to deleted nodes until the dag combiner is
1102  // done.  Set it to null to avoid confusion.
1103  DAG.setRoot(SDValue());
1104
1105  // while the worklist isn't empty, find a node and
1106  // try and combine it.
1107  while (!WorkListContents.empty()) {
1108    SDNode *N;
1109    // The WorkListOrder holds the SDNodes in order, but it may contain
1110    // duplicates.
1111    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1112    // worklist *should* contain, and check the node we want to visit is should
1113    // actually be visited.
1114    do {
1115      N = WorkListOrder.pop_back_val();
1116    } while (!WorkListContents.erase(N));
1117
1118    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1119    // N is deleted from the DAG, since they too may now be dead or may have a
1120    // reduced number of uses, allowing other xforms.
1121    if (N->use_empty() && N != &Dummy) {
1122      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1123        AddToWorkList(N->getOperand(i).getNode());
1124
1125      DAG.DeleteNode(N);
1126      continue;
1127    }
1128
1129    SDValue RV = combine(N);
1130
1131    if (!RV.getNode())
1132      continue;
1133
1134    ++NodesCombined;
1135
1136    // If we get back the same node we passed in, rather than a new node or
1137    // zero, we know that the node must have defined multiple values and
1138    // CombineTo was used.  Since CombineTo takes care of the worklist
1139    // mechanics for us, we have no work to do in this case.
1140    if (RV.getNode() == N)
1141      continue;
1142
1143    assert(N->getOpcode() != ISD::DELETED_NODE &&
1144           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1145           "Node was deleted but visit returned new node!");
1146
1147    DEBUG(dbgs() << "\nReplacing.3 ";
1148          N->dump(&DAG);
1149          dbgs() << "\nWith: ";
1150          RV.getNode()->dump(&DAG);
1151          dbgs() << '\n');
1152
1153    // Transfer debug value.
1154    DAG.TransferDbgValues(SDValue(N, 0), RV);
1155    WorkListRemover DeadNodes(*this);
1156    if (N->getNumValues() == RV.getNode()->getNumValues())
1157      DAG.ReplaceAllUsesWith(N, RV.getNode());
1158    else {
1159      assert(N->getValueType(0) == RV.getValueType() &&
1160             N->getNumValues() == 1 && "Type mismatch");
1161      SDValue OpV = RV;
1162      DAG.ReplaceAllUsesWith(N, &OpV);
1163    }
1164
1165    // Push the new node and any users onto the worklist
1166    AddToWorkList(RV.getNode());
1167    AddUsersToWorkList(RV.getNode());
1168
1169    // Add any uses of the old node to the worklist in case this node is the
1170    // last one that uses them.  They may become dead after this node is
1171    // deleted.
1172    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1173      AddToWorkList(N->getOperand(i).getNode());
1174
1175    // Finally, if the node is now dead, remove it from the graph.  The node
1176    // may not be dead if the replacement process recursively simplified to
1177    // something else needing this node.
1178    if (N->use_empty()) {
1179      // Nodes can be reintroduced into the worklist.  Make sure we do not
1180      // process a node that has been replaced.
1181      removeFromWorkList(N);
1182
1183      // Finally, since the node is now dead, remove it from the graph.
1184      DAG.DeleteNode(N);
1185    }
1186  }
1187
1188  // If the root changed (e.g. it was a dead load, update the root).
1189  DAG.setRoot(Dummy.getValue());
1190  DAG.RemoveDeadNodes();
1191}
1192
1193SDValue DAGCombiner::visit(SDNode *N) {
1194  switch (N->getOpcode()) {
1195  default: break;
1196  case ISD::TokenFactor:        return visitTokenFactor(N);
1197  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1198  case ISD::ADD:                return visitADD(N);
1199  case ISD::SUB:                return visitSUB(N);
1200  case ISD::ADDC:               return visitADDC(N);
1201  case ISD::SUBC:               return visitSUBC(N);
1202  case ISD::ADDE:               return visitADDE(N);
1203  case ISD::SUBE:               return visitSUBE(N);
1204  case ISD::MUL:                return visitMUL(N);
1205  case ISD::SDIV:               return visitSDIV(N);
1206  case ISD::UDIV:               return visitUDIV(N);
1207  case ISD::SREM:               return visitSREM(N);
1208  case ISD::UREM:               return visitUREM(N);
1209  case ISD::MULHU:              return visitMULHU(N);
1210  case ISD::MULHS:              return visitMULHS(N);
1211  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1212  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1213  case ISD::SMULO:              return visitSMULO(N);
1214  case ISD::UMULO:              return visitUMULO(N);
1215  case ISD::SDIVREM:            return visitSDIVREM(N);
1216  case ISD::UDIVREM:            return visitUDIVREM(N);
1217  case ISD::AND:                return visitAND(N);
1218  case ISD::OR:                 return visitOR(N);
1219  case ISD::XOR:                return visitXOR(N);
1220  case ISD::SHL:                return visitSHL(N);
1221  case ISD::SRA:                return visitSRA(N);
1222  case ISD::SRL:                return visitSRL(N);
1223  case ISD::ROTR:
1224  case ISD::ROTL:               return visitRotate(N);
1225  case ISD::CTLZ:               return visitCTLZ(N);
1226  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1227  case ISD::CTTZ:               return visitCTTZ(N);
1228  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1229  case ISD::CTPOP:              return visitCTPOP(N);
1230  case ISD::SELECT:             return visitSELECT(N);
1231  case ISD::VSELECT:            return visitVSELECT(N);
1232  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1233  case ISD::SETCC:              return visitSETCC(N);
1234  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1235  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1236  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1237  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1238  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1239  case ISD::BITCAST:            return visitBITCAST(N);
1240  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1241  case ISD::FADD:               return visitFADD(N);
1242  case ISD::FSUB:               return visitFSUB(N);
1243  case ISD::FMUL:               return visitFMUL(N);
1244  case ISD::FMA:                return visitFMA(N);
1245  case ISD::FDIV:               return visitFDIV(N);
1246  case ISD::FREM:               return visitFREM(N);
1247  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1248  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1249  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1250  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1251  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1252  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1253  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1254  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1255  case ISD::FNEG:               return visitFNEG(N);
1256  case ISD::FABS:               return visitFABS(N);
1257  case ISD::FFLOOR:             return visitFFLOOR(N);
1258  case ISD::FCEIL:              return visitFCEIL(N);
1259  case ISD::FTRUNC:             return visitFTRUNC(N);
1260  case ISD::BRCOND:             return visitBRCOND(N);
1261  case ISD::BR_CC:              return visitBR_CC(N);
1262  case ISD::LOAD:               return visitLOAD(N);
1263  case ISD::STORE:              return visitSTORE(N);
1264  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1265  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1266  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1267  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1268  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1269  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1270  case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N);
1271  }
1272  return SDValue();
1273}
1274
1275SDValue DAGCombiner::combine(SDNode *N) {
1276  SDValue RV = visit(N);
1277
1278  // If nothing happened, try a target-specific DAG combine.
1279  if (!RV.getNode()) {
1280    assert(N->getOpcode() != ISD::DELETED_NODE &&
1281           "Node was deleted but visit returned NULL!");
1282
1283    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1284        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1285
1286      // Expose the DAG combiner to the target combiner impls.
1287      TargetLowering::DAGCombinerInfo
1288        DagCombineInfo(DAG, Level, false, this);
1289
1290      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1291    }
1292  }
1293
1294  // If nothing happened still, try promoting the operation.
1295  if (!RV.getNode()) {
1296    switch (N->getOpcode()) {
1297    default: break;
1298    case ISD::ADD:
1299    case ISD::SUB:
1300    case ISD::MUL:
1301    case ISD::AND:
1302    case ISD::OR:
1303    case ISD::XOR:
1304      RV = PromoteIntBinOp(SDValue(N, 0));
1305      break;
1306    case ISD::SHL:
1307    case ISD::SRA:
1308    case ISD::SRL:
1309      RV = PromoteIntShiftOp(SDValue(N, 0));
1310      break;
1311    case ISD::SIGN_EXTEND:
1312    case ISD::ZERO_EXTEND:
1313    case ISD::ANY_EXTEND:
1314      RV = PromoteExtend(SDValue(N, 0));
1315      break;
1316    case ISD::LOAD:
1317      if (PromoteLoad(SDValue(N, 0)))
1318        RV = SDValue(N, 0);
1319      break;
1320    }
1321  }
1322
1323  // If N is a commutative binary node, try commuting it to enable more
1324  // sdisel CSE.
1325  if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1326      N->getNumValues() == 1) {
1327    SDValue N0 = N->getOperand(0);
1328    SDValue N1 = N->getOperand(1);
1329
1330    // Constant operands are canonicalized to RHS.
1331    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1332      SDValue Ops[] = {N1, N0};
1333      SDNode *CSENode;
1334      if (const BinaryWithFlagsSDNode *BinNode =
1335              dyn_cast<BinaryWithFlagsSDNode>(N)) {
1336        CSENode = DAG.getNodeIfExists(
1337            N->getOpcode(), N->getVTList(), Ops, BinNode->hasNoUnsignedWrap(),
1338            BinNode->hasNoSignedWrap(), BinNode->isExact());
1339      } else {
1340        CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops);
1341      }
1342      if (CSENode)
1343        return SDValue(CSENode, 0);
1344    }
1345  }
1346
1347  return RV;
1348}
1349
1350/// getInputChainForNode - Given a node, return its input chain if it has one,
1351/// otherwise return a null sd operand.
1352static SDValue getInputChainForNode(SDNode *N) {
1353  if (unsigned NumOps = N->getNumOperands()) {
1354    if (N->getOperand(0).getValueType() == MVT::Other)
1355      return N->getOperand(0);
1356    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1357      return N->getOperand(NumOps-1);
1358    for (unsigned i = 1; i < NumOps-1; ++i)
1359      if (N->getOperand(i).getValueType() == MVT::Other)
1360        return N->getOperand(i);
1361  }
1362  return SDValue();
1363}
1364
1365SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1366  // If N has two operands, where one has an input chain equal to the other,
1367  // the 'other' chain is redundant.
1368  if (N->getNumOperands() == 2) {
1369    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1370      return N->getOperand(0);
1371    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1372      return N->getOperand(1);
1373  }
1374
1375  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1376  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1377  SmallPtrSet<SDNode*, 16> SeenOps;
1378  bool Changed = false;             // If we should replace this token factor.
1379
1380  // Start out with this token factor.
1381  TFs.push_back(N);
1382
1383  // Iterate through token factors.  The TFs grows when new token factors are
1384  // encountered.
1385  for (unsigned i = 0; i < TFs.size(); ++i) {
1386    SDNode *TF = TFs[i];
1387
1388    // Check each of the operands.
1389    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1390      SDValue Op = TF->getOperand(i);
1391
1392      switch (Op.getOpcode()) {
1393      case ISD::EntryToken:
1394        // Entry tokens don't need to be added to the list. They are
1395        // rededundant.
1396        Changed = true;
1397        break;
1398
1399      case ISD::TokenFactor:
1400        if (Op.hasOneUse() &&
1401            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1402          // Queue up for processing.
1403          TFs.push_back(Op.getNode());
1404          // Clean up in case the token factor is removed.
1405          AddToWorkList(Op.getNode());
1406          Changed = true;
1407          break;
1408        }
1409        // Fall thru
1410
1411      default:
1412        // Only add if it isn't already in the list.
1413        if (SeenOps.insert(Op.getNode()))
1414          Ops.push_back(Op);
1415        else
1416          Changed = true;
1417        break;
1418      }
1419    }
1420  }
1421
1422  SDValue Result;
1423
1424  // If we've change things around then replace token factor.
1425  if (Changed) {
1426    if (Ops.empty()) {
1427      // The entry token is the only possible outcome.
1428      Result = DAG.getEntryNode();
1429    } else {
1430      // New and improved token factor.
1431      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
1432    }
1433
1434    // Don't add users to work list.
1435    return CombineTo(N, Result, false);
1436  }
1437
1438  return Result;
1439}
1440
1441/// MERGE_VALUES can always be eliminated.
1442SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1443  WorkListRemover DeadNodes(*this);
1444  // Replacing results may cause a different MERGE_VALUES to suddenly
1445  // be CSE'd with N, and carry its uses with it. Iterate until no
1446  // uses remain, to ensure that the node can be safely deleted.
1447  // First add the users of this node to the work list so that they
1448  // can be tried again once they have new operands.
1449  AddUsersToWorkList(N);
1450  do {
1451    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1452      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1453  } while (!N->use_empty());
1454  removeFromWorkList(N);
1455  DAG.DeleteNode(N);
1456  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1457}
1458
1459static
1460SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1461                              SelectionDAG &DAG) {
1462  EVT VT = N0.getValueType();
1463  SDValue N00 = N0.getOperand(0);
1464  SDValue N01 = N0.getOperand(1);
1465  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1466
1467  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1468      isa<ConstantSDNode>(N00.getOperand(1))) {
1469    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1470    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1471                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1472                                 N00.getOperand(0), N01),
1473                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1474                                 N00.getOperand(1), N01));
1475    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1476  }
1477
1478  return SDValue();
1479}
1480
1481SDValue DAGCombiner::visitADD(SDNode *N) {
1482  SDValue N0 = N->getOperand(0);
1483  SDValue N1 = N->getOperand(1);
1484  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1485  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1486  EVT VT = N0.getValueType();
1487
1488  // fold vector ops
1489  if (VT.isVector()) {
1490    SDValue FoldedVOp = SimplifyVBinOp(N);
1491    if (FoldedVOp.getNode()) return FoldedVOp;
1492
1493    // fold (add x, 0) -> x, vector edition
1494    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1495      return N0;
1496    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1497      return N1;
1498  }
1499
1500  // fold (add x, undef) -> undef
1501  if (N0.getOpcode() == ISD::UNDEF)
1502    return N0;
1503  if (N1.getOpcode() == ISD::UNDEF)
1504    return N1;
1505  // fold (add c1, c2) -> c1+c2
1506  if (N0C && N1C)
1507    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1508  // canonicalize constant to RHS
1509  if (N0C && !N1C)
1510    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1511  // fold (add x, 0) -> x
1512  if (N1C && N1C->isNullValue())
1513    return N0;
1514  // fold (add Sym, c) -> Sym+c
1515  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1516    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1517        GA->getOpcode() == ISD::GlobalAddress)
1518      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1519                                  GA->getOffset() +
1520                                    (uint64_t)N1C->getSExtValue());
1521  // fold ((c1-A)+c2) -> (c1+c2)-A
1522  if (N1C && N0.getOpcode() == ISD::SUB)
1523    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1524      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1525                         DAG.getConstant(N1C->getAPIntValue()+
1526                                         N0C->getAPIntValue(), VT),
1527                         N0.getOperand(1));
1528  // reassociate add
1529  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1530  if (RADD.getNode())
1531    return RADD;
1532  // fold ((0-A) + B) -> B-A
1533  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1534      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1535    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1536  // fold (A + (0-B)) -> A-B
1537  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1538      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1539    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1540  // fold (A+(B-A)) -> B
1541  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1542    return N1.getOperand(0);
1543  // fold ((B-A)+A) -> B
1544  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1545    return N0.getOperand(0);
1546  // fold (A+(B-(A+C))) to (B-C)
1547  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1548      N0 == N1.getOperand(1).getOperand(0))
1549    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1550                       N1.getOperand(1).getOperand(1));
1551  // fold (A+(B-(C+A))) to (B-C)
1552  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1553      N0 == N1.getOperand(1).getOperand(1))
1554    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1555                       N1.getOperand(1).getOperand(0));
1556  // fold (A+((B-A)+or-C)) to (B+or-C)
1557  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1558      N1.getOperand(0).getOpcode() == ISD::SUB &&
1559      N0 == N1.getOperand(0).getOperand(1))
1560    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1561                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1562
1563  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1564  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1565    SDValue N00 = N0.getOperand(0);
1566    SDValue N01 = N0.getOperand(1);
1567    SDValue N10 = N1.getOperand(0);
1568    SDValue N11 = N1.getOperand(1);
1569
1570    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1571      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1572                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1573                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1574  }
1575
1576  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1577    return SDValue(N, 0);
1578
1579  // fold (a+b) -> (a|b) iff a and b share no bits.
1580  if (VT.isInteger() && !VT.isVector()) {
1581    APInt LHSZero, LHSOne;
1582    APInt RHSZero, RHSOne;
1583    DAG.computeKnownBits(N0, LHSZero, LHSOne);
1584
1585    if (LHSZero.getBoolValue()) {
1586      DAG.computeKnownBits(N1, RHSZero, RHSOne);
1587
1588      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1589      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1590      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero){
1591        if (!LegalOperations || TLI.isOperationLegal(ISD::OR, VT))
1592          return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1593      }
1594    }
1595  }
1596
1597  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1598  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1599    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1600    if (Result.getNode()) return Result;
1601  }
1602  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1603    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1604    if (Result.getNode()) return Result;
1605  }
1606
1607  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1608  if (N1.getOpcode() == ISD::SHL &&
1609      N1.getOperand(0).getOpcode() == ISD::SUB)
1610    if (ConstantSDNode *C =
1611          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1612      if (C->getAPIntValue() == 0)
1613        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1614                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1615                                       N1.getOperand(0).getOperand(1),
1616                                       N1.getOperand(1)));
1617  if (N0.getOpcode() == ISD::SHL &&
1618      N0.getOperand(0).getOpcode() == ISD::SUB)
1619    if (ConstantSDNode *C =
1620          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1621      if (C->getAPIntValue() == 0)
1622        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1623                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1624                                       N0.getOperand(0).getOperand(1),
1625                                       N0.getOperand(1)));
1626
1627  if (N1.getOpcode() == ISD::AND) {
1628    SDValue AndOp0 = N1.getOperand(0);
1629    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1630    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1631    unsigned DestBits = VT.getScalarType().getSizeInBits();
1632
1633    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1634    // and similar xforms where the inner op is either ~0 or 0.
1635    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1636      SDLoc DL(N);
1637      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1638    }
1639  }
1640
1641  // add (sext i1), X -> sub X, (zext i1)
1642  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1643      N0.getOperand(0).getValueType() == MVT::i1 &&
1644      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1645    SDLoc DL(N);
1646    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1647    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1648  }
1649
1650  return SDValue();
1651}
1652
1653SDValue DAGCombiner::visitADDC(SDNode *N) {
1654  SDValue N0 = N->getOperand(0);
1655  SDValue N1 = N->getOperand(1);
1656  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1657  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1658  EVT VT = N0.getValueType();
1659
1660  // If the flag result is dead, turn this into an ADD.
1661  if (!N->hasAnyUseOfValue(1))
1662    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1663                     DAG.getNode(ISD::CARRY_FALSE,
1664                                 SDLoc(N), MVT::Glue));
1665
1666  // canonicalize constant to RHS.
1667  if (N0C && !N1C)
1668    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1669
1670  // fold (addc x, 0) -> x + no carry out
1671  if (N1C && N1C->isNullValue())
1672    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1673                                        SDLoc(N), MVT::Glue));
1674
1675  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1676  APInt LHSZero, LHSOne;
1677  APInt RHSZero, RHSOne;
1678  DAG.computeKnownBits(N0, LHSZero, LHSOne);
1679
1680  if (LHSZero.getBoolValue()) {
1681    DAG.computeKnownBits(N1, RHSZero, RHSOne);
1682
1683    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1684    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1685    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1686      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1687                       DAG.getNode(ISD::CARRY_FALSE,
1688                                   SDLoc(N), MVT::Glue));
1689  }
1690
1691  return SDValue();
1692}
1693
1694SDValue DAGCombiner::visitADDE(SDNode *N) {
1695  SDValue N0 = N->getOperand(0);
1696  SDValue N1 = N->getOperand(1);
1697  SDValue CarryIn = N->getOperand(2);
1698  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1699  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1700
1701  // canonicalize constant to RHS
1702  if (N0C && !N1C)
1703    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1704                       N1, N0, CarryIn);
1705
1706  // fold (adde x, y, false) -> (addc x, y)
1707  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1708    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1709
1710  return SDValue();
1711}
1712
1713// Since it may not be valid to emit a fold to zero for vector initializers
1714// check if we can before folding.
1715static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1716                             SelectionDAG &DAG,
1717                             bool LegalOperations, bool LegalTypes) {
1718  if (!VT.isVector())
1719    return DAG.getConstant(0, VT);
1720  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1721    return DAG.getConstant(0, VT);
1722  return SDValue();
1723}
1724
1725SDValue DAGCombiner::visitSUB(SDNode *N) {
1726  SDValue N0 = N->getOperand(0);
1727  SDValue N1 = N->getOperand(1);
1728  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1729  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1730  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr :
1731    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1732  EVT VT = N0.getValueType();
1733
1734  // fold vector ops
1735  if (VT.isVector()) {
1736    SDValue FoldedVOp = SimplifyVBinOp(N);
1737    if (FoldedVOp.getNode()) return FoldedVOp;
1738
1739    // fold (sub x, 0) -> x, vector edition
1740    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1741      return N0;
1742  }
1743
1744  // fold (sub x, x) -> 0
1745  // FIXME: Refactor this and xor and other similar operations together.
1746  if (N0 == N1)
1747    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1748  // fold (sub c1, c2) -> c1-c2
1749  if (N0C && N1C)
1750    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1751  // fold (sub x, c) -> (add x, -c)
1752  if (N1C)
1753    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1754                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1755  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1756  if (N0C && N0C->isAllOnesValue())
1757    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1758  // fold A-(A-B) -> B
1759  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1760    return N1.getOperand(1);
1761  // fold (A+B)-A -> B
1762  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1763    return N0.getOperand(1);
1764  // fold (A+B)-B -> A
1765  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1766    return N0.getOperand(0);
1767  // fold C2-(A+C1) -> (C2-C1)-A
1768  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1769    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1770                                   VT);
1771    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1772                       N1.getOperand(0));
1773  }
1774  // fold ((A+(B+or-C))-B) -> A+or-C
1775  if (N0.getOpcode() == ISD::ADD &&
1776      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1777       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1778      N0.getOperand(1).getOperand(0) == N1)
1779    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1780                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1781  // fold ((A+(C+B))-B) -> A+C
1782  if (N0.getOpcode() == ISD::ADD &&
1783      N0.getOperand(1).getOpcode() == ISD::ADD &&
1784      N0.getOperand(1).getOperand(1) == N1)
1785    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1786                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1787  // fold ((A-(B-C))-C) -> A-B
1788  if (N0.getOpcode() == ISD::SUB &&
1789      N0.getOperand(1).getOpcode() == ISD::SUB &&
1790      N0.getOperand(1).getOperand(1) == N1)
1791    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1792                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1793
1794  // If either operand of a sub is undef, the result is undef
1795  if (N0.getOpcode() == ISD::UNDEF)
1796    return N0;
1797  if (N1.getOpcode() == ISD::UNDEF)
1798    return N1;
1799
1800  // If the relocation model supports it, consider symbol offsets.
1801  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1802    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1803      // fold (sub Sym, c) -> Sym-c
1804      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1805        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1806                                    GA->getOffset() -
1807                                      (uint64_t)N1C->getSExtValue());
1808      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1809      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1810        if (GA->getGlobal() == GB->getGlobal())
1811          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1812                                 VT);
1813    }
1814
1815  return SDValue();
1816}
1817
1818SDValue DAGCombiner::visitSUBC(SDNode *N) {
1819  SDValue N0 = N->getOperand(0);
1820  SDValue N1 = N->getOperand(1);
1821  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1822  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1823  EVT VT = N0.getValueType();
1824
1825  // If the flag result is dead, turn this into an SUB.
1826  if (!N->hasAnyUseOfValue(1))
1827    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1828                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1829                                 MVT::Glue));
1830
1831  // fold (subc x, x) -> 0 + no borrow
1832  if (N0 == N1)
1833    return CombineTo(N, DAG.getConstant(0, VT),
1834                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1835                                 MVT::Glue));
1836
1837  // fold (subc x, 0) -> x + no borrow
1838  if (N1C && N1C->isNullValue())
1839    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1840                                        MVT::Glue));
1841
1842  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1843  if (N0C && N0C->isAllOnesValue())
1844    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1845                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1846                                 MVT::Glue));
1847
1848  return SDValue();
1849}
1850
1851SDValue DAGCombiner::visitSUBE(SDNode *N) {
1852  SDValue N0 = N->getOperand(0);
1853  SDValue N1 = N->getOperand(1);
1854  SDValue CarryIn = N->getOperand(2);
1855
1856  // fold (sube x, y, false) -> (subc x, y)
1857  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1858    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1859
1860  return SDValue();
1861}
1862
1863SDValue DAGCombiner::visitMUL(SDNode *N) {
1864  SDValue N0 = N->getOperand(0);
1865  SDValue N1 = N->getOperand(1);
1866  EVT VT = N0.getValueType();
1867
1868  // fold (mul x, undef) -> 0
1869  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1870    return DAG.getConstant(0, VT);
1871
1872  bool N0IsConst = false;
1873  bool N1IsConst = false;
1874  APInt ConstValue0, ConstValue1;
1875  // fold vector ops
1876  if (VT.isVector()) {
1877    SDValue FoldedVOp = SimplifyVBinOp(N);
1878    if (FoldedVOp.getNode()) return FoldedVOp;
1879
1880    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1881    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1882  } else {
1883    N0IsConst = dyn_cast<ConstantSDNode>(N0) != nullptr;
1884    ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1885                            : APInt();
1886    N1IsConst = dyn_cast<ConstantSDNode>(N1) != nullptr;
1887    ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1888                            : APInt();
1889  }
1890
1891  // fold (mul c1, c2) -> c1*c2
1892  if (N0IsConst && N1IsConst)
1893    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1894
1895  // canonicalize constant to RHS
1896  if (N0IsConst && !N1IsConst)
1897    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1898  // fold (mul x, 0) -> 0
1899  if (N1IsConst && ConstValue1 == 0)
1900    return N1;
1901  // We require a splat of the entire scalar bit width for non-contiguous
1902  // bit patterns.
1903  bool IsFullSplat =
1904    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1905  // fold (mul x, 1) -> x
1906  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1907    return N0;
1908  // fold (mul x, -1) -> 0-x
1909  if (N1IsConst && ConstValue1.isAllOnesValue())
1910    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1911                       DAG.getConstant(0, VT), N0);
1912  // fold (mul x, (1 << c)) -> x << c
1913  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1914    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1915                       DAG.getConstant(ConstValue1.logBase2(),
1916                                       getShiftAmountTy(N0.getValueType())));
1917  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1918  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1919    unsigned Log2Val = (-ConstValue1).logBase2();
1920    // FIXME: If the input is something that is easily negated (e.g. a
1921    // single-use add), we should put the negate there.
1922    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1923                       DAG.getConstant(0, VT),
1924                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1925                            DAG.getConstant(Log2Val,
1926                                      getShiftAmountTy(N0.getValueType()))));
1927  }
1928
1929  APInt Val;
1930  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1931  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1932      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1933                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1934    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1935                             N1, N0.getOperand(1));
1936    AddToWorkList(C3.getNode());
1937    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1938                       N0.getOperand(0), C3);
1939  }
1940
1941  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1942  // use.
1943  {
1944    SDValue Sh(nullptr,0), Y(nullptr,0);
1945    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1946    if (N0.getOpcode() == ISD::SHL &&
1947        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1948                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1949        N0.getNode()->hasOneUse()) {
1950      Sh = N0; Y = N1;
1951    } else if (N1.getOpcode() == ISD::SHL &&
1952               isa<ConstantSDNode>(N1.getOperand(1)) &&
1953               N1.getNode()->hasOneUse()) {
1954      Sh = N1; Y = N0;
1955    }
1956
1957    if (Sh.getNode()) {
1958      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1959                                Sh.getOperand(0), Y);
1960      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1961                         Mul, Sh.getOperand(1));
1962    }
1963  }
1964
1965  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1966  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1967      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1968                     isa<ConstantSDNode>(N0.getOperand(1))))
1969    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1970                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1971                                   N0.getOperand(0), N1),
1972                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1973                                   N0.getOperand(1), N1));
1974
1975  // reassociate mul
1976  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1977  if (RMUL.getNode())
1978    return RMUL;
1979
1980  return SDValue();
1981}
1982
1983SDValue DAGCombiner::visitSDIV(SDNode *N) {
1984  SDValue N0 = N->getOperand(0);
1985  SDValue N1 = N->getOperand(1);
1986  ConstantSDNode *N0C = isConstOrConstSplat(N0);
1987  ConstantSDNode *N1C = isConstOrConstSplat(N1);
1988  EVT VT = N->getValueType(0);
1989
1990  // fold vector ops
1991  if (VT.isVector()) {
1992    SDValue FoldedVOp = SimplifyVBinOp(N);
1993    if (FoldedVOp.getNode()) return FoldedVOp;
1994  }
1995
1996  // fold (sdiv c1, c2) -> c1/c2
1997  if (N0C && N1C && !N1C->isNullValue())
1998    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1999  // fold (sdiv X, 1) -> X
2000  if (N1C && N1C->getAPIntValue() == 1LL)
2001    return N0;
2002  // fold (sdiv X, -1) -> 0-X
2003  if (N1C && N1C->isAllOnesValue())
2004    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
2005                       DAG.getConstant(0, VT), N0);
2006  // If we know the sign bits of both operands are zero, strength reduce to a
2007  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
2008  if (!VT.isVector()) {
2009    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2010      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
2011                         N0, N1);
2012  }
2013
2014  // fold (sdiv X, pow2) -> simple ops after legalize
2015  if (N1C && !N1C->isNullValue() && (N1C->getAPIntValue().isPowerOf2() ||
2016                                     (-N1C->getAPIntValue()).isPowerOf2())) {
2017    // If dividing by powers of two is cheap, then don't perform the following
2018    // fold.
2019    if (TLI.isPow2DivCheap())
2020      return SDValue();
2021
2022    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
2023
2024    // Splat the sign bit into the register
2025    SDValue SGN =
2026        DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
2027                    DAG.getConstant(VT.getScalarSizeInBits() - 1,
2028                                    getShiftAmountTy(N0.getValueType())));
2029    AddToWorkList(SGN.getNode());
2030
2031    // Add (N0 < 0) ? abs2 - 1 : 0;
2032    SDValue SRL =
2033        DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
2034                    DAG.getConstant(VT.getScalarSizeInBits() - lg2,
2035                                    getShiftAmountTy(SGN.getValueType())));
2036    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
2037    AddToWorkList(SRL.getNode());
2038    AddToWorkList(ADD.getNode());    // Divide by pow2
2039    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
2040                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
2041
2042    // If we're dividing by a positive value, we're done.  Otherwise, we must
2043    // negate the result.
2044    if (N1C->getAPIntValue().isNonNegative())
2045      return SRA;
2046
2047    AddToWorkList(SRA.getNode());
2048    return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), SRA);
2049  }
2050
2051  // if integer divide is expensive and we satisfy the requirements, emit an
2052  // alternate sequence.
2053  if (N1C && !TLI.isIntDivCheap()) {
2054    SDValue Op = BuildSDIV(N);
2055    if (Op.getNode()) return Op;
2056  }
2057
2058  // undef / X -> 0
2059  if (N0.getOpcode() == ISD::UNDEF)
2060    return DAG.getConstant(0, VT);
2061  // X / undef -> undef
2062  if (N1.getOpcode() == ISD::UNDEF)
2063    return N1;
2064
2065  return SDValue();
2066}
2067
2068SDValue DAGCombiner::visitUDIV(SDNode *N) {
2069  SDValue N0 = N->getOperand(0);
2070  SDValue N1 = N->getOperand(1);
2071  ConstantSDNode *N0C = isConstOrConstSplat(N0);
2072  ConstantSDNode *N1C = isConstOrConstSplat(N1);
2073  EVT VT = N->getValueType(0);
2074
2075  // fold vector ops
2076  if (VT.isVector()) {
2077    SDValue FoldedVOp = SimplifyVBinOp(N);
2078    if (FoldedVOp.getNode()) return FoldedVOp;
2079  }
2080
2081  // fold (udiv c1, c2) -> c1/c2
2082  if (N0C && N1C && !N1C->isNullValue())
2083    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2084  // fold (udiv x, (1 << c)) -> x >>u c
2085  if (N1C && N1C->getAPIntValue().isPowerOf2())
2086    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2087                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2088                                       getShiftAmountTy(N0.getValueType())));
2089  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2090  if (N1.getOpcode() == ISD::SHL) {
2091    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2092      if (SHC->getAPIntValue().isPowerOf2()) {
2093        EVT ADDVT = N1.getOperand(1).getValueType();
2094        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2095                                  N1.getOperand(1),
2096                                  DAG.getConstant(SHC->getAPIntValue()
2097                                                                  .logBase2(),
2098                                                  ADDVT));
2099        AddToWorkList(Add.getNode());
2100        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2101      }
2102    }
2103  }
2104  // fold (udiv x, c) -> alternate
2105  if (N1C && !TLI.isIntDivCheap()) {
2106    SDValue Op = BuildUDIV(N);
2107    if (Op.getNode()) return Op;
2108  }
2109
2110  // undef / X -> 0
2111  if (N0.getOpcode() == ISD::UNDEF)
2112    return DAG.getConstant(0, VT);
2113  // X / undef -> undef
2114  if (N1.getOpcode() == ISD::UNDEF)
2115    return N1;
2116
2117  return SDValue();
2118}
2119
2120SDValue DAGCombiner::visitSREM(SDNode *N) {
2121  SDValue N0 = N->getOperand(0);
2122  SDValue N1 = N->getOperand(1);
2123  ConstantSDNode *N0C = isConstOrConstSplat(N0);
2124  ConstantSDNode *N1C = isConstOrConstSplat(N1);
2125  EVT VT = N->getValueType(0);
2126
2127  // fold (srem c1, c2) -> c1%c2
2128  if (N0C && N1C && !N1C->isNullValue())
2129    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2130  // If we know the sign bits of both operands are zero, strength reduce to a
2131  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2132  if (!VT.isVector()) {
2133    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2134      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2135  }
2136
2137  // If X/C can be simplified by the division-by-constant logic, lower
2138  // X%C to the equivalent of X-X/C*C.
2139  if (N1C && !N1C->isNullValue()) {
2140    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2141    AddToWorkList(Div.getNode());
2142    SDValue OptimizedDiv = combine(Div.getNode());
2143    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2144      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2145                                OptimizedDiv, N1);
2146      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2147      AddToWorkList(Mul.getNode());
2148      return Sub;
2149    }
2150  }
2151
2152  // undef % X -> 0
2153  if (N0.getOpcode() == ISD::UNDEF)
2154    return DAG.getConstant(0, VT);
2155  // X % undef -> undef
2156  if (N1.getOpcode() == ISD::UNDEF)
2157    return N1;
2158
2159  return SDValue();
2160}
2161
2162SDValue DAGCombiner::visitUREM(SDNode *N) {
2163  SDValue N0 = N->getOperand(0);
2164  SDValue N1 = N->getOperand(1);
2165  ConstantSDNode *N0C = isConstOrConstSplat(N0);
2166  ConstantSDNode *N1C = isConstOrConstSplat(N1);
2167  EVT VT = N->getValueType(0);
2168
2169  // fold (urem c1, c2) -> c1%c2
2170  if (N0C && N1C && !N1C->isNullValue())
2171    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2172  // fold (urem x, pow2) -> (and x, pow2-1)
2173  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2174    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2175                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2176  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2177  if (N1.getOpcode() == ISD::SHL) {
2178    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2179      if (SHC->getAPIntValue().isPowerOf2()) {
2180        SDValue Add =
2181          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2182                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2183                                 VT));
2184        AddToWorkList(Add.getNode());
2185        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2186      }
2187    }
2188  }
2189
2190  // If X/C can be simplified by the division-by-constant logic, lower
2191  // X%C to the equivalent of X-X/C*C.
2192  if (N1C && !N1C->isNullValue()) {
2193    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2194    AddToWorkList(Div.getNode());
2195    SDValue OptimizedDiv = combine(Div.getNode());
2196    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2197      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2198                                OptimizedDiv, N1);
2199      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2200      AddToWorkList(Mul.getNode());
2201      return Sub;
2202    }
2203  }
2204
2205  // undef % X -> 0
2206  if (N0.getOpcode() == ISD::UNDEF)
2207    return DAG.getConstant(0, VT);
2208  // X % undef -> undef
2209  if (N1.getOpcode() == ISD::UNDEF)
2210    return N1;
2211
2212  return SDValue();
2213}
2214
2215SDValue DAGCombiner::visitMULHS(SDNode *N) {
2216  SDValue N0 = N->getOperand(0);
2217  SDValue N1 = N->getOperand(1);
2218  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2219  EVT VT = N->getValueType(0);
2220  SDLoc DL(N);
2221
2222  // fold (mulhs x, 0) -> 0
2223  if (N1C && N1C->isNullValue())
2224    return N1;
2225  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2226  if (N1C && N1C->getAPIntValue() == 1)
2227    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2228                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2229                                       getShiftAmountTy(N0.getValueType())));
2230  // fold (mulhs x, undef) -> 0
2231  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2232    return DAG.getConstant(0, VT);
2233
2234  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2235  // plus a shift.
2236  if (VT.isSimple() && !VT.isVector()) {
2237    MVT Simple = VT.getSimpleVT();
2238    unsigned SimpleSize = Simple.getSizeInBits();
2239    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2240    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2241      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2242      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2243      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2244      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2245            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2246      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2247    }
2248  }
2249
2250  return SDValue();
2251}
2252
2253SDValue DAGCombiner::visitMULHU(SDNode *N) {
2254  SDValue N0 = N->getOperand(0);
2255  SDValue N1 = N->getOperand(1);
2256  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2257  EVT VT = N->getValueType(0);
2258  SDLoc DL(N);
2259
2260  // fold (mulhu x, 0) -> 0
2261  if (N1C && N1C->isNullValue())
2262    return N1;
2263  // fold (mulhu x, 1) -> 0
2264  if (N1C && N1C->getAPIntValue() == 1)
2265    return DAG.getConstant(0, N0.getValueType());
2266  // fold (mulhu x, undef) -> 0
2267  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2268    return DAG.getConstant(0, VT);
2269
2270  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2271  // plus a shift.
2272  if (VT.isSimple() && !VT.isVector()) {
2273    MVT Simple = VT.getSimpleVT();
2274    unsigned SimpleSize = Simple.getSizeInBits();
2275    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2276    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2277      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2278      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2279      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2280      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2281            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2282      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2283    }
2284  }
2285
2286  return SDValue();
2287}
2288
2289/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2290/// compute two values. LoOp and HiOp give the opcodes for the two computations
2291/// that are being performed. Return true if a simplification was made.
2292///
2293SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2294                                                unsigned HiOp) {
2295  // If the high half is not needed, just compute the low half.
2296  bool HiExists = N->hasAnyUseOfValue(1);
2297  if (!HiExists &&
2298      (!LegalOperations ||
2299       TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
2300    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2301                              ArrayRef<SDUse>(N->op_begin(), N->op_end()));
2302    return CombineTo(N, Res, Res);
2303  }
2304
2305  // If the low half is not needed, just compute the high half.
2306  bool LoExists = N->hasAnyUseOfValue(0);
2307  if (!LoExists &&
2308      (!LegalOperations ||
2309       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2310    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2311                              ArrayRef<SDUse>(N->op_begin(), N->op_end()));
2312    return CombineTo(N, Res, Res);
2313  }
2314
2315  // If both halves are used, return as it is.
2316  if (LoExists && HiExists)
2317    return SDValue();
2318
2319  // If the two computed results can be simplified separately, separate them.
2320  if (LoExists) {
2321    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2322                             ArrayRef<SDUse>(N->op_begin(), N->op_end()));
2323    AddToWorkList(Lo.getNode());
2324    SDValue LoOpt = combine(Lo.getNode());
2325    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2326        (!LegalOperations ||
2327         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2328      return CombineTo(N, LoOpt, LoOpt);
2329  }
2330
2331  if (HiExists) {
2332    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2333                             ArrayRef<SDUse>(N->op_begin(), N->op_end()));
2334    AddToWorkList(Hi.getNode());
2335    SDValue HiOpt = combine(Hi.getNode());
2336    if (HiOpt.getNode() && HiOpt != Hi &&
2337        (!LegalOperations ||
2338         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2339      return CombineTo(N, HiOpt, HiOpt);
2340  }
2341
2342  return SDValue();
2343}
2344
2345SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2346  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2347  if (Res.getNode()) return Res;
2348
2349  EVT VT = N->getValueType(0);
2350  SDLoc DL(N);
2351
2352  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2353  // plus a shift.
2354  if (VT.isSimple() && !VT.isVector()) {
2355    MVT Simple = VT.getSimpleVT();
2356    unsigned SimpleSize = Simple.getSizeInBits();
2357    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2358    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2359      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2360      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2361      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2362      // Compute the high part as N1.
2363      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2364            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2365      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2366      // Compute the low part as N0.
2367      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2368      return CombineTo(N, Lo, Hi);
2369    }
2370  }
2371
2372  return SDValue();
2373}
2374
2375SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2376  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2377  if (Res.getNode()) return Res;
2378
2379  EVT VT = N->getValueType(0);
2380  SDLoc DL(N);
2381
2382  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2383  // plus a shift.
2384  if (VT.isSimple() && !VT.isVector()) {
2385    MVT Simple = VT.getSimpleVT();
2386    unsigned SimpleSize = Simple.getSizeInBits();
2387    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2388    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2389      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2390      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2391      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2392      // Compute the high part as N1.
2393      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2394            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2395      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2396      // Compute the low part as N0.
2397      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2398      return CombineTo(N, Lo, Hi);
2399    }
2400  }
2401
2402  return SDValue();
2403}
2404
2405SDValue DAGCombiner::visitSMULO(SDNode *N) {
2406  // (smulo x, 2) -> (saddo x, x)
2407  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2408    if (C2->getAPIntValue() == 2)
2409      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2410                         N->getOperand(0), N->getOperand(0));
2411
2412  return SDValue();
2413}
2414
2415SDValue DAGCombiner::visitUMULO(SDNode *N) {
2416  // (umulo x, 2) -> (uaddo x, x)
2417  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2418    if (C2->getAPIntValue() == 2)
2419      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2420                         N->getOperand(0), N->getOperand(0));
2421
2422  return SDValue();
2423}
2424
2425SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2426  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2427  if (Res.getNode()) return Res;
2428
2429  return SDValue();
2430}
2431
2432SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2433  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2434  if (Res.getNode()) return Res;
2435
2436  return SDValue();
2437}
2438
2439/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2440/// two operands of the same opcode, try to simplify it.
