FastISel.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/CodeGen/FastISel.h"
43#include "llvm/ADT/Optional.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Analysis/BranchProbabilityInfo.h"
46#include "llvm/Analysis/Loads.h"
47#include "llvm/CodeGen/Analysis.h"
48#include "llvm/CodeGen/FunctionLoweringInfo.h"
49#include "llvm/CodeGen/MachineFrameInfo.h"
50#include "llvm/CodeGen/MachineInstrBuilder.h"
51#include "llvm/CodeGen/MachineModuleInfo.h"
52#include "llvm/CodeGen/MachineRegisterInfo.h"
53#include "llvm/CodeGen/StackMaps.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugInfo.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/GlobalVariable.h"
58#include "llvm/IR/Instructions.h"
59#include "llvm/IR/IntrinsicInst.h"
60#include "llvm/IR/Operator.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Target/TargetInstrInfo.h"
64#include "llvm/Target/TargetLibraryInfo.h"
65#include "llvm/Target/TargetLowering.h"
66#include "llvm/Target/TargetMachine.h"
67using namespace llvm;
68
69#define DEBUG_TYPE "isel"
70
71STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
72          "target-independent selector");
73STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
74          "target-specific selector");
75STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
76
77/// startNewBlock - Set the current block to which generated machine
78/// instructions will be appended, and clear the local CSE map.
79///
80void FastISel::startNewBlock() {
81  LocalValueMap.clear();
82
83  // Instructions are appended to FuncInfo.MBB. If the basic block already
84  // contains labels or copies, use the last instruction as the last local
85  // value.
86  EmitStartPt = nullptr;
87  if (!FuncInfo.MBB->empty())
88    EmitStartPt = &FuncInfo.MBB->back();
89  LastLocalValue = EmitStartPt;
90}
91
92bool FastISel::LowerArguments() {
93  if (!FuncInfo.CanLowerReturn)
94    // Fallback to SDISel argument lowering code to deal with sret pointer
95    // parameter.
96    return false;
97
98  if (!FastLowerArguments())
99    return false;
100
101  // Enter arguments into ValueMap for uses in non-entry BBs.
102  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
103         E = FuncInfo.Fn->arg_end(); I != E; ++I) {
104    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
105    assert(VI != LocalValueMap.end() && "Missed an argument?");
106    FuncInfo.ValueMap[I] = VI->second;
107  }
108  return true;
109}
110
111void FastISel::flushLocalValueMap() {
112  LocalValueMap.clear();
113  LastLocalValue = EmitStartPt;
114  recomputeInsertPt();
115}
116
117bool FastISel::hasTrivialKill(const Value *V) const {
118  // Don't consider constants or arguments to have trivial kills.
119  const Instruction *I = dyn_cast<Instruction>(V);
120  if (!I)
121    return false;
122
123  // No-op casts are trivially coalesced by fast-isel.
124  if (const CastInst *Cast = dyn_cast<CastInst>(I))
125    if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
126        !hasTrivialKill(Cast->getOperand(0)))
127      return false;
128
129  // GEPs with all zero indices are trivially coalesced by fast-isel.
130  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
131    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
132      return false;
133
134  // Only instructions with a single use in the same basic block are considered
135  // to have trivial kills.
136  return I->hasOneUse() &&
137         !(I->getOpcode() == Instruction::BitCast ||
138           I->getOpcode() == Instruction::PtrToInt ||
139           I->getOpcode() == Instruction::IntToPtr) &&
140         cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
141}
142
143unsigned FastISel::getRegForValue(const Value *V) {
144  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
145  // Don't handle non-simple values in FastISel.
146  if (!RealVT.isSimple())
147    return 0;
148
149  // Ignore illegal types. We must do this before looking up the value
150  // in ValueMap because Arguments are given virtual registers regardless
151  // of whether FastISel can handle them.
152  MVT VT = RealVT.getSimpleVT();
153  if (!TLI.isTypeLegal(VT)) {
154    // Handle integer promotions, though, because they're common and easy.
155    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
156      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
157    else
158      return 0;
159  }
160
161  // Look up the value to see if we already have a register for it.
162  unsigned Reg = lookUpRegForValue(V);
163  if (Reg != 0)
164    return Reg;
165
166  // In bottom-up mode, just create the virtual register which will be used
167  // to hold the value. It will be materialized later.
168  if (isa<Instruction>(V) &&
169      (!isa<AllocaInst>(V) ||
170       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
171    return FuncInfo.InitializeRegForValue(V);
172
173  SavePoint SaveInsertPt = enterLocalValueArea();
174
175  // Materialize the value in a register. Emit any instructions in the
176  // local value area.
177  Reg = materializeRegForValue(V, VT);
178
179  leaveLocalValueArea(SaveInsertPt);
180
181  return Reg;
182}
183
184/// materializeRegForValue - Helper for getRegForValue. This function is
185/// called when the value isn't already available in a register and must
186/// be materialized with new instructions.
187unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
188  unsigned Reg = 0;
189
190  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
191    if (CI->getValue().getActiveBits() <= 64)
192      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
193  } else if (isa<AllocaInst>(V)) {
194    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
195  } else if (isa<ConstantPointerNull>(V)) {
196    // Translate this as an integer zero so that it can be
197    // local-CSE'd with actual integer zeros.
198    Reg =
199      getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext())));
200  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
201    if (CF->isNullValue()) {
202      Reg = TargetMaterializeFloatZero(CF);
203    } else {
204      // Try to emit the constant directly.
205      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
206    }
207
208    if (!Reg) {
209      // Try to emit the constant by using an integer constant with a cast.
210      const APFloat &Flt = CF->getValueAPF();
211      EVT IntVT = TLI.getPointerTy();
212
213      uint64_t x[2];
214      uint32_t IntBitWidth = IntVT.getSizeInBits();
215      bool isExact;
216      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
217                                  APFloat::rmTowardZero, &isExact);
218      if (isExact) {
219        APInt IntVal(IntBitWidth, x);
220
221        unsigned IntegerReg =
222          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
223        if (IntegerReg != 0)
224          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
225                           IntegerReg, /*Kill=*/false);
226      }
227    }
228  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
229    if (!SelectOperator(Op, Op->getOpcode()))
230      if (!isa<Instruction>(Op) ||
231          !TargetSelectInstruction(cast<Instruction>(Op)))
232        return 0;
233    Reg = lookUpRegForValue(Op);
234  } else if (isa<UndefValue>(V)) {
235    Reg = createResultReg(TLI.getRegClassFor(VT));
236    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
237            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
238  }
239
240  // If target-independent code couldn't handle the value, give target-specific
241  // code a try.
242  if (!Reg && isa<Constant>(V))
243    Reg = TargetMaterializeConstant(cast<Constant>(V));
244
245  // Don't cache constant materializations in the general ValueMap.
246  // To do so would require tracking what uses they dominate.
