LegalizeIntegerTypes.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements integer type expansion and promotion for LegalizeTypes.
11// Promotion is the act of changing a computation in an illegal type into a
12// computation in a larger type.  For example, implementing i8 arithmetic in an
13// i32 register (often needed on powerpc).
14// Expansion is the act of changing a computation in an illegal type into a
15// computation in two identical registers of a smaller type.  For example,
16// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17// targets).
18//
19//===----------------------------------------------------------------------===//
20
21#include "LegalizeTypes.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Integer Result Promotion
29//===----------------------------------------------------------------------===//
30
31/// PromoteIntegerResult - This method is called when a result of a node is
32/// found to be in need of promotion to a larger type.  At this point, the node
33/// may also have invalid operands or may have other results that need
34/// expansion, we just know that (at least) one result needs promotion.
35void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
36  DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
37  SDValue Res = SDValue();
38
39  // See if the target wants to custom expand this node.
40  if (CustomLowerNode(N, N->getValueType(ResNo), true))
41    return;
42
43  switch (N->getOpcode()) {
44  default:
45#ifndef NDEBUG
46    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
47    N->dump(&DAG); dbgs() << "\n";
48#endif
49    llvm_unreachable("Do not know how to promote this operator!");
50  case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
51  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
52  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
53  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
54  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
55  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
56  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
57  case ISD::CONVERT_RNDSAT:
58                         Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59  case ISD::CTLZ_ZERO_UNDEF:
60  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
61  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
62  case ISD::CTTZ_ZERO_UNDEF:
63  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
64  case ISD::EXTRACT_VECTOR_ELT:
65                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
66  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
67  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
68  case ISD::VSELECT:     Res = PromoteIntRes_VSELECT(N); break;
69  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
70  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
71  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
72  case ISD::SIGN_EXTEND_INREG:
73                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
74  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
75  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
76  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
77  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
78  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
79
80  case ISD::EXTRACT_SUBVECTOR:
81                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
82  case ISD::VECTOR_SHUFFLE:
83                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
84  case ISD::INSERT_VECTOR_ELT:
85                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
86  case ISD::BUILD_VECTOR:
87                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
88  case ISD::SCALAR_TO_VECTOR:
89                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
90  case ISD::CONCAT_VECTORS:
91                         Res = PromoteIntRes_CONCAT_VECTORS(N); break;
92
93  case ISD::SIGN_EXTEND:
94  case ISD::ZERO_EXTEND:
95  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
96
97  case ISD::FP_TO_SINT:
98  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
99
100  case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
101
102  case ISD::AND:
103  case ISD::OR:
104  case ISD::XOR:
105  case ISD::ADD:
106  case ISD::SUB:
107  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
108
109  case ISD::SDIV:
110  case ISD::SREM:        Res = PromoteIntRes_SDIV(N); break;
111
112  case ISD::UDIV:
113  case ISD::UREM:        Res = PromoteIntRes_UDIV(N); break;
114
115  case ISD::SADDO:
116  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
117  case ISD::UADDO:
118  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
119  case ISD::SMULO:
120  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
121
122  case ISD::ATOMIC_LOAD:
123    Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
124
125  case ISD::ATOMIC_LOAD_ADD:
126  case ISD::ATOMIC_LOAD_SUB:
127  case ISD::ATOMIC_LOAD_AND:
128  case ISD::ATOMIC_LOAD_OR:
129  case ISD::ATOMIC_LOAD_XOR:
130  case ISD::ATOMIC_LOAD_NAND:
131  case ISD::ATOMIC_LOAD_MIN:
132  case ISD::ATOMIC_LOAD_MAX:
133  case ISD::ATOMIC_LOAD_UMIN:
134  case ISD::ATOMIC_LOAD_UMAX:
135  case ISD::ATOMIC_SWAP:
136    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
137
138  case ISD::ATOMIC_CMP_SWAP:
139    Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
140  }
141
142  // If the result is null then the sub-method took care of registering it.
143  if (Res.getNode())
144    SetPromotedInteger(SDValue(N, ResNo), Res);
145}
146
147SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
148                                                     unsigned ResNo) {
149  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
150  return GetPromotedInteger(Op);
151}
152
153SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
154  // Sign-extend the new bits, and continue the assertion.
155  SDValue Op = SExtPromotedInteger(N->getOperand(0));
156  return DAG.getNode(ISD::AssertSext, SDLoc(N),
157                     Op.getValueType(), Op, N->getOperand(1));
158}
159
160SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
161  // Zero the new bits, and continue the assertion.