2441SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2442  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2443  EVT VT = N0.getValueType();
2444  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2445
2446  // Bail early if none of these transforms apply.
2447  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2448
2449  // For each of OP in AND/OR/XOR:
2450  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2451  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2452  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2453  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2454  //
2455  // do not sink logical op inside of a vector extend, since it may combine
2456  // into a vsetcc.
2457  EVT Op0VT = N0.getOperand(0).getValueType();
2458  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2459       N0.getOpcode() == ISD::SIGN_EXTEND ||
2460       // Avoid infinite looping with PromoteIntBinOp.
2461       (N0.getOpcode() == ISD::ANY_EXTEND &&
2462        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2463       (N0.getOpcode() == ISD::TRUNCATE &&
2464        (!TLI.isZExtFree(VT, Op0VT) ||
2465         !TLI.isTruncateFree(Op0VT, VT)) &&
2466        TLI.isTypeLegal(Op0VT))) &&
2467      !VT.isVector() &&
2468      Op0VT == N1.getOperand(0).getValueType() &&
2469      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2470    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2471                                 N0.getOperand(0).getValueType(),
2472                                 N0.getOperand(0), N1.getOperand(0));
2473    AddToWorkList(ORNode.getNode());
2474    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2475  }
2476
2477  // For each of OP in SHL/SRL/SRA/AND...
2478  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2479  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2480  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2481  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2482       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2483      N0.getOperand(1) == N1.getOperand(1)) {
2484    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2485                                 N0.getOperand(0).getValueType(),
2486                                 N0.getOperand(0), N1.getOperand(0));
2487    AddToWorkList(ORNode.getNode());
2488    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2489                       ORNode, N0.getOperand(1));
2490  }
2491
2492  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2493  // Only perform this optimization after type legalization and before
2494  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2495  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2496  // we don't want to undo this promotion.
2497  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2498  // on scalars.
2499  if ((N0.getOpcode() == ISD::BITCAST ||
2500       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2501      Level == AfterLegalizeTypes) {
2502    SDValue In0 = N0.getOperand(0);
2503    SDValue In1 = N1.getOperand(0);
2504    EVT In0Ty = In0.getValueType();
2505    EVT In1Ty = In1.getValueType();
2506    SDLoc DL(N);
2507    // If both incoming values are integers, and the original types are the
2508    // same.
2509    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2510      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2511      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2512      AddToWorkList(Op.getNode());
2513      return BC;
2514    }
2515  }
2516
2517  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2518  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2519  // If both shuffles use the same mask, and both shuffle within a single
2520  // vector, then it is worthwhile to move the swizzle after the operation.
2521  // The type-legalizer generates this pattern when loading illegal
2522  // vector types from memory. In many cases this allows additional shuffle
2523  // optimizations.
2524  // There are other cases where moving the shuffle after the xor/and/or
2525  // is profitable even if shuffles don't perform a swizzle.
2526  // If both shuffles use the same mask, and both shuffles have the same first
2527  // or second operand, then it might still be profitable to move the shuffle
2528  // after the xor/and/or operation.
2529  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
2530    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2531    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2532
2533    assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
2534           "Inputs to shuffles are not the same type");
2535
2536    // Check that both shuffles use the same mask. The masks are known to be of
2537    // the same length because the result vector type is the same.
2538    // Check also that shuffles have only one use to avoid introducing extra
2539    // instructions.
2540    if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
2541        SVN0->getMask().equals(SVN1->getMask())) {
2542      SDValue ShOp = N0->getOperand(1);
2543
2544      // Don't try to fold this node if it requires introducing a
2545      // build vector of all zeros that might be illegal at this stage.
2546      if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
2547        if (!LegalTypes)
2548          ShOp = DAG.getConstant(0, VT);
2549        else
2550          ShOp = SDValue();
2551      }
2552
2553      // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C)
2554      // (OR  (shuf (A, C), shuf (B, C)) -> shuf (OR  (A, B), C)
2555      // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0)
2556      if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
2557        SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2558                                      N0->getOperand(0), N1->getOperand(0));
2559        AddToWorkList(NewNode.getNode());
2560        return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
2561                                    &SVN0->getMask()[0]);
2562      }
2563
2564      // Don't try to fold this node if it requires introducing a
2565      // build vector of all zeros that might be illegal at this stage.
2566      ShOp = N0->getOperand(0);
2567      if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
2568        if (!LegalTypes)
2569          ShOp = DAG.getConstant(0, VT);
2570        else
2571          ShOp = SDValue();
2572      }
2573
2574      // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B))
2575      // (OR  (shuf (C, A), shuf (C, B)) -> shuf (C, OR  (A, B))
2576      // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B))
2577      if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
2578        SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2579                                      N0->getOperand(1), N1->getOperand(1));
2580        AddToWorkList(NewNode.getNode());
2581        return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
2582                                    &SVN0->getMask()[0]);
2583      }
2584    }
2585  }
2586
2587  return SDValue();
2588}
2589
2590SDValue DAGCombiner::visitAND(SDNode *N) {
2591  SDValue N0 = N->getOperand(0);
2592  SDValue N1 = N->getOperand(1);
2593  SDValue LL, LR, RL, RR, CC0, CC1;
2594  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2595  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2596  EVT VT = N1.getValueType();
2597  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2598
2599  // fold vector ops
2600  if (VT.isVector()) {
2601    SDValue FoldedVOp = SimplifyVBinOp(N);
2602    if (FoldedVOp.getNode()) return FoldedVOp;
2603
2604    // fold (and x, 0) -> 0, vector edition
2605    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2606      return N0;
2607    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2608      return N1;
2609
2610    // fold (and x, -1) -> x, vector edition
2611    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2612      return N1;
2613    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2614      return N0;
2615  }
2616
2617  // fold (and x, undef) -> 0
2618  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2619    return DAG.getConstant(0, VT);
2620  // fold (and c1, c2) -> c1&c2
2621  if (N0C && N1C)
2622    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2623  // canonicalize constant to RHS
2624  if (N0C && !N1C)
2625    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2626  // fold (and x, -1) -> x
2627  if (N1C && N1C->isAllOnesValue())
2628    return N0;
2629  // if (and x, c) is known to be zero, return 0
2630  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2631                                   APInt::getAllOnesValue(BitWidth)))
2632    return DAG.getConstant(0, VT);
2633  // reassociate and
2634  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2635  if (RAND.getNode())
2636    return RAND;
2637  // fold (and (or x, C), D) -> D if (C & D) == D
2638  if (N1C && N0.getOpcode() == ISD::OR)
2639    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2640      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2641        return N1;
2642  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2643  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2644    SDValue N0Op0 = N0.getOperand(0);
2645    APInt Mask = ~N1C->getAPIntValue();
2646    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2647    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2648      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2649                                 N0.getValueType(), N0Op0);
2650
2651      // Replace uses of the AND with uses of the Zero extend node.
2652      CombineTo(N, Zext);
2653
2654      // We actually want to replace all uses of the any_extend with the
2655      // zero_extend, to avoid duplicating things.  This will later cause this
2656      // AND to be folded.
2657      CombineTo(N0.getNode(), Zext);
2658      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2659    }
2660  }
2661  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2662  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2663  // already be zero by virtue of the width of the base type of the load.
2664  //
2665  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2666  // more cases.
2667  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2668       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2669      N0.getOpcode() == ISD::LOAD) {
2670    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2671                                         N0 : N0.getOperand(0) );
2672
2673    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2674    // This can be a pure constant or a vector splat, in which case we treat the
2675    // vector as a scalar and use the splat value.
2676    APInt Constant = APInt::getNullValue(1);
2677    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2678      Constant = C->getAPIntValue();
2679    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2680      APInt SplatValue, SplatUndef;
2681      unsigned SplatBitSize;
2682      bool HasAnyUndefs;
2683      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2684                                             SplatBitSize, HasAnyUndefs);
2685      if (IsSplat) {
2686        // Undef bits can contribute to a possible optimisation if set, so
2687        // set them.
2688        SplatValue |= SplatUndef;
2689
2690        // The splat value may be something like "0x00FFFFFF", which means 0 for
2691        // the first vector value and FF for the rest, repeating. We need a mask
2692        // that will apply equally to all members of the vector, so AND all the
2693        // lanes of the constant together.
2694        EVT VT = Vector->getValueType(0);
2695        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2696
2697        // If the splat value has been compressed to a bitlength lower
2698        // than the size of the vector lane, we need to re-expand it to
2699        // the lane size.
2700        if (BitWidth > SplatBitSize)
2701          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2702               SplatBitSize < BitWidth;
2703               SplatBitSize = SplatBitSize * 2)
2704            SplatValue |= SplatValue.shl(SplatBitSize);
2705
2706        Constant = APInt::getAllOnesValue(BitWidth);
2707        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2708          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2709      }
2710    }
2711
2712    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2713    // actually legal and isn't going to get expanded, else this is a false
2714    // optimisation.
2715    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2716                                                    Load->getMemoryVT());
2717
2718    // Resize the constant to the same size as the original memory access before
2719    // extension. If it is still the AllOnesValue then this AND is completely
2720    // unneeded.
2721    Constant =
2722      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2723
2724    bool B;
2725    switch (Load->getExtensionType()) {
2726    default: B = false; break;
2727    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2728    case ISD::ZEXTLOAD:
2729    case ISD::NON_EXTLOAD: B = true; break;
2730    }
2731
2732    if (B && Constant.isAllOnesValue()) {
2733      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2734      // preserve semantics once we get rid of the AND.
2735      SDValue NewLoad(Load, 0);
2736      if (Load->getExtensionType() == ISD::EXTLOAD) {
2737        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2738                              Load->getValueType(0), SDLoc(Load),
2739                              Load->getChain(), Load->getBasePtr(),
2740                              Load->getOffset(), Load->getMemoryVT(),
2741                              Load->getMemOperand());
2742        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2743        if (Load->getNumValues() == 3) {
2744          // PRE/POST_INC loads have 3 values.
2745          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2746                           NewLoad.getValue(2) };
2747          CombineTo(Load, To, 3, true);
2748        } else {
2749          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2750        }
2751      }
2752
2753      // Fold the AND away, taking care not to fold to the old load node if we
2754      // replaced it.
2755      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2756
2757      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2758    }
2759  }
2760  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2761  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2762    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2763    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2764
2765    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2766        LL.getValueType().isInteger()) {
2767      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2768      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2769        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2770                                     LR.getValueType(), LL, RL);
2771        AddToWorkList(ORNode.getNode());
2772        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2773      }
2774      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2775      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2776        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2777                                      LR.getValueType(), LL, RL);
2778        AddToWorkList(ANDNode.getNode());
2779        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2780      }
2781      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2782      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2783        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2784                                     LR.getValueType(), LL, RL);
2785        AddToWorkList(ORNode.getNode());
2786        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2787      }
2788    }
2789    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2790    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2791        Op0 == Op1 && LL.getValueType().isInteger() &&
2792      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2793                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2794                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2795                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2796      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2797                                    LL, DAG.getConstant(1, LL.getValueType()));
2798      AddToWorkList(ADDNode.getNode());
2799      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2800                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2801    }
2802    // canonicalize equivalent to ll == rl
2803    if (LL == RR && LR == RL) {
2804      Op1 = ISD::getSetCCSwappedOperands(Op1);
2805      std::swap(RL, RR);
2806    }
2807    if (LL == RL && LR == RR) {
2808      bool isInteger = LL.getValueType().isInteger();
2809      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2810      if (Result != ISD::SETCC_INVALID &&
2811          (!LegalOperations ||
2812           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2813            TLI.isOperationLegal(ISD::SETCC,
2814                            getSetCCResultType(N0.getSimpleValueType())))))
2815        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2816                            LL, LR, Result);
2817    }
2818  }
2819
2820  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2821  if (N0.getOpcode() == N1.getOpcode()) {
2822    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2823    if (Tmp.getNode()) return Tmp;
2824  }
2825
2826  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2827  // fold (and (sra)) -> (and (srl)) when possible.
2828  if (!VT.isVector() &&
2829      SimplifyDemandedBits(SDValue(N, 0)))
2830    return SDValue(N, 0);
2831
2832  // fold (zext_inreg (extload x)) -> (zextload x)
2833  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2834    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2835    EVT MemVT = LN0->getMemoryVT();
2836    // If we zero all the possible extended bits, then we can turn this into
2837    // a zextload if we are running before legalize or the operation is legal.
2838    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2839    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2840                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2841        ((!LegalOperations && !LN0->isVolatile()) ||
2842         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2843      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2844                                       LN0->getChain(), LN0->getBasePtr(),
2845                                       MemVT, LN0->getMemOperand());
2846      AddToWorkList(N);
2847      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2848      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2849    }
2850  }
2851  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2852  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2853      N0.hasOneUse()) {
2854    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2855    EVT MemVT = LN0->getMemoryVT();
2856    // If we zero all the possible extended bits, then we can turn this into
2857    // a zextload if we are running before legalize or the operation is legal.
2858    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2859    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2860                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2861        ((!LegalOperations && !LN0->isVolatile()) ||
2862         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2863      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2864                                       LN0->getChain(), LN0->getBasePtr(),
2865                                       MemVT, LN0->getMemOperand());
2866      AddToWorkList(N);
2867      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2868      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2869    }
2870  }
2871
2872  // fold (and (load x), 255) -> (zextload x, i8)
2873  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2874  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2875  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2876              (N0.getOpcode() == ISD::ANY_EXTEND &&
2877               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2878    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2879    LoadSDNode *LN0 = HasAnyExt
2880      ? cast<LoadSDNode>(N0.getOperand(0))
2881      : cast<LoadSDNode>(N0);
2882    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2883        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2884      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2885      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2886        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2887        EVT LoadedVT = LN0->getMemoryVT();
2888
2889        if (ExtVT == LoadedVT &&
2890            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2891          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2892
2893          SDValue NewLoad =
2894            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2895                           LN0->getChain(), LN0->getBasePtr(), ExtVT,
2896                           LN0->getMemOperand());
2897          AddToWorkList(N);
2898          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2899          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2900        }
2901
2902        // Do not change the width of a volatile load.
2903        // Do not generate loads of non-round integer types since these can
2904        // be expensive (and would be wrong if the type is not byte sized).
2905        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2906            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2907          EVT PtrType = LN0->getOperand(1).getValueType();
2908
2909          unsigned Alignment = LN0->getAlignment();
2910          SDValue NewPtr = LN0->getBasePtr();
2911
2912          // For big endian targets, we need to add an offset to the pointer
2913          // to load the correct bytes.  For little endian systems, we merely
2914          // need to read fewer bytes from the same pointer.
2915          if (TLI.isBigEndian()) {
2916            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2917            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2918            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2919            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2920                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2921            Alignment = MinAlign(Alignment, PtrOff);
2922          }
2923
2924          AddToWorkList(NewPtr.getNode());
2925
2926          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2927          SDValue Load =
2928            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2929                           LN0->getChain(), NewPtr,
2930                           LN0->getPointerInfo(),
2931                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2932                           Alignment, LN0->getTBAAInfo());
2933          AddToWorkList(N);
2934          CombineTo(LN0, Load, Load.getValue(1));
2935          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2936        }
2937      }
2938    }
2939  }
2940
2941  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2942      VT.getSizeInBits() <= 64) {
2943    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2944      APInt ADDC = ADDI->getAPIntValue();
2945      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2946        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2947        // immediate for an add, but it is legal if its top c2 bits are set,
2948        // transform the ADD so the immediate doesn't need to be materialized
2949        // in a register.
2950        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2951          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2952                                             SRLI->getZExtValue());
2953          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2954            ADDC |= Mask;
2955            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2956              SDValue NewAdd =
2957                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2958                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2959              CombineTo(N0.getNode(), NewAdd);
2960              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2961            }
2962          }
2963        }
2964      }
2965    }
2966  }
2967
2968  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2969  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2970    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2971                                       N0.getOperand(1), false);
2972    if (BSwap.getNode())
2973      return BSwap;
2974  }
2975
2976  return SDValue();
2977}
2978
2979/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2980///
2981SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2982                                        bool DemandHighBits) {
2983  if (!LegalOperations)
2984    return SDValue();
2985
2986  EVT VT = N->getValueType(0);
2987  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2988    return SDValue();
2989  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2990    return SDValue();
2991
2992  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2993  bool LookPassAnd0 = false;
2994  bool LookPassAnd1 = false;
2995  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2996      std::swap(N0, N1);
2997  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2998      std::swap(N0, N1);
2999  if (N0.getOpcode() == ISD::AND) {
3000    if (!N0.getNode()->hasOneUse())
3001      return SDValue();
3002    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3003    if (!N01C || N01C->getZExtValue() != 0xFF00)
3004      return SDValue();
3005    N0 = N0.getOperand(0);
3006    LookPassAnd0 = true;
3007  }
3008
3009  if (N1.getOpcode() == ISD::AND) {
3010    if (!N1.getNode()->hasOneUse())
3011      return SDValue();
3012    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3013    if (!N11C || N11C->getZExtValue() != 0xFF)
3014      return SDValue();
3015    N1 = N1.getOperand(0);
3016    LookPassAnd1 = true;
3017  }
3018
3019  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
3020    std::swap(N0, N1);
3021  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
3022    return SDValue();
3023  if (!N0.getNode()->hasOneUse() ||
3024      !N1.getNode()->hasOneUse())
3025    return SDValue();
3026
3027  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3028  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3029  if (!N01C || !N11C)
3030    return SDValue();
3031  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
3032    return SDValue();
3033
3034  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
3035  SDValue N00 = N0->getOperand(0);
3036  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
3037    if (!N00.getNode()->hasOneUse())
3038      return SDValue();
3039    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
3040    if (!N001C || N001C->getZExtValue() != 0xFF)
3041      return SDValue();
3042    N00 = N00.getOperand(0);
3043    LookPassAnd0 = true;
3044  }
3045
3046  SDValue N10 = N1->getOperand(0);
3047  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
3048    if (!N10.getNode()->hasOneUse())
3049      return SDValue();
3050    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
3051    if (!N101C || N101C->getZExtValue() != 0xFF00)
3052      return SDValue();
3053    N10 = N10.getOperand(0);
3054    LookPassAnd1 = true;
3055  }
3056
3057  if (N00 != N10)
3058    return SDValue();
3059
3060  // Make sure everything beyond the low halfword gets set to zero since the SRL
3061  // 16 will clear the top bits.
3062  unsigned OpSizeInBits = VT.getSizeInBits();
3063  if (DemandHighBits && OpSizeInBits > 16) {
3064    // If the left-shift isn't masked out then the only way this is a bswap is
3065    // if all bits beyond the low 8 are 0. In that case the entire pattern
3066    // reduces to a left shift anyway: leave it for other parts of the combiner.
3067    if (!LookPassAnd0)
3068      return SDValue();
3069
3070    // However, if the right shift isn't masked out then it might be because
3071    // it's not needed. See if we can spot that too.
3072    if (!LookPassAnd1 &&
3073        !DAG.MaskedValueIsZero(
3074            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
3075      return SDValue();
3076  }
3077
3078  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
3079  if (OpSizeInBits > 16)
3080    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
3081                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
3082  return Res;
3083}
3084
3085/// isBSwapHWordElement - Return true if the specified node is an element
3086/// that makes up a 32-bit packed halfword byteswap. i.e.
3087/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3088static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
3089  if (!N.getNode()->hasOneUse())
3090    return false;
3091
3092  unsigned Opc = N.getOpcode();
3093  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3094    return false;
3095
3096  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3097  if (!N1C)
3098    return false;
3099
3100  unsigned Num;
3101  switch (N1C->getZExtValue()) {
3102  default:
3103    return false;
3104  case 0xFF:       Num = 0; break;
3105  case 0xFF00:     Num = 1; break;
3106  case 0xFF0000:   Num = 2; break;
3107  case 0xFF000000: Num = 3; break;
3108  }
3109
3110  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3111  SDValue N0 = N.getOperand(0);
3112  if (Opc == ISD::AND) {
3113    if (Num == 0 || Num == 2) {
3114      // (x >> 8) & 0xff
3115      // (x >> 8) & 0xff0000
3116      if (N0.getOpcode() != ISD::SRL)
3117        return false;
3118      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3119      if (!C || C->getZExtValue() != 8)
3120        return false;
3121    } else {
3122      // (x << 8) & 0xff00
3123      // (x << 8) & 0xff000000
3124      if (N0.getOpcode() != ISD::SHL)
3125        return false;
3126      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3127      if (!C || C->getZExtValue() != 8)
3128        return false;
3129    }
3130  } else if (Opc == ISD::SHL) {
3131    // (x & 0xff) << 8
3132    // (x & 0xff0000) << 8
3133    if (Num != 0 && Num != 2)
3134      return false;
3135    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3136    if (!C || C->getZExtValue() != 8)
3137      return false;
3138  } else { // Opc == ISD::SRL
3139    // (x & 0xff00) >> 8
3140    // (x & 0xff000000) >> 8
3141    if (Num != 1 && Num != 3)
3142      return false;
3143    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3144    if (!C || C->getZExtValue() != 8)
3145      return false;
3146  }
3147
3148  if (Parts[Num])
3149    return false;
3150
3151  Parts[Num] = N0.getOperand(0).getNode();
3152  return true;
3153}
3154
3155/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3156/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3157/// => (rotl (bswap x), 16)
3158SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3159  if (!LegalOperations)
3160    return SDValue();
3161
3162  EVT VT = N->getValueType(0);
3163  if (VT != MVT::i32)
3164    return SDValue();
3165  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3166    return SDValue();
3167
3168  SmallVector<SDNode*,4> Parts(4, (SDNode*)nullptr);
3169  // Look for either
3170  // (or (or (and), (and)), (or (and), (and)))
3171  // (or (or (or (and), (and)), (and)), (and))
3172  if (N0.getOpcode() != ISD::OR)
3173    return SDValue();
3174  SDValue N00 = N0.getOperand(0);
3175  SDValue N01 = N0.getOperand(1);
3176
3177  if (N1.getOpcode() == ISD::OR &&
3178      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3179    // (or (or (and), (and)), (or (and), (and)))
3180    SDValue N000 = N00.getOperand(0);
3181    if (!isBSwapHWordElement(N000, Parts))
3182      return SDValue();
3183
3184    SDValue N001 = N00.getOperand(1);
3185    if (!isBSwapHWordElement(N001, Parts))
3186      return SDValue();
3187    SDValue N010 = N01.getOperand(0);
3188    if (!isBSwapHWordElement(N010, Parts))
3189      return SDValue();
3190    SDValue N011 = N01.getOperand(1);
3191    if (!isBSwapHWordElement(N011, Parts))
3192      return SDValue();
3193  } else {
3194    // (or (or (or (and), (and)), (and)), (and))
3195    if (!isBSwapHWordElement(N1, Parts))
3196      return SDValue();
3197    if (!isBSwapHWordElement(N01, Parts))
3198      return SDValue();
3199    if (N00.getOpcode() != ISD::OR)
3200      return SDValue();
3201    SDValue N000 = N00.getOperand(0);
3202    if (!isBSwapHWordElement(N000, Parts))
3203      return SDValue();
3204    SDValue N001 = N00.getOperand(1);
3205    if (!isBSwapHWordElement(N001, Parts))
3206      return SDValue();
3207  }
3208
3209  // Make sure the parts are all coming from the same node.
3210  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3211    return SDValue();
3212
3213  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3214                              SDValue(Parts[0],0));
3215
3216  // Result of the bswap should be rotated by 16. If it's not legal, then
3217  // do  (x << 16) | (x >> 16).
3218  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3219  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3220    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3221  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3222    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3223  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3224                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3225                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3226}
3227
3228SDValue DAGCombiner::visitOR(SDNode *N) {
3229  SDValue N0 = N->getOperand(0);
3230  SDValue N1 = N->getOperand(1);
3231  SDValue LL, LR, RL, RR, CC0, CC1;
3232  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3233  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3234  EVT VT = N1.getValueType();
3235
3236  // fold vector ops
3237  if (VT.isVector()) {
3238    SDValue FoldedVOp = SimplifyVBinOp(N);
3239    if (FoldedVOp.getNode()) return FoldedVOp;
3240
3241    // fold (or x, 0) -> x, vector edition
3242    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3243      return N1;
3244    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3245      return N0;
3246
3247    // fold (or x, -1) -> -1, vector edition
3248    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3249      return N0;
3250    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3251      return N1;
3252
3253    // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
3254    // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
3255    // Do this only if the resulting shuffle is legal.
3256    if (isa<ShuffleVectorSDNode>(N0) &&
3257        isa<ShuffleVectorSDNode>(N1) &&
3258        N0->getOperand(1) == N1->getOperand(1) &&
3259        ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) {
3260      bool CanFold = true;
3261      unsigned NumElts = VT.getVectorNumElements();
3262      const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
3263      const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
3264      // We construct two shuffle masks:
3265      // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand
3266      // and N1 as the second operand.
3267      // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand
3268      // and N0 as the second operand.
3269      // We do this because OR is commutable and therefore there might be
3270      // two ways to fold this node into a shuffle.
3271      SmallVector<int,4> Mask1;
3272      SmallVector<int,4> Mask2;
3273
3274      for (unsigned i = 0; i != NumElts && CanFold; ++i) {
3275        int M0 = SV0->getMaskElt(i);
3276        int M1 = SV1->getMaskElt(i);
3277
3278        // Both shuffle indexes are undef. Propagate Undef.
3279        if (M0 < 0 && M1 < 0) {
3280          Mask1.push_back(M0);
3281          Mask2.push_back(M0);
3282          continue;
3283        }
3284
3285        if (M0 < 0 || M1 < 0 ||
3286            (M0 < (int)NumElts && M1 < (int)NumElts) ||
3287            (M0 >= (int)NumElts && M1 >= (int)NumElts)) {
3288          CanFold = false;
3289          break;
3290        }
3291
3292        Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts);
3293        Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts);
3294      }
3295
3296      if (CanFold) {
3297        // Fold this sequence only if the resulting shuffle is 'legal'.
3298        if (TLI.isShuffleMaskLegal(Mask1, VT))
3299          return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0),
3300                                      N1->getOperand(0), &Mask1[0]);
3301        if (TLI.isShuffleMaskLegal(Mask2, VT))
3302          return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0),
3303                                      N0->getOperand(0), &Mask2[0]);
3304      }
3305    }
3306  }
3307
3308  // fold (or x, undef) -> -1
3309  if (!LegalOperations &&
3310      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3311    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3312    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3313  }
3314  // fold (or c1, c2) -> c1|c2
3315  if (N0C && N1C)
3316    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3317  // canonicalize constant to RHS
3318  if (N0C && !N1C)
3319    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3320  // fold (or x, 0) -> x
3321  if (N1C && N1C->isNullValue())
3322    return N0;
3323  // fold (or x, -1) -> -1
3324  if (N1C && N1C->isAllOnesValue())
3325    return N1;
3326  // fold (or x, c) -> c iff (x & ~c) == 0
3327  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3328    return N1;
3329
3330  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3331  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3332  if (BSwap.getNode())
3333    return BSwap;
3334  BSwap = MatchBSwapHWordLow(N, N0, N1);
3335  if (BSwap.getNode())
3336    return BSwap;
3337
3338  // reassociate or
3339  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3340  if (ROR.getNode())
3341    return ROR;
3342  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3343  // iff (c1 & c2) == 0.
3344  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3345             isa<ConstantSDNode>(N0.getOperand(1))) {
3346    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3347    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
3348      SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1);
3349      if (!COR.getNode())
3350        return SDValue();
3351      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3352                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3353                                     N0.getOperand(0), N1), COR);
3354    }
3355  }
3356  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3357  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3358    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3359    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3360
3361    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3362        LL.getValueType().isInteger()) {
3363      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3364      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3365      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3366          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3367        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3368                                     LR.getValueType(), LL, RL);
3369        AddToWorkList(ORNode.getNode());
3370        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3371      }
3372      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3373      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3374      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3375          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3376        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3377                                      LR.getValueType(), LL, RL);
3378        AddToWorkList(ANDNode.getNode());
3379        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3380      }
3381    }
3382    // canonicalize equivalent to ll == rl
3383    if (LL == RR && LR == RL) {
3384      Op1 = ISD::getSetCCSwappedOperands(Op1);
3385      std::swap(RL, RR);
3386    }
3387    if (LL == RL && LR == RR) {
3388      bool isInteger = LL.getValueType().isInteger();
3389      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3390      if (Result != ISD::SETCC_INVALID &&
3391          (!LegalOperations ||
3392           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3393            TLI.isOperationLegal(ISD::SETCC,
3394              getSetCCResultType(N0.getValueType())))))
3395        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3396                            LL, LR, Result);
3397    }
3398  }
3399
3400  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3401  if (N0.getOpcode() == N1.getOpcode()) {
3402    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3403    if (Tmp.getNode()) return Tmp;
3404  }
3405
3406  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3407  if (N0.getOpcode() == ISD::AND &&
3408      N1.getOpcode() == ISD::AND &&
3409      N0.getOperand(1).getOpcode() == ISD::Constant &&
3410      N1.getOperand(1).getOpcode() == ISD::Constant &&
3411      // Don't increase # computations.
3412      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3413    // We can only do this xform if we know that bits from X that are set in C2
3414    // but not in C1 are already zero.  Likewise for Y.
3415    const APInt &LHSMask =
3416      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3417    const APInt &RHSMask =
3418      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3419
3420    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3421        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3422      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3423                              N0.getOperand(0), N1.getOperand(0));
3424      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3425                         DAG.getConstant(LHSMask | RHSMask, VT));
3426    }
3427  }
3428
3429  // See if this is some rotate idiom.
3430  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3431    return SDValue(Rot, 0);
3432
3433  // Simplify the operands using demanded-bits information.
3434  if (!VT.isVector() &&
3435      SimplifyDemandedBits(SDValue(N, 0)))
3436    return SDValue(N, 0);
3437
3438  return SDValue();
3439}
3440
3441/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3442static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3443  if (Op.getOpcode() == ISD::AND) {
3444    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3445      Mask = Op.getOperand(1);
3446      Op = Op.getOperand(0);
3447    } else {
3448      return false;
3449    }
3450  }
3451
3452  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3453    Shift = Op;
3454    return true;
3455  }
3456
3457  return false;
3458}
3459
3460// Return true if we can prove that, whenever Neg and Pos are both in the
3461// range [0, OpSize), Neg == (Pos == 0 ? 0 : OpSize - Pos).  This means that
3462// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
3463//
3464//     (or (shift1 X, Neg), (shift2 X, Pos))
3465//
3466// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
3467// in direction shift1 by Neg.  The range [0, OpSize) means that we only need
3468// to consider shift amounts with defined behavior.
3469static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) {
3470  // If OpSize is a power of 2 then:
3471  //
3472  //  (a) (Pos == 0 ? 0 : OpSize - Pos) == (OpSize - Pos) & (OpSize - 1)
3473  //  (b) Neg == Neg & (OpSize - 1) whenever Neg is in [0, OpSize).
3474  //
3475  // So if OpSize is a power of 2 and Neg is (and Neg', OpSize-1), we check
3476  // for the stronger condition:
3477  //
3478  //     Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1)    [A]
3479  //
3480  // for all Neg and Pos.  Since Neg & (OpSize - 1) == Neg' & (OpSize - 1)
3481  // we can just replace Neg with Neg' for the rest of the function.
3482  //
3483  // In other cases we check for the even stronger condition:
3484  //
3485  //     Neg == OpSize - Pos                                    [B]
3486  //
3487  // for all Neg and Pos.  Note that the (or ...) then invokes undefined
3488  // behavior if Pos == 0 (and consequently Neg == OpSize).
3489  //
3490  // We could actually use [A] whenever OpSize is a power of 2, but the
3491  // only extra cases that it would match are those uninteresting ones
3492  // where Neg and Pos are never in range at the same time.  E.g. for
3493  // OpSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
3494  // as well as (sub 32, Pos), but:
3495  //
3496  //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
3497  //
3498  // always invokes undefined behavior for 32-bit X.
3499  //
3500  // Below, Mask == OpSize - 1 when using [A] and is all-ones otherwise.
3501  unsigned MaskLoBits = 0;
3502  if (Neg.getOpcode() == ISD::AND &&
3503      isPowerOf2_64(OpSize) &&
3504      Neg.getOperand(1).getOpcode() == ISD::Constant &&
3505      cast<ConstantSDNode>(Neg.getOperand(1))->getAPIntValue() == OpSize - 1) {
3506    Neg = Neg.getOperand(0);
3507    MaskLoBits = Log2_64(OpSize);
3508  }
3509
3510  // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
3511  if (Neg.getOpcode() != ISD::SUB)
3512    return 0;
3513  ConstantSDNode *NegC = dyn_cast<ConstantSDNode>(Neg.getOperand(0));
3514  if (!NegC)
3515    return 0;
3516  SDValue NegOp1 = Neg.getOperand(1);
3517
3518  // On the RHS of [A], if Pos is Pos' & (OpSize - 1), just replace Pos with
3519  // Pos'.  The truncation is redundant for the purpose of the equality.
3520  if (MaskLoBits &&
3521      Pos.getOpcode() == ISD::AND &&
3522      Pos.getOperand(1).getOpcode() == ISD::Constant &&
3523      cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() == OpSize - 1)
3524    Pos = Pos.getOperand(0);
3525
3526  // The condition we need is now:
3527  //
3528  //     (NegC - NegOp1) & Mask == (OpSize - Pos) & Mask
3529  //
3530  // If NegOp1 == Pos then we need:
3531  //
3532  //              OpSize & Mask == NegC & Mask
3533  //
3534  // (because "x & Mask" is a truncation and distributes through subtraction).
3535  APInt Width;
3536  if (Pos == NegOp1)
3537    Width = NegC->getAPIntValue();
3538  // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
3539  // Then the condition we want to prove becomes:
3540  //
3541  //     (NegC - NegOp1) & Mask == (OpSize - (NegOp1 + PosC)) & Mask
3542  //
3543  // which, again because "x & Mask" is a truncation, becomes:
3544  //
3545  //                NegC & Mask == (OpSize - PosC) & Mask
3546  //              OpSize & Mask == (NegC + PosC) & Mask
3547  else if (Pos.getOpcode() == ISD::ADD &&
3548           Pos.getOperand(0) == NegOp1 &&
3549           Pos.getOperand(1).getOpcode() == ISD::Constant)
3550    Width = (cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() +
3551             NegC->getAPIntValue());
3552  else
3553    return false;
3554
3555  // Now we just need to check that OpSize & Mask == Width & Mask.
3556  if (MaskLoBits)
3557    // Opsize & Mask is 0 since Mask is Opsize - 1.
3558    return Width.getLoBits(MaskLoBits) == 0;
3559  return Width == OpSize;
3560}
3561
3562// A subroutine of MatchRotate used once we have found an OR of two opposite
3563// shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces
3564// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
3565// former being preferred if supported.  InnerPos and InnerNeg are Pos and
3566// Neg with outer conversions stripped away.
3567SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
3568                                       SDValue Neg, SDValue InnerPos,
3569                                       SDValue InnerNeg, unsigned PosOpcode,
3570                                       unsigned NegOpcode, SDLoc DL) {
3571  // fold (or (shl x, (*ext y)),
3572  //          (srl x, (*ext (sub 32, y)))) ->
3573  //   (rotl x, y) or (rotr x, (sub 32, y))
3574  //
3575  // fold (or (shl x, (*ext (sub 32, y))),
3576  //          (srl x, (*ext y))) ->
3577  //   (rotr x, y) or (rotl x, (sub 32, y))
3578  EVT VT = Shifted.getValueType();
3579  if (matchRotateSub(InnerPos, InnerNeg, VT.getSizeInBits())) {
3580    bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
3581    return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
3582                       HasPos ? Pos : Neg).getNode();
3583  }
3584
3585  return nullptr;
3586}
3587
3588// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3589// idioms for rotate, and if the target supports rotation instructions, generate
3590// a rot[lr].
3591SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3592  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3593  EVT VT = LHS.getValueType();
3594  if (!TLI.isTypeLegal(VT)) return nullptr;
3595
3596  // The target must have at least one rotate flavor.
3597  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3598  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3599  if (!HasROTL && !HasROTR) return nullptr;
3600
3601  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3602  SDValue LHSShift;   // The shift.
3603  SDValue LHSMask;    // AND value if any.
3604  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3605    return nullptr; // Not part of a rotate.
3606
3607  SDValue RHSShift;   // The shift.
3608  SDValue RHSMask;    // AND value if any.
3609  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3610    return nullptr; // Not part of a rotate.
3611
3612  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3613    return nullptr;   // Not shifting the same value.
3614
3615  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3616    return nullptr;   // Shifts must disagree.
3617
3618  // Canonicalize shl to left side in a shl/srl pair.
3619  if (RHSShift.getOpcode() == ISD::SHL) {
3620    std::swap(LHS, RHS);
3621    std::swap(LHSShift, RHSShift);
3622    std::swap(LHSMask , RHSMask );
3623  }
3624
3625  unsigned OpSizeInBits = VT.getSizeInBits();
3626  SDValue LHSShiftArg = LHSShift.getOperand(0);
3627  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3628  SDValue RHSShiftArg = RHSShift.getOperand(0);
3629  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3630
3631  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3632  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3633  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3634      RHSShiftAmt.getOpcode() == ISD::Constant) {
3635    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3636    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3637    if ((LShVal + RShVal) != OpSizeInBits)
3638      return nullptr;
3639
3640    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3641                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3642
3643    // If there is an AND of either shifted operand, apply it to the result.
3644    if (LHSMask.getNode() || RHSMask.getNode()) {
3645      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3646
3647      if (LHSMask.getNode()) {
3648        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3649        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3650      }
3651      if (RHSMask.getNode()) {
3652        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3653        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3654      }
3655
3656      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3657    }
3658
3659    return Rot.getNode();
3660  }
3661
3662  // If there is a mask here, and we have a variable shift, we can't be sure
3663  // that we're masking out the right stuff.
3664  if (LHSMask.getNode() || RHSMask.getNode())
3665    return nullptr;
3666
3667  // If the shift amount is sign/zext/any-extended just peel it off.
3668  SDValue LExtOp0 = LHSShiftAmt;
3669  SDValue RExtOp0 = RHSShiftAmt;
3670  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3671       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3672       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3673       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3674      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3675       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3676       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3677       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3678    LExtOp0 = LHSShiftAmt.getOperand(0);
3679    RExtOp0 = RHSShiftAmt.getOperand(0);
3680  }
3681
3682  SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
3683                                   LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
3684  if (TryL)
3685    return TryL;
3686
3687  SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
3688                                   RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
3689  if (TryR)
3690    return TryR;
3691
3692  return nullptr;
3693}
3694
3695SDValue DAGCombiner::visitXOR(SDNode *N) {
3696  SDValue N0 = N->getOperand(0);
3697  SDValue N1 = N->getOperand(1);
3698  SDValue LHS, RHS, CC;
3699  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3700  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3701  EVT VT = N0.getValueType();
3702
3703  // fold vector ops
3704  if (VT.isVector()) {
3705    SDValue FoldedVOp = SimplifyVBinOp(N);
3706    if (FoldedVOp.getNode()) return FoldedVOp;
3707
3708    // fold (xor x, 0) -> x, vector edition
3709    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3710      return N1;
3711    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3712      return N0;
3713  }
3714
3715  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3716  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3717    return DAG.getConstant(0, VT);
3718  // fold (xor x, undef) -> undef
3719  if (N0.getOpcode() == ISD::UNDEF)
3720    return N0;
3721  if (N1.getOpcode() == ISD::UNDEF)
3722    return N1;
3723  // fold (xor c1, c2) -> c1^c2
3724  if (N0C && N1C)
3725    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3726  // canonicalize constant to RHS
3727  if (N0C && !N1C)
3728    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3729  // fold (xor x, 0) -> x
3730  if (N1C && N1C->isNullValue())
3731    return N0;
3732  // reassociate xor
3733  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3734  if (RXOR.getNode())
3735    return RXOR;
3736
3737  // fold !(x cc y) -> (x !cc y)
3738  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3739    bool isInt = LHS.getValueType().isInteger();
3740    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3741                                               isInt);
3742
3743    if (!LegalOperations ||
3744        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3745      switch (N0.getOpcode()) {
3746      default:
3747        llvm_unreachable("Unhandled SetCC Equivalent!");
3748      case ISD::SETCC:
3749        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3750      case ISD::SELECT_CC:
3751        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3752                               N0.getOperand(3), NotCC);
3753      }
3754    }
3755  }
3756
3757  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3758  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3759      N0.getNode()->hasOneUse() &&
3760      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3761    SDValue V = N0.getOperand(0);
3762    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3763                    DAG.getConstant(1, V.getValueType()));
3764    AddToWorkList(V.getNode());
3765    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3766  }
3767
3768  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3769  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3770      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3771    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3772    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3773      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3774      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3775      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3776      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3777      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3778    }
3779  }
3780  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3781  if (N1C && N1C->isAllOnesValue() &&
3782      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3783    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3784    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3785      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3786      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3787      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3788      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3789      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3790    }
3791  }
3792  // fold (xor (and x, y), y) -> (and (not x), y)
3793  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3794      N0->getOperand(1) == N1) {
3795    SDValue X = N0->getOperand(0);
3796    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3797    AddToWorkList(NotX.getNode());
3798    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3799  }
3800  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3801  if (N1C && N0.getOpcode() == ISD::XOR) {
3802    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3803    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3804    if (N00C)
3805      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3806                         DAG.getConstant(N1C->getAPIntValue() ^
3807                                         N00C->getAPIntValue(), VT));
3808    if (N01C)
3809      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3810                         DAG.getConstant(N1C->getAPIntValue() ^
3811                                         N01C->getAPIntValue(), VT));
3812  }
3813  // fold (xor x, x) -> 0
3814  if (N0 == N1)
3815    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3816
3817  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3818  if (N0.getOpcode() == N1.getOpcode()) {
3819    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3820    if (Tmp.getNode()) return Tmp;
3821  }
3822
3823  // Simplify the expression using non-local knowledge.
3824  if (!VT.isVector() &&
3825      SimplifyDemandedBits(SDValue(N, 0)))
3826    return SDValue(N, 0);
3827
3828  return SDValue();
3829}
3830
3831/// visitShiftByConstant - Handle transforms common to the three shifts, when
3832/// the shift amount is a constant.
3833SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
3834  // We can't and shouldn't fold opaque constants.