247  if (Reg != 0) {
248    LocalValueMap[V] = Reg;
249    LastLocalValue = MRI.getVRegDef(Reg);
250  }
251  return Reg;
252}
253
254unsigned FastISel::lookUpRegForValue(const Value *V) {
255  // Look up the value to see if we already have a register for it. We
256  // cache values defined by Instructions across blocks, and other values
257  // only locally. This is because Instructions already have the SSA
258  // def-dominates-use requirement enforced.
259  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
260  if (I != FuncInfo.ValueMap.end())
261    return I->second;
262  return LocalValueMap[V];
263}
264
265/// UpdateValueMap - Update the value map to include the new mapping for this
266/// instruction, or insert an extra copy to get the result in a previous
267/// determined register.
268/// NOTE: This is only necessary because we might select a block that uses
269/// a value before we select the block that defines the value.  It might be
270/// possible to fix this by selecting blocks in reverse postorder.
271void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
272  if (!isa<Instruction>(I)) {
273    LocalValueMap[I] = Reg;
274    return;
275  }
276
277  unsigned &AssignedReg = FuncInfo.ValueMap[I];
278  if (AssignedReg == 0)
279    // Use the new register.
280    AssignedReg = Reg;
281  else if (Reg != AssignedReg) {
282    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
283    for (unsigned i = 0; i < NumRegs; i++)
284      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
285
286    AssignedReg = Reg;
287  }
288}
289
290std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
291  unsigned IdxN = getRegForValue(Idx);
292  if (IdxN == 0)
293    // Unhandled operand. Halt "fast" selection and bail.
294    return std::pair<unsigned, bool>(0, false);
295
296  bool IdxNIsKill = hasTrivialKill(Idx);
297
298  // If the index is smaller or larger than intptr_t, truncate or extend it.
299  MVT PtrVT = TLI.getPointerTy();
300  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
301  if (IdxVT.bitsLT(PtrVT)) {
302    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
303                      IdxN, IdxNIsKill);
304    IdxNIsKill = true;
305  }
306  else if (IdxVT.bitsGT(PtrVT)) {
307    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
308                      IdxN, IdxNIsKill);
309    IdxNIsKill = true;
310  }
311  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
312}
313
314void FastISel::recomputeInsertPt() {
315  if (getLastLocalValue()) {
316    FuncInfo.InsertPt = getLastLocalValue();
317    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
318    ++FuncInfo.InsertPt;
319  } else
320    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
321
322  // Now skip past any EH_LABELs, which must remain at the beginning.
323  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
324         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
325    ++FuncInfo.InsertPt;
326}
327
328void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
329                              MachineBasicBlock::iterator E) {
330  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
331  while (I != E) {
332    MachineInstr *Dead = &*I;
333    ++I;
334    Dead->eraseFromParent();
335    ++NumFastIselDead;
336  }
337  recomputeInsertPt();
338}
339
340FastISel::SavePoint FastISel::enterLocalValueArea() {
341  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
342  DebugLoc OldDL = DbgLoc;
343  recomputeInsertPt();
344  DbgLoc = DebugLoc();
345  SavePoint SP = { OldInsertPt, OldDL };
346  return SP;
347}
348
349void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
350  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
351    LastLocalValue = std::prev(FuncInfo.InsertPt);
352
353  // Restore the previous insert position.
354  FuncInfo.InsertPt = OldInsertPt.InsertPt;
355  DbgLoc = OldInsertPt.DL;
356}
357
358/// SelectBinaryOp - Select and emit code for a binary operator instruction,
359/// which has an opcode which directly corresponds to the given ISD opcode.
360///
361bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
362  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
363  if (VT == MVT::Other || !VT.isSimple())
364    // Unhandled type. Halt "fast" selection and bail.
365    return false;
366
367  // We only handle legal types. For example, on x86-32 the instruction
368  // selector contains all of the 64-bit instructions from x86-64,
369  // under the assumption that i64 won't be used if the target doesn't
370  // support it.
371  if (!TLI.isTypeLegal(VT)) {
372    // MVT::i1 is special. Allow AND, OR, or XOR because they
373    // don't require additional zeroing, which makes them easy.
374    if (VT == MVT::i1 &&
375        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
376         ISDOpcode == ISD::XOR))
377      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
378    else
379      return false;
380  }
381
382  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
383  // we don't have anything that canonicalizes operand order.
384  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
385    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
386      unsigned Op1 = getRegForValue(I->getOperand(1));
387      if (Op1 == 0) return false;
388
389      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
390
391      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
392                                        Op1IsKill, CI->getZExtValue(),
393                                        VT.getSimpleVT());
394      if (ResultReg == 0) return false;
395
396      // We successfully emitted code for the given LLVM Instruction.
397      UpdateValueMap(I, ResultReg);
398      return true;
399    }
400
401
402  unsigned Op0 = getRegForValue(I->getOperand(0));
403  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
404    return false;
405
406  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
407
408  // Check if the second operand is a constant and handle it appropriately.
409  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
410    uint64_t Imm = CI->getZExtValue();
411
412    // Transform "sdiv exact X, 8" -> "sra X, 3".
413    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
414        cast<BinaryOperator>(I)->isExact() &&
415        isPowerOf2_64(Imm)) {
416      Imm = Log2_64(Imm);
417      ISDOpcode = ISD::SRA;
418    }
419
420    // Transform "urem x, pow2" -> "and x, pow2-1".
421    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
422        isPowerOf2_64(Imm)) {
423      --Imm;
424      ISDOpcode = ISD::AND;
425    }
426
427    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
428                                      Op0IsKill, Imm, VT.getSimpleVT());
429    if (ResultReg == 0) return false;
430
431    // We successfully emitted code for the given LLVM Instruction.
432    UpdateValueMap(I, ResultReg);
433    return true;
434  }
435
436  // Check if the second operand is a constant float.
437  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
438    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
439                                     ISDOpcode, Op0, Op0IsKill, CF);
440    if (ResultReg != 0) {
441      // We successfully emitted code for the given LLVM Instruction.
442      UpdateValueMap(I, ResultReg);
443      return true;
444    }
445  }
446
447  unsigned Op1 = getRegForValue(I->getOperand(1));
448  if (Op1 == 0)
449    // Unhandled operand. Halt "fast" selection and bail.
450    return false;
451
452  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
453
454  // Now we have both operands in registers. Emit the instruction.
455  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
456                                   ISDOpcode,
457                                   Op0, Op0IsKill,
458                                   Op1, Op1IsKill);
459  if (ResultReg == 0)
460    // Target-specific code wasn't able to find a machine opcode for
461    // the given ISD opcode and type. Halt "fast" selection and bail.
462    return false;
463
464  // We successfully emitted code for the given LLVM Instruction.
465  UpdateValueMap(I, ResultReg);
466  return true;
467}
468
469bool FastISel::SelectGetElementPtr(const User *I) {
470  unsigned N = getRegForValue(I->getOperand(0));
471  if (N == 0)
472    // Unhandled operand. Halt "fast" selection and bail.
473    return false;
474
475  bool NIsKill = hasTrivialKill(I->getOperand(0));
476
477  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
478  // into a single N = N + TotalOffset.