162  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
163  return DAG.getNode(ISD::AssertZext, SDLoc(N),
164                     Op.getValueType(), Op, N->getOperand(1));
165}
166
167SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
168  EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
169  SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
170                              N->getMemoryVT(), ResVT,
171                              N->getChain(), N->getBasePtr(),
172                              N->getMemOperand(), N->getOrdering(),
173                              N->getSynchScope());
174  // Legalized the chain result - switch anything that used the old chain to
175  // use the new one.
176  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
177  return Res;
178}
179
180SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
181  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
182  SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
183                              N->getMemoryVT(),
184                              N->getChain(), N->getBasePtr(),
185                              Op2, N->getMemOperand(), N->getOrdering(),
186                              N->getSynchScope());
187  // Legalized the chain result - switch anything that used the old chain to
188  // use the new one.
189  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
190  return Res;
191}
192
193SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
194  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
195  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
196  SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
197                              N->getChain(), N->getBasePtr(), Op2, Op3,
198                              N->getMemOperand(), N->getSuccessOrdering(),
199                              N->getFailureOrdering(), N->getSynchScope());
200  // Legalized the chain result - switch anything that used the old chain to
201  // use the new one.
202  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
203  return Res;
204}
205
206SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
207  SDValue InOp = N->getOperand(0);
208  EVT InVT = InOp.getValueType();
209  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
210  EVT OutVT = N->getValueType(0);
211  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
212  SDLoc dl(N);
213
214  switch (getTypeAction(InVT)) {
215  case TargetLowering::TypeLegal:
216    break;
217  case TargetLowering::TypePromoteInteger:
218    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
219      // The input promotes to the same size.  Convert the promoted value.
220      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
221    break;
222  case TargetLowering::TypeSoftenFloat:
223    // Promote the integer operand by hand.
224    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
225  case TargetLowering::TypeExpandInteger:
226  case TargetLowering::TypeExpandFloat:
227    break;
228  case TargetLowering::TypeScalarizeVector:
229    // Convert the element to an integer and promote it by hand.
230    if (!NOutVT.isVector())
231      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
232                         BitConvertToInteger(GetScalarizedVector(InOp)));
233    break;
234  case TargetLowering::TypeSplitVector: {
235    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
236    // pieces of the input into integers and reassemble in the final type.
237    SDValue Lo, Hi;
238    GetSplitVector(N->getOperand(0), Lo, Hi);
239    Lo = BitConvertToInteger(Lo);
240    Hi = BitConvertToInteger(Hi);
241
242    if (TLI.isBigEndian())
243      std::swap(Lo, Hi);
244
245    InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
246                       EVT::getIntegerVT(*DAG.getContext(),
247                                         NOutVT.getSizeInBits()),
248                       JoinIntegers(Lo, Hi));
249    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
250  }
251  case TargetLowering::TypeWidenVector:
252    // The input is widened to the same size. Convert to the widened value.
253    // Make sure that the outgoing value is not a vector, because this would
254    // make us bitcast between two vectors which are legalized in different ways.
255    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
256      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
257  }
258
259  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
260                     CreateStackStoreLoad(InOp, OutVT));
261}
262
263SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
264  SDValue Op = GetPromotedInteger(N->getOperand(0));
265  EVT OVT = N->getValueType(0);
266  EVT NVT = Op.getValueType();
267  SDLoc dl(N);
268
269  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
270  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
271                     DAG.getConstant(DiffBits, TLI.getPointerTy()));
272}
273
274SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
275  // The pair element type may be legal, or may not promote to the same type as
276  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
277  return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
278                     TLI.getTypeToTransformTo(*DAG.getContext(),
279                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
280                     N->getOperand(1)));
281}
282
283SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
284  EVT VT = N->getValueType(0);
285  // FIXME there is no actual debug info here
286  SDLoc dl(N);
287  // Zero extend things like i1, sign extend everything else.  It shouldn't
288  // matter in theory which one we pick, but this tends to give better code?
289  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
290  SDValue Result = DAG.getNode(Opc, dl,
291                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
292                               SDValue(N, 0));
293  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
294  return Result;
295}
296
297SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
298  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
299  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
300           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
301           CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
302          "can only promote integers");
303  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
304  return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0),
305                              N->getOperand(1), N->getOperand(2),
306                              N->getOperand(3), N->getOperand(4), CvtCode);
307}
308
309SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
310  // Zero extend to the promoted type and do the count there.
311  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
312  SDLoc dl(N);
313  EVT OVT = N->getValueType(0);
314  EVT NVT = Op.getValueType();
315  Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
316  // Subtract off the extra leading bits in the bigger type.
317  return DAG.getNode(ISD::SUB, dl, NVT, Op,
318                     DAG.getConstant(NVT.getSizeInBits() -
319                                     OVT.getSizeInBits(), NVT));
320}
321
322SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
323  // Zero extend to the promoted type and do the count there.