3835  if (Amt->isOpaque())
3836    return SDValue();
3837
3838  SDNode *LHS = N->getOperand(0).getNode();
3839  if (!LHS->hasOneUse()) return SDValue();
3840
3841  // We want to pull some binops through shifts, so that we have (and (shift))
3842  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3843  // thing happens with address calculations, so it's important to canonicalize
3844  // it.
3845  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3846
3847  switch (LHS->getOpcode()) {
3848  default: return SDValue();
3849  case ISD::OR:
3850  case ISD::XOR:
3851    HighBitSet = false; // We can only transform sra if the high bit is clear.
3852    break;
3853  case ISD::AND:
3854    HighBitSet = true;  // We can only transform sra if the high bit is set.
3855    break;
3856  case ISD::ADD:
3857    if (N->getOpcode() != ISD::SHL)
3858      return SDValue(); // only shl(add) not sr[al](add).
3859    HighBitSet = false; // We can only transform sra if the high bit is clear.
3860    break;
3861  }
3862
3863  // We require the RHS of the binop to be a constant and not opaque as well.
3864  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3865  if (!BinOpCst || BinOpCst->isOpaque()) return SDValue();
3866
3867  // FIXME: disable this unless the input to the binop is a shift by a constant.
3868  // If it is not a shift, it pessimizes some common cases like:
3869  //
3870  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3871  //    int bar(int *X, int i) { return X[i & 255]; }
3872  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3873  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3874       BinOpLHSVal->getOpcode() != ISD::SRA &&
3875       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3876      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3877    return SDValue();
3878
3879  EVT VT = N->getValueType(0);
3880
3881  // If this is a signed shift right, and the high bit is modified by the
3882  // logical operation, do not perform the transformation. The highBitSet
3883  // boolean indicates the value of the high bit of the constant which would
3884  // cause it to be modified for this operation.
3885  if (N->getOpcode() == ISD::SRA) {
3886    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3887    if (BinOpRHSSignSet != HighBitSet)
3888      return SDValue();
3889  }
3890
3891  if (!TLI.isDesirableToCommuteWithShift(LHS))
3892    return SDValue();
3893
3894  // Fold the constants, shifting the binop RHS by the shift amount.
3895  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3896                               N->getValueType(0),
3897                               LHS->getOperand(1), N->getOperand(1));
3898  assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
3899
3900  // Create the new shift.
3901  SDValue NewShift = DAG.getNode(N->getOpcode(),
3902                                 SDLoc(LHS->getOperand(0)),
3903                                 VT, LHS->getOperand(0), N->getOperand(1));
3904
3905  // Create the new binop.
3906  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3907}
3908
3909SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
3910  assert(N->getOpcode() == ISD::TRUNCATE);
3911  assert(N->getOperand(0).getOpcode() == ISD::AND);
3912
3913  // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
3914  if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
3915    SDValue N01 = N->getOperand(0).getOperand(1);
3916
3917    if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) {
3918      EVT TruncVT = N->getValueType(0);
3919      SDValue N00 = N->getOperand(0).getOperand(0);
3920      APInt TruncC = N01C->getAPIntValue();
3921      TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits());
3922
3923      return DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3924                         DAG.getNode(ISD::TRUNCATE, SDLoc(N), TruncVT, N00),
3925                         DAG.getConstant(TruncC, TruncVT));
3926    }
3927  }
3928
3929  return SDValue();
3930}
3931
3932SDValue DAGCombiner::visitRotate(SDNode *N) {
3933  // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
3934  if (N->getOperand(1).getOpcode() == ISD::TRUNCATE &&
3935      N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) {
3936    SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode());
3937    if (NewOp1.getNode())
3938      return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
3939                         N->getOperand(0), NewOp1);
3940  }
3941  return SDValue();
3942}
3943
3944SDValue DAGCombiner::visitSHL(SDNode *N) {
3945  SDValue N0 = N->getOperand(0);
3946  SDValue N1 = N->getOperand(1);
3947  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3948  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3949  EVT VT = N0.getValueType();
3950  unsigned OpSizeInBits = VT.getScalarSizeInBits();
3951
3952  // fold vector ops
3953  if (VT.isVector()) {
3954    SDValue FoldedVOp = SimplifyVBinOp(N);
3955    if (FoldedVOp.getNode()) return FoldedVOp;
3956
3957    BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
3958    // If setcc produces all-one true value then:
3959    // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
3960    if (N1CV && N1CV->isConstant()) {
3961      if (N0.getOpcode() == ISD::AND) {
3962        SDValue N00 = N0->getOperand(0);
3963        SDValue N01 = N0->getOperand(1);
3964        BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
3965
3966        if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
3967            TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
3968                TargetLowering::ZeroOrNegativeOneBooleanContent) {
3969          SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, VT, N01CV, N1CV);
3970          if (C.getNode())
3971            return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
3972        }
3973      } else {
3974        N1C = isConstOrConstSplat(N1);
3975      }
3976    }
3977  }
3978
3979  // fold (shl c1, c2) -> c1<<c2
3980  if (N0C && N1C)
3981    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3982  // fold (shl 0, x) -> 0
3983  if (N0C && N0C->isNullValue())
3984    return N0;
3985  // fold (shl x, c >= size(x)) -> undef
3986  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3987    return DAG.getUNDEF(VT);
3988  // fold (shl x, 0) -> x
3989  if (N1C && N1C->isNullValue())
3990    return N0;
3991  // fold (shl undef, x) -> 0
3992  if (N0.getOpcode() == ISD::UNDEF)
3993    return DAG.getConstant(0, VT);
3994  // if (shl x, c) is known to be zero, return 0
3995  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3996                            APInt::getAllOnesValue(OpSizeInBits)))
3997    return DAG.getConstant(0, VT);
3998  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3999  if (N1.getOpcode() == ISD::TRUNCATE &&
4000      N1.getOperand(0).getOpcode() == ISD::AND) {
4001    SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
4002    if (NewOp1.getNode())
4003      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
4004  }
4005
4006  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4007    return SDValue(N, 0);
4008
4009  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
4010  if (N1C && N0.getOpcode() == ISD::SHL) {
4011    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4012      uint64_t c1 = N0C1->getZExtValue();
4013      uint64_t c2 = N1C->getZExtValue();
4014      if (c1 + c2 >= OpSizeInBits)
4015        return DAG.getConstant(0, VT);
4016      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
4017                         DAG.getConstant(c1 + c2, N1.getValueType()));
4018    }
4019  }
4020
4021  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
4022  // For this to be valid, the second form must not preserve any of the bits
4023  // that are shifted out by the inner shift in the first form.  This means
4024  // the outer shift size must be >= the number of bits added by the ext.
4025  // As a corollary, we don't care what kind of ext it is.
4026  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
4027              N0.getOpcode() == ISD::ANY_EXTEND ||
4028              N0.getOpcode() == ISD::SIGN_EXTEND) &&
4029      N0.getOperand(0).getOpcode() == ISD::SHL) {
4030    SDValue N0Op0 = N0.getOperand(0);
4031    if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4032      uint64_t c1 = N0Op0C1->getZExtValue();
4033      uint64_t c2 = N1C->getZExtValue();
4034      EVT InnerShiftVT = N0Op0.getValueType();
4035      uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
4036      if (c2 >= OpSizeInBits - InnerShiftSize) {
4037        if (c1 + c2 >= OpSizeInBits)
4038          return DAG.getConstant(0, VT);
4039        return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
4040                           DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
4041                                       N0Op0->getOperand(0)),
4042                           DAG.getConstant(c1 + c2, N1.getValueType()));
4043      }
4044    }
4045  }
4046
4047  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
4048  // Only fold this if the inner zext has no other uses to avoid increasing
4049  // the total number of instructions.
4050  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
4051      N0.getOperand(0).getOpcode() == ISD::SRL) {
4052    SDValue N0Op0 = N0.getOperand(0);
4053    if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4054      uint64_t c1 = N0Op0C1->getZExtValue();
4055      if (c1 < VT.getScalarSizeInBits()) {
4056        uint64_t c2 = N1C->getZExtValue();
4057        if (c1 == c2) {
4058          SDValue NewOp0 = N0.getOperand(0);
4059          EVT CountVT = NewOp0.getOperand(1).getValueType();
4060          SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
4061                                       NewOp0, DAG.getConstant(c2, CountVT));
4062          AddToWorkList(NewSHL.getNode());
4063          return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
4064        }
4065      }
4066    }
4067  }
4068
4069  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
4070  //                               (and (srl x, (sub c1, c2), MASK)
4071  // Only fold this if the inner shift has no other uses -- if it does, folding
4072  // this will increase the total number of instructions.
4073  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4074    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4075      uint64_t c1 = N0C1->getZExtValue();
4076      if (c1 < OpSizeInBits) {
4077        uint64_t c2 = N1C->getZExtValue();
4078        APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
4079        SDValue Shift;
4080        if (c2 > c1) {
4081          Mask = Mask.shl(c2 - c1);
4082          Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
4083                              DAG.getConstant(c2 - c1, N1.getValueType()));
4084        } else {
4085          Mask = Mask.lshr(c1 - c2);
4086          Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4087                              DAG.getConstant(c1 - c2, N1.getValueType()));
4088        }
4089        return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
4090                           DAG.getConstant(Mask, VT));
4091      }
4092    }
4093  }
4094  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
4095  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
4096    unsigned BitSize = VT.getScalarSizeInBits();
4097    SDValue HiBitsMask =
4098      DAG.getConstant(APInt::getHighBitsSet(BitSize,
4099                                            BitSize - N1C->getZExtValue()), VT);
4100    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4101                       HiBitsMask);
4102  }
4103
4104  if (N1C) {
4105    SDValue NewSHL = visitShiftByConstant(N, N1C);
4106    if (NewSHL.getNode())
4107      return NewSHL;
4108  }
4109
4110  return SDValue();
4111}
4112
4113SDValue DAGCombiner::visitSRA(SDNode *N) {
4114  SDValue N0 = N->getOperand(0);
4115  SDValue N1 = N->getOperand(1);
4116  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4117  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4118  EVT VT = N0.getValueType();
4119  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4120
4121  // fold vector ops
4122  if (VT.isVector()) {
4123    SDValue FoldedVOp = SimplifyVBinOp(N);
4124    if (FoldedVOp.getNode()) return FoldedVOp;
4125
4126    N1C = isConstOrConstSplat(N1);
4127  }
4128
4129  // fold (sra c1, c2) -> (sra c1, c2)
4130  if (N0C && N1C)
4131    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
4132  // fold (sra 0, x) -> 0
4133  if (N0C && N0C->isNullValue())
4134    return N0;
4135  // fold (sra -1, x) -> -1
4136  if (N0C && N0C->isAllOnesValue())
4137    return N0;
4138  // fold (sra x, (setge c, size(x))) -> undef
4139  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4140    return DAG.getUNDEF(VT);
4141  // fold (sra x, 0) -> x
4142  if (N1C && N1C->isNullValue())
4143    return N0;
4144  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
4145  // sext_inreg.
4146  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
4147    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
4148    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
4149    if (VT.isVector())
4150      ExtVT = EVT::getVectorVT(*DAG.getContext(),
4151                               ExtVT, VT.getVectorNumElements());
4152    if ((!LegalOperations ||
4153         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
4154      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
4155                         N0.getOperand(0), DAG.getValueType(ExtVT));
4156  }
4157
4158  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
4159  if (N1C && N0.getOpcode() == ISD::SRA) {
4160    if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) {
4161      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
4162      if (Sum >= OpSizeInBits)
4163        Sum = OpSizeInBits - 1;
4164      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
4165                         DAG.getConstant(Sum, N1.getValueType()));
4166    }
4167  }
4168
4169  // fold (sra (shl X, m), (sub result_size, n))
4170  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
4171  // result_size - n != m.
4172  // If truncate is free for the target sext(shl) is likely to result in better
4173  // code.
4174  if (N0.getOpcode() == ISD::SHL && N1C) {
4175    // Get the two constanst of the shifts, CN0 = m, CN = n.
4176    const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
4177    if (N01C) {
4178      LLVMContext &Ctx = *DAG.getContext();
4179      // Determine what the truncate's result bitsize and type would be.
4180      EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
4181
4182      if (VT.isVector())
4183        TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
4184
4185      // Determine the residual right-shift amount.
4186      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
4187
4188      // If the shift is not a no-op (in which case this should be just a sign
4189      // extend already), the truncated to type is legal, sign_extend is legal
4190      // on that type, and the truncate to that type is both legal and free,
4191      // perform the transform.
4192      if ((ShiftAmt > 0) &&
4193          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
4194          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
4195          TLI.isTruncateFree(VT, TruncVT)) {
4196
4197          SDValue Amt = DAG.getConstant(ShiftAmt,
4198              getShiftAmountTy(N0.getOperand(0).getValueType()));
4199          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
4200                                      N0.getOperand(0), Amt);
4201          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
4202                                      Shift);
4203          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
4204                             N->getValueType(0), Trunc);
4205      }
4206    }
4207  }
4208
4209  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
4210  if (N1.getOpcode() == ISD::TRUNCATE &&
4211      N1.getOperand(0).getOpcode() == ISD::AND) {
4212    SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
4213    if (NewOp1.getNode())
4214      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
4215  }
4216
4217  // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
4218  //      if c1 is equal to the number of bits the trunc removes
4219  if (N0.getOpcode() == ISD::TRUNCATE &&
4220      (N0.getOperand(0).getOpcode() == ISD::SRL ||
4221       N0.getOperand(0).getOpcode() == ISD::SRA) &&
4222      N0.getOperand(0).hasOneUse() &&
4223      N0.getOperand(0).getOperand(1).hasOneUse() &&
4224      N1C) {
4225    SDValue N0Op0 = N0.getOperand(0);
4226    if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
4227      unsigned LargeShiftVal = LargeShift->getZExtValue();
4228      EVT LargeVT = N0Op0.getValueType();
4229
4230      if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
4231        SDValue Amt =
4232          DAG.getConstant(LargeShiftVal + N1C->getZExtValue(),
4233                          getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
4234        SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
4235                                  N0Op0.getOperand(0), Amt);
4236        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
4237      }
4238    }
4239  }
4240
4241  // Simplify, based on bits shifted out of the LHS.
4242  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4243    return SDValue(N, 0);
4244
4245
4246  // If the sign bit is known to be zero, switch this to a SRL.
4247  if (DAG.SignBitIsZero(N0))
4248    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
4249
4250  if (N1C) {
4251    SDValue NewSRA = visitShiftByConstant(N, N1C);
4252    if (NewSRA.getNode())
4253      return NewSRA;
4254  }
4255
4256  return SDValue();
4257}
4258
4259SDValue DAGCombiner::visitSRL(SDNode *N) {
4260  SDValue N0 = N->getOperand(0);
4261  SDValue N1 = N->getOperand(1);
4262  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4263  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4264  EVT VT = N0.getValueType();
4265  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4266
4267  // fold vector ops
4268  if (VT.isVector()) {
4269    SDValue FoldedVOp = SimplifyVBinOp(N);
4270    if (FoldedVOp.getNode()) return FoldedVOp;
4271
4272    N1C = isConstOrConstSplat(N1);
4273  }
4274
4275  // fold (srl c1, c2) -> c1 >>u c2
4276  if (N0C && N1C)
4277    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
4278  // fold (srl 0, x) -> 0
4279  if (N0C && N0C->isNullValue())
4280    return N0;
4281  // fold (srl x, c >= size(x)) -> undef
4282  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4283    return DAG.getUNDEF(VT);
4284  // fold (srl x, 0) -> x
4285  if (N1C && N1C->isNullValue())
4286    return N0;
4287  // if (srl x, c) is known to be zero, return 0
4288  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4289                                   APInt::getAllOnesValue(OpSizeInBits)))
4290    return DAG.getConstant(0, VT);
4291
4292  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4293  if (N1C && N0.getOpcode() == ISD::SRL) {
4294    if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) {
4295      uint64_t c1 = N01C->getZExtValue();
4296      uint64_t c2 = N1C->getZExtValue();
4297      if (c1 + c2 >= OpSizeInBits)
4298        return DAG.getConstant(0, VT);
4299      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4300                         DAG.getConstant(c1 + c2, N1.getValueType()));
4301    }
4302  }
4303
4304  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4305  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4306      N0.getOperand(0).getOpcode() == ISD::SRL &&
4307      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4308    uint64_t c1 =
4309      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4310    uint64_t c2 = N1C->getZExtValue();
4311    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4312    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4313    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4314    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4315    if (c1 + OpSizeInBits == InnerShiftSize) {
4316      if (c1 + c2 >= InnerShiftSize)
4317        return DAG.getConstant(0, VT);
4318      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4319                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4320                                     N0.getOperand(0)->getOperand(0),
4321                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4322    }
4323  }
4324
4325  // fold (srl (shl x, c), c) -> (and x, cst2)
4326  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) {
4327    unsigned BitSize = N0.getScalarValueSizeInBits();
4328    if (BitSize <= 64) {
4329      uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize;
4330      return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4331                         DAG.getConstant(~0ULL >> ShAmt, VT));
4332    }
4333  }
4334
4335  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4336  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4337    // Shifting in all undef bits?
4338    EVT SmallVT = N0.getOperand(0).getValueType();
4339    unsigned BitSize = SmallVT.getScalarSizeInBits();
4340    if (N1C->getZExtValue() >= BitSize)
4341      return DAG.getUNDEF(VT);
4342
4343    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4344      uint64_t ShiftAmt = N1C->getZExtValue();
4345      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4346                                       N0.getOperand(0),
4347                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4348      AddToWorkList(SmallShift.getNode());
4349      APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt);
4350      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4351                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4352                         DAG.getConstant(Mask, VT));
4353    }
4354  }
4355
4356  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4357  // bit, which is unmodified by sra.
4358  if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
4359    if (N0.getOpcode() == ISD::SRA)
4360      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4361  }
4362
4363  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4364  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4365      N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
4366    APInt KnownZero, KnownOne;
4367    DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne);
4368
4369    // If any of the input bits are KnownOne, then the input couldn't be all
4370    // zeros, thus the result of the srl will always be zero.
4371    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4372
4373    // If all of the bits input the to ctlz node are known to be zero, then
4374    // the result of the ctlz is "32" and the result of the shift is one.
4375    APInt UnknownBits = ~KnownZero;
4376    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4377
4378    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4379    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4380      // Okay, we know that only that the single bit specified by UnknownBits
4381      // could be set on input to the CTLZ node. If this bit is set, the SRL
4382      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4383      // to an SRL/XOR pair, which is likely to simplify more.
4384      unsigned ShAmt = UnknownBits.countTrailingZeros();
4385      SDValue Op = N0.getOperand(0);
4386
4387      if (ShAmt) {
4388        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4389                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4390        AddToWorkList(Op.getNode());
4391      }
4392
4393      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4394                         Op, DAG.getConstant(1, VT));
4395    }
4396  }
4397
4398  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4399  if (N1.getOpcode() == ISD::TRUNCATE &&
4400      N1.getOperand(0).getOpcode() == ISD::AND) {
4401    SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
4402    if (NewOp1.getNode())
4403      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
4404  }
4405
4406  // fold operands of srl based on knowledge that the low bits are not
4407  // demanded.
4408  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4409    return SDValue(N, 0);
4410
4411  if (N1C) {
4412    SDValue NewSRL = visitShiftByConstant(N, N1C);
4413    if (NewSRL.getNode())
4414      return NewSRL;
4415  }
4416
4417  // Attempt to convert a srl of a load into a narrower zero-extending load.
4418  SDValue NarrowLoad = ReduceLoadWidth(N);
4419  if (NarrowLoad.getNode())
4420    return NarrowLoad;
4421
4422  // Here is a common situation. We want to optimize:
4423  //
4424  //   %a = ...
4425  //   %b = and i32 %a, 2
4426  //   %c = srl i32 %b, 1
4427  //   brcond i32 %c ...
4428  //
4429  // into
4430  //
4431  //   %a = ...
4432  //   %b = and %a, 2
4433  //   %c = setcc eq %b, 0
4434  //   brcond %c ...
4435  //
4436  // However when after the source operand of SRL is optimized into AND, the SRL
4437  // itself may not be optimized further. Look for it and add the BRCOND into
4438  // the worklist.
4439  if (N->hasOneUse()) {
4440    SDNode *Use = *N->use_begin();
4441    if (Use->getOpcode() == ISD::BRCOND)
4442      AddToWorkList(Use);
4443    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4444      // Also look pass the truncate.
4445      Use = *Use->use_begin();
4446      if (Use->getOpcode() == ISD::BRCOND)
4447        AddToWorkList(Use);
4448    }
4449  }
4450
4451  return SDValue();
4452}
4453
4454SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4455  SDValue N0 = N->getOperand(0);
4456  EVT VT = N->getValueType(0);
4457
4458  // fold (ctlz c1) -> c2
4459  if (isa<ConstantSDNode>(N0))
4460    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4461  return SDValue();
4462}
4463
4464SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4465  SDValue N0 = N->getOperand(0);
4466  EVT VT = N->getValueType(0);
4467
4468  // fold (ctlz_zero_undef c1) -> c2
4469  if (isa<ConstantSDNode>(N0))
4470    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4471  return SDValue();
4472}
4473
4474SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4475  SDValue N0 = N->getOperand(0);
4476  EVT VT = N->getValueType(0);
4477
4478  // fold (cttz c1) -> c2
4479  if (isa<ConstantSDNode>(N0))
4480    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4481  return SDValue();
4482}
4483
4484SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4485  SDValue N0 = N->getOperand(0);
4486  EVT VT = N->getValueType(0);
4487
4488  // fold (cttz_zero_undef c1) -> c2
4489  if (isa<ConstantSDNode>(N0))
4490    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4491  return SDValue();
4492}
4493
4494SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4495  SDValue N0 = N->getOperand(0);
4496  EVT VT = N->getValueType(0);
4497
4498  // fold (ctpop c1) -> c2
4499  if (isa<ConstantSDNode>(N0))
4500    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4501  return SDValue();
4502}
4503
4504SDValue DAGCombiner::visitSELECT(SDNode *N) {
4505  SDValue N0 = N->getOperand(0);
4506  SDValue N1 = N->getOperand(1);
4507  SDValue N2 = N->getOperand(2);
4508  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4509  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4510  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4511  EVT VT = N->getValueType(0);
4512  EVT VT0 = N0.getValueType();
4513
4514  // fold (select C, X, X) -> X
4515  if (N1 == N2)
4516    return N1;
4517  // fold (select true, X, Y) -> X
4518  if (N0C && !N0C->isNullValue())
4519    return N1;
4520  // fold (select false, X, Y) -> Y
4521  if (N0C && N0C->isNullValue())
4522    return N2;
4523  // fold (select C, 1, X) -> (or C, X)
4524  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4525    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4526  // fold (select C, 0, 1) -> (xor C, 1)
4527  // We can't do this reliably if integer based booleans have different contents
4528  // to floating point based booleans. This is because we can't tell whether we
4529  // have an integer-based boolean or a floating-point-based boolean unless we
4530  // can find the SETCC that produced it and inspect its operands. This is
4531  // fairly easy if C is the SETCC node, but it can potentially be
4532  // undiscoverable (or not reasonably discoverable). For example, it could be
4533  // in another basic block or it could require searching a complicated
4534  // expression.
4535  if (VT.isInteger() &&
4536      (VT0 == MVT::i1 || (VT0.isInteger() &&
4537                          TLI.getBooleanContents(false, false) ==
4538                              TLI.getBooleanContents(false, true) &&
4539                          TLI.getBooleanContents(false, false) ==
4540                              TargetLowering::ZeroOrOneBooleanContent)) &&
4541      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4542    SDValue XORNode;
4543    if (VT == VT0)
4544      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4545                         N0, DAG.getConstant(1, VT0));
4546    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4547                          N0, DAG.getConstant(1, VT0));
4548    AddToWorkList(XORNode.getNode());
4549    if (VT.bitsGT(VT0))
4550      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4551    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4552  }
4553  // fold (select C, 0, X) -> (and (not C), X)
4554  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4555    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4556    AddToWorkList(NOTNode.getNode());
4557    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4558  }
4559  // fold (select C, X, 1) -> (or (not C), X)
4560  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4561    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4562    AddToWorkList(NOTNode.getNode());
4563    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4564  }
4565  // fold (select C, X, 0) -> (and C, X)
4566  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4567    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4568  // fold (select X, X, Y) -> (or X, Y)
4569  // fold (select X, 1, Y) -> (or X, Y)
4570  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4571    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4572  // fold (select X, Y, X) -> (and X, Y)
4573  // fold (select X, Y, 0) -> (and X, Y)
4574  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4575    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4576
4577  // If we can fold this based on the true/false value, do so.
4578  if (SimplifySelectOps(N, N1, N2))
4579    return SDValue(N, 0);  // Don't revisit N.
4580
4581  // fold selects based on a setcc into other things, such as min/max/abs
4582  if (N0.getOpcode() == ISD::SETCC) {
4583    if ((!LegalOperations &&
4584         TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
4585	TLI.isOperationLegal(ISD::SELECT_CC, VT))
4586      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4587                         N0.getOperand(0), N0.getOperand(1),
4588                         N1, N2, N0.getOperand(2));
4589    return SimplifySelect(SDLoc(N), N0, N1, N2);
4590  }
4591
4592  return SDValue();
4593}
4594
4595static
4596std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
4597  SDLoc DL(N);
4598  EVT LoVT, HiVT;
4599  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
4600
4601  // Split the inputs.
4602  SDValue Lo, Hi, LL, LH, RL, RH;
4603  std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
4604  std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
4605
4606  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
4607  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
4608
4609  return std::make_pair(Lo, Hi);
4610}
4611
4612// This function assumes all the vselect's arguments are CONCAT_VECTOR
4613// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
4614static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
4615  SDLoc dl(N);
4616  SDValue Cond = N->getOperand(0);
4617  SDValue LHS = N->getOperand(1);
4618  SDValue RHS = N->getOperand(2);
4619  MVT VT = N->getSimpleValueType(0);
4620  int NumElems = VT.getVectorNumElements();
4621  assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
4622         RHS.getOpcode() == ISD::CONCAT_VECTORS &&
4623         Cond.getOpcode() == ISD::BUILD_VECTOR);
4624
4625  // We're sure we have an even number of elements due to the
4626  // concat_vectors we have as arguments to vselect.
4627  // Skip BV elements until we find one that's not an UNDEF
4628  // After we find an UNDEF element, keep looping until we get to half the
4629  // length of the BV and see if all the non-undef nodes are the same.
4630  ConstantSDNode *BottomHalf = nullptr;
4631  for (int i = 0; i < NumElems / 2; ++i) {
4632    if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
4633      continue;
4634
4635    if (BottomHalf == nullptr)
4636      BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
4637    else if (Cond->getOperand(i).getNode() != BottomHalf)
4638      return SDValue();
4639  }
4640
4641  // Do the same for the second half of the BuildVector
4642  ConstantSDNode *TopHalf = nullptr;
4643  for (int i = NumElems / 2; i < NumElems; ++i) {
4644    if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
4645      continue;
4646
4647    if (TopHalf == nullptr)
4648      TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
4649    else if (Cond->getOperand(i).getNode() != TopHalf)
4650      return SDValue();
4651  }
4652
4653  assert(TopHalf && BottomHalf &&
4654         "One half of the selector was all UNDEFs and the other was all the "
4655         "same value. This should have been addressed before this function.");
4656  return DAG.getNode(
4657      ISD::CONCAT_VECTORS, dl, VT,
4658      BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
4659      TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
4660}
4661
4662SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4663  SDValue N0 = N->getOperand(0);
4664  SDValue N1 = N->getOperand(1);
4665  SDValue N2 = N->getOperand(2);
4666  SDLoc DL(N);
4667
4668  // Canonicalize integer abs.
4669  // vselect (setg[te] X,  0),  X, -X ->
4670  // vselect (setgt    X, -1),  X, -X ->
4671  // vselect (setl[te] X,  0), -X,  X ->
4672  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4673  if (N0.getOpcode() == ISD::SETCC) {
4674    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4675    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4676    bool isAbs = false;
4677    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4678
4679    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4680         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4681        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4682      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4683    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4684             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4685      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4686
4687    if (isAbs) {
4688      EVT VT = LHS.getValueType();
4689      SDValue Shift = DAG.getNode(
4690          ISD::SRA, DL, VT, LHS,
4691          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4692      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4693      AddToWorkList(Shift.getNode());
4694      AddToWorkList(Add.getNode());
4695      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4696    }
4697  }
4698
4699  // If the VSELECT result requires splitting and the mask is provided by a
4700  // SETCC, then split both nodes and its operands before legalization. This
4701  // prevents the type legalizer from unrolling SETCC into scalar comparisons
4702  // and enables future optimizations (e.g. min/max pattern matching on X86).
4703  if (N0.getOpcode() == ISD::SETCC) {
4704    EVT VT = N->getValueType(0);
4705
4706    // Check if any splitting is required.
4707    if (TLI.getTypeAction(*DAG.getContext(), VT) !=
4708        TargetLowering::TypeSplitVector)
4709      return SDValue();
4710
4711    SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
4712    std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
4713    std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
4714    std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
4715
4716    Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
4717    Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
4718
4719    // Add the new VSELECT nodes to the work list in case they need to be split
4720    // again.
4721    AddToWorkList(Lo.getNode());
4722    AddToWorkList(Hi.getNode());
4723
4724    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
4725  }
4726
4727  // Fold (vselect (build_vector all_ones), N1, N2) -> N1
4728  if (ISD::isBuildVectorAllOnes(N0.getNode()))
4729    return N1;
4730  // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
4731  if (ISD::isBuildVectorAllZeros(N0.getNode()))
4732    return N2;
4733
4734  // The ConvertSelectToConcatVector function is assuming both the above
4735  // checks for (vselect (build_vector all{ones,zeros) ...) have been made
4736  // and addressed.
4737  if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
4738      N2.getOpcode() == ISD::CONCAT_VECTORS &&
4739      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
4740    SDValue CV = ConvertSelectToConcatVector(N, DAG);
4741    if (CV.getNode())
4742      return CV;
4743  }
4744
4745  return SDValue();
4746}
4747
4748SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4749  SDValue N0 = N->getOperand(0);
4750  SDValue N1 = N->getOperand(1);
4751  SDValue N2 = N->getOperand(2);
4752  SDValue N3 = N->getOperand(3);
4753  SDValue N4 = N->getOperand(4);
4754  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4755
4756  // fold select_cc lhs, rhs, x, x, cc -> x
4757  if (N2 == N3)
4758    return N2;
4759
4760  // Determine if the condition we're dealing with is constant
4761  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4762                              N0, N1, CC, SDLoc(N), false);
4763  if (SCC.getNode()) {
4764    AddToWorkList(SCC.getNode());
4765
4766    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4767      if (!SCCC->isNullValue())
4768        return N2;    // cond always true -> true val
4769      else
4770        return N3;    // cond always false -> false val
4771    }
4772
4773    // Fold to a simpler select_cc
4774    if (SCC.getOpcode() == ISD::SETCC)
4775      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4776                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4777                         SCC.getOperand(2));
4778  }
4779
4780  // If we can fold this based on the true/false value, do so.
4781  if (SimplifySelectOps(N, N2, N3))
4782    return SDValue(N, 0);  // Don't revisit N.
4783
4784  // fold select_cc into other things, such as min/max/abs
4785  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4786}
4787
4788SDValue DAGCombiner::visitSETCC(SDNode *N) {
4789  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4790                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4791                       SDLoc(N));
4792}
4793
4794// tryToFoldExtendOfConstant - Try to fold a sext/zext/aext
4795// dag node into a ConstantSDNode or a build_vector of constants.
4796// This function is called by the DAGCombiner when visiting sext/zext/aext
4797// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
4798// Vector extends are not folded if operations are legal; this is to
4799// avoid introducing illegal build_vector dag nodes.
4800static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
4801                                         SelectionDAG &DAG, bool LegalTypes,
4802                                         bool LegalOperations) {
4803  unsigned Opcode = N->getOpcode();
4804  SDValue N0 = N->getOperand(0);
4805  EVT VT = N->getValueType(0);
4806
4807  assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
4808         Opcode == ISD::ANY_EXTEND) && "Expected EXTEND dag node in input!");
4809
4810  // fold (sext c1) -> c1
4811  // fold (zext c1) -> c1
4812  // fold (aext c1) -> c1
4813  if (isa<ConstantSDNode>(N0))
4814    return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
4815
4816  // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
4817  // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
4818  // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
4819  EVT SVT = VT.getScalarType();
4820  if (!(VT.isVector() &&
4821      (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
4822      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
4823    return nullptr;
4824
4825  // We can fold this node into a build_vector.
4826  unsigned VTBits = SVT.getSizeInBits();
4827  unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits();
4828  unsigned ShAmt = VTBits - EVTBits;
4829  SmallVector<SDValue, 8> Elts;
4830  unsigned NumElts = N0->getNumOperands();
4831  SDLoc DL(N);
4832
4833  for (unsigned i=0; i != NumElts; ++i) {
4834    SDValue Op = N0->getOperand(i);
4835    if (Op->getOpcode() == ISD::UNDEF) {
4836      Elts.push_back(DAG.getUNDEF(SVT));
4837      continue;
4838    }
4839
4840    ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op);
4841    const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue());
4842    if (Opcode == ISD::SIGN_EXTEND)
4843      Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(),
4844                                     SVT));
4845    else
4846      Elts.push_back(DAG.getConstant(C.shl(ShAmt).lshr(ShAmt).getZExtValue(),
4847                                     SVT));
4848  }
4849
4850  return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode();
4851}
4852
4853// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4854// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4855// transformation. Returns true if extension are possible and the above
4856// mentioned transformation is profitable.
4857static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4858                                    unsigned ExtOpc,
4859                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4860                                    const TargetLowering &TLI) {
4861  bool HasCopyToRegUses = false;
4862  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4863  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4864                            UE = N0.getNode()->use_end();
4865       UI != UE; ++UI) {
4866    SDNode *User = *UI;
4867    if (User == N)
4868      continue;
4869    if (UI.getUse().getResNo() != N0.getResNo())
4870      continue;
4871    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4872    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4873      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4874      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4875        // Sign bits will be lost after a zext.
4876        return false;
4877      bool Add = false;
4878      for (unsigned i = 0; i != 2; ++i) {
4879        SDValue UseOp = User->getOperand(i);
4880        if (UseOp == N0)
4881          continue;
4882        if (!isa<ConstantSDNode>(UseOp))
4883          return false;
4884        Add = true;
4885      }
4886      if (Add)
4887        ExtendNodes.push_back(User);
4888      continue;
4889    }
4890    // If truncates aren't free and there are users we can't
4891    // extend, it isn't worthwhile.
4892    if (!isTruncFree)
4893      return false;
4894    // Remember if this value is live-out.
4895    if (User->getOpcode() == ISD::CopyToReg)
4896      HasCopyToRegUses = true;
4897  }
4898
4899  if (HasCopyToRegUses) {
4900    bool BothLiveOut = false;
4901    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4902         UI != UE; ++UI) {
4903      SDUse &Use = UI.getUse();
4904      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4905        BothLiveOut = true;
4906        break;
4907      }
4908    }
4909    if (BothLiveOut)
4910      // Both unextended and extended values are live out. There had better be
4911      // a good reason for the transformation.
4912      return ExtendNodes.size();
4913  }
4914  return true;
4915}
4916
4917void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4918                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4919                                  ISD::NodeType ExtType) {
4920  // Extend SetCC uses if necessary.
4921  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4922    SDNode *SetCC = SetCCs[i];
4923    SmallVector<SDValue, 4> Ops;
4924
4925    for (unsigned j = 0; j != 2; ++j) {
4926      SDValue SOp = SetCC->getOperand(j);
4927      if (SOp == Trunc)
4928        Ops.push_back(ExtLoad);
4929      else
4930        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4931    }
4932
4933    Ops.push_back(SetCC->getOperand(2));
4934    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
4935  }
4936}
4937
4938SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4939  SDValue N0 = N->getOperand(0);
4940  EVT VT = N->getValueType(0);
4941
4942  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
4943                                              LegalOperations))
4944    return SDValue(Res, 0);
4945
4946  // fold (sext (sext x)) -> (sext x)
4947  // fold (sext (aext x)) -> (sext x)
4948  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4949    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4950                       N0.getOperand(0));
4951
4952  if (N0.getOpcode() == ISD::TRUNCATE) {
4953    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4954    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4955    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4956    if (NarrowLoad.getNode()) {
4957      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4958      if (NarrowLoad.getNode() != N0.getNode()) {
4959        CombineTo(N0.getNode(), NarrowLoad);
4960        // CombineTo deleted the truncate, if needed, but not what's under it.
4961        AddToWorkList(oye);
4962      }
4963      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4964    }
4965
4966    // See if the value being truncated is already sign extended.  If so, just
4967    // eliminate the trunc/sext pair.
4968    SDValue Op = N0.getOperand(0);
4969    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4970    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4971    unsigned DestBits = VT.getScalarType().getSizeInBits();
4972    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4973
4974    if (OpBits == DestBits) {
4975      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4976      // bits, it is already ready.
4977      if (NumSignBits > DestBits-MidBits)
4978        return Op;
4979    } else if (OpBits < DestBits) {
4980      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4981      // bits, just sext from i32.
4982      if (NumSignBits > OpBits-MidBits)
4983        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4984    } else {
4985      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4986      // bits, just truncate to i32.
4987      if (NumSignBits > OpBits-MidBits)
4988        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4989    }
4990
4991    // fold (sext (truncate x)) -> (sextinreg x).
4992    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4993                                                 N0.getValueType())) {
4994      if (OpBits < DestBits)
4995        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4996      else if (OpBits > DestBits)
4997        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4998      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4999                         DAG.getValueType(N0.getValueType()));
5000    }
5001  }
5002
5003  // fold (sext (load x)) -> (sext (truncate (sextload x)))
5004  // None of the supported targets knows how to perform load and sign extend
5005  // on vectors in one instruction.  We only perform this transformation on
5006  // scalars.
5007  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5008      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5009      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5010       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
5011    bool DoXform = true;
5012    SmallVector<SDNode*, 4> SetCCs;
5013    if (!N0.hasOneUse())
5014      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
5015    if (DoXform) {
5016      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5017      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5018                                       LN0->getChain(),
5019                                       LN0->getBasePtr(), N0.getValueType(),
5020                                       LN0->getMemOperand());
5021      CombineTo(N, ExtLoad);
5022      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5023                                  N0.getValueType(), ExtLoad);
5024      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5025      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5026                      ISD::SIGN_EXTEND);
5027      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5028    }
5029  }
5030
5031  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
5032  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
5033  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
5034      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
5035    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5036    EVT MemVT = LN0->getMemoryVT();
5037    if ((!LegalOperations && !LN0->isVolatile()) ||
5038        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
5039      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5040                                       LN0->getChain(),
5041                                       LN0->getBasePtr(), MemVT,
5042                                       LN0->getMemOperand());
5043      CombineTo(N, ExtLoad);
5044      CombineTo(N0.getNode(),
5045                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5046                            N0.getValueType(), ExtLoad),
5047                ExtLoad.getValue(1));
5048      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5049    }
5050  }
5051
5052  // fold (sext (and/or/xor (load x), cst)) ->
5053  //      (and/or/xor (sextload x), (sext cst))
5054  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
5055       N0.getOpcode() == ISD::XOR) &&
5056      isa<LoadSDNode>(N0.getOperand(0)) &&
5057      N0.getOperand(1).getOpcode() == ISD::Constant &&
5058      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
5059      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
5060    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
5061    if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
5062      bool DoXform = true;
5063      SmallVector<SDNode*, 4> SetCCs;
5064      if (!N0.hasOneUse())
5065        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
5066                                          SetCCs, TLI);
5067      if (DoXform) {
5068        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
5069                                         LN0->getChain(), LN0->getBasePtr(),
5070                                         LN0->getMemoryVT(),
5071                                         LN0->getMemOperand());
5072        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5073        Mask = Mask.sext(VT.getSizeInBits());
5074        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5075                                  ExtLoad, DAG.getConstant(Mask, VT));
5076        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
5077                                    SDLoc(N0.getOperand(0)),
5078                                    N0.getOperand(0).getValueType(), ExtLoad);
5079        CombineTo(N, And);
5080        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
5081        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5082                        ISD::SIGN_EXTEND);
5083        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5084      }
5085    }
5086  }
5087
5088  if (N0.getOpcode() == ISD::SETCC) {
5089    EVT N0VT = N0.getOperand(0).getValueType();
5090    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
5091    // Only do this before legalize for now.
5092    if (VT.isVector() && !LegalOperations &&
5093        TLI.getBooleanContents(N0VT) ==
5094            TargetLowering::ZeroOrNegativeOneBooleanContent) {
5095      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
5096      // of the same size as the compared operands. Only optimize sext(setcc())
5097      // if this is the case.
5098      EVT SVT = getSetCCResultType(N0VT);
5099
5100      // We know that the # elements of the results is the same as the
5101      // # elements of the compare (and the # elements of the compare result
5102      // for that matter).  Check to see that they are the same size.  If so,
5103      // we know that the element size of the sext'd result matches the
5104      // element size of the compare operands.
5105      if (VT.getSizeInBits() == SVT.getSizeInBits())
5106        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5107                             N0.getOperand(1),
5108                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5109
5110      // If the desired elements are smaller or larger than the source
5111      // elements we can use a matching integer vector type and then
5112      // truncate/sign extend
5113      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
5114      if (SVT == MatchingVectorType) {
5115        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
5116                               N0.getOperand(0), N0.getOperand(1),
5117                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
5118        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5119      }
5120    }
5121
5122    // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0)
5123    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
5124    SDValue NegOne =
5125      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
5126    SDValue SCC =
5127      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5128                       NegOne, DAG.getConstant(0, VT),
5129                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5130    if (SCC.getNode()) return SCC;
5131
5132    if (!VT.isVector()) {
5133      EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType());
5134      if (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, SetCCVT)) {
5135        SDLoc DL(N);
5136        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5137        SDValue SetCC = DAG.getSetCC(DL,
5138                                     SetCCVT,
5139                                     N0.getOperand(0), N0.getOperand(1), CC);
5140        EVT SelectVT = getSetCCResultType(VT);
5141        return DAG.getSelect(DL, VT,
5142                             DAG.getSExtOrTrunc(SetCC, DL, SelectVT),
5143                             NegOne, DAG.getConstant(0, VT));
5144
5145      }
5146    }
5147  }
5148
5149  // fold (sext x) -> (zext x) if the sign bit is known zero.