479  uint64_t TotalOffs = 0;
480  // FIXME: What's a good SWAG number for MaxOffs?
481  uint64_t MaxOffs = 2048;
482  Type *Ty = I->getOperand(0)->getType();
483  MVT VT = TLI.getPointerTy();
484  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
485       E = I->op_end(); OI != E; ++OI) {
486    const Value *Idx = *OI;
487    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
488      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
489      if (Field) {
490        // N = N + Offset
491        TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
492        if (TotalOffs >= MaxOffs) {
493          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
494          if (N == 0)
495            // Unhandled operand. Halt "fast" selection and bail.
496            return false;
497          NIsKill = true;
498          TotalOffs = 0;
499        }
500      }
501      Ty = StTy->getElementType(Field);
502    } else {
503      Ty = cast<SequentialType>(Ty)->getElementType();
504
505      // If this is a constant subscript, handle it quickly.
506      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
507        if (CI->isZero()) continue;
508        // N = N + Offset
509        TotalOffs +=
510          DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
511        if (TotalOffs >= MaxOffs) {
512          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
513          if (N == 0)
514            // Unhandled operand. Halt "fast" selection and bail.
515            return false;
516          NIsKill = true;
517          TotalOffs = 0;
518        }
519        continue;
520      }
521      if (TotalOffs) {
522        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
523        if (N == 0)
524          // Unhandled operand. Halt "fast" selection and bail.
525          return false;
526        NIsKill = true;
527        TotalOffs = 0;
528      }
529
530      // N = N + Idx * ElementSize;
531      uint64_t ElementSize = DL.getTypeAllocSize(Ty);
532      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
533      unsigned IdxN = Pair.first;
534      bool IdxNIsKill = Pair.second;
535      if (IdxN == 0)
536        // Unhandled operand. Halt "fast" selection and bail.
537        return false;
538
539      if (ElementSize != 1) {
540        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
541        if (IdxN == 0)
542          // Unhandled operand. Halt "fast" selection and bail.
543          return false;
544        IdxNIsKill = true;
545      }
546      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
547      if (N == 0)
548        // Unhandled operand. Halt "fast" selection and bail.
549        return false;
550    }
551  }
552  if (TotalOffs) {
553    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
554    if (N == 0)
555      // Unhandled operand. Halt "fast" selection and bail.
556      return false;
557  }
558
559  // We successfully emitted code for the given LLVM Instruction.
560  UpdateValueMap(I, N);
561  return true;
562}
563
564/// \brief Add a stackmap or patchpoint intrinsic call's live variable operands
565/// to a stackmap or patchpoint machine instruction.
566bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
567                                   const CallInst *CI, unsigned StartIdx) {
568  for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
569    Value *Val = CI->getArgOperand(i);
570    // Check for constants and encode them with a StackMaps::ConstantOp prefix.
571    if (auto *C = dyn_cast<ConstantInt>(Val)) {
572      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
573      Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
574    } else if (isa<ConstantPointerNull>(Val)) {
575      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
576      Ops.push_back(MachineOperand::CreateImm(0));
577    } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
578      // Values coming from a stack location also require a sepcial encoding,
579      // but that is added later on by the target specific frame index
580      // elimination implementation.
581      auto SI = FuncInfo.StaticAllocaMap.find(AI);
582      if (SI != FuncInfo.StaticAllocaMap.end())
583        Ops.push_back(MachineOperand::CreateFI(SI->second));
584      else
585        return false;
586    } else {
587      unsigned Reg = getRegForValue(Val);
588      if (Reg == 0)
589        return false;
590      Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
591    }
592  }
593
594  return true;
595}
596
597bool FastISel::SelectStackmap(const CallInst *I) {
598  // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
599  //                                  [live variables...])
600  assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
601         "Stackmap cannot return a value.");
602
603  // The stackmap intrinsic only records the live variables (the arguments
604  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
605  // intrinsic, this won't be lowered to a function call. This means we don't
606  // have to worry about calling conventions and target-specific lowering code.
607  // Instead we perform the call lowering right here.
608  //
609  // CALLSEQ_START(0)
610  // STACKMAP(id, nbytes, ...)
611  // CALLSEQ_END(0, 0)
612  //
613  SmallVector<MachineOperand, 32> Ops;
614
615  // Add the <id> and <numBytes> constants.
616  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
617         "Expected a constant integer.");
618  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
619  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
620
621  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
622         "Expected a constant integer.");
623  const auto *NumBytes =
624    cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
625  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
626
627  // Push live variables for the stack map (skipping the first two arguments
628  // <id> and <numBytes>).
629  if (!addStackMapLiveVars(Ops, I, 2))
630    return false;
631
632  // We are not adding any register mask info here, because the stackmap doesn't
633  // clobber anything.
634
635  // Add scratch registers as implicit def and early clobber.
636  CallingConv::ID CC = I->getCallingConv();
637  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
638  for (unsigned i = 0; ScratchRegs[i]; ++i)
639    Ops.push_back(MachineOperand::CreateReg(
640      ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
641      /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
642
643  // Issue CALLSEQ_START
644  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
645  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
646    .addImm(0);
647
648  // Issue STACKMAP.
649  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
650                                    TII.get(TargetOpcode::STACKMAP));
651  for (auto const &MO : Ops)
652    MIB.addOperand(MO);
653
654  // Issue CALLSEQ_END
655  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
656  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
657    .addImm(0).addImm(0);
658
659  // Inform the Frame Information that we have a stackmap in this function.
660  FuncInfo.MF->getFrameInfo()->setHasStackMap();
661
662  return true;
663}
664
665bool FastISel::SelectCall(const User *I) {
666  const CallInst *Call = cast<CallInst>(I);
667
668  // Handle simple inline asms.
669  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
670    // Don't attempt to handle constraints.
671    if (!IA->getConstraintString().empty())
672      return false;
673
674    unsigned ExtraInfo = 0;
675    if (IA->hasSideEffects())
676      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
677    if (IA->isAlignStack())
678      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
679
680    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
681            TII.get(TargetOpcode::INLINEASM))
682      .addExternalSymbol(IA->getAsmString().c_str())
683      .addImm(ExtraInfo);
684    return true;
685  }
686
687  MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
688  ComputeUsesVAFloatArgument(*Call, &MMI);
689
690  const Function *F = Call->getCalledFunction();
691  if (!F) return false;
692
693  // Handle selected intrinsic function calls.
694  switch (F->getIntrinsicID()) {
695  default: break;
696    // At -O0 we don't care about the lifetime intrinsics.
697  case Intrinsic::lifetime_start:
698  case Intrinsic::lifetime_end:
699    // The donothing intrinsic does, well, nothing.