5150  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
5151      DAG.SignBitIsZero(N0))
5152    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
5153
5154  return SDValue();
5155}
5156
5157// isTruncateOf - If N is a truncate of some other value, return true, record
5158// the value being truncated in Op and which of Op's bits are zero in KnownZero.
5159// This function computes KnownZero to avoid a duplicated call to
5160// computeKnownBits in the caller.
5161static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
5162                         APInt &KnownZero) {
5163  APInt KnownOne;
5164  if (N->getOpcode() == ISD::TRUNCATE) {
5165    Op = N->getOperand(0);
5166    DAG.computeKnownBits(Op, KnownZero, KnownOne);
5167    return true;
5168  }
5169
5170  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
5171      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
5172    return false;
5173
5174  SDValue Op0 = N->getOperand(0);
5175  SDValue Op1 = N->getOperand(1);
5176  assert(Op0.getValueType() == Op1.getValueType());
5177
5178  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
5179  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
5180  if (COp0 && COp0->isNullValue())
5181    Op = Op1;
5182  else if (COp1 && COp1->isNullValue())
5183    Op = Op0;
5184  else
5185    return false;
5186
5187  DAG.computeKnownBits(Op, KnownZero, KnownOne);
5188
5189  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
5190    return false;
5191
5192  return true;
5193}
5194
5195SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
5196  SDValue N0 = N->getOperand(0);
5197  EVT VT = N->getValueType(0);
5198
5199  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
5200                                              LegalOperations))
5201    return SDValue(Res, 0);
5202
5203  // fold (zext (zext x)) -> (zext x)
5204  // fold (zext (aext x)) -> (zext x)
5205  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
5206    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
5207                       N0.getOperand(0));
5208
5209  // fold (zext (truncate x)) -> (zext x) or
5210  //      (zext (truncate x)) -> (truncate x)
5211  // This is valid when the truncated bits of x are already zero.
5212  // FIXME: We should extend this to work for vectors too.
5213  SDValue Op;
5214  APInt KnownZero;
5215  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
5216    APInt TruncatedBits =
5217      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
5218      APInt(Op.getValueSizeInBits(), 0) :
5219      APInt::getBitsSet(Op.getValueSizeInBits(),
5220                        N0.getValueSizeInBits(),
5221                        std::min(Op.getValueSizeInBits(),
5222                                 VT.getSizeInBits()));
5223    if (TruncatedBits == (KnownZero & TruncatedBits)) {
5224      if (VT.bitsGT(Op.getValueType()))
5225        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
5226      if (VT.bitsLT(Op.getValueType()))
5227        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
5228
5229      return Op;
5230    }
5231  }
5232
5233  // fold (zext (truncate (load x))) -> (zext (smaller load x))
5234  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
5235  if (N0.getOpcode() == ISD::TRUNCATE) {
5236    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5237    if (NarrowLoad.getNode()) {
5238      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5239      if (NarrowLoad.getNode() != N0.getNode()) {
5240        CombineTo(N0.getNode(), NarrowLoad);
5241        // CombineTo deleted the truncate, if needed, but not what's under it.
5242        AddToWorkList(oye);
5243      }
5244      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5245    }
5246  }
5247
5248  // fold (zext (truncate x)) -> (and x, mask)
5249  if (N0.getOpcode() == ISD::TRUNCATE &&
5250      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
5251
5252    // fold (zext (truncate (load x))) -> (zext (smaller load x))
5253    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
5254    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5255    if (NarrowLoad.getNode()) {
5256      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5257      if (NarrowLoad.getNode() != N0.getNode()) {
5258        CombineTo(N0.getNode(), NarrowLoad);
5259        // CombineTo deleted the truncate, if needed, but not what's under it.
5260        AddToWorkList(oye);
5261      }
5262      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5263    }
5264
5265    SDValue Op = N0.getOperand(0);
5266    if (Op.getValueType().bitsLT(VT)) {
5267      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
5268      AddToWorkList(Op.getNode());
5269    } else if (Op.getValueType().bitsGT(VT)) {
5270      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
5271      AddToWorkList(Op.getNode());
5272    }
5273    return DAG.getZeroExtendInReg(Op, SDLoc(N),
5274                                  N0.getValueType().getScalarType());
5275  }
5276
5277  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
5278  // if either of the casts is not free.
5279  if (N0.getOpcode() == ISD::AND &&
5280      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5281      N0.getOperand(1).getOpcode() == ISD::Constant &&
5282      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5283                           N0.getValueType()) ||
5284       !TLI.isZExtFree(N0.getValueType(), VT))) {
5285    SDValue X = N0.getOperand(0).getOperand(0);
5286    if (X.getValueType().bitsLT(VT)) {
5287      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
5288    } else if (X.getValueType().bitsGT(VT)) {
5289      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5290    }
5291    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5292    Mask = Mask.zext(VT.getSizeInBits());
5293    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5294                       X, DAG.getConstant(Mask, VT));
5295  }
5296
5297  // fold (zext (load x)) -> (zext (truncate (zextload x)))
5298  // None of the supported targets knows how to perform load and vector_zext
5299  // on vectors in one instruction.  We only perform this transformation on
5300  // scalars.
5301  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5302      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5303      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5304       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
5305    bool DoXform = true;
5306    SmallVector<SDNode*, 4> SetCCs;
5307    if (!N0.hasOneUse())
5308      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
5309    if (DoXform) {
5310      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5311      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
5312                                       LN0->getChain(),
5313                                       LN0->getBasePtr(), N0.getValueType(),
5314                                       LN0->getMemOperand());
5315      CombineTo(N, ExtLoad);
5316      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5317                                  N0.getValueType(), ExtLoad);
5318      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5319
5320      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5321                      ISD::ZERO_EXTEND);
5322      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5323    }
5324  }
5325
5326  // fold (zext (and/or/xor (load x), cst)) ->
5327  //      (and/or/xor (zextload x), (zext cst))
5328  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
5329       N0.getOpcode() == ISD::XOR) &&
5330      isa<LoadSDNode>(N0.getOperand(0)) &&
5331      N0.getOperand(1).getOpcode() == ISD::Constant &&
5332      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
5333      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
5334    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
5335    if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
5336      bool DoXform = true;
5337      SmallVector<SDNode*, 4> SetCCs;
5338      if (!N0.hasOneUse())
5339        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
5340                                          SetCCs, TLI);
5341      if (DoXform) {
5342        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
5343                                         LN0->getChain(), LN0->getBasePtr(),
5344                                         LN0->getMemoryVT(),
5345                                         LN0->getMemOperand());
5346        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5347        Mask = Mask.zext(VT.getSizeInBits());
5348        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5349                                  ExtLoad, DAG.getConstant(Mask, VT));
5350        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
5351                                    SDLoc(N0.getOperand(0)),
5352                                    N0.getOperand(0).getValueType(), ExtLoad);
5353        CombineTo(N, And);
5354        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
5355        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5356                        ISD::ZERO_EXTEND);
5357        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5358      }
5359    }
5360  }
5361
5362  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
5363  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
5364  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
5365      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
5366    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5367    EVT MemVT = LN0->getMemoryVT();
5368    if ((!LegalOperations && !LN0->isVolatile()) ||
5369        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
5370      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
5371                                       LN0->getChain(),
5372                                       LN0->getBasePtr(), MemVT,
5373                                       LN0->getMemOperand());
5374      CombineTo(N, ExtLoad);
5375      CombineTo(N0.getNode(),
5376                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
5377                            ExtLoad),
5378                ExtLoad.getValue(1));
5379      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5380    }
5381  }
5382
5383  if (N0.getOpcode() == ISD::SETCC) {
5384    if (!LegalOperations && VT.isVector() &&
5385        N0.getValueType().getVectorElementType() == MVT::i1) {
5386      EVT N0VT = N0.getOperand(0).getValueType();
5387      if (getSetCCResultType(N0VT) == N0.getValueType())
5388        return SDValue();
5389
5390      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
5391      // Only do this before legalize for now.
5392      EVT EltVT = VT.getVectorElementType();
5393      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
5394                                    DAG.getConstant(1, EltVT));
5395      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5396        // We know that the # elements of the results is the same as the
5397        // # elements of the compare (and the # elements of the compare result
5398        // for that matter).  Check to see that they are the same size.  If so,
5399        // we know that the element size of the sext'd result matches the
5400        // element size of the compare operands.
5401        return DAG.getNode(ISD::AND, SDLoc(N), VT,
5402                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5403                                         N0.getOperand(1),
5404                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
5405                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
5406                                       OneOps));
5407
5408      // If the desired elements are smaller or larger than the source
5409      // elements we can use a matching integer vector type and then
5410      // truncate/sign extend
5411      EVT MatchingElementType =
5412        EVT::getIntegerVT(*DAG.getContext(),
5413                          N0VT.getScalarType().getSizeInBits());
5414      EVT MatchingVectorType =
5415        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5416                         N0VT.getVectorNumElements());
5417      SDValue VsetCC =
5418        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5419                      N0.getOperand(1),
5420                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
5421      return DAG.getNode(ISD::AND, SDLoc(N), VT,
5422                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
5423                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, OneOps));
5424    }
5425
5426    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5427    SDValue SCC =
5428      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5429                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5430                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5431    if (SCC.getNode()) return SCC;
5432  }
5433
5434  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
5435  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
5436      isa<ConstantSDNode>(N0.getOperand(1)) &&
5437      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
5438      N0.hasOneUse()) {
5439    SDValue ShAmt = N0.getOperand(1);
5440    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5441    if (N0.getOpcode() == ISD::SHL) {
5442      SDValue InnerZExt = N0.getOperand(0);
5443      // If the original shl may be shifting out bits, do not perform this
5444      // transformation.
5445      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
5446        InnerZExt.getOperand(0).getValueType().getSizeInBits();
5447      if (ShAmtVal > KnownZeroBits)
5448        return SDValue();
5449    }
5450
5451    SDLoc DL(N);
5452
5453    // Ensure that the shift amount is wide enough for the shifted value.
5454    if (VT.getSizeInBits() >= 256)
5455      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
5456
5457    return DAG.getNode(N0.getOpcode(), DL, VT,
5458                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5459                       ShAmt);
5460  }
5461
5462  return SDValue();
5463}
5464
5465SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5466  SDValue N0 = N->getOperand(0);
5467  EVT VT = N->getValueType(0);
5468
5469  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
5470                                              LegalOperations))
5471    return SDValue(Res, 0);
5472
5473  // fold (aext (aext x)) -> (aext x)
5474  // fold (aext (zext x)) -> (zext x)
5475  // fold (aext (sext x)) -> (sext x)
5476  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5477      N0.getOpcode() == ISD::ZERO_EXTEND ||
5478      N0.getOpcode() == ISD::SIGN_EXTEND)
5479    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5480
5481  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5482  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5483  if (N0.getOpcode() == ISD::TRUNCATE) {
5484    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5485    if (NarrowLoad.getNode()) {
5486      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5487      if (NarrowLoad.getNode() != N0.getNode()) {
5488        CombineTo(N0.getNode(), NarrowLoad);
5489        // CombineTo deleted the truncate, if needed, but not what's under it.
5490        AddToWorkList(oye);
5491      }
5492      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5493    }
5494  }
5495
5496  // fold (aext (truncate x))
5497  if (N0.getOpcode() == ISD::TRUNCATE) {
5498    SDValue TruncOp = N0.getOperand(0);
5499    if (TruncOp.getValueType() == VT)
5500      return TruncOp; // x iff x size == zext size.
5501    if (TruncOp.getValueType().bitsGT(VT))
5502      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5503    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5504  }
5505
5506  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5507  // if the trunc is not free.
5508  if (N0.getOpcode() == ISD::AND &&
5509      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5510      N0.getOperand(1).getOpcode() == ISD::Constant &&
5511      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5512                          N0.getValueType())) {
5513    SDValue X = N0.getOperand(0).getOperand(0);
5514    if (X.getValueType().bitsLT(VT)) {
5515      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5516    } else if (X.getValueType().bitsGT(VT)) {
5517      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5518    }
5519    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5520    Mask = Mask.zext(VT.getSizeInBits());
5521    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5522                       X, DAG.getConstant(Mask, VT));
5523  }
5524
5525  // fold (aext (load x)) -> (aext (truncate (extload x)))
5526  // None of the supported targets knows how to perform load and any_ext
5527  // on vectors in one instruction.  We only perform this transformation on
5528  // scalars.
5529  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5530      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5531      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5532       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5533    bool DoXform = true;
5534    SmallVector<SDNode*, 4> SetCCs;
5535    if (!N0.hasOneUse())
5536      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5537    if (DoXform) {
5538      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5539      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5540                                       LN0->getChain(),
5541                                       LN0->getBasePtr(), N0.getValueType(),
5542                                       LN0->getMemOperand());
5543      CombineTo(N, ExtLoad);
5544      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5545                                  N0.getValueType(), ExtLoad);
5546      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5547      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5548                      ISD::ANY_EXTEND);
5549      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5550    }
5551  }
5552
5553  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5554  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5555  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5556  if (N0.getOpcode() == ISD::LOAD &&
5557      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5558      N0.hasOneUse()) {
5559    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5560    ISD::LoadExtType ExtType = LN0->getExtensionType();
5561    EVT MemVT = LN0->getMemoryVT();
5562    if (!LegalOperations || TLI.isLoadExtLegal(ExtType, MemVT)) {
5563      SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
5564                                       VT, LN0->getChain(), LN0->getBasePtr(),
5565                                       MemVT, LN0->getMemOperand());
5566      CombineTo(N, ExtLoad);
5567      CombineTo(N0.getNode(),
5568                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5569                            N0.getValueType(), ExtLoad),
5570                ExtLoad.getValue(1));
5571      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5572    }
5573  }
5574
5575  if (N0.getOpcode() == ISD::SETCC) {
5576    // For vectors:
5577    // aext(setcc) -> vsetcc
5578    // aext(setcc) -> truncate(vsetcc)
5579    // aext(setcc) -> aext(vsetcc)
5580    // Only do this before legalize for now.
5581    if (VT.isVector() && !LegalOperations) {
5582      EVT N0VT = N0.getOperand(0).getValueType();
5583        // We know that the # elements of the results is the same as the
5584        // # elements of the compare (and the # elements of the compare result
5585        // for that matter).  Check to see that they are the same size.  If so,
5586        // we know that the element size of the sext'd result matches the
5587        // element size of the compare operands.
5588      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5589        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5590                             N0.getOperand(1),
5591                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5592      // If the desired elements are smaller or larger than the source
5593      // elements we can use a matching integer vector type and then
5594      // truncate/any extend
5595      else {
5596        EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
5597        SDValue VsetCC =
5598          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5599                        N0.getOperand(1),
5600                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5601        return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
5602      }
5603    }
5604
5605    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5606    SDValue SCC =
5607      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5608                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5609                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5610    if (SCC.getNode())
5611      return SCC;
5612  }
5613
5614  return SDValue();
5615}
5616
5617/// GetDemandedBits - See if the specified operand can be simplified with the
5618/// knowledge that only the bits specified by Mask are used.  If so, return the
5619/// simpler operand, otherwise return a null SDValue.
5620SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5621  switch (V.getOpcode()) {
5622  default: break;
5623  case ISD::Constant: {
5624    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5625    assert(CV && "Const value should be ConstSDNode.");
5626    const APInt &CVal = CV->getAPIntValue();
5627    APInt NewVal = CVal & Mask;
5628    if (NewVal != CVal)
5629      return DAG.getConstant(NewVal, V.getValueType());
5630    break;
5631  }
5632  case ISD::OR:
5633  case ISD::XOR:
5634    // If the LHS or RHS don't contribute bits to the or, drop them.
5635    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5636      return V.getOperand(1);
5637    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5638      return V.getOperand(0);
5639    break;
5640  case ISD::SRL:
5641    // Only look at single-use SRLs.
5642    if (!V.getNode()->hasOneUse())
5643      break;
5644    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5645      // See if we can recursively simplify the LHS.
5646      unsigned Amt = RHSC->getZExtValue();
5647
5648      // Watch out for shift count overflow though.
5649      if (Amt >= Mask.getBitWidth()) break;
5650      APInt NewMask = Mask << Amt;
5651      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5652      if (SimplifyLHS.getNode())
5653        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5654                           SimplifyLHS, V.getOperand(1));
5655    }
5656  }
5657  return SDValue();
5658}
5659
5660/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5661/// bits and then truncated to a narrower type and where N is a multiple
5662/// of number of bits of the narrower type, transform it to a narrower load
5663/// from address + N / num of bits of new type. If the result is to be
5664/// extended, also fold the extension to form a extending load.
5665SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5666  unsigned Opc = N->getOpcode();
5667
5668  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5669  SDValue N0 = N->getOperand(0);
5670  EVT VT = N->getValueType(0);
5671  EVT ExtVT = VT;
5672
5673  // This transformation isn't valid for vector loads.
5674  if (VT.isVector())
5675    return SDValue();
5676
5677  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5678  // extended to VT.
5679  if (Opc == ISD::SIGN_EXTEND_INREG) {
5680    ExtType = ISD::SEXTLOAD;
5681    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5682  } else if (Opc == ISD::SRL) {
5683    // Another special-case: SRL is basically zero-extending a narrower value.
5684    ExtType = ISD::ZEXTLOAD;
5685    N0 = SDValue(N, 0);
5686    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5687    if (!N01) return SDValue();
5688    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5689                              VT.getSizeInBits() - N01->getZExtValue());
5690  }
5691  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5692    return SDValue();
5693
5694  unsigned EVTBits = ExtVT.getSizeInBits();
5695
5696  // Do not generate loads of non-round integer types since these can
5697  // be expensive (and would be wrong if the type is not byte sized).
5698  if (!ExtVT.isRound())
5699    return SDValue();
5700
5701  unsigned ShAmt = 0;
5702  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5703    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5704      ShAmt = N01->getZExtValue();
5705      // Is the shift amount a multiple of size of VT?
5706      if ((ShAmt & (EVTBits-1)) == 0) {
5707        N0 = N0.getOperand(0);
5708        // Is the load width a multiple of size of VT?
5709        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5710          return SDValue();
5711      }
5712
5713      // At this point, we must have a load or else we can't do the transform.
5714      if (!isa<LoadSDNode>(N0)) return SDValue();
5715
5716      // Because a SRL must be assumed to *need* to zero-extend the high bits
5717      // (as opposed to anyext the high bits), we can't combine the zextload
5718      // lowering of SRL and an sextload.
5719      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5720        return SDValue();
5721
5722      // If the shift amount is larger than the input type then we're not
5723      // accessing any of the loaded bytes.  If the load was a zextload/extload
5724      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5725      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5726        return SDValue();
5727    }
5728  }
5729
5730  // If the load is shifted left (and the result isn't shifted back right),
5731  // we can fold the truncate through the shift.
5732  unsigned ShLeftAmt = 0;
5733  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5734      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5735    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5736      ShLeftAmt = N01->getZExtValue();
5737      N0 = N0.getOperand(0);
5738    }
5739  }
5740
5741  // If we haven't found a load, we can't narrow it.  Don't transform one with
5742  // multiple uses, this would require adding a new load.
5743  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5744    return SDValue();
5745
5746  // Don't change the width of a volatile load.
5747  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5748  if (LN0->isVolatile())
5749    return SDValue();
5750
5751  // Verify that we are actually reducing a load width here.
5752  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5753    return SDValue();
5754
5755  // For the transform to be legal, the load must produce only two values
5756  // (the value loaded and the chain).  Don't transform a pre-increment
5757  // load, for example, which produces an extra value.  Otherwise the
5758  // transformation is not equivalent, and the downstream logic to replace
5759  // uses gets things wrong.
5760  if (LN0->getNumValues() > 2)
5761    return SDValue();
5762
5763  // If the load that we're shrinking is an extload and we're not just
5764  // discarding the extension we can't simply shrink the load. Bail.
5765  // TODO: It would be possible to merge the extensions in some cases.
5766  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5767      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5768    return SDValue();
5769
5770  EVT PtrType = N0.getOperand(1).getValueType();
5771
5772  if (PtrType == MVT::Untyped || PtrType.isExtended())
5773    // It's not possible to generate a constant of extended or untyped type.
5774    return SDValue();
5775
5776  // For big endian targets, we need to adjust the offset to the pointer to
5777  // load the correct bytes.
5778  if (TLI.isBigEndian()) {
5779    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5780    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5781    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5782  }
5783
5784  uint64_t PtrOff = ShAmt / 8;
5785  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5786  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5787                               PtrType, LN0->getBasePtr(),
5788                               DAG.getConstant(PtrOff, PtrType));
5789  AddToWorkList(NewPtr.getNode());
5790
5791  SDValue Load;
5792  if (ExtType == ISD::NON_EXTLOAD)
5793    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5794                        LN0->getPointerInfo().getWithOffset(PtrOff),
5795                        LN0->isVolatile(), LN0->isNonTemporal(),
5796                        LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
5797  else
5798    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5799                          LN0->getPointerInfo().getWithOffset(PtrOff),
5800                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5801                          NewAlign, LN0->getTBAAInfo());
5802
5803  // Replace the old load's chain with the new load's chain.
5804  WorkListRemover DeadNodes(*this);
5805  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5806
5807  // Shift the result left, if we've swallowed a left shift.
5808  SDValue Result = Load;
5809  if (ShLeftAmt != 0) {
5810    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5811    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5812      ShImmTy = VT;
5813    // If the shift amount is as large as the result size (but, presumably,
5814    // no larger than the source) then the useful bits of the result are
5815    // zero; we can't simply return the shortened shift, because the result
5816    // of that operation is undefined.
5817    if (ShLeftAmt >= VT.getSizeInBits())
5818      Result = DAG.getConstant(0, VT);
5819    else
5820      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5821                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5822  }
5823
5824  // Return the new loaded value.
5825  return Result;
5826}
5827
5828SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5829  SDValue N0 = N->getOperand(0);
5830  SDValue N1 = N->getOperand(1);
5831  EVT VT = N->getValueType(0);
5832  EVT EVT = cast<VTSDNode>(N1)->getVT();
5833  unsigned VTBits = VT.getScalarType().getSizeInBits();
5834  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5835
5836  // fold (sext_in_reg c1) -> c1
5837  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5838    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5839
5840  // If the input is already sign extended, just drop the extension.
5841  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5842    return N0;
5843
5844  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5845  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5846      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5847    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5848                       N0.getOperand(0), N1);
5849
5850  // fold (sext_in_reg (sext x)) -> (sext x)
5851  // fold (sext_in_reg (aext x)) -> (sext x)
5852  // if x is small enough.
5853  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5854    SDValue N00 = N0.getOperand(0);
5855    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5856        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5857      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5858  }
5859
5860  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5861  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5862    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5863
5864  // fold operands of sext_in_reg based on knowledge that the top bits are not
5865  // demanded.
5866  if (SimplifyDemandedBits(SDValue(N, 0)))
5867    return SDValue(N, 0);
5868
5869  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5870  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5871  SDValue NarrowLoad = ReduceLoadWidth(N);
5872  if (NarrowLoad.getNode())
5873    return NarrowLoad;
5874
5875  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5876  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5877  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5878  if (N0.getOpcode() == ISD::SRL) {
5879    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5880      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5881        // We can turn this into an SRA iff the input to the SRL is already sign
5882        // extended enough.
5883        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5884        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5885          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5886                             N0.getOperand(0), N0.getOperand(1));
5887      }
5888  }
5889
5890  // fold (sext_inreg (extload x)) -> (sextload x)
5891  if (ISD::isEXTLoad(N0.getNode()) &&
5892      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5893      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5894      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5895       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5896    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5897    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5898                                     LN0->getChain(),
5899                                     LN0->getBasePtr(), EVT,
5900                                     LN0->getMemOperand());
5901    CombineTo(N, ExtLoad);
5902    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5903    AddToWorkList(ExtLoad.getNode());
5904    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5905  }
5906  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5907  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5908      N0.hasOneUse() &&
5909      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5910      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5911       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5912    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5913    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5914                                     LN0->getChain(),
5915                                     LN0->getBasePtr(), EVT,
5916                                     LN0->getMemOperand());
5917    CombineTo(N, ExtLoad);
5918    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5919    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5920  }
5921
5922  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5923  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5924    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5925                                       N0.getOperand(1), false);
5926    if (BSwap.getNode())
5927      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5928                         BSwap, N1);
5929  }
5930
5931  // Fold a sext_inreg of a build_vector of ConstantSDNodes or undefs
5932  // into a build_vector.
5933  if (ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
5934    SmallVector<SDValue, 8> Elts;
5935    unsigned NumElts = N0->getNumOperands();
5936    unsigned ShAmt = VTBits - EVTBits;
5937
5938    for (unsigned i = 0; i != NumElts; ++i) {
5939      SDValue Op = N0->getOperand(i);
5940      if (Op->getOpcode() == ISD::UNDEF) {
5941        Elts.push_back(Op);
5942        continue;
5943      }
5944
5945      ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op);
5946      const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue());
5947      Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(),
5948                                     Op.getValueType()));
5949    }
5950
5951    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Elts);
5952  }
5953
5954  return SDValue();
5955}
5956
5957SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5958  SDValue N0 = N->getOperand(0);
5959  EVT VT = N->getValueType(0);
5960  bool isLE = TLI.isLittleEndian();
5961
5962  // noop truncate
5963  if (N0.getValueType() == N->getValueType(0))
5964    return N0;
5965  // fold (truncate c1) -> c1
5966  if (isa<ConstantSDNode>(N0))
5967    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5968  // fold (truncate (truncate x)) -> (truncate x)
5969  if (N0.getOpcode() == ISD::TRUNCATE)
5970    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5971  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5972  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5973      N0.getOpcode() == ISD::SIGN_EXTEND ||
5974      N0.getOpcode() == ISD::ANY_EXTEND) {
5975    if (N0.getOperand(0).getValueType().bitsLT(VT))
5976      // if the source is smaller than the dest, we still need an extend
5977      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5978                         N0.getOperand(0));
5979    if (N0.getOperand(0).getValueType().bitsGT(VT))
5980      // if the source is larger than the dest, than we just need the truncate
5981      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5982    // if the source and dest are the same type, we can drop both the extend
5983    // and the truncate.
5984    return N0.getOperand(0);
5985  }
5986
5987  // Fold extract-and-trunc into a narrow extract. For example:
5988  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5989  //   i32 y = TRUNCATE(i64 x)
5990  //        -- becomes --
5991  //   v16i8 b = BITCAST (v2i64 val)
5992  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5993  //
5994  // Note: We only run this optimization after type legalization (which often
5995  // creates this pattern) and before operation legalization after which
5996  // we need to be more careful about the vector instructions that we generate.
5997  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5998      LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
5999
6000    EVT VecTy = N0.getOperand(0).getValueType();
6001    EVT ExTy = N0.getValueType();
6002    EVT TrTy = N->getValueType(0);
6003
6004    unsigned NumElem = VecTy.getVectorNumElements();
6005    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
6006
6007    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
6008    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
6009
6010    SDValue EltNo = N0->getOperand(1);
6011    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
6012      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6013      EVT IndexTy = TLI.getVectorIdxTy();
6014      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
6015
6016      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
6017                              NVT, N0.getOperand(0));
6018
6019      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
6020                         SDLoc(N), TrTy, V,
6021                         DAG.getConstant(Index, IndexTy));
6022    }
6023  }
6024
6025  // Fold a series of buildvector, bitcast, and truncate if possible.
6026  // For example fold
6027  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
6028  //   (2xi32 (buildvector x, y)).
6029  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
6030      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
6031      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
6032      N0.getOperand(0).hasOneUse()) {
6033
6034    SDValue BuildVect = N0.getOperand(0);
6035    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
6036    EVT TruncVecEltTy = VT.getVectorElementType();
6037
6038    // Check that the element types match.
6039    if (BuildVectEltTy == TruncVecEltTy) {
6040      // Now we only need to compute the offset of the truncated elements.
6041      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
6042      unsigned TruncVecNumElts = VT.getVectorNumElements();
6043      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
6044
6045      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
6046             "Invalid number of elements");
6047
6048      SmallVector<SDValue, 8> Opnds;
6049      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
6050        Opnds.push_back(BuildVect.getOperand(i));
6051
6052      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
6053    }
6054  }
6055
6056  // See if we can simplify the input to this truncate through knowledge that
6057  // only the low bits are being used.
6058  // For example "trunc (or (shl x, 8), y)" // -> trunc y
6059  // Currently we only perform this optimization on scalars because vectors
6060  // may have different active low bits.
6061  if (!VT.isVector()) {
6062    SDValue Shorter =
6063      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
6064                                               VT.getSizeInBits()));
6065    if (Shorter.getNode())
6066      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
6067  }
6068  // fold (truncate (load x)) -> (smaller load x)
6069  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
6070  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
6071    SDValue Reduced = ReduceLoadWidth(N);
6072    if (Reduced.getNode())
6073      return Reduced;
6074    // Handle the case where the load remains an extending load even
6075    // after truncation.
6076    if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
6077      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6078      if (!LN0->isVolatile() &&
6079          LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
6080        SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
6081                                         VT, LN0->getChain(), LN0->getBasePtr(),
6082                                         LN0->getMemoryVT(),
6083                                         LN0->getMemOperand());
6084        DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
6085        return NewLoad;
6086      }
6087    }
6088  }
6089  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
6090  // where ... are all 'undef'.
6091  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
6092    SmallVector<EVT, 8> VTs;
6093    SDValue V;
6094    unsigned Idx = 0;
6095    unsigned NumDefs = 0;
6096
6097    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
6098      SDValue X = N0.getOperand(i);
6099      if (X.getOpcode() != ISD::UNDEF) {
6100        V = X;
6101        Idx = i;
6102        NumDefs++;
6103      }
6104      // Stop if more than one members are non-undef.
6105      if (NumDefs > 1)
6106        break;
6107      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
6108                                     VT.getVectorElementType(),
6109                                     X.getValueType().getVectorNumElements()));
6110    }
6111
6112    if (NumDefs == 0)
6113      return DAG.getUNDEF(VT);
6114
6115    if (NumDefs == 1) {
6116      assert(V.getNode() && "The single defined operand is empty!");
6117      SmallVector<SDValue, 8> Opnds;
6118      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
6119        if (i != Idx) {
6120          Opnds.push_back(DAG.getUNDEF(VTs[i]));
6121          continue;
6122        }
6123        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
6124        AddToWorkList(NV.getNode());
6125        Opnds.push_back(NV);
6126      }
6127      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
6128    }
6129  }
6130
6131  // Simplify the operands using demanded-bits information.
6132  if (!VT.isVector() &&
6133      SimplifyDemandedBits(SDValue(N, 0)))
6134    return SDValue(N, 0);
6135
6136  return SDValue();
6137}
6138
6139static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
6140  SDValue Elt = N->getOperand(i);
6141  if (Elt.getOpcode() != ISD::MERGE_VALUES)
6142    return Elt.getNode();
6143  return Elt.getOperand(Elt.getResNo()).getNode();
6144}
6145
6146/// CombineConsecutiveLoads - build_pair (load, load) -> load
6147/// if load locations are consecutive.
6148SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
6149  assert(N->getOpcode() == ISD::BUILD_PAIR);
6150
6151  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
6152  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
6153  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
6154      LD1->getAddressSpace() != LD2->getAddressSpace())
6155    return SDValue();
6156  EVT LD1VT = LD1->getValueType(0);
6157
6158  if (ISD::isNON_EXTLoad(LD2) &&
6159      LD2->hasOneUse() &&
6160      // If both are volatile this would reduce the number of volatile loads.
6161      // If one is volatile it might be ok, but play conservative and bail out.
6162      !LD1->isVolatile() &&
6163      !LD2->isVolatile() &&
6164      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
6165    unsigned Align = LD1->getAlignment();
6166    unsigned NewAlign = TLI.getDataLayout()->
6167      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
6168
6169    if (NewAlign <= Align &&
6170        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
6171      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
6172                         LD1->getBasePtr(), LD1->getPointerInfo(),
6173                         false, false, false, Align);
6174  }
6175
6176  return SDValue();
6177}
6178
6179SDValue DAGCombiner::visitBITCAST(SDNode *N) {
6180  SDValue N0 = N->getOperand(0);
6181  EVT VT = N->getValueType(0);
6182
6183  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
6184  // Only do this before legalize, since afterward the target may be depending
6185  // on the bitconvert.
6186  // First check to see if this is all constant.
6187  if (!LegalTypes &&
6188      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
6189      VT.isVector()) {
6190    bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant();
6191
6192    EVT DestEltVT = N->getValueType(0).getVectorElementType();
6193    assert(!DestEltVT.isVector() &&
6194           "Element type of vector ValueType must not be vector!");
6195    if (isSimple)
6196      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
6197  }
6198
6199  // If the input is a constant, let getNode fold it.
6200  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
6201    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
6202    if (Res.getNode() != N) {
6203      if (!LegalOperations ||
6204          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
6205        return Res;
6206
6207      // Folding it resulted in an illegal node, and it's too late to
6208      // do that. Clean up the old node and forego the transformation.
6209      // Ideally this won't happen very often, because instcombine
6210      // and the earlier dagcombine runs (where illegal nodes are
6211      // permitted) should have folded most of them already.
6212      DAG.DeleteNode(Res.getNode());
6213    }
6214  }
6215
6216  // (conv (conv x, t1), t2) -> (conv x, t2)
6217  if (N0.getOpcode() == ISD::BITCAST)
6218    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
6219                       N0.getOperand(0));
6220
6221  // fold (conv (load x)) -> (load (conv*)x)
6222  // If the resultant load doesn't need a higher alignment than the original!
6223  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6224      // Do not change the width of a volatile load.
6225      !cast<LoadSDNode>(N0)->isVolatile() &&
6226      // Do not remove the cast if the types differ in endian layout.
6227      TLI.hasBigEndianPartOrdering(N0.getValueType()) ==
6228      TLI.hasBigEndianPartOrdering(VT) &&
6229      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
6230      TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
6231    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6232    unsigned Align = TLI.getDataLayout()->
6233      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
6234    unsigned OrigAlign = LN0->getAlignment();
6235
6236    if (Align <= OrigAlign) {
6237      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
6238                                 LN0->getBasePtr(), LN0->getPointerInfo(),
6239                                 LN0->isVolatile(), LN0->isNonTemporal(),
6240                                 LN0->isInvariant(), OrigAlign,
6241                                 LN0->getTBAAInfo());
6242      AddToWorkList(N);
6243      CombineTo(N0.getNode(),
6244                DAG.getNode(ISD::BITCAST, SDLoc(N0),
6245                            N0.getValueType(), Load),
6246                Load.getValue(1));
6247      return Load;
6248    }
6249  }
6250
6251  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6252  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6253  // This often reduces constant pool loads.
6254  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
6255       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
6256      N0.getNode()->hasOneUse() && VT.isInteger() &&
6257      !VT.isVector() && !N0.getValueType().isVector()) {
6258    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
6259                                  N0.getOperand(0));
6260    AddToWorkList(NewConv.getNode());
6261
6262    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
6263    if (N0.getOpcode() == ISD::FNEG)
6264      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
6265                         NewConv, DAG.getConstant(SignBit, VT));
6266    assert(N0.getOpcode() == ISD::FABS);
6267    return DAG.getNode(ISD::AND, SDLoc(N), VT,
6268                       NewConv, DAG.getConstant(~SignBit, VT));
6269  }
6270
6271  // fold (bitconvert (fcopysign cst, x)) ->
6272  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
6273  // Note that we don't handle (copysign x, cst) because this can always be
6274  // folded to an fneg or fabs.
6275  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
6276      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
6277      VT.isInteger() && !VT.isVector()) {
6278    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
6279    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
6280    if (isTypeLegal(IntXVT)) {
6281      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
6282                              IntXVT, N0.getOperand(1));
6283      AddToWorkList(X.getNode());
6284
6285      // If X has a different width than the result/lhs, sext it or truncate it.
6286      unsigned VTWidth = VT.getSizeInBits();
6287      if (OrigXWidth < VTWidth) {
6288        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
6289        AddToWorkList(X.getNode());
6290      } else if (OrigXWidth > VTWidth) {
6291        // To get the sign bit in the right place, we have to shift it right
6292        // before truncating.
6293        X = DAG.getNode(ISD::SRL, SDLoc(X),
6294                        X.getValueType(), X,
6295                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
6296        AddToWorkList(X.getNode());
6297        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6298        AddToWorkList(X.getNode());
6299      }
6300
6301      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
6302      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
6303                      X, DAG.getConstant(SignBit, VT));
6304      AddToWorkList(X.getNode());
6305
6306      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
6307                                VT, N0.getOperand(0));
6308      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
6309                        Cst, DAG.getConstant(~SignBit, VT));
6310      AddToWorkList(Cst.getNode());
6311
6312      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
6313    }
6314  }
6315
6316  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
6317  if (N0.getOpcode() == ISD::BUILD_PAIR) {
6318    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
6319    if (CombineLD.getNode())
6320      return CombineLD;
6321  }
6322
6323  return SDValue();
6324}
6325
6326SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
6327  EVT VT = N->getValueType(0);
6328  return CombineConsecutiveLoads(N, VT);
6329}
6330
6331/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
6332/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
6333/// destination element value type.
6334SDValue DAGCombiner::
6335ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
6336  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
6337
6338  // If this is already the right type, we're done.
6339  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
6340
6341  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
6342  unsigned DstBitSize = DstEltVT.getSizeInBits();
6343
6344  // If this is a conversion of N elements of one type to N elements of another
6345  // type, convert each element.  This handles FP<->INT cases.
6346  if (SrcBitSize == DstBitSize) {
6347    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
6348                              BV->getValueType(0).getVectorNumElements());
6349
6350    // Due to the FP element handling below calling this routine recursively,
6351    // we can end up with a scalar-to-vector node here.
6352    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
6353      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
6354                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
6355                                     DstEltVT, BV->getOperand(0)));
6356
6357    SmallVector<SDValue, 8> Ops;
6358    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
6359      SDValue Op = BV->getOperand(i);
6360      // If the vector element type is not legal, the BUILD_VECTOR operands
6361      // are promoted and implicitly truncated.  Make that explicit here.
6362      if (Op.getValueType() != SrcEltVT)
6363        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
6364      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
6365                                DstEltVT, Op));
6366      AddToWorkList(Ops.back().getNode());
6367    }
6368    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
6369  }
6370
6371  // Otherwise, we're growing or shrinking the elements.  To avoid having to
6372  // handle annoying details of growing/shrinking FP values, we convert them to
6373  // int first.
6374  if (SrcEltVT.isFloatingPoint()) {
6375    // Convert the input float vector to a int vector where the elements are the
6376    // same sizes.
6377    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
6378    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
6379    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
6380    SrcEltVT = IntVT;
6381  }
6382
6383  // Now we know the input is an integer vector.  If the output is a FP type,
6384  // convert to integer first, then to FP of the right size.
6385  if (DstEltVT.isFloatingPoint()) {
6386    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
6387    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
6388    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
6389
6390    // Next, convert to FP elements of the same size.
6391    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
6392  }
6393
6394  // Okay, we know the src/dst types are both integers of differing types.
6395  // Handling growing first.
6396  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
6397  if (SrcBitSize < DstBitSize) {
6398    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
6399
6400    SmallVector<SDValue, 8> Ops;
6401    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
6402         i += NumInputsPerOutput) {
6403      bool isLE = TLI.isLittleEndian();
6404      APInt NewBits = APInt(DstBitSize, 0);
6405      bool EltIsUndef = true;
6406      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
6407        // Shift the previously computed bits over.
6408        NewBits <<= SrcBitSize;
6409        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
6410        if (Op.getOpcode() == ISD::UNDEF) continue;
6411        EltIsUndef = false;
6412
6413        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
6414                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
6415      }
6416
6417      if (EltIsUndef)
6418        Ops.push_back(DAG.getUNDEF(DstEltVT));
6419      else
6420        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
6421    }
6422
6423    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
6424    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
6425  }
6426
6427  // Finally, this must be the case where we are shrinking elements: each input
6428  // turns into multiple outputs.
6429  bool isS2V = ISD::isScalarToVector(BV);
6430  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
6431  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
6432                            NumOutputsPerInput*BV->getNumOperands());
6433  SmallVector<SDValue, 8> Ops;
6434
6435  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
6436    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
6437      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
6438        Ops.push_back(DAG.getUNDEF(DstEltVT));
6439      continue;
6440    }
6441
6442    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
6443                  getAPIntValue().zextOrTrunc(SrcBitSize);
6444
6445    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
6446      APInt ThisVal = OpVal.trunc(DstBitSize);
6447      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
6448      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
6449        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
6450        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
6451                           Ops[0]);
6452      OpVal = OpVal.lshr(DstBitSize);
6453    }
6454
6455    // For big endian targets, swap the order of the pieces of each element.
6456    if (TLI.isBigEndian())
6457      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
6458  }
6459
6460  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
6461}
6462
6463SDValue DAGCombiner::visitFADD(SDNode *N) {
6464  SDValue N0 = N->getOperand(0);
6465  SDValue N1 = N->getOperand(1);
6466  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6467  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6468  EVT VT = N->getValueType(0);
6469
6470  // fold vector ops
6471  if (VT.isVector()) {
6472    SDValue FoldedVOp = SimplifyVBinOp(N);
6473    if (FoldedVOp.getNode()) return FoldedVOp;
6474  }
6475
6476  // fold (fadd c1, c2) -> c1 + c2
6477  if (N0CFP && N1CFP)
6478    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
6479  // canonicalize constant to RHS
6480  if (N0CFP && !N1CFP)
6481    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
6482  // fold (fadd A, 0) -> A
6483  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6484      N1CFP->getValueAPF().isZero())
6485    return N0;
6486  // fold (fadd A, (fneg B)) -> (fsub A, B)
6487  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6488    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6489    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6490                       GetNegatedExpression(N1, DAG, LegalOperations));
6491  // fold (fadd (fneg A), B) -> (fsub B, A)
6492  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6493    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6494    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6495                       GetNegatedExpression(N0, DAG, LegalOperations));
6496
6497  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6498  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6499      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6500      isa<ConstantFPSDNode>(N0.getOperand(1)))
6501    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6502                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6503                                   N0.getOperand(1), N1));
6504
6505  // No FP constant should be created after legalization as Instruction
6506  // Selection pass has hard time in dealing with FP constant.
6507  //
6508  // We don't need test this condition for transformation like following, as
6509  // the DAG being transformed implies it is legal to take FP constant as
6510  // operand.
6511  //
6512  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6513  //
6514  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6515
6516  // If allow, fold (fadd (fneg x), x) -> 0.0
6517  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6518      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6519    return DAG.getConstantFP(0.0, VT);
6520
6521    // If allow, fold (fadd x, (fneg x)) -> 0.0
6522  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6523      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6524    return DAG.getConstantFP(0.0, VT);
6525
6526  // In unsafe math mode, we can fold chains of FADD's of the same value
6527  // into multiplications.  This transform is not safe in general because
6528  // we are reducing the number of rounding steps.
6529  if (DAG.getTarget().Options.UnsafeFPMath &&
6530      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6531      !N0CFP && !N1CFP) {
6532    if (N0.getOpcode() == ISD::FMUL) {
6533      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6534      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6535
6536      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6537      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6538        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6539                                     SDValue(CFP00, 0),
6540                                     DAG.getConstantFP(1.0, VT));
6541        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6542                           N1, NewCFP);
6543      }
6544
6545      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6546      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6547        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6548                                     SDValue(CFP01, 0),
6549                                     DAG.getConstantFP(1.0, VT));
6550        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6551                           N1, NewCFP);
6552      }
6553
6554      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6555      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6556          N1.getOperand(0) == N1.getOperand(1) &&
6557          N0.getOperand(1) == N1.getOperand(0)) {
6558        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6559                                     SDValue(CFP00, 0),
6560                                     DAG.getConstantFP(2.0, VT));
6561        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6562                           N0.getOperand(1), NewCFP);
6563      }
6564
6565      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6566      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6567          N1.getOperand(0) == N1.getOperand(1) &&
6568          N0.getOperand(0) == N1.getOperand(0)) {
6569        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6570                                     SDValue(CFP01, 0),
6571                                     DAG.getConstantFP(2.0, VT));
6572        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6573                           N0.getOperand(0), NewCFP);
6574      }
6575    }
6576
6577    if (N1.getOpcode() == ISD::FMUL) {
6578      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6579      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6580
6581      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6582      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6583        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6584                                     SDValue(CFP10, 0),
6585                                     DAG.getConstantFP(1.0, VT));
6586        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6587                           N0, NewCFP);
6588      }
6589
6590      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6591      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6592        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6593                                     SDValue(CFP11, 0),
6594                                     DAG.getConstantFP(1.0, VT));
6595        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6596                           N0, NewCFP);
6597      }
6598
6599
6600      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6601      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6602          N0.getOperand(0) == N0.getOperand(1) &&
6603          N1.getOperand(1) == N0.getOperand(0)) {
6604        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6605                                     SDValue(CFP10, 0),
6606                                     DAG.getConstantFP(2.0, VT));
6607        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6608                           N1.getOperand(1), NewCFP);
6609      }
6610
6611      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6612      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6613          N0.getOperand(0) == N0.getOperand(1) &&
6614          N1.getOperand(0) == N0.getOperand(0)) {
6615        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6616                                     SDValue(CFP11, 0),
6617                                     DAG.getConstantFP(2.0, VT));
6618        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6619                           N1.getOperand(0), NewCFP);
6620      }
6621    }
6622
6623    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6624      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6625      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6626      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6627          (N0.getOperand(0) == N1))
6628        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6629                           N1, DAG.getConstantFP(3.0, VT));
6630    }
6631
6632    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6633      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6634      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6635      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6636          N1.getOperand(0) == N0)
6637        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6638                           N0, DAG.getConstantFP(3.0, VT));
6639    }
6640
6641    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6642    if (AllowNewFpConst &&
6643        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6644        N0.getOperand(0) == N0.getOperand(1) &&
6645        N1.getOperand(0) == N1.getOperand(1) &&
6646        N0.getOperand(0) == N1.getOperand(0))
6647      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6648                         N0.getOperand(0),
6649                         DAG.getConstantFP(4.0, VT));
6650  }
6651
6652  // FADD -> FMA combines:
6653  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6654       DAG.getTarget().Options.UnsafeFPMath) &&
6655      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6656      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6657
6658    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6659    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6660      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6661                         N0.getOperand(0), N0.getOperand(1), N1);
6662
6663    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6664    // Note: Commutes FADD operands.
6665    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6666      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6667                         N1.getOperand(0), N1.getOperand(1), N0);
6668  }
6669
6670  return SDValue();
6671}
6672
6673SDValue DAGCombiner::visitFSUB(SDNode *N) {
6674  SDValue N0 = N->getOperand(0);
6675  SDValue N1 = N->getOperand(1);
6676  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6677  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6678  EVT VT = N->getValueType(0);
6679  SDLoc dl(N);
6680
6681  // fold vector ops
6682  if (VT.isVector()) {
6683    SDValue FoldedVOp = SimplifyVBinOp(N);
6684    if (FoldedVOp.getNode()) return FoldedVOp;
6685  }
6686
6687  // fold (fsub c1, c2) -> c1-c2
6688  if (N0CFP && N1CFP)
6689    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6690  // fold (fsub A, 0) -> A
6691  if (DAG.getTarget().Options.UnsafeFPMath &&
6692      N1CFP && N1CFP->getValueAPF().isZero())
6693    return N0;
6694  // fold (fsub 0, B) -> -B
6695  if (DAG.getTarget().Options.UnsafeFPMath &&
6696      N0CFP && N0CFP->getValueAPF().isZero()) {
6697    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6698      return GetNegatedExpression(N1, DAG, LegalOperations);
6699    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6700      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6701  }
6702  // fold (fsub A, (fneg B)) -> (fadd A, B)
6703  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6704    return DAG.getNode(ISD::FADD, dl, VT, N0,
6705                       GetNegatedExpression(N1, DAG, LegalOperations));
6706
6707  // If 'unsafe math' is enabled, fold
6708  //    (fsub x, x) -> 0.0 &
6709  //    (fsub x, (fadd x, y)) -> (fneg y) &
6710  //    (fsub x, (fadd y, x)) -> (fneg y)
6711  if (DAG.getTarget().Options.UnsafeFPMath) {
6712    if (N0 == N1)
6713      return DAG.getConstantFP(0.0f, VT);
6714
6715    if (N1.getOpcode() == ISD::FADD) {
6716      SDValue N10 = N1->getOperand(0);
6717      SDValue N11 = N1->getOperand(1);
6718
6719      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6720                                          &DAG.getTarget().Options))
6721        return GetNegatedExpression(N11, DAG, LegalOperations);
6722
6723      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6724                                          &DAG.getTarget().Options))
6725        return GetNegatedExpression(N10, DAG, LegalOperations);
6726    }
6727  }
6728
6729  // FSUB -> FMA combines:
6730  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6731       DAG.getTarget().Options.UnsafeFPMath) &&
6732      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6733      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6734
6735    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6736    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6737      return DAG.getNode(ISD::FMA, dl, VT,
6738                         N0.getOperand(0), N0.getOperand(1),
6739                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6740
6741    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6742    // Note: Commutes FSUB operands.
6743    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6744      return DAG.getNode(ISD::FMA, dl, VT,
6745                         DAG.getNode(ISD::FNEG, dl, VT,
6746                         N1.getOperand(0)),
6747                         N1.getOperand(1), N0);
6748
6749    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6750    if (N0.getOpcode() == ISD::FNEG &&
6751        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6752        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6753      SDValue N00 = N0.getOperand(0).getOperand(0);
6754      SDValue N01 = N0.getOperand(0).getOperand(1);
6755      return DAG.getNode(ISD::FMA, dl, VT,
6756                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6757                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6758    }
6759  }
6760
6761  return SDValue();
6762}
6763
6764SDValue DAGCombiner::visitFMUL(SDNode *N) {
6765  SDValue N0 = N->getOperand(0);
6766  SDValue N1 = N->getOperand(1);
6767  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6768  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6769  EVT VT = N->getValueType(0);
6770  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6771
6772  // fold vector ops
6773  if (VT.isVector()) {
6774    SDValue FoldedVOp = SimplifyVBinOp(N);
6775    if (FoldedVOp.getNode()) return FoldedVOp;
6776  }
6777
6778  // fold (fmul c1, c2) -> c1*c2
6779  if (N0CFP && N1CFP)
6780    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6781  // canonicalize constant to RHS
6782  if (N0CFP && !N1CFP)
6783    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6784  // fold (fmul A, 0) -> 0
6785  if (DAG.getTarget().Options.UnsafeFPMath &&
6786      N1CFP && N1CFP->getValueAPF().isZero())
6787    return N1;
6788  // fold (fmul A, 0) -> 0, vector edition.
6789  if (DAG.getTarget().Options.UnsafeFPMath &&
6790      ISD::isBuildVectorAllZeros(N1.getNode()))
6791    return N1;
6792  // fold (fmul A, 1.0) -> A
6793  if (N1CFP && N1CFP->isExactlyValue(1.0))
6794    return N0;
6795  // fold (fmul X, 2.0) -> (fadd X, X)
6796  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6797    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6798  // fold (fmul X, -1.0) -> (fneg X)
6799  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6800    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6801      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6802
6803  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6804  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6805                                       &DAG.getTarget().Options)) {
6806    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6807                                         &DAG.getTarget().Options)) {
6808      // Both can be negated for free, check to see if at least one is cheaper
6809      // negated.
6810      if (LHSNeg == 2 || RHSNeg == 2)
6811        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6812                           GetNegatedExpression(N0, DAG, LegalOperations),
6813                           GetNegatedExpression(N1, DAG, LegalOperations));
6814    }
6815  }
6816
6817  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6818  if (DAG.getTarget().Options.UnsafeFPMath &&
6819      N1CFP && N0.getOpcode() == ISD::FMUL &&
6820      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6821    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6822                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6823                                   N0.getOperand(1), N1));
6824
6825  return SDValue();
6826}
6827
6828SDValue DAGCombiner::visitFMA(SDNode *N) {
6829  SDValue N0 = N->getOperand(0);
6830  SDValue N1 = N->getOperand(1);
6831  SDValue N2 = N->getOperand(2);
6832  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6833  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6834  EVT VT = N->getValueType(0);
6835  SDLoc dl(N);
6836
6837  if (DAG.getTarget().Options.UnsafeFPMath) {
6838    if (N0CFP && N0CFP->isZero())
6839      return N2;
6840    if (N1CFP && N1CFP->isZero())
6841      return N2;
6842  }
6843  if (N0CFP && N0CFP->isExactlyValue(1.0))
6844    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6845  if (N1CFP && N1CFP->isExactlyValue(1.0))
6846    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6847
6848  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6849  if (N0CFP && !N1CFP)
6850    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6851
6852  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6853  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6854      N2.getOpcode() == ISD::FMUL &&
6855      N0 == N2.getOperand(0) &&
6856      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6857    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6858                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6859  }
6860
6861
6862  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6863  if (DAG.getTarget().Options.UnsafeFPMath &&
6864      N0.getOpcode() == ISD::FMUL && N1CFP &&
6865      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6866    return DAG.getNode(ISD::FMA, dl, VT,
6867                       N0.getOperand(0),
6868                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6869                       N2);
6870  }
6871
6872  // (fma x, 1, y) -> (fadd x, y)
6873  // (fma x, -1, y) -> (fadd (fneg x), y)
6874  if (N1CFP) {
6875    if (N1CFP->isExactlyValue(1.0))
6876      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6877
6878    if (N1CFP->isExactlyValue(-1.0) &&
6879        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6880      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6881      AddToWorkList(RHSNeg.getNode());
6882      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6883    }
6884  }
6885
6886  // (fma x, c, x) -> (fmul x, (c+1))
6887  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6888    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6889                       DAG.getNode(ISD::FADD, dl, VT,
6890                                   N1, DAG.getConstantFP(1.0, VT)));
6891
6892  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6893  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6894      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6895    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6896                       DAG.getNode(ISD::FADD, dl, VT,
6897                                   N1, DAG.getConstantFP(-1.0, VT)));
6898
6899
6900  return SDValue();
6901}
6902
6903SDValue DAGCombiner::visitFDIV(SDNode *N) {
6904  SDValue N0 = N->getOperand(0);
6905  SDValue N1 = N->getOperand(1);
6906  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6907  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6908  EVT VT = N->getValueType(0);
6909  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6910
6911  // fold vector ops
6912  if (VT.isVector()) {
6913    SDValue FoldedVOp = SimplifyVBinOp(N);
6914    if (FoldedVOp.getNode()) return FoldedVOp;
6915  }
6916
6917  // fold (fdiv c1, c2) -> c1/c2
6918  if (N0CFP && N1CFP)
6919    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6920
6921  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6922  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6923    // Compute the reciprocal 1.0 / c2.
6924    APFloat N1APF = N1CFP->getValueAPF();
6925    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6926    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6927    // Only do the transform if the reciprocal is a legal fp immediate that
6928    // isn't too nasty (eg NaN, denormal, ...).
6929    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6930        (!LegalOperations ||
6931         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6932         // backend)... we should handle this gracefully after Legalize.
6933         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6934         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6935         TLI.isFPImmLegal(Recip, VT)))
6936      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6937                         DAG.getConstantFP(Recip, VT));
6938  }
6939
6940  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6941  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6942                                       &DAG.getTarget().Options)) {
6943    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6944                                         &DAG.getTarget().Options)) {
6945      // Both can be negated for free, check to see if at least one is cheaper
6946      // negated.
6947      if (LHSNeg == 2 || RHSNeg == 2)
6948        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6949                           GetNegatedExpression(N0, DAG, LegalOperations),
6950                           GetNegatedExpression(N1, DAG, LegalOperations));
6951    }
6952  }
6953
6954  return SDValue();
6955}
6956
6957SDValue DAGCombiner::visitFREM(SDNode *N) {
6958  SDValue N0 = N->getOperand(0);
6959  SDValue N1 = N->getOperand(1);
6960  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6961  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6962  EVT VT = N->getValueType(0);
6963
6964  // fold (frem c1, c2) -> fmod(c1,c2)
6965  if (N0CFP && N1CFP)
6966    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6967
6968  return SDValue();
6969}
6970
6971SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6972  SDValue N0 = N->getOperand(0);
6973  SDValue N1 = N->getOperand(1);
6974  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6975  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6976  EVT VT = N->getValueType(0);
6977
6978  if (N0CFP && N1CFP)  // Constant fold
6979    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6980
6981  if (N1CFP) {
6982    const APFloat& V = N1CFP->getValueAPF();
6983    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6984    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6985    if (!V.isNegative()) {
6986      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6987        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6988    } else {
6989      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6990        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6991                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6992    }
6993  }
6994
6995  // copysign(fabs(x), y) -> copysign(x, y)
6996  // copysign(fneg(x), y) -> copysign(x, y)
6997  // copysign(copysign(x,z), y) -> copysign(x, y)
6998  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6999      N0.getOpcode() == ISD::FCOPYSIGN)
7000    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
7001                       N0.getOperand(0), N1);
7002
7003  // copysign(x, abs(y)) -> abs(x)
7004  if (N1.getOpcode() == ISD::FABS)
7005    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
7006
7007  // copysign(x, copysign(y,z)) -> copysign(x, z)
7008  if (N1.getOpcode() == ISD::FCOPYSIGN)
7009    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
7010                       N0, N1.getOperand(1));
7011
7012  // copysign(x, fp_extend(y)) -> copysign(x, y)
7013  // copysign(x, fp_round(y)) -> copysign(x, y)
7014  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
7015    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
7016                       N0, N1.getOperand(0));
7017
7018  return SDValue();
7019}
7020
7021SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
7022  SDValue N0 = N->getOperand(0);
7023  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
7024  EVT VT = N->getValueType(0);
7025  EVT OpVT = N0.getValueType();
7026
7027  // fold (sint_to_fp c1) -> c1fp
7028  if (N0C &&
7029      // ...but only if the target supports immediate floating-point values
7030      (!LegalOperations ||
7031       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
7032    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
7033
7034  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
7035  // but UINT_TO_FP is legal on this target, try to convert.
7036  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
7037      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
7038    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
7039    if (DAG.SignBitIsZero(N0))
7040      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
7041  }
7042
7043  // The next optimizations are desirable only if SELECT_CC can be lowered.
7044  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
7045    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
7046    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
7047        !VT.isVector() &&
7048        (!LegalOperations ||
7049         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
7050      SDValue Ops[] =
7051        { N0.getOperand(0), N0.getOperand(1),
7052          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
7053          N0.getOperand(2) };
7054      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops);
7055    }
7056
7057    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
7058    //      (select_cc x, y, 1.0, 0.0,, cc)
7059    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
7060        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
7061        (!LegalOperations ||
7062         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
7063      SDValue Ops[] =
7064        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
7065          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
7066          N0.getOperand(0).getOperand(2) };
7067      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops);
7068    }
7069  }
7070
7071  return SDValue();
7072}
7073
7074SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
7075  SDValue N0 = N->getOperand(0);
7076  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
7077  EVT VT = N->getValueType(0);
7078  EVT OpVT = N0.getValueType();
7079
7080  // fold (uint_to_fp c1) -> c1fp
7081  if (N0C &&
7082      // ...but only if the target supports immediate floating-point values
7083      (!LegalOperations ||
7084       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
7085    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
7086
7087  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
7088  // but SINT_TO_FP is legal on this target, try to convert.
7089  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
7090      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
7091    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
7092    if (DAG.SignBitIsZero(N0))
7093      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
7094  }
7095
7096  // The next optimizations are desirable only if SELECT_CC can be lowered.
7097  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
7098    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
7099
7100    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
7101        (!LegalOperations ||
7102         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
7103      SDValue Ops[] =
7104        { N0.getOperand(0), N0.getOperand(1),
7105          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
7106          N0.getOperand(2) };
7107      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops);
7108    }
7109  }
7110
7111  return SDValue();
7112}
7113
7114SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
7115  SDValue N0 = N->getOperand(0);
7116  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7117  EVT VT = N->getValueType(0);
7118
7119  // fold (fp_to_sint c1fp) -> c1
7120  if (N0CFP)
7121    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
7122
7123  return SDValue();
7124}
7125
7126SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
7127  SDValue N0 = N->getOperand(0);
7128  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7129  EVT VT = N->getValueType(0);
7130
7131  // fold (fp_to_uint c1fp) -> c1
7132  if (N0CFP)
7133    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
7134
7135  return SDValue();
7136}
7137
7138SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
7139  SDValue N0 = N->getOperand(0);
7140  SDValue N1 = N->getOperand(1);
7141  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7142  EVT VT = N->getValueType(0);
7143
7144  // fold (fp_round c1fp) -> c1fp
7145  if (N0CFP)
7146    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
7147
7148  // fold (fp_round (fp_extend x)) -> x
7149  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
7150    return N0.getOperand(0);
7151
7152  // fold (fp_round (fp_round x)) -> (fp_round x)
7153  if (N0.getOpcode() == ISD::FP_ROUND) {
7154    // This is a value preserving truncation if both round's are.
7155    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
7156                   N0.getNode()->getConstantOperandVal(1) == 1;
7157    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
7158                       DAG.getIntPtrConstant(IsTrunc));
7159  }
7160
7161  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
7162  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
7163    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
7164                              N0.getOperand(0), N1);
7165    AddToWorkList(Tmp.getNode());
7166    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
7167                       Tmp, N0.getOperand(1));
7168  }
7169
7170  return SDValue();
7171}
7172
7173SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
7174  SDValue N0 = N->getOperand(0);
7175  EVT VT = N->getValueType(0);
7176  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7177  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7178
7179  // fold (fp_round_inreg c1fp) -> c1fp
7180  if (N0CFP && isTypeLegal(EVT)) {
7181    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
7182    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
7183  }
7184
7185  return SDValue();
7186}
7187
7188SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
7189  SDValue N0 = N->getOperand(0);
7190  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7191  EVT VT = N->getValueType(0);
7192
7193  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
7194  if (N->hasOneUse() &&
7195      N->use_begin()->getOpcode() == ISD::FP_ROUND)
7196    return SDValue();
7197
7198  // fold (fp_extend c1fp) -> c1fp
7199  if (N0CFP)
7200    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
7201
7202  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
7203  // value of X.
7204  if (N0.getOpcode() == ISD::FP_ROUND
7205      && N0.getNode()->getConstantOperandVal(1) == 1) {
7206    SDValue In = N0.getOperand(0);
7207    if (In.getValueType() == VT) return In;
7208    if (VT.bitsLT(In.getValueType()))
7209      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
7210                         In, N0.getOperand(1));
7211    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
7212  }
7213
7214  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
7215  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7216      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
7217       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
7218    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7219    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
7220                                     LN0->getChain(),
7221                                     LN0->getBasePtr(), N0.getValueType(),
7222                                     LN0->getMemOperand());
7223    CombineTo(N, ExtLoad);
7224    CombineTo(N0.getNode(),
7225              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
7226                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
7227              ExtLoad.getValue(1));
7228    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7229  }
7230
7231  return SDValue();
7232}
7233
7234SDValue DAGCombiner::visitFNEG(SDNode *N) {
7235  SDValue N0 = N->getOperand(0);
7236  EVT VT = N->getValueType(0);
7237
7238  if (VT.isVector()) {
7239    SDValue FoldedVOp = SimplifyVUnaryOp(N);
7240    if (FoldedVOp.getNode()) return FoldedVOp;
7241  }
7242
7243  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
7244                         &DAG.getTarget().Options))
7245    return GetNegatedExpression(N0, DAG, LegalOperations);
7246
7247  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
7248  // constant pool values.
7249  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
7250      !VT.isVector() &&
7251      N0.getNode()->hasOneUse() &&
7252      N0.getOperand(0).getValueType().isInteger()) {
7253    SDValue Int = N0.getOperand(0);
7254    EVT IntVT = Int.getValueType();
7255    if (IntVT.isInteger() && !IntVT.isVector()) {
7256      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
7257              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
7258      AddToWorkList(Int.getNode());
7259      return DAG.getNode(ISD::BITCAST, SDLoc(N),
7260                         VT, Int);
7261    }
7262  }
7263
7264  // (fneg (fmul c, x)) -> (fmul -c, x)
7265  if (N0.getOpcode() == ISD::FMUL) {
7266    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
7267    if (CFP1) {
7268      APFloat CVal = CFP1->getValueAPF();
7269      CVal.changeSign();
7270      if (Level >= AfterLegalizeDAG &&
7271          (TLI.isFPImmLegal(CVal, N->getValueType(0)) ||
7272           TLI.isOperationLegal(ISD::ConstantFP, N->getValueType(0))))
7273        return DAG.getNode(
7274            ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
7275            DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)));
7276    }
7277  }
7278
7279  return SDValue();
7280}
7281
7282SDValue DAGCombiner::visitFCEIL(SDNode *N) {
7283  SDValue N0 = N->getOperand(0);
7284  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7285  EVT VT = N->getValueType(0);
7286
7287  // fold (fceil c1) -> fceil(c1)
7288  if (N0CFP)
7289    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
7290
7291  return SDValue();
7292}
7293
7294SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
7295  SDValue N0 = N->getOperand(0);
7296  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7297  EVT VT = N->getValueType(0);
7298
7299  // fold (ftrunc c1) -> ftrunc(c1)
7300  if (N0CFP)
7301    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
7302
7303  return SDValue();
7304}
7305
7306SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
7307  SDValue N0 = N->getOperand(0);
7308  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7309  EVT VT = N->getValueType(0);
7310
7311  // fold (ffloor c1) -> ffloor(c1)
7312  if (N0CFP)
7313    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
7314
7315  return SDValue();
7316}
7317
7318SDValue DAGCombiner::visitFABS(SDNode *N) {
7319  SDValue N0 = N->getOperand(0);
7320  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
7321  EVT VT = N->getValueType(0);
7322
7323  if (VT.isVector()) {
7324    SDValue FoldedVOp = SimplifyVUnaryOp(N);
7325    if (FoldedVOp.getNode()) return FoldedVOp;
7326  }
7327
7328  // fold (fabs c1) -> fabs(c1)
7329  if (N0CFP)
7330    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
7331  // fold (fabs (fabs x)) -> (fabs x)
7332  if (N0.getOpcode() == ISD::FABS)
7333    return N->getOperand(0);
7334  // fold (fabs (fneg x)) -> (fabs x)
7335  // fold (fabs (fcopysign x, y)) -> (fabs x)
7336  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
7337    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
7338
7339  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
7340  // constant pool values.
7341  if (!TLI.isFAbsFree(VT) &&
7342      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
7343      N0.getOperand(0).getValueType().isInteger() &&
7344      !N0.getOperand(0).getValueType().isVector()) {
7345    SDValue Int = N0.getOperand(0);
7346    EVT IntVT = Int.getValueType();
7347    if (IntVT.isInteger() && !IntVT.isVector()) {
7348      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
7349             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
7350      AddToWorkList(Int.getNode());
7351      return DAG.getNode(ISD::BITCAST, SDLoc(N),
7352                         N->getValueType(0), Int);
7353    }
7354  }
7355
7356  return SDValue();
7357}
7358
7359SDValue DAGCombiner::visitBRCOND(SDNode *N) {
7360  SDValue Chain = N->getOperand(0);
7361  SDValue N1 = N->getOperand(1);
7362  SDValue N2 = N->getOperand(2);
7363
7364  // If N is a constant we could fold this into a fallthrough or unconditional
7365  // branch. However that doesn't happen very often in normal code, because
7366  // Instcombine/SimplifyCFG should have handled the available opportunities.
7367  // If we did this folding here, it would be necessary to update the
7368  // MachineBasicBlock CFG, which is awkward.
7369
7370  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
7371  // on the target.
7372  if (N1.getOpcode() == ISD::SETCC &&
7373      TLI.isOperationLegalOrCustom(ISD::BR_CC,
7374                                   N1.getOperand(0).getValueType())) {
7375    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7376                       Chain, N1.getOperand(2),
7377                       N1.getOperand(0), N1.getOperand(1), N2);
7378  }
7379
7380  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
7381      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
7382       (N1.getOperand(0).hasOneUse() &&
7383        N1.getOperand(0).getOpcode() == ISD::SRL))) {
7384    SDNode *Trunc = nullptr;
7385    if (N1.getOpcode() == ISD::TRUNCATE) {
7386      // Look pass the truncate.
7387      Trunc = N1.getNode();
7388      N1 = N1.getOperand(0);
7389    }
7390
7391    // Match this pattern so that we can generate simpler code:
7392    //
7393    //   %a = ...
7394    //   %b = and i32 %a, 2
7395    //   %c = srl i32 %b, 1
7396    //   brcond i32 %c ...
7397    //
7398    // into
7399    //
7400    //   %a = ...
7401    //   %b = and i32 %a, 2
7402    //   %c = setcc eq %b, 0
7403    //   brcond %c ...
7404    //
7405    // This applies only when the AND constant value has one bit set and the
7406    // SRL constant is equal to the log2 of the AND constant. The back-end is
7407    // smart enough to convert the result into a TEST/JMP sequence.
7408    SDValue Op0 = N1.getOperand(0);
7409    SDValue Op1 = N1.getOperand(1);
7410
7411    if (Op0.getOpcode() == ISD::AND &&
7412        Op1.getOpcode() == ISD::Constant) {
7413      SDValue AndOp1 = Op0.getOperand(1);
7414
7415      if (AndOp1.getOpcode() == ISD::Constant) {
7416        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
7417
7418        if (AndConst.isPowerOf2() &&
7419            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
7420          SDValue SetCC =
7421            DAG.getSetCC(SDLoc(N),
7422                         getSetCCResultType(Op0.getValueType()),
7423                         Op0, DAG.getConstant(0, Op0.getValueType()),
7424                         ISD::SETNE);
7425
7426          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
7427                                          MVT::Other, Chain, SetCC, N2);
7428          // Don't add the new BRCond into the worklist or else SimplifySelectCC
7429          // will convert it back to (X & C1) >> C2.
7430          CombineTo(N, NewBRCond, false);
7431          // Truncate is dead.
7432          if (Trunc) {
7433            removeFromWorkList(Trunc);
7434            DAG.DeleteNode(Trunc);
7435          }
7436          // Replace the uses of SRL with SETCC
7437          WorkListRemover DeadNodes(*this);
7438          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7439          removeFromWorkList(N1.getNode());
7440          DAG.DeleteNode(N1.getNode());
7441          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7442        }
7443      }
7444    }
7445
7446    if (Trunc)
7447      // Restore N1 if the above transformation doesn't match.
7448      N1 = N->getOperand(1);
7449  }
7450
7451  // Transform br(xor(x, y)) -> br(x != y)
7452  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
7453  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
7454    SDNode *TheXor = N1.getNode();
7455    SDValue Op0 = TheXor->getOperand(0);
7456    SDValue Op1 = TheXor->getOperand(1);
7457    if (Op0.getOpcode() == Op1.getOpcode()) {
7458      // Avoid missing important xor optimizations.
7459      SDValue Tmp = visitXOR(TheXor);
7460      if (Tmp.getNode()) {
7461        if (Tmp.getNode() != TheXor) {
7462          DEBUG(dbgs() << "\nReplacing.8 ";
7463                TheXor->dump(&DAG);
7464                dbgs() << "\nWith: ";
7465                Tmp.getNode()->dump(&DAG);
7466                dbgs() << '\n');
7467          WorkListRemover DeadNodes(*this);
7468          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
7469          removeFromWorkList(TheXor);
7470          DAG.DeleteNode(TheXor);
7471          return DAG.getNode(ISD::BRCOND, SDLoc(N),
7472                             MVT::Other, Chain, Tmp, N2);
7473        }
7474
7475        // visitXOR has changed XOR's operands or replaced the XOR completely,
7476        // bail out.
7477        return SDValue(N, 0);
7478      }
7479    }
7480
7481    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
7482      bool Equal = false;
7483      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
7484        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
7485            Op0.getOpcode() == ISD::XOR) {
7486          TheXor = Op0.getNode();
7487          Equal = true;
7488        }
7489
7490      EVT SetCCVT = N1.getValueType();
7491      if (LegalTypes)
7492        SetCCVT = getSetCCResultType(SetCCVT);
7493      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7494                                   SetCCVT,
7495                                   Op0, Op1,
7496                                   Equal ? ISD::SETEQ : ISD::SETNE);
7497      // Replace the uses of XOR with SETCC
7498      WorkListRemover DeadNodes(*this);
7499      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7500      removeFromWorkList(N1.getNode());
7501      DAG.DeleteNode(N1.getNode());
7502      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7503                         MVT::Other, Chain, SetCC, N2);
7504    }
7505  }
7506
7507  return SDValue();
7508}
7509
7510// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7511//
7512SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7513  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7514  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7515
7516  // If N is a constant we could fold this into a fallthrough or unconditional
7517  // branch. However that doesn't happen very often in normal code, because
7518  // Instcombine/SimplifyCFG should have handled the available opportunities.
7519  // If we did this folding here, it would be necessary to update the
7520  // MachineBasicBlock CFG, which is awkward.
7521
7522  // Use SimplifySetCC to simplify SETCC's.
7523  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7524                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7525                               false);
7526  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7527
7528  // fold to a simpler setcc
7529  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7530    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7531                       N->getOperand(0), Simp.getOperand(2),
7532                       Simp.getOperand(0), Simp.getOperand(1),
7533                       N->getOperand(4));
7534
7535  return SDValue();
7536}
7537
7538/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7539/// uses N as its base pointer and that N may be folded in the load / store
7540/// addressing mode.
7541static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7542                                    SelectionDAG &DAG,
7543                                    const TargetLowering &TLI) {
7544  EVT VT;
7545  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7546    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7547      return false;
7548    VT = Use->getValueType(0);
7549  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7550    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7551      return false;
7552    VT = ST->getValue().getValueType();
7553  } else
7554    return false;
7555
7556  TargetLowering::AddrMode AM;
7557  if (N->getOpcode() == ISD::ADD) {
7558    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7559    if (Offset)
7560      // [reg +/- imm]
7561      AM.BaseOffs = Offset->getSExtValue();
7562    else
7563      // [reg +/- reg]
7564      AM.Scale = 1;
7565  } else if (N->getOpcode() == ISD::SUB) {
7566    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7567    if (Offset)
7568      // [reg +/- imm]
7569      AM.BaseOffs = -Offset->getSExtValue();
7570    else
7571      // [reg +/- reg]
7572      AM.Scale = 1;
7573  } else
7574    return false;
7575
7576  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7577}
7578
7579/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7580/// pre-indexed load / store when the base pointer is an add or subtract
7581/// and it has other uses besides the load / store. After the
7582/// transformation, the new indexed load / store has effectively folded
7583/// the add / subtract in and all of its other uses are redirected to the
7584/// new load / store.
7585bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7586  if (Level < AfterLegalizeDAG)
7587    return false;
7588
7589  bool isLoad = true;
7590  SDValue Ptr;
7591  EVT VT;
7592  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7593    if (LD->isIndexed())
7594      return false;
7595    VT = LD->getMemoryVT();
7596    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7597        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7598      return false;
7599    Ptr = LD->getBasePtr();
7600  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7601    if (ST->isIndexed())
7602      return false;
7603    VT = ST->getMemoryVT();
7604    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7605        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7606      return false;
7607    Ptr = ST->getBasePtr();
7608    isLoad = false;
7609  } else {
7610    return false;
7611  }
7612
7613  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7614  // out.  There is no reason to make this a preinc/predec.
7615  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7616      Ptr.getNode()->hasOneUse())
7617    return false;
7618
7619  // Ask the target to do addressing mode selection.
7620  SDValue BasePtr;
7621  SDValue Offset;
7622  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7623  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7624    return false;
7625
7626  // Backends without true r+i pre-indexed forms may need to pass a
7627  // constant base with a variable offset so that constant coercion
7628  // will work with the patterns in canonical form.
7629  bool Swapped = false;
7630  if (isa<ConstantSDNode>(BasePtr)) {
7631    std::swap(BasePtr, Offset);
7632    Swapped = true;
7633  }
7634
7635  // Don't create a indexed load / store with zero offset.
7636  if (isa<ConstantSDNode>(Offset) &&
7637      cast<ConstantSDNode>(Offset)->isNullValue())
7638    return false;
7639
7640  // Try turning it into a pre-indexed load / store except when:
7641  // 1) The new base ptr is a frame index.
7642  // 2) If N is a store and the new base ptr is either the same as or is a
7643  //    predecessor of the value being stored.
7644  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7645  //    that would create a cycle.
7646  // 4) All uses are load / store ops that use it as old base ptr.
7647
7648  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7649  // (plus the implicit offset) to a register to preinc anyway.
7650  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7651    return false;
7652
7653  // Check #2.
7654  if (!isLoad) {
7655    SDValue Val = cast<StoreSDNode>(N)->getValue();
7656    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7657      return false;
7658  }
7659
7660  // If the offset is a constant, there may be other adds of constants that
7661  // can be folded with this one. We should do this to avoid having to keep
7662  // a copy of the original base pointer.
7663  SmallVector<SDNode *, 16> OtherUses;
7664  if (isa<ConstantSDNode>(Offset))
7665    for (SDNode *Use : BasePtr.getNode()->uses()) {
7666      if (Use == Ptr.getNode())
7667        continue;
7668
7669      if (Use->isPredecessorOf(N))
7670        continue;
7671
7672      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7673        OtherUses.clear();
7674        break;
7675      }
7676
7677      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7678      if (Op1.getNode() == BasePtr.getNode())
7679        std::swap(Op0, Op1);
7680      assert(Op0.getNode() == BasePtr.getNode() &&
7681             "Use of ADD/SUB but not an operand");
7682
7683      if (!isa<ConstantSDNode>(Op1)) {
7684        OtherUses.clear();
7685        break;
7686      }
7687
7688      // FIXME: In some cases, we can be smarter about this.
7689      if (Op1.getValueType() != Offset.getValueType()) {
7690        OtherUses.clear();
7691        break;
7692      }
7693
7694      OtherUses.push_back(Use);
7695    }
7696
7697  if (Swapped)
7698    std::swap(BasePtr, Offset);
7699
7700  // Now check for #3 and #4.
7701  bool RealUse = false;
7702
7703  // Caches for hasPredecessorHelper
7704  SmallPtrSet<const SDNode *, 32> Visited;
7705  SmallVector<const SDNode *, 16> Worklist;
7706
7707  for (SDNode *Use : Ptr.getNode()->uses()) {
7708    if (Use == N)
7709      continue;
7710    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7711      return false;
7712
7713    // If Ptr may be folded in addressing mode of other use, then it's
7714    // not profitable to do this transformation.
7715    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7716      RealUse = true;
7717  }
7718
7719  if (!RealUse)
7720    return false;
7721
7722  SDValue Result;
7723  if (isLoad)
7724    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7725                                BasePtr, Offset, AM);
7726  else
7727    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7728                                 BasePtr, Offset, AM);
7729  ++PreIndexedNodes;
7730  ++NodesCombined;
7731  DEBUG(dbgs() << "\nReplacing.4 ";
7732        N->dump(&DAG);
7733        dbgs() << "\nWith: ";
7734        Result.getNode()->dump(&DAG);
7735        dbgs() << '\n');
7736  WorkListRemover DeadNodes(*this);
7737  if (isLoad) {
7738    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7739    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7740  } else {
7741    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7742  }
7743
7744  // Finally, since the node is now dead, remove it from the graph.
7745  DAG.DeleteNode(N);
7746
7747  if (Swapped)
7748    std::swap(BasePtr, Offset);
7749
7750  // Replace other uses of BasePtr that can be updated to use Ptr
7751  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7752    unsigned OffsetIdx = 1;
7753    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7754      OffsetIdx = 0;
7755    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7756           BasePtr.getNode() && "Expected BasePtr operand");
7757
7758    // We need to replace ptr0 in the following expression:
7759    //   x0 * offset0 + y0 * ptr0 = t0
7760    // knowing that
7761    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7762    //
7763    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7764    // indexed load/store and the expresion that needs to be re-written.
7765    //
7766    // Therefore, we have:
7767    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7768
7769    ConstantSDNode *CN =
7770      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7771    int X0, X1, Y0, Y1;
7772    APInt Offset0 = CN->getAPIntValue();
7773    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7774
7775    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7776    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7777    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7778    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7779
7780    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7781
7782    APInt CNV = Offset0;
7783    if (X0 < 0) CNV = -CNV;
7784    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7785    else CNV = CNV - Offset1;
7786
7787    // We can now generate the new expression.
7788    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7789    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7790
7791    SDValue NewUse = DAG.getNode(Opcode,
7792                                 SDLoc(OtherUses[i]),
7793                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7794    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7795    removeFromWorkList(OtherUses[i]);
7796    DAG.DeleteNode(OtherUses[i]);
7797  }
7798
7799  // Replace the uses of Ptr with uses of the updated base value.
7800  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7801  removeFromWorkList(Ptr.getNode());
7802  DAG.DeleteNode(Ptr.getNode());
7803
7804  return true;
7805}
7806
7807/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7808/// add / sub of the base pointer node into a post-indexed load / store.
7809/// The transformation folded the add / subtract into the new indexed
7810/// load / store effectively and all of its uses are redirected to the
7811/// new load / store.
7812bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7813  if (Level < AfterLegalizeDAG)
7814    return false;
7815
7816  bool isLoad = true;
7817  SDValue Ptr;
7818  EVT VT;
7819  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7820    if (LD->isIndexed())
7821      return false;
7822    VT = LD->getMemoryVT();
7823    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7824        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7825      return false;
7826    Ptr = LD->getBasePtr();
7827  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7828    if (ST->isIndexed())
7829      return false;
7830    VT = ST->getMemoryVT();
7831    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7832        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7833      return false;
7834    Ptr = ST->getBasePtr();
7835    isLoad = false;
7836  } else {
7837    return false;
7838  }
7839
7840  if (Ptr.getNode()->hasOneUse())
7841    return false;
7842
7843  for (SDNode *Op : Ptr.getNode()->uses()) {
7844    if (Op == N ||
7845        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7846      continue;
7847
7848    SDValue BasePtr;
7849    SDValue Offset;
7850    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7851    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7852      // Don't create a indexed load / store with zero offset.
7853      if (isa<ConstantSDNode>(Offset) &&
7854          cast<ConstantSDNode>(Offset)->isNullValue())
7855        continue;
7856
7857      // Try turning it into a post-indexed load / store except when
7858      // 1) All uses are load / store ops that use it as base ptr (and
7859      //    it may be folded as addressing mmode).
7860      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7861      //    nor a successor of N. Otherwise, if Op is folded that would
7862      //    create a cycle.
7863
7864      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7865        continue;
7866
7867      // Check for #1.
7868      bool TryNext = false;
7869      for (SDNode *Use : BasePtr.getNode()->uses()) {
7870        if (Use == Ptr.getNode())
7871          continue;
7872
7873        // If all the uses are load / store addresses, then don't do the
7874        // transformation.
7875        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7876          bool RealUse = false;
7877          for (SDNode *UseUse : Use->uses()) {
7878            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7879              RealUse = true;
7880          }
7881
7882          if (!RealUse) {
7883            TryNext = true;
7884            break;
7885          }
7886        }
7887      }
7888
7889      if (TryNext)
7890        continue;
7891
7892      // Check for #2
7893      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7894        SDValue Result = isLoad
7895          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7896                               BasePtr, Offset, AM)
7897          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7898                                BasePtr, Offset, AM);
7899        ++PostIndexedNodes;
7900        ++NodesCombined;
7901        DEBUG(dbgs() << "\nReplacing.5 ";
7902              N->dump(&DAG);
7903              dbgs() << "\nWith: ";
7904              Result.getNode()->dump(&DAG);
7905              dbgs() << '\n');
7906        WorkListRemover DeadNodes(*this);
7907        if (isLoad) {
7908          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7909          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7910        } else {
7911          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7912        }
7913
7914        // Finally, since the node is now dead, remove it from the graph.
7915        DAG.DeleteNode(N);
7916
7917        // Replace the uses of Use with uses of the updated base value.
7918        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7919                                      Result.getValue(isLoad ? 1 : 0));
7920        removeFromWorkList(Op);
7921        DAG.DeleteNode(Op);
7922        return true;
7923      }
7924    }
7925  }
7926
7927  return false;
7928}
7929
7930SDValue DAGCombiner::visitLOAD(SDNode *N) {
7931  LoadSDNode *LD  = cast<LoadSDNode>(N);
7932  SDValue Chain = LD->getChain();
7933  SDValue Ptr   = LD->getBasePtr();
7934
7935  // If load is not volatile and there are no uses of the loaded value (and
7936  // the updated indexed value in case of indexed loads), change uses of the
7937  // chain value into uses of the chain input (i.e. delete the dead load).