700  case Intrinsic::donothing:
701    return true;
702
703  case Intrinsic::dbg_declare: {
704    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
705    DIVariable DIVar(DI->getVariable());
706    assert((!DIVar || DIVar.isVariable()) &&
707      "Variable in DbgDeclareInst should be either null or a DIVariable.");
708    if (!DIVar ||
709        !FuncInfo.MF->getMMI().hasDebugInfo()) {
710      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
711      return true;
712    }
713
714    const Value *Address = DI->getAddress();
715    if (!Address || isa<UndefValue>(Address)) {
716      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
717      return true;
718    }
719
720    unsigned Offset = 0;
721    Optional<MachineOperand> Op;
722    if (const Argument *Arg = dyn_cast<Argument>(Address))
723      // Some arguments' frame index is recorded during argument lowering.
724      Offset = FuncInfo.getArgumentFrameIndex(Arg);
725    if (Offset)
726        Op = MachineOperand::CreateFI(Offset);
727    if (!Op)
728      if (unsigned Reg = lookUpRegForValue(Address))
729        Op = MachineOperand::CreateReg(Reg, false);
730
731    // If we have a VLA that has a "use" in a metadata node that's then used
732    // here but it has no other uses, then we have a problem. E.g.,
733    //
734    //   int foo (const int *x) {
735    //     char a[*x];
736    //     return 0;
737    //   }
738    //
739    // If we assign 'a' a vreg and fast isel later on has to use the selection
740    // DAG isel, it will want to copy the value to the vreg. However, there are
741    // no uses, which goes counter to what selection DAG isel expects.
742    if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
743        (!isa<AllocaInst>(Address) ||
744         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
745      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
746                                     false);
747
748    if (Op) {
749      if (Op->isReg()) {
750        Op->setIsDebug(true);
751        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
752                TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
753                DI->getVariable());
754      } else
755        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
756                TII.get(TargetOpcode::DBG_VALUE))
757            .addOperand(*Op)
758            .addImm(0)
759            .addMetadata(DI->getVariable());
760    } else {
761      // We can't yet handle anything else here because it would require
762      // generating code, thus altering codegen because of debug info.
763      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
764    }
765    return true;
766  }
767  case Intrinsic::dbg_value: {
768    // This form of DBG_VALUE is target-independent.
769    const DbgValueInst *DI = cast<DbgValueInst>(Call);
770    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
771    const Value *V = DI->getValue();
772    if (!V) {
773      // Currently the optimizer can produce this; insert an undef to
774      // help debugging.  Probably the optimizer should not do this.
775      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
776        .addReg(0U).addImm(DI->getOffset())
777        .addMetadata(DI->getVariable());
778    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
779      if (CI->getBitWidth() > 64)
780        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
781          .addCImm(CI).addImm(DI->getOffset())
782          .addMetadata(DI->getVariable());
783      else
784        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
785          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
786          .addMetadata(DI->getVariable());
787    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
788      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
789        .addFPImm(CF).addImm(DI->getOffset())
790        .addMetadata(DI->getVariable());
791    } else if (unsigned Reg = lookUpRegForValue(V)) {
792      // FIXME: This does not handle register-indirect values at offset 0.
793      bool IsIndirect = DI->getOffset() != 0;
794      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect,
795              Reg, DI->getOffset(), DI->getVariable());
796    } else {
797      // We can't yet handle anything else here because it would require
798      // generating code, thus altering codegen because of debug info.
799      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
800    }
801    return true;
802  }
803  case Intrinsic::objectsize: {
804    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
805    unsigned long long Res = CI->isZero() ? -1ULL : 0;
806    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
807    unsigned ResultReg = getRegForValue(ResCI);
808    if (ResultReg == 0)
809      return false;
810    UpdateValueMap(Call, ResultReg);
811    return true;
812  }
813  case Intrinsic::expect: {
814    unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
815    if (ResultReg == 0)
816      return false;
817    UpdateValueMap(Call, ResultReg);
818    return true;
819  }
820  case Intrinsic::experimental_stackmap:
821    return SelectStackmap(Call);
822  }
823
824  // Usually, it does not make sense to initialize a value,
825  // make an unrelated function call and use the value, because
826  // it tends to be spilled on the stack. So, we move the pointer
827  // to the last local value to the beginning of the block, so that
828  // all the values which have already been materialized,
829  // appear after the call. It also makes sense to skip intrinsics
830  // since they tend to be inlined.
831  if (!isa<IntrinsicInst>(Call))
832    flushLocalValueMap();
833
834  // An arbitrary call. Bail.
835  return false;
836}
837
838bool FastISel::SelectCast(const User *I, unsigned Opcode) {
839  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
840  EVT DstVT = TLI.getValueType(I->getType());
841
842  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
843      DstVT == MVT::Other || !DstVT.isSimple())
844    // Unhandled type. Halt "fast" selection and bail.
845    return false;
846
847  // Check if the destination type is legal.
848  if (!TLI.isTypeLegal(DstVT))
849    return false;
850
851  // Check if the source operand is legal.
852  if (!TLI.isTypeLegal(SrcVT))
853    return false;
854
855  unsigned InputReg = getRegForValue(I->getOperand(0));
856  if (!InputReg)
857    // Unhandled operand.  Halt "fast" selection and bail.
858    return false;
859
860  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
861
862  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
863                                  DstVT.getSimpleVT(),
864                                  Opcode,
865                                  InputReg, InputRegIsKill);
866  if (!ResultReg)
867    return false;
868
869  UpdateValueMap(I, ResultReg);
870  return true;
871}
872
873bool FastISel::SelectBitCast(const User *I) {
874  // If the bitcast doesn't change the type, just use the operand value.
875  if (I->getType() == I->getOperand(0)->getType()) {
876    unsigned Reg = getRegForValue(I->getOperand(0));
877    if (Reg == 0)
878      return false;
879    UpdateValueMap(I, Reg);
880    return true;
881  }
882
883  // Bitcasts of other values become reg-reg copies or BITCAST operators.
884  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
885  EVT DstEVT = TLI.getValueType(I->getType());
886  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
887      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
888    // Unhandled type. Halt "fast" selection and bail.
889    return false;
890
891  MVT SrcVT = SrcEVT.getSimpleVT();
892  MVT DstVT = DstEVT.getSimpleVT();
893  unsigned Op0 = getRegForValue(I->getOperand(0));
894  if (Op0 == 0)
895    // Unhandled operand. Halt "fast" selection and bail.
896    return false;
897
898  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
899
900  // First, try to perform the bitcast by inserting a reg-reg copy.
901  unsigned ResultReg = 0;
902  if (SrcVT == DstVT) {
903    const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
904    const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
905    // Don't attempt a cross-class copy. It will likely fail.
906    if (SrcClass == DstClass) {
907      ResultReg = createResultReg(DstClass);
908      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
909              TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
910    }
911  }
912
913  // If the reg-reg copy failed, select a BITCAST opcode.
914  if (!ResultReg)
915    ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
916
917  if (!ResultReg)
918    return false;
919
920  UpdateValueMap(I, ResultReg);
921  return true;
922}
923
924bool
925FastISel::SelectInstruction(const Instruction *I) {
926  // Just before the terminator instruction, insert instructions to
927  // feed PHI nodes in successor blocks.