7938  if (!LD->isVolatile()) {
7939    if (N->getValueType(1) == MVT::Other) {
7940      // Unindexed loads.
7941      if (!N->hasAnyUseOfValue(0)) {
7942        // It's not safe to use the two value CombineTo variant here. e.g.
7943        // v1, chain2 = load chain1, loc
7944        // v2, chain3 = load chain2, loc
7945        // v3         = add v2, c
7946        // Now we replace use of chain2 with chain1.  This makes the second load
7947        // isomorphic to the one we are deleting, and thus makes this load live.
7948        DEBUG(dbgs() << "\nReplacing.6 ";
7949              N->dump(&DAG);
7950              dbgs() << "\nWith chain: ";
7951              Chain.getNode()->dump(&DAG);
7952              dbgs() << "\n");
7953        WorkListRemover DeadNodes(*this);
7954        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7955
7956        if (N->use_empty()) {
7957          removeFromWorkList(N);
7958          DAG.DeleteNode(N);
7959        }
7960
7961        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7962      }
7963    } else {
7964      // Indexed loads.
7965      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7966      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7967        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7968        DEBUG(dbgs() << "\nReplacing.7 ";
7969              N->dump(&DAG);
7970              dbgs() << "\nWith: ";
7971              Undef.getNode()->dump(&DAG);
7972              dbgs() << " and 2 other values\n");
7973        WorkListRemover DeadNodes(*this);
7974        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7975        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7976                                      DAG.getUNDEF(N->getValueType(1)));
7977        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7978        removeFromWorkList(N);
7979        DAG.DeleteNode(N);
7980        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7981      }
7982    }
7983  }
7984
7985  // If this load is directly stored, replace the load value with the stored
7986  // value.
7987  // TODO: Handle store large -> read small portion.
7988  // TODO: Handle TRUNCSTORE/LOADEXT
7989  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7990    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7991      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7992      if (PrevST->getBasePtr() == Ptr &&
7993          PrevST->getValue().getValueType() == N->getValueType(0))
7994      return CombineTo(N, Chain.getOperand(1), Chain);
7995    }
7996  }
7997
7998  // Try to infer better alignment information than the load already has.
7999  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
8000    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8001      if (Align > LD->getMemOperand()->getBaseAlignment()) {
8002        SDValue NewLoad =
8003               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
8004                              LD->getValueType(0),
8005                              Chain, Ptr, LD->getPointerInfo(),
8006                              LD->getMemoryVT(),
8007                              LD->isVolatile(), LD->isNonTemporal(), Align,
8008                              LD->getTBAAInfo());
8009        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
8010      }
8011    }
8012  }
8013
8014  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
8015    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
8016#ifndef NDEBUG
8017  if (CombinerAAOnlyFunc.getNumOccurrences() &&
8018      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
8019    UseAA = false;
8020#endif
8021  if (UseAA && LD->isUnindexed()) {
8022    // Walk up chain skipping non-aliasing memory nodes.
8023    SDValue BetterChain = FindBetterChain(N, Chain);
8024
8025    // If there is a better chain.
8026    if (Chain != BetterChain) {
8027      SDValue ReplLoad;
8028
8029      // Replace the chain to void dependency.
8030      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
8031        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
8032                               BetterChain, Ptr, LD->getMemOperand());
8033      } else {
8034        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
8035                                  LD->getValueType(0),
8036                                  BetterChain, Ptr, LD->getMemoryVT(),
8037                                  LD->getMemOperand());
8038      }
8039
8040      // Create token factor to keep old chain connected.
8041      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
8042                                  MVT::Other, Chain, ReplLoad.getValue(1));
8043
8044      // Make sure the new and old chains are cleaned up.
8045      AddToWorkList(Token.getNode());
8046
8047      // Replace uses with load result and token factor. Don't add users
8048      // to work list.
8049      return CombineTo(N, ReplLoad.getValue(0), Token, false);
8050    }
8051  }
8052
8053  // Try transforming N to an indexed load.
8054  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8055    return SDValue(N, 0);
8056
8057  // Try to slice up N to more direct loads if the slices are mapped to
8058  // different register banks or pairing can take place.
8059  if (SliceUpLoad(N))
8060    return SDValue(N, 0);
8061
8062  return SDValue();
8063}
8064
8065namespace {
8066/// \brief Helper structure used to slice a load in smaller loads.
8067/// Basically a slice is obtained from the following sequence:
8068/// Origin = load Ty1, Base
8069/// Shift = srl Ty1 Origin, CstTy Amount
8070/// Inst = trunc Shift to Ty2
8071///
8072/// Then, it will be rewriten into:
8073/// Slice = load SliceTy, Base + SliceOffset
8074/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
8075///
8076/// SliceTy is deduced from the number of bits that are actually used to
8077/// build Inst.
8078struct LoadedSlice {
8079  /// \brief Helper structure used to compute the cost of a slice.
8080  struct Cost {
8081    /// Are we optimizing for code size.
8082    bool ForCodeSize;
8083    /// Various cost.
8084    unsigned Loads;
8085    unsigned Truncates;
8086    unsigned CrossRegisterBanksCopies;
8087    unsigned ZExts;
8088    unsigned Shift;
8089
8090    Cost(bool ForCodeSize = false)
8091        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
8092          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
8093
8094    /// \brief Get the cost of one isolated slice.
8095    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
8096        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
8097          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
8098      EVT TruncType = LS.Inst->getValueType(0);
8099      EVT LoadedType = LS.getLoadedType();
8100      if (TruncType != LoadedType &&
8101          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
8102        ZExts = 1;
8103    }
8104
8105    /// \brief Account for slicing gain in the current cost.
8106    /// Slicing provide a few gains like removing a shift or a
8107    /// truncate. This method allows to grow the cost of the original
8108    /// load with the gain from this slice.
8109    void addSliceGain(const LoadedSlice &LS) {
8110      // Each slice saves a truncate.
8111      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
8112      if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
8113                              LS.Inst->getOperand(0).getValueType()))
8114        ++Truncates;
8115      // If there is a shift amount, this slice gets rid of it.
8116      if (LS.Shift)
8117        ++Shift;
8118      // If this slice can merge a cross register bank copy, account for it.
8119      if (LS.canMergeExpensiveCrossRegisterBankCopy())
8120        ++CrossRegisterBanksCopies;
8121    }
8122
8123    Cost &operator+=(const Cost &RHS) {
8124      Loads += RHS.Loads;
8125      Truncates += RHS.Truncates;
8126      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
8127      ZExts += RHS.ZExts;
8128      Shift += RHS.Shift;
8129      return *this;
8130    }
8131
8132    bool operator==(const Cost &RHS) const {
8133      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
8134             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
8135             ZExts == RHS.ZExts && Shift == RHS.Shift;
8136    }
8137
8138    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
8139
8140    bool operator<(const Cost &RHS) const {
8141      // Assume cross register banks copies are as expensive as loads.
8142      // FIXME: Do we want some more target hooks?
8143      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
8144      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
8145      // Unless we are optimizing for code size, consider the
8146      // expensive operation first.
8147      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
8148        return ExpensiveOpsLHS < ExpensiveOpsRHS;
8149      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
8150             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
8151    }
8152
8153    bool operator>(const Cost &RHS) const { return RHS < *this; }
8154
8155    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
8156
8157    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
8158  };
8159  // The last instruction that represent the slice. This should be a
8160  // truncate instruction.
8161  SDNode *Inst;
8162  // The original load instruction.
8163  LoadSDNode *Origin;
8164  // The right shift amount in bits from the original load.
8165  unsigned Shift;
8166  // The DAG from which Origin came from.
8167  // This is used to get some contextual information about legal types, etc.
8168  SelectionDAG *DAG;
8169
8170  LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
8171              unsigned Shift = 0, SelectionDAG *DAG = nullptr)
8172      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
8173
8174  LoadedSlice(const LoadedSlice &LS)
8175      : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
8176
8177  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
8178  /// \return Result is \p BitWidth and has used bits set to 1 and
8179  ///         not used bits set to 0.
8180  APInt getUsedBits() const {
8181    // Reproduce the trunc(lshr) sequence:
8182    // - Start from the truncated value.
8183    // - Zero extend to the desired bit width.
8184    // - Shift left.
8185    assert(Origin && "No original load to compare against.");
8186    unsigned BitWidth = Origin->getValueSizeInBits(0);
8187    assert(Inst && "This slice is not bound to an instruction");
8188    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
8189           "Extracted slice is bigger than the whole type!");
8190    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
8191    UsedBits.setAllBits();
8192    UsedBits = UsedBits.zext(BitWidth);
8193    UsedBits <<= Shift;
8194    return UsedBits;
8195  }
8196
8197  /// \brief Get the size of the slice to be loaded in bytes.
8198  unsigned getLoadedSize() const {
8199    unsigned SliceSize = getUsedBits().countPopulation();
8200    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
8201    return SliceSize / 8;
8202  }
8203
8204  /// \brief Get the type that will be loaded for this slice.
8205  /// Note: This may not be the final type for the slice.
8206  EVT getLoadedType() const {
8207    assert(DAG && "Missing context");
8208    LLVMContext &Ctxt = *DAG->getContext();
8209    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
8210  }
8211
8212  /// \brief Get the alignment of the load used for this slice.
8213  unsigned getAlignment() const {
8214    unsigned Alignment = Origin->getAlignment();
8215    unsigned Offset = getOffsetFromBase();
8216    if (Offset != 0)
8217      Alignment = MinAlign(Alignment, Alignment + Offset);
8218    return Alignment;
8219  }
8220
8221  /// \brief Check if this slice can be rewritten with legal operations.
8222  bool isLegal() const {
8223    // An invalid slice is not legal.
8224    if (!Origin || !Inst || !DAG)
8225      return false;
8226
8227    // Offsets are for indexed load only, we do not handle that.
8228    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
8229      return false;
8230
8231    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
8232
8233    // Check that the type is legal.
8234    EVT SliceType = getLoadedType();
8235    if (!TLI.isTypeLegal(SliceType))
8236      return false;
8237
8238    // Check that the load is legal for this type.
8239    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
8240      return false;
8241
8242    // Check that the offset can be computed.
8243    // 1. Check its type.
8244    EVT PtrType = Origin->getBasePtr().getValueType();
8245    if (PtrType == MVT::Untyped || PtrType.isExtended())
8246      return false;
8247
8248    // 2. Check that it fits in the immediate.
8249    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
8250      return false;
8251
8252    // 3. Check that the computation is legal.
8253    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
8254      return false;
8255
8256    // Check that the zext is legal if it needs one.
8257    EVT TruncateType = Inst->getValueType(0);
8258    if (TruncateType != SliceType &&
8259        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
8260      return false;
8261
8262    return true;
8263  }
8264
8265  /// \brief Get the offset in bytes of this slice in the original chunk of
8266  /// bits.
8267  /// \pre DAG != nullptr.
8268  uint64_t getOffsetFromBase() const {
8269    assert(DAG && "Missing context.");
8270    bool IsBigEndian =
8271        DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
8272    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
8273    uint64_t Offset = Shift / 8;
8274    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
8275    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
8276           "The size of the original loaded type is not a multiple of a"
8277           " byte.");
8278    // If Offset is bigger than TySizeInBytes, it means we are loading all
8279    // zeros. This should have been optimized before in the process.
8280    assert(TySizeInBytes > Offset &&
8281           "Invalid shift amount for given loaded size");
8282    if (IsBigEndian)
8283      Offset = TySizeInBytes - Offset - getLoadedSize();
8284    return Offset;
8285  }
8286
8287  /// \brief Generate the sequence of instructions to load the slice
8288  /// represented by this object and redirect the uses of this slice to
8289  /// this new sequence of instructions.
8290  /// \pre this->Inst && this->Origin are valid Instructions and this
8291  /// object passed the legal check: LoadedSlice::isLegal returned true.
8292  /// \return The last instruction of the sequence used to load the slice.
8293  SDValue loadSlice() const {
8294    assert(Inst && Origin && "Unable to replace a non-existing slice.");
8295    const SDValue &OldBaseAddr = Origin->getBasePtr();
8296    SDValue BaseAddr = OldBaseAddr;
8297    // Get the offset in that chunk of bytes w.r.t. the endianess.
8298    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
8299    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
8300    if (Offset) {
8301      // BaseAddr = BaseAddr + Offset.
8302      EVT ArithType = BaseAddr.getValueType();
8303      BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
8304                              DAG->getConstant(Offset, ArithType));
8305    }
8306
8307    // Create the type of the loaded slice according to its size.
8308    EVT SliceType = getLoadedType();
8309
8310    // Create the load for the slice.
8311    SDValue LastInst = DAG->getLoad(
8312        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
8313        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
8314        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
8315    // If the final type is not the same as the loaded type, this means that
8316    // we have to pad with zero. Create a zero extend for that.
8317    EVT FinalType = Inst->getValueType(0);
8318    if (SliceType != FinalType)
8319      LastInst =
8320          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
8321    return LastInst;
8322  }
8323
8324  /// \brief Check if this slice can be merged with an expensive cross register
8325  /// bank copy. E.g.,
8326  /// i = load i32
8327  /// f = bitcast i32 i to float
8328  bool canMergeExpensiveCrossRegisterBankCopy() const {
8329    if (!Inst || !Inst->hasOneUse())
8330      return false;
8331    SDNode *Use = *Inst->use_begin();
8332    if (Use->getOpcode() != ISD::BITCAST)
8333      return false;
8334    assert(DAG && "Missing context");
8335    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
8336    EVT ResVT = Use->getValueType(0);
8337    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
8338    const TargetRegisterClass *ArgRC =
8339        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
8340    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
8341      return false;
8342
8343    // At this point, we know that we perform a cross-register-bank copy.
8344    // Check if it is expensive.
8345    const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
8346    // Assume bitcasts are cheap, unless both register classes do not
8347    // explicitly share a common sub class.
8348    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
8349      return false;
8350
8351    // Check if it will be merged with the load.
8352    // 1. Check the alignment constraint.
8353    unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
8354        ResVT.getTypeForEVT(*DAG->getContext()));
8355
8356    if (RequiredAlignment > getAlignment())
8357      return false;
8358
8359    // 2. Check that the load is a legal operation for that type.
8360    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
8361      return false;
8362
8363    // 3. Check that we do not have a zext in the way.
8364    if (Inst->getValueType(0) != getLoadedType())
8365      return false;
8366
8367    return true;
8368  }
8369};
8370}
8371
8372/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
8373/// \p UsedBits looks like 0..0 1..1 0..0.
8374static bool areUsedBitsDense(const APInt &UsedBits) {
8375  // If all the bits are one, this is dense!
8376  if (UsedBits.isAllOnesValue())
8377    return true;
8378
8379  // Get rid of the unused bits on the right.
8380  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
8381  // Get rid of the unused bits on the left.
8382  if (NarrowedUsedBits.countLeadingZeros())
8383    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
8384  // Check that the chunk of bits is completely used.
8385  return NarrowedUsedBits.isAllOnesValue();
8386}
8387
8388/// \brief Check whether or not \p First and \p Second are next to each other
8389/// in memory. This means that there is no hole between the bits loaded
8390/// by \p First and the bits loaded by \p Second.
8391static bool areSlicesNextToEachOther(const LoadedSlice &First,
8392                                     const LoadedSlice &Second) {
8393  assert(First.Origin == Second.Origin && First.Origin &&
8394         "Unable to match different memory origins.");
8395  APInt UsedBits = First.getUsedBits();
8396  assert((UsedBits & Second.getUsedBits()) == 0 &&
8397         "Slices are not supposed to overlap.");
8398  UsedBits |= Second.getUsedBits();
8399  return areUsedBitsDense(UsedBits);
8400}
8401
8402/// \brief Adjust the \p GlobalLSCost according to the target
8403/// paring capabilities and the layout of the slices.
8404/// \pre \p GlobalLSCost should account for at least as many loads as
8405/// there is in the slices in \p LoadedSlices.
8406static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
8407                                 LoadedSlice::Cost &GlobalLSCost) {
8408  unsigned NumberOfSlices = LoadedSlices.size();
8409  // If there is less than 2 elements, no pairing is possible.
8410  if (NumberOfSlices < 2)
8411    return;
8412
8413  // Sort the slices so that elements that are likely to be next to each
8414  // other in memory are next to each other in the list.
8415  std::sort(LoadedSlices.begin(), LoadedSlices.end(),
8416            [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
8417    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
8418    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
8419  });
8420  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
8421  // First (resp. Second) is the first (resp. Second) potentially candidate
8422  // to be placed in a paired load.
8423  const LoadedSlice *First = nullptr;
8424  const LoadedSlice *Second = nullptr;
8425  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
8426                // Set the beginning of the pair.
8427                                                           First = Second) {
8428
8429    Second = &LoadedSlices[CurrSlice];
8430
8431    // If First is NULL, it means we start a new pair.
8432    // Get to the next slice.
8433    if (!First)
8434      continue;
8435
8436    EVT LoadedType = First->getLoadedType();
8437
8438    // If the types of the slices are different, we cannot pair them.
8439    if (LoadedType != Second->getLoadedType())
8440      continue;
8441
8442    // Check if the target supplies paired loads for this type.
8443    unsigned RequiredAlignment = 0;
8444    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
8445      // move to the next pair, this type is hopeless.
8446      Second = nullptr;
8447      continue;
8448    }
8449    // Check if we meet the alignment requirement.
8450    if (RequiredAlignment > First->getAlignment())
8451      continue;
8452
8453    // Check that both loads are next to each other in memory.
8454    if (!areSlicesNextToEachOther(*First, *Second))
8455      continue;
8456
8457    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
8458    --GlobalLSCost.Loads;
8459    // Move to the next pair.
8460    Second = nullptr;
8461  }
8462}
8463
8464/// \brief Check the profitability of all involved LoadedSlice.
8465/// Currently, it is considered profitable if there is exactly two
8466/// involved slices (1) which are (2) next to each other in memory, and
8467/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
8468///
8469/// Note: The order of the elements in \p LoadedSlices may be modified, but not
8470/// the elements themselves.
8471///
8472/// FIXME: When the cost model will be mature enough, we can relax
8473/// constraints (1) and (2).
8474static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
8475                                const APInt &UsedBits, bool ForCodeSize) {
8476  unsigned NumberOfSlices = LoadedSlices.size();
8477  if (StressLoadSlicing)
8478    return NumberOfSlices > 1;
8479
8480  // Check (1).
8481  if (NumberOfSlices != 2)
8482    return false;
8483
8484  // Check (2).
8485  if (!areUsedBitsDense(UsedBits))
8486    return false;
8487
8488  // Check (3).
8489  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8490  // The original code has one big load.
8491  OrigCost.Loads = 1;
8492  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8493    const LoadedSlice &LS = LoadedSlices[CurrSlice];
8494    // Accumulate the cost of all the slices.
8495    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8496    GlobalSlicingCost += SliceCost;
8497
8498    // Account as cost in the original configuration the gain obtained
8499    // with the current slices.
8500    OrigCost.addSliceGain(LS);
8501  }
8502
8503  // If the target supports paired load, adjust the cost accordingly.
8504  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8505  return OrigCost > GlobalSlicingCost;
8506}
8507
8508/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8509/// operations, split it in the various pieces being extracted.
8510///
8511/// This sort of thing is introduced by SROA.
8512/// This slicing takes care not to insert overlapping loads.
8513/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8514bool DAGCombiner::SliceUpLoad(SDNode *N) {
8515  if (Level < AfterLegalizeDAG)
8516    return false;
8517
8518  LoadSDNode *LD = cast<LoadSDNode>(N);
8519  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8520      !LD->getValueType(0).isInteger())
8521    return false;
8522
8523  // Keep track of already used bits to detect overlapping values.
8524  // In that case, we will just abort the transformation.
8525  APInt UsedBits(LD->getValueSizeInBits(0), 0);
8526
8527  SmallVector<LoadedSlice, 4> LoadedSlices;
8528
8529  // Check if this load is used as several smaller chunks of bits.
8530  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8531  // of computation for each trunc.
8532  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8533       UI != UIEnd; ++UI) {
8534    // Skip the uses of the chain.
8535    if (UI.getUse().getResNo() != 0)
8536      continue;
8537
8538    SDNode *User = *UI;
8539    unsigned Shift = 0;
8540
8541    // Check if this is a trunc(lshr).
8542    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8543        isa<ConstantSDNode>(User->getOperand(1))) {
8544      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8545      User = *User->use_begin();
8546    }
8547
8548    // At this point, User is a Truncate, iff we encountered, trunc or
8549    // trunc(lshr).
8550    if (User->getOpcode() != ISD::TRUNCATE)
8551      return false;
8552
8553    // The width of the type must be a power of 2 and greater than 8-bits.
8554    // Otherwise the load cannot be represented in LLVM IR.
8555    // Moreover, if we shifted with a non-8-bits multiple, the slice
8556    // will be across several bytes. We do not support that.
8557    unsigned Width = User->getValueSizeInBits(0);
8558    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8559      return 0;
8560
8561    // Build the slice for this chain of computations.
8562    LoadedSlice LS(User, LD, Shift, &DAG);
8563    APInt CurrentUsedBits = LS.getUsedBits();
8564
8565    // Check if this slice overlaps with another.
8566    if ((CurrentUsedBits & UsedBits) != 0)
8567      return false;
8568    // Update the bits used globally.
8569    UsedBits |= CurrentUsedBits;
8570
8571    // Check if the new slice would be legal.
8572    if (!LS.isLegal())
8573      return false;
8574
8575    // Record the slice.
8576    LoadedSlices.push_back(LS);
8577  }
8578
8579  // Abort slicing if it does not seem to be profitable.
8580  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8581    return false;
8582
8583  ++SlicedLoads;
8584
8585  // Rewrite each chain to use an independent load.
8586  // By construction, each chain can be represented by a unique load.
8587
8588  // Prepare the argument for the new token factor for all the slices.
8589  SmallVector<SDValue, 8> ArgChains;
8590  for (SmallVectorImpl<LoadedSlice>::const_iterator
8591           LSIt = LoadedSlices.begin(),
8592           LSItEnd = LoadedSlices.end();
8593       LSIt != LSItEnd; ++LSIt) {
8594    SDValue SliceInst = LSIt->loadSlice();
8595    CombineTo(LSIt->Inst, SliceInst, true);
8596    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8597      SliceInst = SliceInst.getOperand(0);
8598    assert(SliceInst->getOpcode() == ISD::LOAD &&
8599           "It takes more than a zext to get to the loaded slice!!");
8600    ArgChains.push_back(SliceInst.getValue(1));
8601  }
8602
8603  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8604                              ArgChains);
8605  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8606  return true;
8607}
8608
8609/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8610/// load is having specific bytes cleared out.  If so, return the byte size
8611/// being masked out and the shift amount.
8612static std::pair<unsigned, unsigned>
8613CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8614  std::pair<unsigned, unsigned> Result(0, 0);
8615
8616  // Check for the structure we're looking for.
8617  if (V->getOpcode() != ISD::AND ||
8618      !isa<ConstantSDNode>(V->getOperand(1)) ||
8619      !ISD::isNormalLoad(V->getOperand(0).getNode()))
8620    return Result;
8621
8622  // Check the chain and pointer.
8623  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8624  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
8625
8626  // The store should be chained directly to the load or be an operand of a
8627  // tokenfactor.
8628  if (LD == Chain.getNode())
8629    ; // ok.
8630  else if (Chain->getOpcode() != ISD::TokenFactor)
8631    return Result; // Fail.
8632  else {
8633    bool isOk = false;
8634    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8635      if (Chain->getOperand(i).getNode() == LD) {
8636        isOk = true;
8637        break;
8638      }
8639    if (!isOk) return Result;
8640  }
8641
8642  // This only handles simple types.
8643  if (V.getValueType() != MVT::i16 &&
8644      V.getValueType() != MVT::i32 &&
8645      V.getValueType() != MVT::i64)
8646    return Result;
8647
8648  // Check the constant mask.  Invert it so that the bits being masked out are
8649  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
8650  // follow the sign bit for uniformity.
8651  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8652  unsigned NotMaskLZ = countLeadingZeros(NotMask);
8653  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
8654  unsigned NotMaskTZ = countTrailingZeros(NotMask);
8655  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
8656  if (NotMaskLZ == 64) return Result;  // All zero mask.
8657
8658  // See if we have a continuous run of bits.  If so, we have 0*1+0*
8659  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8660    return Result;
8661
8662  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8663  if (V.getValueType() != MVT::i64 && NotMaskLZ)
8664    NotMaskLZ -= 64-V.getValueSizeInBits();
8665
8666  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8667  switch (MaskedBytes) {
8668  case 1:
8669  case 2:
8670  case 4: break;
8671  default: return Result; // All one mask, or 5-byte mask.
8672  }
8673
8674  // Verify that the first bit starts at a multiple of mask so that the access
8675  // is aligned the same as the access width.
8676  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8677
8678  Result.first = MaskedBytes;
8679  Result.second = NotMaskTZ/8;
8680  return Result;
8681}
8682
8683
8684/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8685/// provides a value as specified by MaskInfo.  If so, replace the specified
8686/// store with a narrower store of truncated IVal.
8687static SDNode *
8688ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8689                                SDValue IVal, StoreSDNode *St,
8690                                DAGCombiner *DC) {
8691  unsigned NumBytes = MaskInfo.first;
8692  unsigned ByteShift = MaskInfo.second;
8693  SelectionDAG &DAG = DC->getDAG();
8694
8695  // Check to see if IVal is all zeros in the part being masked in by the 'or'
8696  // that uses this.  If not, this is not a replacement.
8697  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8698                                  ByteShift*8, (ByteShift+NumBytes)*8);
8699  if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
8700
8701  // Check that it is legal on the target to do this.  It is legal if the new
8702  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8703  // legalization.
8704  MVT VT = MVT::getIntegerVT(NumBytes*8);
8705  if (!DC->isTypeLegal(VT))
8706    return nullptr;
8707
8708  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
8709  // shifted by ByteShift and truncated down to NumBytes.
8710  if (ByteShift)
8711    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8712                       DAG.getConstant(ByteShift*8,
8713                                    DC->getShiftAmountTy(IVal.getValueType())));
8714
8715  // Figure out the offset for the store and the alignment of the access.
8716  unsigned StOffset;
8717  unsigned NewAlign = St->getAlignment();
8718
8719  if (DAG.getTargetLoweringInfo().isLittleEndian())
8720    StOffset = ByteShift;
8721  else
8722    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8723
8724  SDValue Ptr = St->getBasePtr();
8725  if (StOffset) {
8726    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8727                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8728    NewAlign = MinAlign(NewAlign, StOffset);
8729  }
8730
8731  // Truncate down to the new size.
8732  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8733
8734  ++OpsNarrowed;
8735  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8736                      St->getPointerInfo().getWithOffset(StOffset),
8737                      false, false, NewAlign).getNode();
8738}
8739
8740
8741/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8742/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8743/// of the loaded bits, try narrowing the load and store if it would end up
8744/// being a win for performance or code size.
8745SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8746  StoreSDNode *ST  = cast<StoreSDNode>(N);
8747  if (ST->isVolatile())
8748    return SDValue();
8749
8750  SDValue Chain = ST->getChain();
8751  SDValue Value = ST->getValue();
8752  SDValue Ptr   = ST->getBasePtr();
8753  EVT VT = Value.getValueType();
8754
8755  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8756    return SDValue();
8757
8758  unsigned Opc = Value.getOpcode();
8759
8760  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8761  // is a byte mask indicating a consecutive number of bytes, check to see if
8762  // Y is known to provide just those bytes.  If so, we try to replace the
8763  // load + replace + store sequence with a single (narrower) store, which makes
8764  // the load dead.
8765  if (Opc == ISD::OR) {
8766    std::pair<unsigned, unsigned> MaskedLoad;
8767    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8768    if (MaskedLoad.first)
8769      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8770                                                  Value.getOperand(1), ST,this))
8771        return SDValue(NewST, 0);
8772
8773    // Or is commutative, so try swapping X and Y.
8774    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8775    if (MaskedLoad.first)
8776      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8777                                                  Value.getOperand(0), ST,this))
8778        return SDValue(NewST, 0);
8779  }
8780
8781  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8782      Value.getOperand(1).getOpcode() != ISD::Constant)
8783    return SDValue();
8784
8785  SDValue N0 = Value.getOperand(0);
8786  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8787      Chain == SDValue(N0.getNode(), 1)) {
8788    LoadSDNode *LD = cast<LoadSDNode>(N0);
8789    if (LD->getBasePtr() != Ptr ||
8790        LD->getPointerInfo().getAddrSpace() !=
8791        ST->getPointerInfo().getAddrSpace())
8792      return SDValue();
8793
8794    // Find the type to narrow it the load / op / store to.
8795    SDValue N1 = Value.getOperand(1);
8796    unsigned BitWidth = N1.getValueSizeInBits();
8797    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8798    if (Opc == ISD::AND)
8799      Imm ^= APInt::getAllOnesValue(BitWidth);
8800    if (Imm == 0 || Imm.isAllOnesValue())
8801      return SDValue();
8802    unsigned ShAmt = Imm.countTrailingZeros();
8803    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8804    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8805    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8806    while (NewBW < BitWidth &&
8807           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8808             TLI.isNarrowingProfitable(VT, NewVT))) {
8809      NewBW = NextPowerOf2(NewBW);
8810      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8811    }
8812    if (NewBW >= BitWidth)
8813      return SDValue();
8814
8815    // If the lsb changed does not start at the type bitwidth boundary,
8816    // start at the previous one.
8817    if (ShAmt % NewBW)
8818      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8819    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8820                                   std::min(BitWidth, ShAmt + NewBW));
8821    if ((Imm & Mask) == Imm) {
8822      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8823      if (Opc == ISD::AND)
8824        NewImm ^= APInt::getAllOnesValue(NewBW);
8825      uint64_t PtrOff = ShAmt / 8;
8826      // For big endian targets, we need to adjust the offset to the pointer to
8827      // load the correct bytes.
8828      if (TLI.isBigEndian())
8829        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8830
8831      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8832      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8833      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8834        return SDValue();
8835
8836      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8837                                   Ptr.getValueType(), Ptr,
8838                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
8839      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8840                                  LD->getChain(), NewPtr,
8841                                  LD->getPointerInfo().getWithOffset(PtrOff),
8842                                  LD->isVolatile(), LD->isNonTemporal(),
8843                                  LD->isInvariant(), NewAlign,
8844                                  LD->getTBAAInfo());
8845      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8846                                   DAG.getConstant(NewImm, NewVT));
8847      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8848                                   NewVal, NewPtr,
8849                                   ST->getPointerInfo().getWithOffset(PtrOff),
8850                                   false, false, NewAlign);
8851
8852      AddToWorkList(NewPtr.getNode());
8853      AddToWorkList(NewLD.getNode());
8854      AddToWorkList(NewVal.getNode());
8855      WorkListRemover DeadNodes(*this);
8856      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8857      ++OpsNarrowed;
8858      return NewST;
8859    }
8860  }
8861
8862  return SDValue();
8863}
8864
8865/// TransformFPLoadStorePair - For a given floating point load / store pair,
8866/// if the load value isn't used by any other operations, then consider
8867/// transforming the pair to integer load / store operations if the target
8868/// deems the transformation profitable.
8869SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8870  StoreSDNode *ST  = cast<StoreSDNode>(N);
8871  SDValue Chain = ST->getChain();
8872  SDValue Value = ST->getValue();
8873  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8874      Value.hasOneUse() &&
8875      Chain == SDValue(Value.getNode(), 1)) {
8876    LoadSDNode *LD = cast<LoadSDNode>(Value);
8877    EVT VT = LD->getMemoryVT();
8878    if (!VT.isFloatingPoint() ||
8879        VT != ST->getMemoryVT() ||
8880        LD->isNonTemporal() ||
8881        ST->isNonTemporal() ||
8882        LD->getPointerInfo().getAddrSpace() != 0 ||
8883        ST->getPointerInfo().getAddrSpace() != 0)
8884      return SDValue();
8885
8886    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8887    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8888        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8889        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8890        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8891      return SDValue();
8892
8893    unsigned LDAlign = LD->getAlignment();
8894    unsigned STAlign = ST->getAlignment();
8895    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8896    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8897    if (LDAlign < ABIAlign || STAlign < ABIAlign)
8898      return SDValue();
8899
8900    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8901                                LD->getChain(), LD->getBasePtr(),
8902                                LD->getPointerInfo(),
8903                                false, false, false, LDAlign);
8904
8905    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8906                                 NewLD, ST->getBasePtr(),
8907                                 ST->getPointerInfo(),
8908                                 false, false, STAlign);
8909
8910    AddToWorkList(NewLD.getNode());
8911    AddToWorkList(NewST.getNode());
8912    WorkListRemover DeadNodes(*this);
8913    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8914    ++LdStFP2Int;
8915    return NewST;
8916  }
8917
8918  return SDValue();
8919}
8920
8921/// Helper struct to parse and store a memory address as base + index + offset.
8922/// We ignore sign extensions when it is safe to do so.
8923/// The following two expressions are not equivalent. To differentiate we need
8924/// to store whether there was a sign extension involved in the index
8925/// computation.
8926///  (load (i64 add (i64 copyfromreg %c)
8927///                 (i64 signextend (add (i8 load %index)
8928///                                      (i8 1))))
8929/// vs
8930///
8931/// (load (i64 add (i64 copyfromreg %c)
8932///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
8933///                                         (i32 1)))))
8934struct BaseIndexOffset {
8935  SDValue Base;
8936  SDValue Index;
8937  int64_t Offset;
8938  bool IsIndexSignExt;
8939
8940  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8941
8942  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8943                  bool IsIndexSignExt) :
8944    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8945
8946  bool equalBaseIndex(const BaseIndexOffset &Other) {
8947    return Other.Base == Base && Other.Index == Index &&
8948      Other.IsIndexSignExt == IsIndexSignExt;
8949  }
8950
8951  /// Parses tree in Ptr for base, index, offset addresses.
8952  static BaseIndexOffset match(SDValue Ptr) {
8953    bool IsIndexSignExt = false;
8954
8955    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8956    // instruction, then it could be just the BASE or everything else we don't
8957    // know how to handle. Just use Ptr as BASE and give up.
8958    if (Ptr->getOpcode() != ISD::ADD)
8959      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8960
8961    // We know that we have at least an ADD instruction. Try to pattern match
8962    // the simple case of BASE + OFFSET.
8963    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8964      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8965      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8966                              IsIndexSignExt);
8967    }
8968
8969    // Inside a loop the current BASE pointer is calculated using an ADD and a
8970    // MUL instruction. In this case Ptr is the actual BASE pointer.
8971    // (i64 add (i64 %array_ptr)
8972    //          (i64 mul (i64 %induction_var)
8973    //                   (i64 %element_size)))
8974    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8975      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8976
8977    // Look at Base + Index + Offset cases.
8978    SDValue Base = Ptr->getOperand(0);
8979    SDValue IndexOffset = Ptr->getOperand(1);
8980
8981    // Skip signextends.
8982    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8983      IndexOffset = IndexOffset->getOperand(0);
8984      IsIndexSignExt = true;
8985    }
8986
8987    // Either the case of Base + Index (no offset) or something else.
8988    if (IndexOffset->getOpcode() != ISD::ADD)
8989      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8990
8991    // Now we have the case of Base + Index + offset.
8992    SDValue Index = IndexOffset->getOperand(0);
8993    SDValue Offset = IndexOffset->getOperand(1);
8994
8995    if (!isa<ConstantSDNode>(Offset))
8996      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8997
8998    // Ignore signextends.
8999    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
9000      Index = Index->getOperand(0);
9001      IsIndexSignExt = true;
9002    } else IsIndexSignExt = false;
9003
9004    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
9005    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
9006  }
9007};
9008
9009/// Holds a pointer to an LSBaseSDNode as well as information on where it
9010/// is located in a sequence of memory operations connected by a chain.
9011struct MemOpLink {
9012  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
9013    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
9014  // Ptr to the mem node.
9015  LSBaseSDNode *MemNode;
9016  // Offset from the base ptr.
9017  int64_t OffsetFromBase;
9018  // What is the sequence number of this mem node.
9019  // Lowest mem operand in the DAG starts at zero.
9020  unsigned SequenceNum;
9021};
9022
9023bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
9024  EVT MemVT = St->getMemoryVT();
9025  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
9026  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
9027    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
9028
9029  // Don't merge vectors into wider inputs.
9030  if (MemVT.isVector() || !MemVT.isSimple())
9031    return false;
9032
9033  // Perform an early exit check. Do not bother looking at stored values that
9034  // are not constants or loads.
9035  SDValue StoredVal = St->getValue();
9036  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
9037  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
9038      !IsLoadSrc)
9039    return false;
9040
9041  // Only look at ends of store sequences.
9042  SDValue Chain = SDValue(St, 1);
9043  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
9044    return false;
9045
9046  // This holds the base pointer, index, and the offset in bytes from the base
9047  // pointer.
9048  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
9049
9050  // We must have a base and an offset.
9051  if (!BasePtr.Base.getNode())
9052    return false;
9053
9054  // Do not handle stores to undef base pointers.
9055  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
9056    return false;
9057
9058  // Save the LoadSDNodes that we find in the chain.
9059  // We need to make sure that these nodes do not interfere with
9060  // any of the store nodes.
9061  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
9062
9063  // Save the StoreSDNodes that we find in the chain.
9064  SmallVector<MemOpLink, 8> StoreNodes;
9065
9066  // Walk up the chain and look for nodes with offsets from the same
9067  // base pointer. Stop when reaching an instruction with a different kind
9068  // or instruction which has a different base pointer.
9069  unsigned Seq = 0;
9070  StoreSDNode *Index = St;
9071  while (Index) {
9072    // If the chain has more than one use, then we can't reorder the mem ops.
9073    if (Index != St && !SDValue(Index, 1)->hasOneUse())
9074      break;
9075
9076    // Find the base pointer and offset for this memory node.
9077    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
9078
9079    // Check that the base pointer is the same as the original one.
9080    if (!Ptr.equalBaseIndex(BasePtr))
9081      break;
9082
9083    // Check that the alignment is the same.
9084    if (Index->getAlignment() != St->getAlignment())
9085      break;
9086
9087    // The memory operands must not be volatile.
9088    if (Index->isVolatile() || Index->isIndexed())
9089      break;
9090
9091    // No truncation.
9092    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
9093      if (St->isTruncatingStore())
9094        break;
9095
9096    // The stored memory type must be the same.
9097    if (Index->getMemoryVT() != MemVT)
9098      break;
9099
9100    // We do not allow unaligned stores because we want to prevent overriding
9101    // stores.
9102    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
9103      break;
9104
9105    // We found a potential memory operand to merge.
9106    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
9107
9108    // Find the next memory operand in the chain. If the next operand in the
9109    // chain is a store then move up and continue the scan with the next
9110    // memory operand. If the next operand is a load save it and use alias
9111    // information to check if it interferes with anything.
9112    SDNode *NextInChain = Index->getChain().getNode();
9113    while (1) {
9114      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
9115        // We found a store node. Use it for the next iteration.
9116        Index = STn;
9117        break;
9118      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
9119        if (Ldn->isVolatile()) {
9120          Index = nullptr;
9121          break;
9122        }
9123
9124        // Save the load node for later. Continue the scan.
9125        AliasLoadNodes.push_back(Ldn);
9126        NextInChain = Ldn->getChain().getNode();
9127        continue;
9128      } else {
9129        Index = nullptr;
9130        break;
9131      }
9132    }
9133  }
9134
9135  // Check if there is anything to merge.
9136  if (StoreNodes.size() < 2)
9137    return false;
9138
9139  // Sort the memory operands according to their distance from the base pointer.
9140  std::sort(StoreNodes.begin(), StoreNodes.end(),
9141            [](MemOpLink LHS, MemOpLink RHS) {
9142    return LHS.OffsetFromBase < RHS.OffsetFromBase ||
9143           (LHS.OffsetFromBase == RHS.OffsetFromBase &&
9144            LHS.SequenceNum > RHS.SequenceNum);
9145  });
9146
9147  // Scan the memory operations on the chain and find the first non-consecutive
9148  // store memory address.
9149  unsigned LastConsecutiveStore = 0;
9150  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
9151  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
9152
9153    // Check that the addresses are consecutive starting from the second
9154    // element in the list of stores.
9155    if (i > 0) {
9156      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
9157      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
9158        break;
9159    }
9160
9161    bool Alias = false;
9162    // Check if this store interferes with any of the loads that we found.
9163    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
9164      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
9165        Alias = true;
9166        break;
9167      }
9168    // We found a load that alias with this store. Stop the sequence.
9169    if (Alias)
9170      break;
9171
9172    // Mark this node as useful.
9173    LastConsecutiveStore = i;
9174  }
9175
9176  // The node with the lowest store address.
9177  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
9178
9179  // Store the constants into memory as one consecutive store.
9180  if (!IsLoadSrc) {
9181    unsigned LastLegalType = 0;
9182    unsigned LastLegalVectorType = 0;
9183    bool NonZero = false;
9184    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
9185      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
9186      SDValue StoredVal = St->getValue();
9187
9188      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
9189        NonZero |= !C->isNullValue();
9190      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
9191        NonZero |= !C->getConstantFPValue()->isNullValue();
9192      } else {
9193        // Non-constant.
9194        break;
9195      }
9196
9197      // Find a legal type for the constant store.
9198      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
9199      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
9200      if (TLI.isTypeLegal(StoreTy))
9201        LastLegalType = i+1;
9202      // Or check whether a truncstore is legal.
9203      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
9204               TargetLowering::TypePromoteInteger) {
9205        EVT LegalizedStoredValueTy =
9206          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
9207        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
9208          LastLegalType = i+1;
9209      }
9210
9211      // Find a legal type for the vector store.
9212      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
9213      if (TLI.isTypeLegal(Ty))
9214        LastLegalVectorType = i + 1;
9215    }
9216
9217    // We only use vectors if the constant is known to be zero and the
9218    // function is not marked with the noimplicitfloat attribute.
9219    if (NonZero || NoVectors)
9220      LastLegalVectorType = 0;
9221
9222    // Check if we found a legal integer type to store.
9223    if (LastLegalType == 0 && LastLegalVectorType == 0)
9224      return false;
9225
9226    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
9227    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
9228
9229    // Make sure we have something to merge.