928  if (isa<TerminatorInst>(I))
929    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
930      return false;
931
932  DbgLoc = I->getDebugLoc();
933
934  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
935
936  if (const CallInst *Call = dyn_cast<CallInst>(I)) {
937    const Function *F = Call->getCalledFunction();
938    LibFunc::Func Func;
939
940    // As a special case, don't handle calls to builtin library functions that
941    // may be translated directly to target instructions.
942    if (F && !F->hasLocalLinkage() && F->hasName() &&
943        LibInfo->getLibFunc(F->getName(), Func) &&
944        LibInfo->hasOptimizedCodeGen(Func))
945      return false;
946
947    // Don't handle Intrinsic::trap if a trap funciton is specified.
948    if (F && F->getIntrinsicID() == Intrinsic::trap &&
949        !TM.Options.getTrapFunctionName().empty())
950      return false;
951  }
952
953  // First, try doing target-independent selection.
954  if (SelectOperator(I, I->getOpcode())) {
955    ++NumFastIselSuccessIndependent;
956    DbgLoc = DebugLoc();
957    return true;
958  }
959  // Remove dead code.  However, ignore call instructions since we've flushed
960  // the local value map and recomputed the insert point.
961  if (!isa<CallInst>(I)) {
962    recomputeInsertPt();
963    if (SavedInsertPt != FuncInfo.InsertPt)
964      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
965  }
966
967  // Next, try calling the target to attempt to handle the instruction.
968  SavedInsertPt = FuncInfo.InsertPt;
969  if (TargetSelectInstruction(I)) {
970    ++NumFastIselSuccessTarget;
971    DbgLoc = DebugLoc();
972    return true;
973  }
974  // Check for dead code and remove as necessary.
975  recomputeInsertPt();
976  if (SavedInsertPt != FuncInfo.InsertPt)
977    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
978
979  DbgLoc = DebugLoc();
980  return false;
981}
982
983/// FastEmitBranch - Emit an unconditional branch to the given block,
984/// unless it is the immediate (fall-through) successor, and update
985/// the CFG.
986void
987FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
988  if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
989      FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
990    // For more accurate line information if this is the only instruction
991    // in the block then emit it, otherwise we have the unconditional
992    // fall-through case, which needs no instructions.
993  } else {
994    // The unconditional branch case.
995    TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
996                     SmallVector<MachineOperand, 0>(), DbgLoc);
997  }
998  uint32_t BranchWeight = 0;
999  if (FuncInfo.BPI)
1000    BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(),
1001                                               MSucc->getBasicBlock());
1002  FuncInfo.MBB->addSuccessor(MSucc, BranchWeight);
1003}
1004
1005/// SelectFNeg - Emit an FNeg operation.
1006///
1007bool
1008FastISel::SelectFNeg(const User *I) {
1009  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1010  if (OpReg == 0) return false;
1011
1012  bool OpRegIsKill = hasTrivialKill(I);
1013
1014  // If the target has ISD::FNEG, use it.
1015  EVT VT = TLI.getValueType(I->getType());
1016  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
1017                                  ISD::FNEG, OpReg, OpRegIsKill);
1018  if (ResultReg != 0) {
1019    UpdateValueMap(I, ResultReg);
1020    return true;
1021  }
1022
1023  // Bitcast the value to integer, twiddle the sign bit with xor,
1024  // and then bitcast it back to floating-point.
1025  if (VT.getSizeInBits() > 64) return false;
1026  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1027  if (!TLI.isTypeLegal(IntVT))
1028    return false;
1029
1030  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1031                               ISD::BITCAST, OpReg, OpRegIsKill);
1032  if (IntReg == 0)
1033    return false;
1034
1035  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
1036                                       IntReg, /*Kill=*/true,
1037                                       UINT64_C(1) << (VT.getSizeInBits()-1),
1038                                       IntVT.getSimpleVT());
1039  if (IntResultReg == 0)
1040    return false;
1041
1042  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
1043                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
1044  if (ResultReg == 0)
1045    return false;
1046
1047  UpdateValueMap(I, ResultReg);
1048  return true;
1049}
1050
1051bool
1052FastISel::SelectExtractValue(const User *U) {
1053  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1054  if (!EVI)
1055    return false;
1056
1057  // Make sure we only try to handle extracts with a legal result.  But also
1058  // allow i1 because it's easy.
1059  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
1060  if (!RealVT.isSimple())
1061    return false;
1062  MVT VT = RealVT.getSimpleVT();
1063  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1064    return false;
1065
1066  const Value *Op0 = EVI->getOperand(0);
1067  Type *AggTy = Op0->getType();
1068
1069  // Get the base result register.
1070  unsigned ResultReg;
1071  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1072  if (I != FuncInfo.ValueMap.end())
1073    ResultReg = I->second;
1074  else if (isa<Instruction>(Op0))
1075    ResultReg = FuncInfo.InitializeRegForValue(Op0);
1076  else
1077    return false; // fast-isel can't handle aggregate constants at the moment
1078
1079  // Get the actual result register, which is an offset from the base register.
1080  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1081
1082  SmallVector<EVT, 4> AggValueVTs;
1083  ComputeValueVTs(TLI, AggTy, AggValueVTs);
1084
1085  for (unsigned i = 0; i < VTIndex; i++)
1086    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1087
1088  UpdateValueMap(EVI, ResultReg);
1089  return true;
1090}
1091
1092bool
1093FastISel::SelectOperator(const User *I, unsigned Opcode) {
1094  switch (Opcode) {
1095  case Instruction::Add:
1096    return SelectBinaryOp(I, ISD::ADD);
1097  case Instruction::FAdd:
1098    return SelectBinaryOp(I, ISD::FADD);
1099  case Instruction::Sub:
1100    return SelectBinaryOp(I, ISD::SUB);
1101  case Instruction::FSub:
1102    // FNeg is currently represented in LLVM IR as a special case of FSub.
1103    if (BinaryOperator::isFNeg(I))
1104      return SelectFNeg(I);
1105    return SelectBinaryOp(I, ISD::FSUB);
1106  case Instruction::Mul:
1107    return SelectBinaryOp(I, ISD::MUL);
1108  case Instruction::FMul:
1109    return SelectBinaryOp(I, ISD::FMUL);
1110  case Instruction::SDiv:
1111    return SelectBinaryOp(I, ISD::SDIV);
1112  case Instruction::UDiv:
1113    return SelectBinaryOp(I, ISD::UDIV);
1114  case Instruction::FDiv:
1115    return SelectBinaryOp(I, ISD::FDIV);
1116  case Instruction::SRem:
1117    return SelectBinaryOp(I, ISD::SREM);
1118  case Instruction::URem:
1119    return SelectBinaryOp(I, ISD::UREM);
1120  case Instruction::FRem:
1121    return SelectBinaryOp(I, ISD::FREM);
1122  case Instruction::Shl:
1123    return SelectBinaryOp(I, ISD::SHL);
1124  case Instruction::LShr:
1125    return SelectBinaryOp(I, ISD::SRL);
1126  case Instruction::AShr:
1127    return SelectBinaryOp(I, ISD::SRA);
1128  case Instruction::And:
1129    return SelectBinaryOp(I, ISD::AND);
1130  case Instruction::Or:
1131    return SelectBinaryOp(I, ISD::OR);
1132  case Instruction::Xor:
1133    return SelectBinaryOp(I, ISD::XOR);
1134
1135  case Instruction::GetElementPtr:
1136    return SelectGetElementPtr(I);
1137
1138  case Instruction::Br: {
1139    const BranchInst *BI = cast<BranchInst>(I);
1140
1141    if (BI->isUnconditional()) {
1142      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1143      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1144      FastEmitBranch(MSucc, BI->getDebugLoc());
1145      return true;
1146    }
1147
1148    // Conditional branches are not handed yet.