9230    if (NumElem < 2)
9231      return false;
9232
9233    unsigned EarliestNodeUsed = 0;
9234    for (unsigned i=0; i < NumElem; ++i) {
9235      // Find a chain for the new wide-store operand. Notice that some
9236      // of the store nodes that we found may not be selected for inclusion
9237      // in the wide store. The chain we use needs to be the chain of the
9238      // earliest store node which is *used* and replaced by the wide store.
9239      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
9240        EarliestNodeUsed = i;
9241    }
9242
9243    // The earliest Node in the DAG.
9244    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
9245    SDLoc DL(StoreNodes[0].MemNode);
9246
9247    SDValue StoredVal;
9248    if (UseVector) {
9249      // Find a legal type for the vector store.
9250      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
9251      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
9252      StoredVal = DAG.getConstant(0, Ty);
9253    } else {
9254      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
9255      APInt StoreInt(StoreBW, 0);
9256
9257      // Construct a single integer constant which is made of the smaller
9258      // constant inputs.
9259      bool IsLE = TLI.isLittleEndian();
9260      for (unsigned i = 0; i < NumElem ; ++i) {
9261        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
9262        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
9263        SDValue Val = St->getValue();
9264        StoreInt<<=ElementSizeBytes*8;
9265        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
9266          StoreInt|=C->getAPIntValue().zext(StoreBW);
9267        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
9268          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
9269        } else {
9270          assert(false && "Invalid constant element type");
9271        }
9272      }
9273
9274      // Create the new Load and Store operations.
9275      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
9276      StoredVal = DAG.getConstant(StoreInt, StoreTy);
9277    }
9278
9279    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
9280                                    FirstInChain->getBasePtr(),
9281                                    FirstInChain->getPointerInfo(),
9282                                    false, false,
9283                                    FirstInChain->getAlignment());
9284
9285    // Replace the first store with the new store
9286    CombineTo(EarliestOp, NewStore);
9287    // Erase all other stores.
9288    for (unsigned i = 0; i < NumElem ; ++i) {
9289      if (StoreNodes[i].MemNode == EarliestOp)
9290        continue;
9291      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9292      // ReplaceAllUsesWith will replace all uses that existed when it was
9293      // called, but graph optimizations may cause new ones to appear. For
9294      // example, the case in pr14333 looks like
9295      //
9296      //  St's chain -> St -> another store -> X
9297      //
9298      // And the only difference from St to the other store is the chain.
9299      // When we change it's chain to be St's chain they become identical,
9300      // get CSEed and the net result is that X is now a use of St.
9301      // Since we know that St is redundant, just iterate.
9302      while (!St->use_empty())
9303        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
9304      removeFromWorkList(St);
9305      DAG.DeleteNode(St);
9306    }
9307
9308    return true;
9309  }
9310
9311  // Below we handle the case of multiple consecutive stores that
9312  // come from multiple consecutive loads. We merge them into a single
9313  // wide load and a single wide store.
9314
9315  // Look for load nodes which are used by the stored values.
9316  SmallVector<MemOpLink, 8> LoadNodes;
9317
9318  // Find acceptable loads. Loads need to have the same chain (token factor),
9319  // must not be zext, volatile, indexed, and they must be consecutive.
9320  BaseIndexOffset LdBasePtr;
9321  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
9322    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
9323    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
9324    if (!Ld) break;
9325
9326    // Loads must only have one use.
9327    if (!Ld->hasNUsesOfValue(1, 0))
9328      break;
9329
9330    // Check that the alignment is the same as the stores.
9331    if (Ld->getAlignment() != St->getAlignment())
9332      break;
9333
9334    // The memory operands must not be volatile.
9335    if (Ld->isVolatile() || Ld->isIndexed())
9336      break;
9337
9338    // We do not accept ext loads.
9339    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
9340      break;
9341
9342    // The stored memory type must be the same.
9343    if (Ld->getMemoryVT() != MemVT)
9344      break;
9345
9346    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
9347    // If this is not the first ptr that we check.
9348    if (LdBasePtr.Base.getNode()) {
9349      // The base ptr must be the same.
9350      if (!LdPtr.equalBaseIndex(LdBasePtr))
9351        break;
9352    } else {
9353      // Check that all other base pointers are the same as this one.
9354      LdBasePtr = LdPtr;
9355    }
9356
9357    // We found a potential memory operand to merge.
9358    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
9359  }
9360
9361  if (LoadNodes.size() < 2)
9362    return false;
9363
9364  // Scan the memory operations on the chain and find the first non-consecutive
9365  // load memory address. These variables hold the index in the store node
9366  // array.
9367  unsigned LastConsecutiveLoad = 0;
9368  // This variable refers to the size and not index in the array.
9369  unsigned LastLegalVectorType = 0;
9370  unsigned LastLegalIntegerType = 0;
9371  StartAddress = LoadNodes[0].OffsetFromBase;
9372  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
9373  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
9374    // All loads much share the same chain.
9375    if (LoadNodes[i].MemNode->getChain() != FirstChain)
9376      break;
9377
9378    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
9379    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
9380      break;
9381    LastConsecutiveLoad = i;
9382
9383    // Find a legal type for the vector store.
9384    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
9385    if (TLI.isTypeLegal(StoreTy))
9386      LastLegalVectorType = i + 1;
9387
9388    // Find a legal type for the integer store.
9389    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
9390    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
9391    if (TLI.isTypeLegal(StoreTy))
9392      LastLegalIntegerType = i + 1;
9393    // Or check whether a truncstore and extload is legal.
9394    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
9395             TargetLowering::TypePromoteInteger) {
9396      EVT LegalizedStoredValueTy =
9397        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
9398      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
9399          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
9400          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
9401          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
9402        LastLegalIntegerType = i+1;
9403    }
9404  }
9405
9406  // Only use vector types if the vector type is larger than the integer type.
9407  // If they are the same, use integers.
9408  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
9409  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
9410
9411  // We add +1 here because the LastXXX variables refer to location while
9412  // the NumElem refers to array/index size.
9413  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
9414  NumElem = std::min(LastLegalType, NumElem);
9415
9416  if (NumElem < 2)
9417    return false;
9418
9419  // The earliest Node in the DAG.
9420  unsigned EarliestNodeUsed = 0;
9421  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
9422  for (unsigned i=1; i<NumElem; ++i) {
9423    // Find a chain for the new wide-store operand. Notice that some
9424    // of the store nodes that we found may not be selected for inclusion
9425    // in the wide store. The chain we use needs to be the chain of the
9426    // earliest store node which is *used* and replaced by the wide store.
9427    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
9428      EarliestNodeUsed = i;
9429  }
9430
9431  // Find if it is better to use vectors or integers to load and store
9432  // to memory.
9433  EVT JointMemOpVT;
9434  if (UseVectorTy) {
9435    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
9436  } else {
9437    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
9438    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
9439  }
9440
9441  SDLoc LoadDL(LoadNodes[0].MemNode);
9442  SDLoc StoreDL(StoreNodes[0].MemNode);
9443
9444  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
9445  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
9446                                FirstLoad->getChain(),
9447                                FirstLoad->getBasePtr(),
9448                                FirstLoad->getPointerInfo(),
9449                                false, false, false,
9450                                FirstLoad->getAlignment());
9451
9452  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
9453                                  FirstInChain->getBasePtr(),
9454                                  FirstInChain->getPointerInfo(), false, false,
9455                                  FirstInChain->getAlignment());
9456
9457  // Replace one of the loads with the new load.
9458  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
9459  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
9460                                SDValue(NewLoad.getNode(), 1));
9461
9462  // Remove the rest of the load chains.
9463  for (unsigned i = 1; i < NumElem ; ++i) {
9464    // Replace all chain users of the old load nodes with the chain of the new
9465    // load node.
9466    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
9467    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
9468  }
9469
9470  // Replace the first store with the new store.
9471  CombineTo(EarliestOp, NewStore);
9472  // Erase all other stores.
9473  for (unsigned i = 0; i < NumElem ; ++i) {
9474    // Remove all Store nodes.
9475    if (StoreNodes[i].MemNode == EarliestOp)
9476      continue;
9477    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9478    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9479    removeFromWorkList(St);
9480    DAG.DeleteNode(St);
9481  }
9482
9483  return true;
9484}
9485
9486SDValue DAGCombiner::visitSTORE(SDNode *N) {
9487  StoreSDNode *ST  = cast<StoreSDNode>(N);
9488  SDValue Chain = ST->getChain();
9489  SDValue Value = ST->getValue();
9490  SDValue Ptr   = ST->getBasePtr();
9491
9492  // If this is a store of a bit convert, store the input value if the
9493  // resultant store does not need a higher alignment than the original.
9494  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9495      ST->isUnindexed()) {
9496    unsigned OrigAlign = ST->getAlignment();
9497    EVT SVT = Value.getOperand(0).getValueType();
9498    unsigned Align = TLI.getDataLayout()->
9499      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9500    if (Align <= OrigAlign &&
9501        ((!LegalOperations && !ST->isVolatile()) ||
9502         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9503      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9504                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
9505                          ST->isNonTemporal(), OrigAlign,
9506                          ST->getTBAAInfo());
9507  }
9508
9509  // Turn 'store undef, Ptr' -> nothing.
9510  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9511    return Chain;
9512
9513  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9514  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9515    // NOTE: If the original store is volatile, this transform must not increase
9516    // the number of stores.  For example, on x86-32 an f64 can be stored in one
9517    // processor operation but an i64 (which is not legal) requires two.  So the
9518    // transform should not be done in this case.
9519    if (Value.getOpcode() != ISD::TargetConstantFP) {
9520      SDValue Tmp;
9521      switch (CFP->getSimpleValueType(0).SimpleTy) {
9522      default: llvm_unreachable("Unknown FP type");
9523      case MVT::f16:    // We don't do this for these yet.
9524      case MVT::f80:
9525      case MVT::f128:
9526      case MVT::ppcf128:
9527        break;
9528      case MVT::f32:
9529        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9530            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9531          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9532                              bitcastToAPInt().getZExtValue(), MVT::i32);
9533          return DAG.getStore(Chain, SDLoc(N), Tmp,
9534                              Ptr, ST->getMemOperand());
9535        }
9536        break;
9537      case MVT::f64:
9538        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9539             !ST->isVolatile()) ||
9540            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9541          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9542                                getZExtValue(), MVT::i64);
9543          return DAG.getStore(Chain, SDLoc(N), Tmp,
9544                              Ptr, ST->getMemOperand());
9545        }
9546
9547        if (!ST->isVolatile() &&
9548            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9549          // Many FP stores are not made apparent until after legalize, e.g. for
9550          // argument passing.  Since this is so common, custom legalize the
9551          // 64-bit integer store into two 32-bit stores.
9552          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9553          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9554          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9555          if (TLI.isBigEndian()) std::swap(Lo, Hi);
9556
9557          unsigned Alignment = ST->getAlignment();
9558          bool isVolatile = ST->isVolatile();
9559          bool isNonTemporal = ST->isNonTemporal();
9560          const MDNode *TBAAInfo = ST->getTBAAInfo();
9561
9562          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9563                                     Ptr, ST->getPointerInfo(),
9564                                     isVolatile, isNonTemporal,
9565                                     ST->getAlignment(), TBAAInfo);
9566          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9567                            DAG.getConstant(4, Ptr.getValueType()));
9568          Alignment = MinAlign(Alignment, 4U);
9569          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9570                                     Ptr, ST->getPointerInfo().getWithOffset(4),
9571                                     isVolatile, isNonTemporal,
9572                                     Alignment, TBAAInfo);
9573          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9574                             St0, St1);
9575        }
9576
9577        break;
9578      }
9579    }
9580  }
9581
9582  // Try to infer better alignment information than the store already has.
9583  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9584    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9585      if (Align > ST->getAlignment())
9586        return DAG.getTruncStore(Chain, SDLoc(N), Value,
9587                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9588                                 ST->isVolatile(), ST->isNonTemporal(), Align,
9589                                 ST->getTBAAInfo());
9590    }
9591  }
9592
9593  // Try transforming a pair floating point load / store ops to integer
9594  // load / store ops.
9595  SDValue NewST = TransformFPLoadStorePair(N);
9596  if (NewST.getNode())
9597    return NewST;
9598
9599  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9600    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9601#ifndef NDEBUG
9602  if (CombinerAAOnlyFunc.getNumOccurrences() &&
9603      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
9604    UseAA = false;
9605#endif
9606  if (UseAA && ST->isUnindexed()) {
9607    // Walk up chain skipping non-aliasing memory nodes.
9608    SDValue BetterChain = FindBetterChain(N, Chain);
9609
9610    // If there is a better chain.
9611    if (Chain != BetterChain) {
9612      SDValue ReplStore;
9613
9614      // Replace the chain to avoid dependency.
9615      if (ST->isTruncatingStore()) {
9616        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9617                                      ST->getMemoryVT(), ST->getMemOperand());
9618      } else {
9619        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9620                                 ST->getMemOperand());
9621      }
9622
9623      // Create token to keep both nodes around.
9624      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9625                                  MVT::Other, Chain, ReplStore);
9626
9627      // Make sure the new and old chains are cleaned up.
9628      AddToWorkList(Token.getNode());
9629
9630      // Don't add users to work list.
9631      return CombineTo(N, Token, false);
9632    }
9633  }
9634
9635  // Try transforming N to an indexed store.
9636  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9637    return SDValue(N, 0);
9638
9639  // FIXME: is there such a thing as a truncating indexed store?
9640  if (ST->isTruncatingStore() && ST->isUnindexed() &&
9641      Value.getValueType().isInteger()) {
9642    // See if we can simplify the input to this truncstore with knowledge that
9643    // only the low bits are being used.  For example:
9644    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
9645    SDValue Shorter =
9646      GetDemandedBits(Value,
9647                      APInt::getLowBitsSet(
9648                        Value.getValueType().getScalarType().getSizeInBits(),
9649                        ST->getMemoryVT().getScalarType().getSizeInBits()));
9650    AddToWorkList(Value.getNode());
9651    if (Shorter.getNode())
9652      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9653                               Ptr, ST->getMemoryVT(), ST->getMemOperand());
9654
9655    // Otherwise, see if we can simplify the operation with
9656    // SimplifyDemandedBits, which only works if the value has a single use.
9657    if (SimplifyDemandedBits(Value,
9658                        APInt::getLowBitsSet(
9659                          Value.getValueType().getScalarType().getSizeInBits(),
9660                          ST->getMemoryVT().getScalarType().getSizeInBits())))
9661      return SDValue(N, 0);
9662  }
9663
9664  // If this is a load followed by a store to the same location, then the store
9665  // is dead/noop.
9666  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9667    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9668        ST->isUnindexed() && !ST->isVolatile() &&
9669        // There can't be any side effects between the load and store, such as
9670        // a call or store.
9671        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9672      // The store is dead, remove it.
9673      return Chain;
9674    }
9675  }
9676
9677  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9678  // truncating store.  We can do this even if this is already a truncstore.
9679  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9680      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9681      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9682                            ST->getMemoryVT())) {
9683    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9684                             Ptr, ST->getMemoryVT(), ST->getMemOperand());
9685  }
9686
9687  // Only perform this optimization before the types are legal, because we
9688  // don't want to perform this optimization on every DAGCombine invocation.
9689  if (!LegalTypes) {
9690    bool EverChanged = false;
9691
9692    do {
9693      // There can be multiple store sequences on the same chain.
9694      // Keep trying to merge store sequences until we are unable to do so
9695      // or until we merge the last store on the chain.
9696      bool Changed = MergeConsecutiveStores(ST);
9697      EverChanged |= Changed;
9698      if (!Changed) break;
9699    } while (ST->getOpcode() != ISD::DELETED_NODE);
9700
9701    if (EverChanged)
9702      return SDValue(N, 0);
9703  }
9704
9705  return ReduceLoadOpStoreWidth(N);
9706}
9707
9708SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9709  SDValue InVec = N->getOperand(0);
9710  SDValue InVal = N->getOperand(1);
9711  SDValue EltNo = N->getOperand(2);
9712  SDLoc dl(N);
9713
9714  // If the inserted element is an UNDEF, just use the input vector.
9715  if (InVal.getOpcode() == ISD::UNDEF)
9716    return InVec;
9717
9718  EVT VT = InVec.getValueType();
9719
9720  // If we can't generate a legal BUILD_VECTOR, exit
9721  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9722    return SDValue();
9723
9724  // Check that we know which element is being inserted
9725  if (!isa<ConstantSDNode>(EltNo))
9726    return SDValue();
9727  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9728
9729  // Canonicalize insert_vector_elt dag nodes.
9730  // Example:
9731  // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
9732  // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
9733  //
9734  // Do this only if the child insert_vector node has one use; also
9735  // do this only if indices are both constants and Idx1 < Idx0.
9736  if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
9737      && isa<ConstantSDNode>(InVec.getOperand(2))) {
9738    unsigned OtherElt =
9739      cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
9740    if (Elt < OtherElt) {
9741      // Swap nodes.
9742      SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT,
9743                                  InVec.getOperand(0), InVal, EltNo);
9744      AddToWorkList(NewOp.getNode());
9745      return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
9746                         VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
9747    }
9748  }
9749
9750  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9751  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
9752  // vector elements.
9753  SmallVector<SDValue, 8> Ops;
9754  // Do not combine these two vectors if the output vector will not replace
9755  // the input vector.
9756  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9757    Ops.append(InVec.getNode()->op_begin(),
9758               InVec.getNode()->op_end());
9759  } else if (InVec.getOpcode() == ISD::UNDEF) {
9760    unsigned NElts = VT.getVectorNumElements();
9761    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9762  } else {
9763    return SDValue();
9764  }
9765
9766  // Insert the element
9767  if (Elt < Ops.size()) {
9768    // All the operands of BUILD_VECTOR must have the same type;
9769    // we enforce that here.
9770    EVT OpVT = Ops[0].getValueType();
9771    if (InVal.getValueType() != OpVT)
9772      InVal = OpVT.bitsGT(InVal.getValueType()) ?
9773                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9774                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9775    Ops[Elt] = InVal;
9776  }
9777
9778  // Return the new vector
9779  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
9780}
9781
9782SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
9783    SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
9784  EVT ResultVT = EVE->getValueType(0);
9785  EVT VecEltVT = InVecVT.getVectorElementType();
9786  unsigned Align = OriginalLoad->getAlignment();
9787  unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
9788      VecEltVT.getTypeForEVT(*DAG.getContext()));
9789
9790  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
9791    return SDValue();
9792
9793  Align = NewAlign;
9794
9795  SDValue NewPtr = OriginalLoad->getBasePtr();
9796  SDValue Offset;
9797  EVT PtrType = NewPtr.getValueType();
9798  MachinePointerInfo MPI;
9799  if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
9800    int Elt = ConstEltNo->getZExtValue();
9801    unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
9802    if (TLI.isBigEndian())
9803      PtrOff = InVecVT.getSizeInBits() / 8 - PtrOff;
9804    Offset = DAG.getConstant(PtrOff, PtrType);
9805    MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
9806  } else {
9807    Offset = DAG.getNode(
9808        ISD::MUL, SDLoc(EVE), EltNo.getValueType(), EltNo,
9809        DAG.getConstant(VecEltVT.getStoreSize(), EltNo.getValueType()));
9810    if (TLI.isBigEndian())
9811      Offset = DAG.getNode(
9812          ISD::SUB, SDLoc(EVE), EltNo.getValueType(),
9813          DAG.getConstant(InVecVT.getStoreSize(), EltNo.getValueType()), Offset);
9814    MPI = OriginalLoad->getPointerInfo();
9815  }
9816  NewPtr = DAG.getNode(ISD::ADD, SDLoc(EVE), PtrType, NewPtr, Offset);
9817
9818  // The replacement we need to do here is a little tricky: we need to
9819  // replace an extractelement of a load with a load.
9820  // Use ReplaceAllUsesOfValuesWith to do the replacement.
9821  // Note that this replacement assumes that the extractvalue is the only
9822  // use of the load; that's okay because we don't want to perform this
9823  // transformation in other cases anyway.
9824  SDValue Load;
9825  SDValue Chain;
9826  if (ResultVT.bitsGT(VecEltVT)) {
9827    // If the result type of vextract is wider than the load, then issue an
9828    // extending load instead.
9829    ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, VecEltVT)
9830                                   ? ISD::ZEXTLOAD
9831                                   : ISD::EXTLOAD;
9832    Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(),
9833                          NewPtr, MPI, VecEltVT, OriginalLoad->isVolatile(),
9834                          OriginalLoad->isNonTemporal(), Align,
9835                          OriginalLoad->getTBAAInfo());
9836    Chain = Load.getValue(1);
9837  } else {
9838    Load = DAG.getLoad(
9839        VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI,
9840        OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
9841        OriginalLoad->isInvariant(), Align, OriginalLoad->getTBAAInfo());
9842    Chain = Load.getValue(1);
9843    if (ResultVT.bitsLT(VecEltVT))
9844      Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
9845    else
9846      Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load);
9847  }
9848  WorkListRemover DeadNodes(*this);
9849  SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
9850  SDValue To[] = { Load, Chain };
9851  DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9852  // Since we're explicitly calling ReplaceAllUses, add the new node to the
9853  // worklist explicitly as well.
9854  AddToWorkList(Load.getNode());
9855  AddUsersToWorkList(Load.getNode()); // Add users too
9856  // Make sure to revisit this node to clean it up; it will usually be dead.
9857  AddToWorkList(EVE);
9858  ++OpsNarrowed;
9859  return SDValue(EVE, 0);
9860}
9861
9862SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9863  // (vextract (scalar_to_vector val, 0) -> val
9864  SDValue InVec = N->getOperand(0);
9865  EVT VT = InVec.getValueType();
9866  EVT NVT = N->getValueType(0);
9867
9868  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9869    // Check if the result type doesn't match the inserted element type. A
9870    // SCALAR_TO_VECTOR may truncate the inserted element and the
9871    // EXTRACT_VECTOR_ELT may widen the extracted vector.
9872    SDValue InOp = InVec.getOperand(0);
9873    if (InOp.getValueType() != NVT) {
9874      assert(InOp.getValueType().isInteger() && NVT.isInteger());
9875      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9876    }
9877    return InOp;
9878  }
9879
9880  SDValue EltNo = N->getOperand(1);
9881  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9882
9883  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9884  // We only perform this optimization before the op legalization phase because
9885  // we may introduce new vector instructions which are not backed by TD
9886  // patterns. For example on AVX, extracting elements from a wide vector
9887  // without using extract_subvector. However, if we can find an underlying
9888  // scalar value, then we can always use that.
9889  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9890      && ConstEltNo) {
9891    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9892    int NumElem = VT.getVectorNumElements();
9893    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9894    // Find the new index to extract from.
9895    int OrigElt = SVOp->getMaskElt(Elt);
9896
9897    // Extracting an undef index is undef.
9898    if (OrigElt == -1)
9899      return DAG.getUNDEF(NVT);
9900
9901    // Select the right vector half to extract from.
9902    SDValue SVInVec;
9903    if (OrigElt < NumElem) {
9904      SVInVec = InVec->getOperand(0);
9905    } else {
9906      SVInVec = InVec->getOperand(1);
9907      OrigElt -= NumElem;
9908    }
9909
9910    if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
9911      SDValue InOp = SVInVec.getOperand(OrigElt);
9912      if (InOp.getValueType() != NVT) {
9913        assert(InOp.getValueType().isInteger() && NVT.isInteger());
9914        InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
9915      }
9916
9917      return InOp;
9918    }
9919
9920    // FIXME: We should handle recursing on other vector shuffles and
9921    // scalar_to_vector here as well.
9922
9923    if (!LegalOperations) {
9924      EVT IndexTy = TLI.getVectorIdxTy();
9925      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9926                         SVInVec, DAG.getConstant(OrigElt, IndexTy));
9927    }
9928  }
9929
9930  bool BCNumEltsChanged = false;
9931  EVT ExtVT = VT.getVectorElementType();
9932  EVT LVT = ExtVT;
9933
9934  // If the result of load has to be truncated, then it's not necessarily
9935  // profitable.
9936  if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9937    return SDValue();
9938
9939  if (InVec.getOpcode() == ISD::BITCAST) {
9940    // Don't duplicate a load with other uses.
9941    if (!InVec.hasOneUse())
9942      return SDValue();
9943
9944    EVT BCVT = InVec.getOperand(0).getValueType();
9945    if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9946      return SDValue();
9947    if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9948      BCNumEltsChanged = true;
9949    InVec = InVec.getOperand(0);
9950    ExtVT = BCVT.getVectorElementType();
9951  }
9952
9953  // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
9954  if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
9955      ISD::isNormalLoad(InVec.getNode())) {
9956    SDValue Index = N->getOperand(1);
9957    if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec))
9958      return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
9959                                                           OrigLoad);
9960  }
9961
9962  // Perform only after legalization to ensure build_vector / vector_shuffle
9963  // optimizations have already been done.
9964  if (!LegalOperations) return SDValue();
9965
9966  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9967  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9968  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9969
9970  if (ConstEltNo) {
9971    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9972
9973    LoadSDNode *LN0 = nullptr;
9974    const ShuffleVectorSDNode *SVN = nullptr;
9975    if (ISD::isNormalLoad(InVec.getNode())) {
9976      LN0 = cast<LoadSDNode>(InVec);
9977    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9978               InVec.getOperand(0).getValueType() == ExtVT &&
9979               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9980      // Don't duplicate a load with other uses.
9981      if (!InVec.hasOneUse())
9982        return SDValue();
9983
9984      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9985    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9986      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9987      // =>
9988      // (load $addr+1*size)
9989
9990      // Don't duplicate a load with other uses.
9991      if (!InVec.hasOneUse())
9992        return SDValue();
9993
9994      // If the bit convert changed the number of elements, it is unsafe
9995      // to examine the mask.
9996      if (BCNumEltsChanged)
9997        return SDValue();
9998
9999      // Select the input vector, guarding against out of range extract vector.
10000      unsigned NumElems = VT.getVectorNumElements();
10001      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
10002      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
10003
10004      if (InVec.getOpcode() == ISD::BITCAST) {
10005        // Don't duplicate a load with other uses.
10006        if (!InVec.hasOneUse())
10007          return SDValue();
10008
10009        InVec = InVec.getOperand(0);
10010      }
10011      if (ISD::isNormalLoad(InVec.getNode())) {
10012        LN0 = cast<LoadSDNode>(InVec);
10013        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
10014        EltNo = DAG.getConstant(Elt, EltNo.getValueType());
10015      }
10016    }
10017
10018    // Make sure we found a non-volatile load and the extractelement is
10019    // the only use.
10020    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
10021      return SDValue();
10022
10023    // If Idx was -1 above, Elt is going to be -1, so just return undef.
10024    if (Elt == -1)
10025      return DAG.getUNDEF(LVT);
10026
10027    return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
10028  }
10029
10030  return SDValue();
10031}
10032
10033// Simplify (build_vec (ext )) to (bitcast (build_vec ))
10034SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
10035  // We perform this optimization post type-legalization because
10036  // the type-legalizer often scalarizes integer-promoted vectors.
10037  // Performing this optimization before may create bit-casts which
10038  // will be type-legalized to complex code sequences.
10039  // We perform this optimization only before the operation legalizer because we
10040  // may introduce illegal operations.
10041  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
10042    return SDValue();
10043
10044  unsigned NumInScalars = N->getNumOperands();
10045  SDLoc dl(N);
10046  EVT VT = N->getValueType(0);
10047
10048  // Check to see if this is a BUILD_VECTOR of a bunch of values
10049  // which come from any_extend or zero_extend nodes. If so, we can create
10050  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
10051  // optimizations. We do not handle sign-extend because we can't fill the sign
10052  // using shuffles.
10053  EVT SourceType = MVT::Other;
10054  bool AllAnyExt = true;
10055
10056  for (unsigned i = 0; i != NumInScalars; ++i) {
10057    SDValue In = N->getOperand(i);
10058    // Ignore undef inputs.
10059    if (In.getOpcode() == ISD::UNDEF) continue;
10060
10061    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
10062    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
10063
10064    // Abort if the element is not an extension.
10065    if (!ZeroExt && !AnyExt) {
10066      SourceType = MVT::Other;
10067      break;
10068    }
10069
10070    // The input is a ZeroExt or AnyExt. Check the original type.
10071    EVT InTy = In.getOperand(0).getValueType();
10072
10073    // Check that all of the widened source types are the same.
10074    if (SourceType == MVT::Other)
10075      // First time.
10076      SourceType = InTy;
10077    else if (InTy != SourceType) {
10078      // Multiple income types. Abort.
10079      SourceType = MVT::Other;
10080      break;
10081    }
10082
10083    // Check if all of the extends are ANY_EXTENDs.
10084    AllAnyExt &= AnyExt;
10085  }
10086
10087  // In order to have valid types, all of the inputs must be extended from the
10088  // same source type and all of the inputs must be any or zero extend.
10089  // Scalar sizes must be a power of two.
10090  EVT OutScalarTy = VT.getScalarType();
10091  bool ValidTypes = SourceType != MVT::Other &&
10092                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
10093                 isPowerOf2_32(SourceType.getSizeInBits());
10094
10095  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
10096  // turn into a single shuffle instruction.
10097  if (!ValidTypes)
10098    return SDValue();
10099
10100  bool isLE = TLI.isLittleEndian();
10101  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
10102  assert(ElemRatio > 1 && "Invalid element size ratio");
10103  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
10104                               DAG.getConstant(0, SourceType);
10105
10106  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
10107  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
10108
10109  // Populate the new build_vector
10110  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
10111    SDValue Cast = N->getOperand(i);
10112    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
10113            Cast.getOpcode() == ISD::ZERO_EXTEND ||
10114            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
10115    SDValue In;
10116    if (Cast.getOpcode() == ISD::UNDEF)
10117      In = DAG.getUNDEF(SourceType);
10118    else
10119      In = Cast->getOperand(0);
10120    unsigned Index = isLE ? (i * ElemRatio) :
10121                            (i * ElemRatio + (ElemRatio - 1));
10122
10123    assert(Index < Ops.size() && "Invalid index");
10124    Ops[Index] = In;
10125  }
10126
10127  // The type of the new BUILD_VECTOR node.
10128  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
10129  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
10130         "Invalid vector size");
10131  // Check if the new vector type is legal.
10132  if (!isTypeLegal(VecVT)) return SDValue();
10133
10134  // Make the new BUILD_VECTOR.
10135  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
10136
10137  // The new BUILD_VECTOR node has the potential to be further optimized.
10138  AddToWorkList(BV.getNode());
10139  // Bitcast to the desired type.
10140  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
10141}
10142
10143SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
10144  EVT VT = N->getValueType(0);
10145
10146  unsigned NumInScalars = N->getNumOperands();
10147  SDLoc dl(N);
10148
10149  EVT SrcVT = MVT::Other;
10150  unsigned Opcode = ISD::DELETED_NODE;
10151  unsigned NumDefs = 0;
10152
10153  for (unsigned i = 0; i != NumInScalars; ++i) {
10154    SDValue In = N->getOperand(i);
10155    unsigned Opc = In.getOpcode();
10156
10157    if (Opc == ISD::UNDEF)
10158      continue;
10159
10160    // If all scalar values are floats and converted from integers.
10161    if (Opcode == ISD::DELETED_NODE &&
10162        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
10163      Opcode = Opc;
10164    }
10165
10166    if (Opc != Opcode)
10167      return SDValue();
10168
10169    EVT InVT = In.getOperand(0).getValueType();
10170
10171    // If all scalar values are typed differently, bail out. It's chosen to
10172    // simplify BUILD_VECTOR of integer types.
10173    if (SrcVT == MVT::Other)
10174      SrcVT = InVT;
10175    if (SrcVT != InVT)
10176      return SDValue();
10177    NumDefs++;
10178  }
10179
10180  // If the vector has just one element defined, it's not worth to fold it into
10181  // a vectorized one.
10182  if (NumDefs < 2)
10183    return SDValue();
10184
10185  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
10186         && "Should only handle conversion from integer to float.");
10187  assert(SrcVT != MVT::Other && "Cannot determine source type!");
10188
10189  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
10190
10191  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
10192    return SDValue();
10193
10194  SmallVector<SDValue, 8> Opnds;
10195  for (unsigned i = 0; i != NumInScalars; ++i) {
10196    SDValue In = N->getOperand(i);
10197
10198    if (In.getOpcode() == ISD::UNDEF)
10199      Opnds.push_back(DAG.getUNDEF(SrcVT));
10200    else
10201      Opnds.push_back(In.getOperand(0));
10202  }
10203  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds);
10204  AddToWorkList(BV.getNode());
10205
10206  return DAG.getNode(Opcode, dl, VT, BV);
10207}
10208
10209SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
10210  unsigned NumInScalars = N->getNumOperands();
10211  SDLoc dl(N);
10212  EVT VT = N->getValueType(0);
10213
10214  // A vector built entirely of undefs is undef.
10215  if (ISD::allOperandsUndef(N))
10216    return DAG.getUNDEF(VT);
10217
10218  SDValue V = reduceBuildVecExtToExtBuildVec(N);
10219  if (V.getNode())
10220    return V;
10221
10222  V = reduceBuildVecConvertToConvertBuildVec(N);
10223  if (V.getNode())
10224    return V;
10225
10226  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
10227  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
10228  // at most two distinct vectors, turn this into a shuffle node.
10229
10230  // May only combine to shuffle after legalize if shuffle is legal.
10231  if (LegalOperations &&
10232      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
10233    return SDValue();
10234
10235  SDValue VecIn1, VecIn2;
10236  for (unsigned i = 0; i != NumInScalars; ++i) {
10237    // Ignore undef inputs.
10238    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
10239
10240    // If this input is something other than a EXTRACT_VECTOR_ELT with a
10241    // constant index, bail out.
10242    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10243        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
10244      VecIn1 = VecIn2 = SDValue(nullptr, 0);
10245      break;
10246    }
10247
10248    // We allow up to two distinct input vectors.
10249    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
10250    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
10251      continue;
10252
10253    if (!VecIn1.getNode()) {
10254      VecIn1 = ExtractedFromVec;
10255    } else if (!VecIn2.getNode()) {
10256      VecIn2 = ExtractedFromVec;
10257    } else {
10258      // Too many inputs.
10259      VecIn1 = VecIn2 = SDValue(nullptr, 0);
10260      break;
10261    }
10262  }
10263
10264  // If everything is good, we can make a shuffle operation.
10265  if (VecIn1.getNode()) {
10266    SmallVector<int, 8> Mask;
10267    for (unsigned i = 0; i != NumInScalars; ++i) {
10268      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
10269        Mask.push_back(-1);
10270        continue;
10271      }
10272
10273      // If extracting from the first vector, just use the index directly.
10274      SDValue Extract = N->getOperand(i);
10275      SDValue ExtVal = Extract.getOperand(1);
10276      if (Extract.getOperand(0) == VecIn1) {
10277        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
10278        if (ExtIndex > VT.getVectorNumElements())
10279          return SDValue();
10280
10281        Mask.push_back(ExtIndex);
10282        continue;
10283      }
10284
10285      // Otherwise, use InIdx + VecSize
10286      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
10287      Mask.push_back(Idx+NumInScalars);
10288    }
10289
10290    // We can't generate a shuffle node with mismatched input and output types.
10291    // Attempt to transform a single input vector to the correct type.
10292    if ((VT != VecIn1.getValueType())) {
10293      // We don't support shuffeling between TWO values of different types.
10294      if (VecIn2.getNode())
10295        return SDValue();
10296
10297      // We only support widening of vectors which are half the size of the
10298      // output registers. For example XMM->YMM widening on X86 with AVX.
10299      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
10300        return SDValue();
10301
10302      // If the input vector type has a different base type to the output
10303      // vector type, bail out.
10304      if (VecIn1.getValueType().getVectorElementType() !=
10305          VT.getVectorElementType())
10306        return SDValue();
10307
10308      // Widen the input vector by adding undef values.
10309      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10310                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
10311    }
10312
10313    // If VecIn2 is unused then change it to undef.
10314    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
10315
10316    // Check that we were able to transform all incoming values to the same
10317    // type.
10318    if (VecIn2.getValueType() != VecIn1.getValueType() ||
10319        VecIn1.getValueType() != VT)
10320          return SDValue();
10321
10322    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
10323    if (!isTypeLegal(VT))
10324      return SDValue();
10325
10326    // Return the new VECTOR_SHUFFLE node.
10327    SDValue Ops[2];
10328    Ops[0] = VecIn1;
10329    Ops[1] = VecIn2;
10330    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
10331  }
10332
10333  return SDValue();
10334}
10335
10336SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
10337  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
10338  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
10339  // inputs come from at most two distinct vectors, turn this into a shuffle
10340  // node.
10341
10342  // If we only have one input vector, we don't need to do any concatenation.
10343  if (N->getNumOperands() == 1)
10344    return N->getOperand(0);
10345
10346  // Check if all of the operands are undefs.
10347  EVT VT = N->getValueType(0);
10348  if (ISD::allOperandsUndef(N))
10349    return DAG.getUNDEF(VT);
10350
10351  // Optimize concat_vectors where one of the vectors is undef.
10352  if (N->getNumOperands() == 2 &&
10353      N->getOperand(1)->getOpcode() == ISD::UNDEF) {
10354    SDValue In = N->getOperand(0);
10355    assert(In.getValueType().isVector() && "Must concat vectors");
10356
10357    // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
10358    if (In->getOpcode() == ISD::BITCAST &&
10359        !In->getOperand(0)->getValueType(0).isVector()) {
10360      SDValue Scalar = In->getOperand(0);
10361      EVT SclTy = Scalar->getValueType(0);
10362
10363      if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
10364        return SDValue();
10365
10366      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
10367                                 VT.getSizeInBits() / SclTy.getSizeInBits());
10368      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
10369        return SDValue();
10370
10371      SDLoc dl = SDLoc(N);
10372      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
10373      return DAG.getNode(ISD::BITCAST, dl, VT, Res);
10374    }
10375  }
10376
10377  // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
10378  // -> (BUILD_VECTOR A, B, ..., C, D, ...)
10379  if (N->getNumOperands() == 2 &&
10380      N->getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
10381      N->getOperand(1).getOpcode() == ISD::BUILD_VECTOR) {
10382    EVT VT = N->getValueType(0);
10383    SDValue N0 = N->getOperand(0);
10384    SDValue N1 = N->getOperand(1);
10385    SmallVector<SDValue, 8> Opnds;
10386    unsigned BuildVecNumElts =  N0.getNumOperands();
10387
10388    EVT SclTy0 = N0.getOperand(0)->getValueType(0);
10389    EVT SclTy1 = N1.getOperand(0)->getValueType(0);
10390    if (SclTy0.isFloatingPoint()) {
10391      for (unsigned i = 0; i != BuildVecNumElts; ++i)
10392        Opnds.push_back(N0.getOperand(i));
10393      for (unsigned i = 0; i != BuildVecNumElts; ++i)
10394        Opnds.push_back(N1.getOperand(i));
10395    } else {
10396      // If BUILD_VECTOR are from built from integer, they may have different
10397      // operand types. Get the smaller type and truncate all operands to it.
10398      EVT MinTy = SclTy0.bitsLE(SclTy1) ? SclTy0 : SclTy1;
10399      for (unsigned i = 0; i != BuildVecNumElts; ++i)
10400        Opnds.push_back(DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinTy,
10401                        N0.getOperand(i)));
10402      for (unsigned i = 0; i != BuildVecNumElts; ++i)
10403        Opnds.push_back(DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinTy,
10404                        N1.getOperand(i)));
10405    }
10406
10407    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
10408  }
10409
10410  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
10411  // nodes often generate nop CONCAT_VECTOR nodes.
10412  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
10413  // place the incoming vectors at the exact same location.
10414  SDValue SingleSource = SDValue();
10415  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
10416
10417  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
10418    SDValue Op = N->getOperand(i);
10419
10420    if (Op.getOpcode() == ISD::UNDEF)
10421      continue;
10422
10423    // Check if this is the identity extract:
10424    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
10425      return SDValue();
10426
10427    // Find the single incoming vector for the extract_subvector.
10428    if (SingleSource.getNode()) {
10429      if (Op.getOperand(0) != SingleSource)
10430        return SDValue();
10431    } else {
10432      SingleSource = Op.getOperand(0);
10433
10434      // Check the source type is the same as the type of the result.
10435      // If not, this concat may extend the vector, so we can not
10436      // optimize it away.
10437      if (SingleSource.getValueType() != N->getValueType(0))
10438        return SDValue();
10439    }
10440
10441    unsigned IdentityIndex = i * PartNumElem;
10442    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10443    // The extract index must be constant.
10444    if (!CS)
10445      return SDValue();
10446
10447    // Check that we are reading from the identity index.
10448    if (CS->getZExtValue() != IdentityIndex)
10449      return SDValue();
10450  }
10451
10452  if (SingleSource.getNode())
10453    return SingleSource;
10454
10455  return SDValue();
10456}
10457
10458SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
10459  EVT NVT = N->getValueType(0);
10460  SDValue V = N->getOperand(0);
10461
10462  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
10463    // Combine:
10464    //    (extract_subvec (concat V1, V2, ...), i)
10465    // Into:
10466    //    Vi if possible
10467    // Only operand 0 is checked as 'concat' assumes all inputs of the same
10468    // type.
10469    if (V->getOperand(0).getValueType() != NVT)
10470      return SDValue();
10471    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10472    unsigned NumElems = NVT.getVectorNumElements();
10473    assert((Idx % NumElems) == 0 &&
10474           "IDX in concat is not a multiple of the result vector length.");
10475    return V->getOperand(Idx / NumElems);
10476  }
10477
10478  // Skip bitcasting
10479  if (V->getOpcode() == ISD::BITCAST)
10480    V = V.getOperand(0);
10481
10482  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
10483    SDLoc dl(N);
10484    // Handle only simple case where vector being inserted and vector
10485    // being extracted are of same type, and are half size of larger vectors.
10486    EVT BigVT = V->getOperand(0).getValueType();
10487    EVT SmallVT = V->getOperand(1).getValueType();
10488    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
10489      return SDValue();
10490
10491    // Only handle cases where both indexes are constants with the same type.
10492    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10493    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
10494
10495    if (InsIdx && ExtIdx &&
10496        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
10497        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
10498      // Combine:
10499      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
10500      // Into:
10501      //    indices are equal or bit offsets are equal => V1
10502      //    otherwise => (extract_subvec V1, ExtIdx)
10503      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
10504          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
10505        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
10506      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
10507                         DAG.getNode(ISD::BITCAST, dl,
10508                                     N->getOperand(0).getValueType(),
10509                                     V->getOperand(0)), N->getOperand(1));
10510    }
10511  }
10512
10513  return SDValue();
10514}
10515
10516// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
10517static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
10518  EVT VT = N->getValueType(0);
10519  unsigned NumElts = VT.getVectorNumElements();
10520
10521  SDValue N0 = N->getOperand(0);
10522  SDValue N1 = N->getOperand(1);
10523  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10524
10525  SmallVector<SDValue, 4> Ops;
10526  EVT ConcatVT = N0.getOperand(0).getValueType();
10527  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
10528  unsigned NumConcats = NumElts / NumElemsPerConcat;
10529
10530  // Look at every vector that's inserted. We're looking for exact
10531  // subvector-sized copies from a concatenated vector
10532  for (unsigned I = 0; I != NumConcats; ++I) {
10533    // Make sure we're dealing with a copy.
10534    unsigned Begin = I * NumElemsPerConcat;
10535    bool AllUndef = true, NoUndef = true;
10536    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
10537      if (SVN->getMaskElt(J) >= 0)
10538        AllUndef = false;
10539      else
10540        NoUndef = false;
10541    }
10542
10543    if (NoUndef) {
10544      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
10545        return SDValue();
10546
10547      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
10548        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
10549          return SDValue();
10550
10551      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
10552      if (FirstElt < N0.getNumOperands())
10553        Ops.push_back(N0.getOperand(FirstElt));
10554      else
10555        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
10556
10557    } else if (AllUndef) {
10558      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
10559    } else { // Mixed with general masks and undefs, can't do optimization.
10560      return SDValue();
10561    }
10562  }
10563
10564  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
10565}
10566
10567SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
10568  EVT VT = N->getValueType(0);
10569  unsigned NumElts = VT.getVectorNumElements();
10570
10571  SDValue N0 = N->getOperand(0);
10572  SDValue N1 = N->getOperand(1);
10573
10574  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10575
10576  // Canonicalize shuffle undef, undef -> undef
10577  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10578    return DAG.getUNDEF(VT);
10579
10580  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10581
10582  // Canonicalize shuffle v, v -> v, undef
10583  if (N0 == N1) {
10584    SmallVector<int, 8> NewMask;
10585    for (unsigned i = 0; i != NumElts; ++i) {
10586      int Idx = SVN->getMaskElt(i);
10587      if (Idx >= (int)NumElts) Idx -= NumElts;
10588      NewMask.push_back(Idx);
10589    }
10590    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10591                                &NewMask[0]);
10592  }
10593
10594  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
10595  if (N0.getOpcode() == ISD::UNDEF) {
10596    SmallVector<int, 8> NewMask;
10597    for (unsigned i = 0; i != NumElts; ++i) {
10598      int Idx = SVN->getMaskElt(i);
10599      if (Idx >= 0) {
10600        if (Idx >= (int)NumElts)
10601          Idx -= NumElts;
10602        else
10603          Idx = -1; // remove reference to lhs
10604      }
10605      NewMask.push_back(Idx);
10606    }
10607    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10608                                &NewMask[0]);
10609  }
10610
10611  // Remove references to rhs if it is undef
10612  if (N1.getOpcode() == ISD::UNDEF) {
10613    bool Changed = false;
10614    SmallVector<int, 8> NewMask;
10615    for (unsigned i = 0; i != NumElts; ++i) {
10616      int Idx = SVN->getMaskElt(i);
10617      if (Idx >= (int)NumElts) {
10618        Idx = -1;
10619        Changed = true;
10620      }
10621      NewMask.push_back(Idx);
10622    }
10623    if (Changed)
10624      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10625  }
10626
10627  // If it is a splat, check if the argument vector is another splat or a
10628  // build_vector with all scalar elements the same.
10629  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10630    SDNode *V = N0.getNode();
10631
10632    // If this is a bit convert that changes the element type of the vector but
10633    // not the number of vector elements, look through it.  Be careful not to
10634    // look though conversions that change things like v4f32 to v2f64.
10635    if (V->getOpcode() == ISD::BITCAST) {
10636      SDValue ConvInput = V->getOperand(0);
10637      if (ConvInput.getValueType().isVector() &&
10638          ConvInput.getValueType().getVectorNumElements() == NumElts)
10639        V = ConvInput.getNode();
10640    }
10641
10642    if (V->getOpcode() == ISD::BUILD_VECTOR) {
10643      assert(V->getNumOperands() == NumElts &&
10644             "BUILD_VECTOR has wrong number of operands");
10645      SDValue Base;
10646      bool AllSame = true;
10647      for (unsigned i = 0; i != NumElts; ++i) {
10648        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10649          Base = V->getOperand(i);
10650          break;
10651        }
10652      }
10653      // Splat of <u, u, u, u>, return <u, u, u, u>
10654      if (!Base.getNode())
10655        return N0;
10656      for (unsigned i = 0; i != NumElts; ++i) {
10657        if (V->getOperand(i) != Base) {
10658          AllSame = false;
10659          break;
10660        }
10661      }
10662      // Splat of <x, x, x, x>, return <x, x, x, x>
10663      if (AllSame)
10664        return N0;
10665    }
10666  }
10667
10668  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10669      Level < AfterLegalizeVectorOps &&
10670      (N1.getOpcode() == ISD::UNDEF ||
10671      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10672       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10673    SDValue V = partitionShuffleOfConcats(N, DAG);
10674
10675    if (V.getNode())
10676      return V;
10677  }
10678
10679  // If this shuffle node is simply a swizzle of another shuffle node,
10680  // then try to simplify it.
10681  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10682      N1.getOpcode() == ISD::UNDEF) {
10683
10684    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10685
10686    // The incoming shuffle must be of the same type as the result of the
10687    // current shuffle.
10688    assert(OtherSV->getOperand(0).getValueType() == VT &&
10689           "Shuffle types don't match");
10690
10691    SmallVector<int, 4> Mask;
10692    // Compute the combined shuffle mask.
10693    for (unsigned i = 0; i != NumElts; ++i) {
10694      int Idx = SVN->getMaskElt(i);
10695      assert(Idx < (int)NumElts && "Index references undef operand");
10696      // Next, this index comes from the first value, which is the incoming
10697      // shuffle. Adopt the incoming index.
10698      if (Idx >= 0)
10699        Idx = OtherSV->getMaskElt(Idx);
10700      Mask.push_back(Idx);
10701    }
10702
10703    bool CommuteOperands = false;
10704    if (N0.getOperand(1).getOpcode() != ISD::UNDEF) {
10705      // To be valid, the combine shuffle mask should only reference elements
10706      // from one of the two vectors in input to the inner shufflevector.
10707      bool IsValidMask = true;
10708      for (unsigned i = 0; i != NumElts && IsValidMask; ++i)
10709        // See if the combined mask only reference undefs or elements coming
10710        // from the first shufflevector operand.
10711        IsValidMask = Mask[i] < 0 || (unsigned)Mask[i] < NumElts;
10712
10713      if (!IsValidMask) {
10714        IsValidMask = true;
10715        for (unsigned i = 0; i != NumElts && IsValidMask; ++i)
10716          // Check that all the elements come from the second shuffle operand.
10717          IsValidMask = Mask[i] < 0 || (unsigned)Mask[i] >= NumElts;
10718        CommuteOperands = IsValidMask;
10719      }
10720
10721      // Early exit if the combined shuffle mask is not valid.
10722      if (!IsValidMask)
10723        return SDValue();
10724    }
10725
10726    // See if this pair of shuffles can be safely folded according to either
10727    // of the following rules:
10728    //   shuffle(shuffle(x, y), undef) -> x
10729    //   shuffle(shuffle(x, undef), undef) -> x
10730    //   shuffle(shuffle(x, y), undef) -> y
10731    bool IsIdentityMask = true;
10732    unsigned BaseMaskIndex = CommuteOperands ? NumElts : 0;
10733    for (unsigned i = 0; i != NumElts && IsIdentityMask; ++i) {
10734      // Skip Undefs.
10735      if (Mask[i] < 0)
10736        continue;
10737
10738      // The combined shuffle must map each index to itself.
10739      IsIdentityMask = (unsigned)Mask[i] == i + BaseMaskIndex;
10740    }
10741
10742    if (IsIdentityMask) {
10743      if (CommuteOperands)
10744        // optimize shuffle(shuffle(x, y), undef) -> y.
10745        return OtherSV->getOperand(1);
10746
10747      // optimize shuffle(shuffle(x, undef), undef) -> x
10748      // optimize shuffle(shuffle(x, y), undef) -> x
10749      return OtherSV->getOperand(0);
10750    }
10751
10752    // It may still be beneficial to combine the two shuffles if the
10753    // resulting shuffle is legal.
10754    if (TLI.isShuffleMaskLegal(Mask, VT)) {
10755      if (!CommuteOperands)
10756        // shuffle(shuffle(x, undef, M1), undef, M2) -> shuffle(x, undef, M3).
10757        // shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(x, undef, M3)
10758        return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), N1,
10759                                    &Mask[0]);
10760
10761      //   shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(undef, y, M3)
10762      return DAG.getVectorShuffle(VT, SDLoc(N), N1, N0->getOperand(1),
10763                                  &Mask[0]);
10764    }
10765  }
10766
10767  return SDValue();
10768}
10769
10770SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
10771  SDValue N0 = N->getOperand(0);
10772  SDValue N2 = N->getOperand(2);
10773
10774  // If the input vector is a concatenation, and the insert replaces
10775  // one of the halves, we can optimize into a single concat_vectors.
10776  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10777      N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) {
10778    APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
10779    EVT VT = N->getValueType(0);
10780
10781    // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
10782    // (concat_vectors Z, Y)
10783    if (InsIdx == 0)
10784      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
10785                         N->getOperand(1), N0.getOperand(1));
10786
10787    // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
10788    // (concat_vectors X, Z)
10789    if (InsIdx == VT.getVectorNumElements()/2)
10790      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
10791                         N0.getOperand(0), N->getOperand(1));
10792  }
10793
10794  return SDValue();
10795}
10796
10797/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10798/// an AND to a vector_shuffle with the destination vector and a zero vector.
10799/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10800///      vector_shuffle V, Zero, <0, 4, 2, 4>
10801SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10802  EVT VT = N->getValueType(0);
10803  SDLoc dl(N);
10804  SDValue LHS = N->getOperand(0);
10805  SDValue RHS = N->getOperand(1);
10806  if (N->getOpcode() == ISD::AND) {
10807    if (RHS.getOpcode() == ISD::BITCAST)
10808      RHS = RHS.getOperand(0);
10809    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10810      SmallVector<int, 8> Indices;
10811      unsigned NumElts = RHS.getNumOperands();
10812      for (unsigned i = 0; i != NumElts; ++i) {
10813        SDValue Elt = RHS.getOperand(i);
10814        if (!isa<ConstantSDNode>(Elt))
10815          return SDValue();
10816
10817        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10818          Indices.push_back(i);
10819        else if (cast<ConstantSDNode>(Elt)->isNullValue())
10820          Indices.push_back(NumElts);
10821        else
10822          return SDValue();
10823      }
10824
10825      // Let's see if the target supports this vector_shuffle.
10826      EVT RVT = RHS.getValueType();
10827      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10828        return SDValue();
10829
10830      // Return the new VECTOR_SHUFFLE node.
10831      EVT EltVT = RVT.getVectorElementType();
10832      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10833                                     DAG.getConstant(0, EltVT));
10834      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), RVT, ZeroOps);
10835      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10836      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10837      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10838    }
10839  }
10840
10841  return SDValue();
10842}
10843
10844/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10845SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10846  assert(N->getValueType(0).isVector() &&
10847         "SimplifyVBinOp only works on vectors!");
10848
10849  SDValue LHS = N->getOperand(0);
10850  SDValue RHS = N->getOperand(1);
10851  SDValue Shuffle = XformToShuffleWithZero(N);
10852  if (Shuffle.getNode()) return Shuffle;
10853
10854  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10855  // this operation.
10856  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10857      RHS.getOpcode() == ISD::BUILD_VECTOR) {
10858    // Check if both vectors are constants. If not bail out.
10859    if (!(cast<BuildVectorSDNode>(LHS)->isConstant() &&
10860          cast<BuildVectorSDNode>(RHS)->isConstant()))
10861      return SDValue();
10862
10863    SmallVector<SDValue, 8> Ops;
10864    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10865      SDValue LHSOp = LHS.getOperand(i);
10866      SDValue RHSOp = RHS.getOperand(i);
10867
10868      // Can't fold divide by zero.
10869      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10870          N->getOpcode() == ISD::FDIV) {
10871        if ((RHSOp.getOpcode() == ISD::Constant &&
10872             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10873            (RHSOp.getOpcode() == ISD::ConstantFP &&
10874             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10875          break;
10876      }
10877
10878      EVT VT = LHSOp.getValueType();
10879      EVT RVT = RHSOp.getValueType();
10880      if (RVT != VT) {
10881        // Integer BUILD_VECTOR operands may have types larger than the element
10882        // size (e.g., when the element type is not legal).  Prior to type
10883        // legalization, the types may not match between the two BUILD_VECTORS.
10884        // Truncate one of the operands to make them match.
10885        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10886          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10887        } else {
10888          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10889          VT = RVT;
10890        }
10891      }
10892      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10893                                   LHSOp, RHSOp);
10894      if (FoldOp.getOpcode() != ISD::UNDEF &&
10895          FoldOp.getOpcode() != ISD::Constant &&
10896          FoldOp.getOpcode() != ISD::ConstantFP)
10897        break;
10898      Ops.push_back(FoldOp);
10899      AddToWorkList(FoldOp.getNode());
10900    }
10901
10902    if (Ops.size() == LHS.getNumOperands())
10903      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), LHS.getValueType(), Ops);
10904  }
10905
10906  // Type legalization might introduce new shuffles in the DAG.
10907  // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
10908  //   -> (shuffle (VBinOp (A, B)), Undef, Mask).
10909  if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
10910      isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
10911      LHS.getOperand(1).getOpcode() == ISD::UNDEF &&
10912      RHS.getOperand(1).getOpcode() == ISD::UNDEF) {
10913    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
10914    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
10915
10916    if (SVN0->getMask().equals(SVN1->getMask())) {
10917      EVT VT = N->getValueType(0);
10918      SDValue UndefVector = LHS.getOperand(1);
10919      SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
10920                                     LHS.getOperand(0), RHS.getOperand(0));
10921      AddUsersToWorkList(N);
10922      return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
10923                                  &SVN0->getMask()[0]);
10924    }
10925  }
10926
10927  return SDValue();
10928}
10929
10930/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10931SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10932  assert(N->getValueType(0).isVector() &&
10933         "SimplifyVUnaryOp only works on vectors!");
10934
10935  SDValue N0 = N->getOperand(0);
10936
10937  if (N0.getOpcode() != ISD::BUILD_VECTOR)
10938    return SDValue();
10939
10940  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10941  SmallVector<SDValue, 8> Ops;
10942  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10943    SDValue Op = N0.getOperand(i);
10944    if (Op.getOpcode() != ISD::UNDEF &&
10945        Op.getOpcode() != ISD::ConstantFP)
10946      break;
10947    EVT EltVT = Op.getValueType();
10948    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10949    if (FoldOp.getOpcode() != ISD::UNDEF &&
10950        FoldOp.getOpcode() != ISD::ConstantFP)
10951      break;
10952    Ops.push_back(FoldOp);
10953    AddToWorkList(FoldOp.getNode());
10954  }
10955
10956  if (Ops.size() != N0.getNumOperands())
10957    return SDValue();
10958
10959  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N0.getValueType(), Ops);
10960}
10961
10962SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10963                                    SDValue N1, SDValue N2){
10964  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10965
10966  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10967                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10968
10969  // If we got a simplified select_cc node back from SimplifySelectCC, then
10970  // break it down into a new SETCC node, and a new SELECT node, and then return
10971  // the SELECT node, since we were called with a SELECT node.
10972  if (SCC.getNode()) {
10973    // Check to see if we got a select_cc back (to turn into setcc/select).
10974    // Otherwise, just return whatever node we got back, like fabs.
10975    if (SCC.getOpcode() == ISD::SELECT_CC) {
10976      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10977                                  N0.getValueType(),
10978                                  SCC.getOperand(0), SCC.getOperand(1),
10979                                  SCC.getOperand(4));
10980      AddToWorkList(SETCC.getNode());
10981      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10982                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
10983    }
10984
10985    return SCC;
10986  }
10987  return SDValue();
10988}
10989
10990/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10991/// are the two values being selected between, see if we can simplify the
10992/// select.  Callers of this should assume that TheSelect is deleted if this
10993/// returns true.  As such, they should return the appropriate thing (e.g. the
10994/// node) back to the top-level of the DAG combiner loop to avoid it being
10995/// looked at.
10996bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10997                                    SDValue RHS) {
10998
10999  // Cannot simplify select with vector condition
11000  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
11001
11002  // If this is a select from two identical things, try to pull the operation
11003  // through the select.
11004  if (LHS.getOpcode() != RHS.getOpcode() ||
11005      !LHS.hasOneUse() || !RHS.hasOneUse())
11006    return false;
11007
11008  // If this is a load and the token chain is identical, replace the select
11009  // of two loads with a load through a select of the address to load from.
11010  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
11011  // constants have been dropped into the constant pool.
11012  if (LHS.getOpcode() == ISD::LOAD) {
11013    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
11014    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
11015
11016    // Token chains must be identical.
11017    if (LHS.getOperand(0) != RHS.getOperand(0) ||
11018        // Do not let this transformation reduce the number of volatile loads.
11019        LLD->isVolatile() || RLD->isVolatile() ||
11020        // If this is an EXTLOAD, the VT's must match.
11021        LLD->getMemoryVT() != RLD->getMemoryVT() ||
11022        // If this is an EXTLOAD, the kind of extension must match.
11023        (LLD->getExtensionType() != RLD->getExtensionType() &&
11024         // The only exception is if one of the extensions is anyext.
11025         LLD->getExtensionType() != ISD::EXTLOAD &&
11026         RLD->getExtensionType() != ISD::EXTLOAD) ||
11027        // FIXME: this discards src value information.  This is
11028        // over-conservative. It would be beneficial to be able to remember
11029        // both potential memory locations.  Since we are discarding
11030        // src value info, don't do the transformation if the memory
11031        // locations are not in the default address space.
11032        LLD->getPointerInfo().getAddrSpace() != 0 ||
11033        RLD->getPointerInfo().getAddrSpace() != 0 ||
11034        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
11035                                      LLD->getBasePtr().getValueType()))
11036      return false;
11037
11038    // Check that the select condition doesn't reach either load.  If so,
11039    // folding this will induce a cycle into the DAG.  If not, this is safe to
11040    // xform, so create a select of the addresses.
11041    SDValue Addr;
11042    if (TheSelect->getOpcode() == ISD::SELECT) {
11043      SDNode *CondNode = TheSelect->getOperand(0).getNode();
11044      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
11045          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
11046        return false;
11047      // The loads must not depend on one another.
11048      if (LLD->isPredecessorOf(RLD) ||
11049          RLD->isPredecessorOf(LLD))
11050        return false;
11051      Addr = DAG.getSelect(SDLoc(TheSelect),
11052                           LLD->getBasePtr().getValueType(),
11053                           TheSelect->getOperand(0), LLD->getBasePtr(),
11054                           RLD->getBasePtr());
11055    } else {  // Otherwise SELECT_CC
11056      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
11057      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
11058
11059      if ((LLD->hasAnyUseOfValue(1) &&
11060           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
11061          (RLD->hasAnyUseOfValue(1) &&
11062           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
11063        return false;
11064
11065      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
11066                         LLD->getBasePtr().getValueType(),
11067                         TheSelect->getOperand(0),
11068                         TheSelect->getOperand(1),
11069                         LLD->getBasePtr(), RLD->getBasePtr(),
11070                         TheSelect->getOperand(4));
11071    }
11072
11073    SDValue Load;
11074    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
11075      Load = DAG.getLoad(TheSelect->getValueType(0),
11076                         SDLoc(TheSelect),
11077                         // FIXME: Discards pointer and TBAA info.
11078                         LLD->getChain(), Addr, MachinePointerInfo(),
11079                         LLD->isVolatile(), LLD->isNonTemporal(),
11080                         LLD->isInvariant(), LLD->getAlignment());
11081    } else {
11082      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
11083                            RLD->getExtensionType() : LLD->getExtensionType(),
11084                            SDLoc(TheSelect),
11085                            TheSelect->getValueType(0),
11086                            // FIXME: Discards pointer and TBAA info.
11087                            LLD->getChain(), Addr, MachinePointerInfo(),
11088                            LLD->getMemoryVT(), LLD->isVolatile(),
11089                            LLD->isNonTemporal(), LLD->getAlignment());
11090    }
11091
11092    // Users of the select now use the result of the load.
11093    CombineTo(TheSelect, Load);
11094
11095    // Users of the old loads now use the new load's chain.  We know the
11096    // old-load value is dead now.
11097    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
11098    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
11099    return true;
11100  }
11101
11102  return false;
11103}
11104
11105/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
11106/// where 'cond' is the comparison specified by CC.
11107SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
11108                                      SDValue N2, SDValue N3,
11109                                      ISD::CondCode CC, bool NotExtCompare) {
11110  // (x ? y : y) -> y.
11111  if (N2 == N3) return N2;
11112
11113  EVT VT = N2.getValueType();
11114  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
11115  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
11116  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
11117
11118  // Determine if the condition we're dealing with is constant
11119  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
11120                              N0, N1, CC, DL, false);
11121  if (SCC.getNode()) AddToWorkList(SCC.getNode());
11122  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
11123
11124  // fold select_cc true, x, y -> x
11125  if (SCCC && !SCCC->isNullValue())
11126    return N2;
11127  // fold select_cc false, x, y -> y
11128  if (SCCC && SCCC->isNullValue())
11129    return N3;
11130
11131  // Check to see if we can simplify the select into an fabs node
11132  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
11133    // Allow either -0.0 or 0.0
11134    if (CFP->getValueAPF().isZero()) {
11135      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
11136      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
11137          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
11138          N2 == N3.getOperand(0))
11139        return DAG.getNode(ISD::FABS, DL, VT, N0);
11140
11141      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
11142      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
11143          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
11144          N2.getOperand(0) == N3)
11145        return DAG.getNode(ISD::FABS, DL, VT, N3);
11146    }
11147  }
11148
11149  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
11150  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
11151  // in it.  This is a win when the constant is not otherwise available because
11152  // it replaces two constant pool loads with one.  We only do this if the FP
11153  // type is known to be legal, because if it isn't, then we are before legalize
11154  // types an we want the other legalization to happen first (e.g. to avoid
11155  // messing with soft float) and if the ConstantFP is not legal, because if
11156  // it is legal, we may not need to store the FP constant in a constant pool.
11157  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
11158    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
11159      if (TLI.isTypeLegal(N2.getValueType()) &&
11160          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
11161               TargetLowering::Legal &&
11162           !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
11163           !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
11164          // If both constants have multiple uses, then we won't need to do an
11165          // extra load, they are likely around in registers for other users.
11166          (TV->hasOneUse() || FV->hasOneUse())) {
11167        Constant *Elts[] = {
11168          const_cast<ConstantFP*>(FV->getConstantFPValue()),
11169          const_cast<ConstantFP*>(TV->getConstantFPValue())
11170        };
11171        Type *FPTy = Elts[0]->getType();
11172        const DataLayout &TD = *TLI.getDataLayout();
11173
11174        // Create a ConstantArray of the two constants.
11175        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
11176        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
11177                                            TD.getPrefTypeAlignment(FPTy));
11178        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
11179
11180        // Get the offsets to the 0 and 1 element of the array so that we can
11181        // select between them.
11182        SDValue Zero = DAG.getIntPtrConstant(0);
11183        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
11184        SDValue One = DAG.getIntPtrConstant(EltSize);
11185
11186        SDValue Cond = DAG.getSetCC(DL,
11187                                    getSetCCResultType(N0.getValueType()),
11188                                    N0, N1, CC);
11189        AddToWorkList(Cond.getNode());
11190        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
11191                                          Cond, One, Zero);
11192        AddToWorkList(CstOffset.getNode());
11193        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
11194                            CstOffset);
11195        AddToWorkList(CPIdx.getNode());
11196        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
11197                           MachinePointerInfo::getConstantPool(), false,
11198                           false, false, Alignment);
11199
11200      }
11201    }
11202
11203  // Check to see if we can perform the "gzip trick", transforming
11204  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
11205  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
11206      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
11207       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
11208    EVT XType = N0.getValueType();
11209    EVT AType = N2.getValueType();
11210    if (XType.bitsGE(AType)) {
11211      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
11212      // single-bit constant.
11213      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
11214        unsigned ShCtV = N2C->getAPIntValue().logBase2();
11215        ShCtV = XType.getSizeInBits()-ShCtV-1;
11216        SDValue ShCt = DAG.getConstant(ShCtV,
11217                                       getShiftAmountTy(N0.getValueType()));
11218        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
11219                                    XType, N0, ShCt);
11220        AddToWorkList(Shift.getNode());
11221
11222        if (XType.bitsGT(AType)) {
11223          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
11224          AddToWorkList(Shift.getNode());
11225        }
11226
11227        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
11228      }
11229
11230      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
11231                                  XType, N0,
11232                                  DAG.getConstant(XType.getSizeInBits()-1,
11233                                         getShiftAmountTy(N0.getValueType())));
11234      AddToWorkList(Shift.getNode());
11235
11236      if (XType.bitsGT(AType)) {
11237        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
11238        AddToWorkList(Shift.getNode());
11239      }
11240
11241      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
11242    }
11243  }
11244
11245  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
11246  // where y is has a single bit set.
11247  // A plaintext description would be, we can turn the SELECT_CC into an AND
11248  // when the condition can be materialized as an all-ones register.  Any
11249  // single bit-test can be materialized as an all-ones register with
11250  // shift-left and shift-right-arith.
11251  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
11252      N0->getValueType(0) == VT &&
11253      N1C && N1C->isNullValue() &&
11254      N2C && N2C->isNullValue()) {
11255    SDValue AndLHS = N0->getOperand(0);
11256    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
11257    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
11258      // Shift the tested bit over the sign bit.
11259      APInt AndMask = ConstAndRHS->getAPIntValue();
11260      SDValue ShlAmt =
11261        DAG.getConstant(AndMask.countLeadingZeros(),
11262                        getShiftAmountTy(AndLHS.getValueType()));
11263      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
11264
11265      // Now arithmetic right shift it all the way over, so the result is either
11266      // all-ones, or zero.
11267      SDValue ShrAmt =
11268        DAG.getConstant(AndMask.getBitWidth()-1,
11269                        getShiftAmountTy(Shl.getValueType()));
11270      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
11271
11272      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
11273    }
11274  }
11275
11276  // fold select C, 16, 0 -> shl C, 4
11277  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
11278      TLI.getBooleanContents(N0.getValueType()) ==
11279          TargetLowering::ZeroOrOneBooleanContent) {
11280
11281    // If the caller doesn't want us to simplify this into a zext of a compare,
11282    // don't do it.
11283    if (NotExtCompare && N2C->getAPIntValue() == 1)
11284      return SDValue();
11285
11286    // Get a SetCC of the condition
11287    // NOTE: Don't create a SETCC if it's not legal on this target.
11288    if (!LegalOperations ||
11289        TLI.isOperationLegal(ISD::SETCC,
11290          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
11291      SDValue Temp, SCC;
11292      // cast from setcc result type to select result type
11293      if (LegalTypes) {
11294        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
11295                            N0, N1, CC);
11296        if (N2.getValueType().bitsLT(SCC.getValueType()))
11297          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
11298                                        N2.getValueType());
11299        else
11300          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
11301                             N2.getValueType(), SCC);
11302      } else {
11303        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
11304        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
11305                           N2.getValueType(), SCC);
11306      }
11307
11308      AddToWorkList(SCC.getNode());
11309      AddToWorkList(Temp.getNode());
11310
11311      if (N2C->getAPIntValue() == 1)
11312        return Temp;
11313
11314      // shl setcc result by log2 n2c
11315      return DAG.getNode(
11316          ISD::SHL, DL, N2.getValueType(), Temp,
11317          DAG.getConstant(N2C->getAPIntValue().logBase2(),
11318                          getShiftAmountTy(Temp.getValueType())));
11319    }
11320  }
11321
11322  // Check to see if this is the equivalent of setcc
11323  // FIXME: Turn all of these into setcc if setcc if setcc is legal
11324  // otherwise, go ahead with the folds.
11325  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
11326    EVT XType = N0.getValueType();
11327    if (!LegalOperations ||
11328        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
11329      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
11330      if (Res.getValueType() != VT)
11331        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
11332      return Res;
11333    }
11334
11335    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
11336    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
11337        (!LegalOperations ||
11338         TLI.isOperationLegal(ISD::CTLZ, XType))) {
11339      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
11340      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
11341                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
11342                                       getShiftAmountTy(Ctlz.getValueType())));
11343    }
11344    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
11345    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
11346      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
11347                                  XType, DAG.getConstant(0, XType), N0);
11348      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
11349      return DAG.getNode(ISD::SRL, DL, XType,
11350                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
11351                         DAG.getConstant(XType.getSizeInBits()-1,
11352                                         getShiftAmountTy(XType)));
11353    }
11354    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
11355    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
11356      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
11357                                 DAG.getConstant(XType.getSizeInBits()-1,
11358                                         getShiftAmountTy(N0.getValueType())));
11359      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
11360    }
11361  }
11362
11363  // Check to see if this is an integer abs.
11364  // select_cc setg[te] X,  0,  X, -X ->
11365  // select_cc setgt    X, -1,  X, -X ->
11366  // select_cc setl[te] X,  0, -X,  X ->
11367  // select_cc setlt    X,  1, -X,  X ->
11368  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
11369  if (N1C) {
11370    ConstantSDNode *SubC = nullptr;
11371    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
11372         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
11373        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
11374      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
11375    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
11376              (N1C->isOne() && CC == ISD::SETLT)) &&
11377             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
11378      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
11379
11380    EVT XType = N0.getValueType();
11381    if (SubC && SubC->isNullValue() && XType.isInteger()) {
11382      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
11383                                  N0,
11384                                  DAG.getConstant(XType.getSizeInBits()-1,
11385                                         getShiftAmountTy(N0.getValueType())));
11386      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
11387                                XType, N0, Shift);
11388      AddToWorkList(Shift.getNode());
11389      AddToWorkList(Add.getNode());
11390      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
11391    }
11392  }
11393
11394  return SDValue();
11395}
11396
11397/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
11398SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
11399                                   SDValue N1, ISD::CondCode Cond,
11400                                   SDLoc DL, bool foldBooleans) {
11401  TargetLowering::DAGCombinerInfo
11402    DagCombineInfo(DAG, Level, false, this);
11403  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
11404}
11405
11406/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
11407/// return a DAG expression to select that will generate the same value by
11408/// multiplying by a magic number.  See:
11409/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
11410SDValue DAGCombiner::BuildSDIV(SDNode *N) {
11411  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
11412  if (!C)
11413    return SDValue();
11414
11415  // Avoid division by zero.
11416  if (!C->getAPIntValue())
11417    return SDValue();
11418
11419  std::vector<SDNode*> Built;
11420  SDValue S =
11421      TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
11422
11423  for (SDNode *N : Built)
11424    AddToWorkList(N);
11425  return S;
11426}
11427
11428/// BuildUDIV - Given an ISD::UDIV node expressing a divide by constant,
11429/// return a DAG expression to select that will generate the same value by
11430/// multiplying by a magic number.  See:
11431/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
11432SDValue DAGCombiner::BuildUDIV(SDNode *N) {
11433  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
11434  if (!C)
11435    return SDValue();
11436
11437  // Avoid division by zero.
11438  if (!C->getAPIntValue())
11439    return SDValue();
11440
11441  std::vector<SDNode*> Built;
11442  SDValue S =
11443      TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
11444
11445  for (SDNode *N : Built)
11446    AddToWorkList(N);
11447  return S;
11448}
11449
11450/// FindBaseOffset - Return true if base is a frame index, which is known not
11451// to alias with anything but itself.  Provides base object and offset as
11452// results.
11453static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
11454                           const GlobalValue *&GV, const void *&CV) {
11455  // Assume it is a primitive operation.
11456  Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr;
11457
11458  // If it's an adding a simple constant then integrate the offset.
11459  if (Base.getOpcode() == ISD::ADD) {
11460    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
11461      Base = Base.getOperand(0);
11462      Offset += C->getZExtValue();
11463    }
11464  }
11465
11466  // Return the underlying GlobalValue, and update the Offset.  Return false
11467  // for GlobalAddressSDNode since the same GlobalAddress may be represented
11468  // by multiple nodes with different offsets.
11469  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
11470    GV = G->getGlobal();
11471    Offset += G->getOffset();
11472    return false;
11473  }
11474
11475  // Return the underlying Constant value, and update the Offset.  Return false
11476  // for ConstantSDNodes since the same constant pool entry may be represented
11477  // by multiple nodes with different offsets.
11478  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
11479    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
11480                                         : (const void *)C->getConstVal();
11481    Offset += C->getOffset();
11482    return false;
11483  }
11484  // If it's any of the following then it can't alias with anything but itself.
11485  return isa<FrameIndexSDNode>(Base);
11486}
11487
11488/// isAlias - Return true if there is any possibility that the two addresses
11489/// overlap.
11490bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
11491  // If they are the same then they must be aliases.
11492  if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
11493
11494  // If they are both volatile then they cannot be reordered.
11495  if (Op0->isVolatile() && Op1->isVolatile()) return true;
11496
11497  // Gather base node and offset information.
11498  SDValue Base1, Base2;
11499  int64_t Offset1, Offset2;
11500  const GlobalValue *GV1, *GV2;
11501  const void *CV1, *CV2;
11502  bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(),
11503                                      Base1, Offset1, GV1, CV1);
11504  bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(),
11505                                      Base2, Offset2, GV2, CV2);
11506
11507  // If they have a same base address then check to see if they overlap.
11508  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
11509    return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
11510             (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
11511
11512  // It is possible for different frame indices to alias each other, mostly
11513  // when tail call optimization reuses return address slots for arguments.
11514  // To catch this case, look up the actual index of frame indices to compute
11515  // the real alias relationship.
11516  if (isFrameIndex1 && isFrameIndex2) {
11517    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11518    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
11519    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
11520    return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
11521             (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
11522  }
11523
11524  // Otherwise, if we know what the bases are, and they aren't identical, then
11525  // we know they cannot alias.
11526  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
11527    return false;
11528
11529  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
11530  // compared to the size and offset of the access, we may be able to prove they
11531  // do not alias.  This check is conservative for now to catch cases created by
11532  // splitting vector types.
11533  if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) &&
11534      (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) &&
11535      (Op0->getMemoryVT().getSizeInBits() >> 3 ==
11536       Op1->getMemoryVT().getSizeInBits() >> 3) &&
11537      (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) {
11538    int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment();
11539    int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment();
11540
11541    // There is no overlap between these relatively aligned accesses of similar
11542    // size, return no alias.
11543    if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 ||
11544        (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1)
11545      return false;
11546  }
11547
11548  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
11549    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
11550#ifndef NDEBUG
11551  if (CombinerAAOnlyFunc.getNumOccurrences() &&
11552      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
11553    UseAA = false;
11554#endif
11555  if (UseAA &&
11556      Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
11557    // Use alias analysis information.
11558    int64_t MinOffset = std::min(Op0->getSrcValueOffset(),
11559                                 Op1->getSrcValueOffset());
11560    int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) +
11561        Op0->getSrcValueOffset() - MinOffset;
11562    int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) +
11563        Op1->getSrcValueOffset() - MinOffset;
11564    AliasAnalysis::AliasResult AAResult =
11565        AA.alias(AliasAnalysis::Location(Op0->getMemOperand()->getValue(),
11566                                         Overlap1,
11567                                         UseTBAA ? Op0->getTBAAInfo() : nullptr),
11568                 AliasAnalysis::Location(Op1->getMemOperand()->getValue(),
11569                                         Overlap2,
11570                                         UseTBAA ? Op1->getTBAAInfo() : nullptr));
11571    if (AAResult == AliasAnalysis::NoAlias)
11572      return false;
11573  }
11574
11575  // Otherwise we have to assume they alias.
11576  return true;
11577}
11578
11579/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
11580/// looking for aliasing nodes and adding them to the Aliases vector.
11581void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
11582                                   SmallVectorImpl<SDValue> &Aliases) {
11583  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
11584  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
11585
11586  // Get alias information for node.
11587  bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
11588
11589  // Starting off.
11590  Chains.push_back(OriginalChain);
11591  unsigned Depth = 0;
11592
11593  // Look at each chain and determine if it is an alias.  If so, add it to the
11594  // aliases list.  If not, then continue up the chain looking for the next
11595  // candidate.
11596  while (!Chains.empty()) {
11597    SDValue Chain = Chains.back();
11598    Chains.pop_back();
11599
11600    // For TokenFactor nodes, look at each operand and only continue up the
11601    // chain until we find two aliases.  If we've seen two aliases, assume we'll
11602    // find more and revert to original chain since the xform is unlikely to be
11603    // profitable.
11604    //
11605    // FIXME: The depth check could be made to return the last non-aliasing
11606    // chain we found before we hit a tokenfactor rather than the original
11607    // chain.
11608    if (Depth > 6 || Aliases.size() == 2) {
11609      Aliases.clear();
11610      Aliases.push_back(OriginalChain);
11611      return;
11612    }
11613
11614    // Don't bother if we've been before.
11615    if (!Visited.insert(Chain.getNode()))
11616      continue;
11617
11618    switch (Chain.getOpcode()) {
11619    case ISD::EntryToken:
11620      // Entry token is ideal chain operand, but handled in FindBetterChain.
11621      break;
11622
11623    case ISD::LOAD:
11624    case ISD::STORE: {
11625      // Get alias information for Chain.
11626      bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
11627          !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
11628
11629      // If chain is alias then stop here.
11630      if (!(IsLoad && IsOpLoad) &&
11631          isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
11632        Aliases.push_back(Chain);
11633      } else {
11634        // Look further up the chain.
11635        Chains.push_back(Chain.getOperand(0));
11636        ++Depth;
11637      }
11638      break;
11639    }
11640
11641    case ISD::TokenFactor:
11642      // We have to check each of the operands of the token factor for "small"
11643      // token factors, so we queue them up.  Adding the operands to the queue
11644      // (stack) in reverse order maintains the original order and increases the
11645      // likelihood that getNode will find a matching token factor (CSE.)
11646      if (Chain.getNumOperands() > 16) {
11647        Aliases.push_back(Chain);
11648        break;
11649      }
11650      for (unsigned n = Chain.getNumOperands(); n;)
11651        Chains.push_back(Chain.getOperand(--n));
11652      ++Depth;
11653      break;
11654
11655    default:
11656      // For all other instructions we will just have to take what we can get.
11657      Aliases.push_back(Chain);
11658      break;
11659    }
11660  }
11661
11662  // We need to be careful here to also search for aliases through the
11663  // value operand of a store, etc. Consider the following situation:
11664  //   Token1 = ...
11665  //   L1 = load Token1, %52
11666  //   S1 = store Token1, L1, %51
11667  //   L2 = load Token1, %52+8
11668  //   S2 = store Token1, L2, %51+8
11669  //   Token2 = Token(S1, S2)
11670  //   L3 = load Token2, %53
11671  //   S3 = store Token2, L3, %52
11672  //   L4 = load Token2, %53+8
11673  //   S4 = store Token2, L4, %52+8
11674  // If we search for aliases of S3 (which loads address %52), and we look
11675  // only through the chain, then we'll miss the trivial dependence on L1
11676  // (which also loads from %52). We then might change all loads and
11677  // stores to use Token1 as their chain operand, which could result in
11678  // copying %53 into %52 before copying %52 into %51 (which should
11679  // happen first).
11680  //
11681  // The problem is, however, that searching for such data dependencies
11682  // can become expensive, and the cost is not directly related to the
11683  // chain depth. Instead, we'll rule out such configurations here by
11684  // insisting that we've visited all chain users (except for users
11685  // of the original chain, which is not necessary). When doing this,
11686  // we need to look through nodes we don't care about (otherwise, things
11687  // like register copies will interfere with trivial cases).
11688
11689  SmallVector<const SDNode *, 16> Worklist;
11690  for (SmallPtrSet<SDNode *, 16>::iterator I = Visited.begin(),
11691       IE = Visited.end(); I != IE; ++I)
11692    if (*I != OriginalChain.getNode())
11693      Worklist.push_back(*I);
11694
11695  while (!Worklist.empty()) {
11696    const SDNode *M = Worklist.pop_back_val();
11697
11698    // We have already visited M, and want to make sure we've visited any uses
11699    // of M that we care about. For uses that we've not visisted, and don't
11700    // care about, queue them to the worklist.
11701
11702    for (SDNode::use_iterator UI = M->use_begin(),
11703         UIE = M->use_end(); UI != UIE; ++UI)
11704      if (UI.getUse().getValueType() == MVT::Other && Visited.insert(*UI)) {
11705        if (isa<MemIntrinsicSDNode>(*UI) || isa<MemSDNode>(*UI)) {
11706          // We've not visited this use, and we care about it (it could have an
11707          // ordering dependency with the original node).
11708          Aliases.clear();
11709          Aliases.push_back(OriginalChain);
11710          return;
11711        }
11712
11713        // We've not visited this use, but we don't care about it. Mark it as
11714        // visited and enqueue it to the worklist.
11715        Worklist.push_back(*UI);
11716      }
11717  }
11718}
11719
11720/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11721/// for a better chain (aliasing node.)
11722SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11723  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
11724
11725  // Accumulate all the aliases to this node.
11726  GatherAllAliases(N, OldChain, Aliases);
11727
11728  // If no operands then chain to entry token.
11729  if (Aliases.size() == 0)
11730    return DAG.getEntryNode();
11731
11732  // If a single operand then chain to it.  We don't need to revisit it.
11733  if (Aliases.size() == 1)
11734    return Aliases[0];
11735
11736  // Construct a custom tailored token factor.
11737  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
11738}
11739
11740// SelectionDAG::Combine - This is the entry point for the file.
11741//
11742void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11743                           CodeGenOpt::Level OptLevel) {
11744  /// run - This is the main entry point to this class.
11745  ///
11746  DAGCombiner(*this, AA, OptLevel).Run(Level);
11747}
11748