1149    // Halt "fast" selection and bail.
1150    return false;
1151  }
1152
1153  case Instruction::Unreachable:
1154    if (TM.Options.TrapUnreachable)
1155      return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1156    else
1157      return true;
1158
1159  case Instruction::Alloca:
1160    // FunctionLowering has the static-sized case covered.
1161    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1162      return true;
1163
1164    // Dynamic-sized alloca is not handled yet.
1165    return false;
1166
1167  case Instruction::Call:
1168    return SelectCall(I);
1169
1170  case Instruction::BitCast:
1171    return SelectBitCast(I);
1172
1173  case Instruction::FPToSI:
1174    return SelectCast(I, ISD::FP_TO_SINT);
1175  case Instruction::ZExt:
1176    return SelectCast(I, ISD::ZERO_EXTEND);
1177  case Instruction::SExt:
1178    return SelectCast(I, ISD::SIGN_EXTEND);
1179  case Instruction::Trunc:
1180    return SelectCast(I, ISD::TRUNCATE);
1181  case Instruction::SIToFP:
1182    return SelectCast(I, ISD::SINT_TO_FP);
1183
1184  case Instruction::IntToPtr: // Deliberate fall-through.
1185  case Instruction::PtrToInt: {
1186    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1187    EVT DstVT = TLI.getValueType(I->getType());
1188    if (DstVT.bitsGT(SrcVT))
1189      return SelectCast(I, ISD::ZERO_EXTEND);
1190    if (DstVT.bitsLT(SrcVT))
1191      return SelectCast(I, ISD::TRUNCATE);
1192    unsigned Reg = getRegForValue(I->getOperand(0));
1193    if (Reg == 0) return false;
1194    UpdateValueMap(I, Reg);
1195    return true;
1196  }
1197
1198  case Instruction::ExtractValue:
1199    return SelectExtractValue(I);
1200
1201  case Instruction::PHI:
1202    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1203
1204  default:
1205    // Unhandled instruction. Halt "fast" selection and bail.
1206    return false;
1207  }
1208}
1209
1210FastISel::FastISel(FunctionLoweringInfo &funcInfo,
1211                   const TargetLibraryInfo *libInfo)
1212  : FuncInfo(funcInfo),
1213    MF(funcInfo.MF),
1214    MRI(FuncInfo.MF->getRegInfo()),
1215    MFI(*FuncInfo.MF->getFrameInfo()),
1216    MCP(*FuncInfo.MF->getConstantPool()),
1217    TM(FuncInfo.MF->getTarget()),
1218    DL(*TM.getDataLayout()),
1219    TII(*TM.getInstrInfo()),
1220    TLI(*TM.getTargetLowering()),
1221    TRI(*TM.getRegisterInfo()),
1222    LibInfo(libInfo) {
1223}
1224
1225FastISel::~FastISel() {}
1226
1227bool FastISel::FastLowerArguments() {
1228  return false;
1229}
1230
1231unsigned FastISel::FastEmit_(MVT, MVT,
1232                             unsigned) {
1233  return 0;
1234}
1235
1236unsigned FastISel::FastEmit_r(MVT, MVT,
1237                              unsigned,
1238                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1239  return 0;
1240}
1241
1242unsigned FastISel::FastEmit_rr(MVT, MVT,
1243                               unsigned,
1244                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1245                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1246  return 0;
1247}
1248
1249unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1250  return 0;
1251}
1252
1253unsigned FastISel::FastEmit_f(MVT, MVT,
1254                              unsigned, const ConstantFP * /*FPImm*/) {
1255  return 0;
1256}
1257
1258unsigned FastISel::FastEmit_ri(MVT, MVT,
1259                               unsigned,
1260                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1261                               uint64_t /*Imm*/) {
1262  return 0;
1263}
1264
1265unsigned FastISel::FastEmit_rf(MVT, MVT,
1266                               unsigned,
1267                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1268                               const ConstantFP * /*FPImm*/) {
1269  return 0;
1270}
1271
1272unsigned FastISel::FastEmit_rri(MVT, MVT,
1273                                unsigned,
1274                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1275                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1276                                uint64_t /*Imm*/) {
1277  return 0;
1278}
1279
1280/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1281/// to emit an instruction with an immediate operand using FastEmit_ri.
1282/// If that fails, it materializes the immediate into a register and try
1283/// FastEmit_rr instead.
1284unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1285                                unsigned Op0, bool Op0IsKill,
1286                                uint64_t Imm, MVT ImmType) {
1287  // If this is a multiply by a power of two, emit this as a shift left.
1288  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1289    Opcode = ISD::SHL;
1290    Imm = Log2_64(Imm);
1291  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1292    // div x, 8 -> srl x, 3
1293    Opcode = ISD::SRL;
1294    Imm = Log2_64(Imm);
1295  }
1296
1297  // Horrible hack (to be removed), check to make sure shift amounts are
1298  // in-range.
1299  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1300      Imm >= VT.getSizeInBits())
1301    return 0;
1302
1303  // First check if immediate type is legal. If not, we can't use the ri form.
1304  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1305  if (ResultReg != 0)
1306    return ResultReg;
1307  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1308  if (MaterialReg == 0) {
1309    // This is a bit ugly/slow, but failing here means falling out of
1310    // fast-isel, which would be very slow.
1311    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1312                                              VT.getSizeInBits());
1313    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1314    assert (MaterialReg != 0 && "Unable to materialize imm.");
1315    if (MaterialReg == 0) return 0;
1316  }
1317  return FastEmit_rr(VT, VT, Opcode,
1318                     Op0, Op0IsKill,
1319                     MaterialReg, /*Kill=*/true);
1320}
1321
1322unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1323  return MRI.createVirtualRegister(RC);
1324}
1325
1326unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II,
1327                                            unsigned Op, unsigned OpNum) {
1328  if (TargetRegisterInfo::isVirtualRegister(Op)) {
1329    const TargetRegisterClass *RegClass =
1330        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1331    if (!MRI.constrainRegClass(Op, RegClass)) {
1332      // If it's not legal to COPY between the register classes, something
1333      // has gone very wrong before we got here.
1334      unsigned NewOp = createResultReg(RegClass);
1335      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1336              TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1337      return NewOp;
1338    }
1339  }
1340  return Op;
1341}
1342
1343unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1344                                 const TargetRegisterClass* RC) {
1345  unsigned ResultReg = createResultReg(RC);
1346  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1347
1348  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1349  return ResultReg;
1350}
1351
1352unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1353                                  const TargetRegisterClass *RC,
1354                                  unsigned Op0, bool Op0IsKill) {
1355  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1356
1357  unsigned ResultReg = createResultReg(RC);
1358  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1359
1360  if (II.getNumDefs() >= 1)
1361    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1362      .addReg(Op0, Op0IsKill * RegState::Kill);
1363  else {
1364    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1365      .addReg(Op0, Op0IsKill * RegState::Kill);
1366    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1367            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1368  }
1369
1370  return ResultReg;
1371}
1372
1373unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1374                                   const TargetRegisterClass *RC,
1375                                   unsigned Op0, bool Op0IsKill,
1376                                   unsigned Op1, bool Op1IsKill) {
1377  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1378
1379  unsigned ResultReg = createResultReg(RC);
1380  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1381  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1382
1383  if (II.getNumDefs() >= 1)
1384    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1385      .addReg(Op0, Op0IsKill * RegState::Kill)
1386      .addReg(Op1, Op1IsKill * RegState::Kill);
1387  else {
1388    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1389      .addReg(Op0, Op0IsKill * RegState::Kill)
1390      .addReg(Op1, Op1IsKill * RegState::Kill);
1391    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1392            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1393  }
1394  return ResultReg;
1395}
1396
1397unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1398                                   const TargetRegisterClass *RC,
1399                                   unsigned Op0, bool Op0IsKill,
1400                                   unsigned Op1, bool Op1IsKill,
1401                                   unsigned Op2, bool Op2IsKill) {
1402  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1403
1404  unsigned ResultReg = createResultReg(RC);
1405  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1406  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1407  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1408
1409  if (II.getNumDefs() >= 1)
1410    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1411      .addReg(Op0, Op0IsKill * RegState::Kill)
1412      .addReg(Op1, Op1IsKill * RegState::Kill)
1413      .addReg(Op2, Op2IsKill * RegState::Kill);
1414  else {
1415    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1416      .addReg(Op0, Op0IsKill * RegState::Kill)
1417      .addReg(Op1, Op1IsKill * RegState::Kill)
1418      .addReg(Op2, Op2IsKill * RegState::Kill);
1419    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1420            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1421  }
1422  return ResultReg;
1423}
1424
1425unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1426                                   const TargetRegisterClass *RC,
1427                                   unsigned Op0, bool Op0IsKill,
1428                                   uint64_t Imm) {
1429  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1430
1431  unsigned ResultReg = createResultReg(RC);
1432  RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF);
1433  MRI.constrainRegClass(Op0, RC);
1434
1435  if (II.getNumDefs() >= 1)
1436    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1437      .addReg(Op0, Op0IsKill * RegState::Kill)
1438      .addImm(Imm);
1439  else {
1440    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1441      .addReg(Op0, Op0IsKill * RegState::Kill)
1442      .addImm(Imm);
1443    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1444            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1445  }
1446  return ResultReg;
1447}
1448
1449unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1450                                   const TargetRegisterClass *RC,
1451                                   unsigned Op0, bool Op0IsKill,
1452                                   uint64_t Imm1, uint64_t Imm2) {
1453  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1454
1455  unsigned ResultReg = createResultReg(RC);
1456  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1457
1458  if (II.getNumDefs() >= 1)
1459    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1460      .addReg(Op0, Op0IsKill * RegState::Kill)
1461      .addImm(Imm1)
1462      .addImm(Imm2);
1463  else {
1464    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1465      .addReg(Op0, Op0IsKill * RegState::Kill)
1466      .addImm(Imm1)
1467      .addImm(Imm2);
1468    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1469            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1470  }
1471  return ResultReg;
1472}
1473
1474unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1475                                   const TargetRegisterClass *RC,
1476                                   unsigned Op0, bool Op0IsKill,
1477                                   const ConstantFP *FPImm) {
1478  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1479
1480  unsigned ResultReg = createResultReg(RC);
1481  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1482
1483  if (II.getNumDefs() >= 1)
1484    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1485      .addReg(Op0, Op0IsKill * RegState::Kill)
1486      .addFPImm(FPImm);
1487  else {
1488    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1489      .addReg(Op0, Op0IsKill * RegState::Kill)
1490      .addFPImm(FPImm);
1491    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1492            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1493  }
1494  return ResultReg;
1495}
1496
1497unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1498                                    const TargetRegisterClass *RC,
1499                                    unsigned Op0, bool Op0IsKill,
1500                                    unsigned Op1, bool Op1IsKill,
1501                                    uint64_t Imm) {
1502  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1503
1504  unsigned ResultReg = createResultReg(RC);
1505  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1506  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1507
1508  if (II.getNumDefs() >= 1)
1509    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1510      .addReg(Op0, Op0IsKill * RegState::Kill)
1511      .addReg(Op1, Op1IsKill * RegState::Kill)
1512      .addImm(Imm);
1513  else {
1514    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1515      .addReg(Op0, Op0IsKill * RegState::Kill)
1516      .addReg(Op1, Op1IsKill * RegState::Kill)
1517      .addImm(Imm);
1518    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1519            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1520  }
1521  return ResultReg;
1522}
1523
1524unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
1525                                     const TargetRegisterClass *RC,
1526                                     unsigned Op0, bool Op0IsKill,
1527                                     unsigned Op1, bool Op1IsKill,
1528                                     uint64_t Imm1, uint64_t Imm2) {
1529  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1530
1531  unsigned ResultReg = createResultReg(RC);
1532  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1533  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1534
1535  if (II.getNumDefs() >= 1)
1536    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1537      .addReg(Op0, Op0IsKill * RegState::Kill)
1538      .addReg(Op1, Op1IsKill * RegState::Kill)
1539      .addImm(Imm1).addImm(Imm2);
1540  else {
1541    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1542      .addReg(Op0, Op0IsKill * RegState::Kill)
1543      .addReg(Op1, Op1IsKill * RegState::Kill)
1544      .addImm(Imm1).addImm(Imm2);
1545    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1546            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1547  }
1548  return ResultReg;
1549}
1550
1551unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1552                                  const TargetRegisterClass *RC,
1553                                  uint64_t Imm) {
1554  unsigned ResultReg = createResultReg(RC);
1555  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1556
1557  if (II.getNumDefs() >= 1)
1558    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm);
1559  else {
1560    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1561    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1562            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1563  }
1564  return ResultReg;
1565}
1566
1567unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1568                                  const TargetRegisterClass *RC,
1569                                  uint64_t Imm1, uint64_t Imm2) {
1570  unsigned ResultReg = createResultReg(RC);
1571  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1572
1573  if (II.getNumDefs() >= 1)
1574    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1575      .addImm(Imm1).addImm(Imm2);
1576  else {
1577    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2);
1578    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1579            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1580  }
1581  return ResultReg;
1582}
1583
1584unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1585                                              unsigned Op0, bool Op0IsKill,
1586                                              uint32_t Idx) {
1587  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1588  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1589         "Cannot yet extract from physregs");
1590  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1591  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1592  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1593          DbgLoc, TII.get(TargetOpcode::COPY), ResultReg)
1594    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1595  return ResultReg;
1596}
1597
1598/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1599/// with all but the least significant bit set to zero.
1600unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1601  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1602}
1603
1604/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1605/// Emit code to ensure constants are copied into registers when needed.
1606/// Remember the virtual registers that need to be added to the Machine PHI
1607/// nodes as input.  We cannot just directly add them, because expansion
1608/// might result in multiple MBB's for one BB.  As such, the start of the
1609/// BB might correspond to a different MBB than the end.
1610bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1611  const TerminatorInst *TI = LLVMBB->getTerminator();
1612
1613  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1614  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1615
1616  // Check successor nodes' PHI nodes that expect a constant to be available
1617  // from this block.
1618  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1619    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1620    if (!isa<PHINode>(SuccBB->begin())) continue;
1621    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1622
1623    // If this terminator has multiple identical successors (common for
1624    // switches), only handle each succ once.
1625    if (!SuccsHandled.insert(SuccMBB)) continue;
1626
1627    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1628
1629    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1630    // nodes and Machine PHI nodes, but the incoming operands have not been
1631    // emitted yet.
1632    for (BasicBlock::const_iterator I = SuccBB->begin();
1633         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1634
1635      // Ignore dead phi's.
1636      if (PN->use_empty()) continue;
1637
1638      // Only handle legal types. Two interesting things to note here. First,
1639      // by bailing out early, we may leave behind some dead instructions,
1640      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1641      // own moves. Second, this check is necessary because FastISel doesn't
1642      // use CreateRegs to create registers, so it always creates
1643      // exactly one register for each non-void instruction.
1644      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1645      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1646        // Handle integer promotions, though, because they're common and easy.
1647        if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1648          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1649        else {
1650          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1651          return false;
1652        }
1653      }
1654
1655      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1656
1657      // Set the DebugLoc for the copy. Prefer the location of the operand
1658      // if there is one; use the location of the PHI otherwise.
1659      DbgLoc = PN->getDebugLoc();
1660      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1661        DbgLoc = Inst->getDebugLoc();
1662
1663      unsigned Reg = getRegForValue(PHIOp);
1664      if (Reg == 0) {
1665        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1666        return false;
1667      }
1668      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1669      DbgLoc = DebugLoc();
1670    }
1671  }
1672
1673  return true;
1674}
1675
1676bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
1677  assert(LI->hasOneUse() &&
1678      "tryToFoldLoad expected a LoadInst with a single use");
1679  // We know that the load has a single use, but don't know what it is.  If it
1680  // isn't one of the folded instructions, then we can't succeed here.  Handle
1681  // this by scanning the single-use users of the load until we get to FoldInst.
1682  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
1683
1684  const Instruction *TheUser = LI->user_back();
1685  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
1686         // Stay in the right block.
1687         TheUser->getParent() == FoldInst->getParent() &&
1688         --MaxUsers) {  // Don't scan too far.
1689    // If there are multiple or no uses of this instruction, then bail out.
1690    if (!TheUser->hasOneUse())
1691      return false;
1692
1693    TheUser = TheUser->user_back();
1694  }
1695
1696  // If we didn't find the fold instruction, then we failed to collapse the
1697  // sequence.
1698  if (TheUser != FoldInst)
1699    return false;
1700
1701  // Don't try to fold volatile loads.  Target has to deal with alignment
1702  // constraints.
1703  if (LI->isVolatile())
1704    return false;
1705
1706  // Figure out which vreg this is going into.  If there is no assigned vreg yet
1707  // then there actually was no reference to it.  Perhaps the load is referenced
1708  // by a dead instruction.
1709  unsigned LoadReg = getRegForValue(LI);
1710  if (LoadReg == 0)
1711    return false;
1712
1713  // We can't fold if this vreg has no uses or more than one use.  Multiple uses
1714  // may mean that the instruction got lowered to multiple MIs, or the use of
1715  // the loaded value ended up being multiple operands of the result.
1716  if (!MRI.hasOneUse(LoadReg))
1717    return false;
1718
1719  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
1720  MachineInstr *User = RI->getParent();
1721
1722  // Set the insertion point properly.  Folding the load can cause generation of
1723  // other random instructions (like sign extends) for addressing modes; make
1724  // sure they get inserted in a logical place before the new instruction.
1725  FuncInfo.InsertPt = User;
1726  FuncInfo.MBB = User->getParent();
1727
1728  // Ask the target to try folding the load.
1729  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
1730}
1731
1732bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
1733  // Must be an add.
1734  if (!isa<AddOperator>(Add))
1735    return false;
1736  // Type size needs to match.
1737  if (DL.getTypeSizeInBits(GEP->getType()) !=
1738      DL.getTypeSizeInBits(Add->getType()))
1739    return false;
1740  // Must be in the same basic block.
1741  if (isa<Instruction>(Add) &&
1742      FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
1743    return false;
1744  // Must have a constant operand.
1745  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
1746}
1747
1748MachineMemOperand *
1749FastISel::createMachineMemOperandFor(const Instruction *I) const {
1750  const Value *Ptr;
1751  Type *ValTy;
1752  unsigned Alignment;
1753  unsigned Flags;
1754  bool IsVolatile;
1755
1756  if (const auto *LI = dyn_cast<LoadInst>(I)) {
1757    Alignment = LI->getAlignment();
1758    IsVolatile = LI->isVolatile();
1759    Flags = MachineMemOperand::MOLoad;
1760    Ptr = LI->getPointerOperand();
1761    ValTy = LI->getType();
1762  } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
1763    Alignment = SI->getAlignment();
1764    IsVolatile = SI->isVolatile();
1765    Flags = MachineMemOperand::MOStore;
1766    Ptr = SI->getPointerOperand();
1767    ValTy = SI->getValueOperand()->getType();
1768  } else {
1769    return nullptr;
1770  }
1771
1772  bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr;
1773  bool IsInvariant = I->getMetadata("invariant.load") != nullptr;
1774  const MDNode *TBAAInfo = I->getMetadata(LLVMContext::MD_tbaa);
1775  const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
1776
1777  if (Alignment == 0)  // Ensure that codegen never sees alignment 0.
1778    Alignment = DL.getABITypeAlignment(ValTy);
1779
1780  unsigned Size = TM.getDataLayout()->getTypeStoreSize(ValTy);
1781
1782  if (IsVolatile)
1783    Flags |= MachineMemOperand::MOVolatile;
1784  if (IsNonTemporal)
1785    Flags |= MachineMemOperand::MONonTemporal;
1786  if (IsInvariant)
1787    Flags |= MachineMemOperand::MOInvariant;
1788
1789  return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
1790                                           Alignment, TBAAInfo, Ranges);
1791}
1792