324  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
325  return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
326}
327
328SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
329  SDValue Op = GetPromotedInteger(N->getOperand(0));
330  EVT OVT = N->getValueType(0);
331  EVT NVT = Op.getValueType();
332  SDLoc dl(N);
333  if (N->getOpcode() == ISD::CTTZ) {
334    // The count is the same in the promoted type except if the original
335    // value was zero.  This can be handled by setting the bit just off
336    // the top of the original type.
337    APInt TopBit(NVT.getSizeInBits(), 0);
338    TopBit.setBit(OVT.getSizeInBits());
339    Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
340  }
341  return DAG.getNode(N->getOpcode(), dl, NVT, Op);
342}
343
344SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
345  SDLoc dl(N);
346  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
347  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
348                     N->getOperand(1));
349}
350
351SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
352  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
353  unsigned NewOpc = N->getOpcode();
354  SDLoc dl(N);
355
356  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
357  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
358  // and SINT conversions are Custom, there is no way to tell which is
359  // preferable. We choose SINT because that's the right thing on PPC.)
360  if (N->getOpcode() == ISD::FP_TO_UINT &&
361      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
362      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
363    NewOpc = ISD::FP_TO_SINT;
364
365  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
366
367  // Assert that the converted value fits in the original type.  If it doesn't
368  // (eg: because the value being converted is too big), then the result of the
369  // original operation was undefined anyway, so the assert is still correct.
370  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
371                     ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
372                     DAG.getValueType(N->getValueType(0).getScalarType()));
373}
374
375SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
376  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
377  SDLoc dl(N);
378
379  SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
380
381  return DAG.getNode(ISD::AssertZext, dl,
382                     NVT, Res, DAG.getValueType(N->getValueType(0)));
383}
384
385SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
386  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
387  SDLoc dl(N);
388
389  if (getTypeAction(N->getOperand(0).getValueType())
390      == TargetLowering::TypePromoteInteger) {
391    SDValue Res = GetPromotedInteger(N->getOperand(0));
392    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
393
394    // If the result and operand types are the same after promotion, simplify
395    // to an in-register extension.
396    if (NVT == Res.getValueType()) {
397      // The high bits are not guaranteed to be anything.  Insert an extend.
398      if (N->getOpcode() == ISD::SIGN_EXTEND)
399        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
400                           DAG.getValueType(N->getOperand(0).getValueType()));
401      if (N->getOpcode() == ISD::ZERO_EXTEND)
402        return DAG.getZeroExtendInReg(Res, dl,
403                      N->getOperand(0).getValueType().getScalarType());
404      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
405      return Res;
406    }
407  }
408
409  // Otherwise, just extend the original operand all the way to the larger type.
410  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
411}
412
413SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
414  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
415  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
416  ISD::LoadExtType ExtType =
417    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
418  SDLoc dl(N);
419  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
420                               N->getMemoryVT(), N->getMemOperand());
421
422  // Legalized the chain result - switch anything that used the old chain to
423  // use the new one.
424  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
425  return Res;
426}
427
428/// Promote the overflow flag of an overflowing arithmetic node.
429SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
430  // Simply change the return type of the boolean result.
431  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
432  EVT ValueVTs[] = { N->getValueType(0), NVT };
433  SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
434  SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N),
435                            DAG.getVTList(ValueVTs, 2), Ops, 2);
436
437  // Modified the sum result - switch anything that used the old sum to use
438  // the new one.
439  ReplaceValueWith(SDValue(N, 0), Res);
440
441  return SDValue(Res.getNode(), 1);
442}
443
444SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
445  if (ResNo == 1)
446    return PromoteIntRes_Overflow(N);
447
448  // The operation overflowed iff the result in the larger type is not the
449  // sign extension of its truncation to the original type.
450  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
451  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
452  EVT OVT = N->getOperand(0).getValueType();
453  EVT NVT = LHS.getValueType();
454  SDLoc dl(N);
455
456  // Do the arithmetic in the larger type.
457  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
458  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
459
460  // Calculate the overflow flag: sign extend the arithmetic result from
461  // the original type.
462  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
463                            DAG.getValueType(OVT));
464  // Overflowed if and only if this is not equal to Res.
465  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
466
467  // Use the calculated overflow everywhere.
468  ReplaceValueWith(SDValue(N, 1), Ofl);
469
470  return Res;
471}
472
473SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
474  // Sign extend the input.
475  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
476  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
477  return DAG.getNode(N->getOpcode(), SDLoc(N),
478                     LHS.getValueType(), LHS, RHS);
479}
480
481SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
482  SDValue LHS = GetPromotedInteger(N->getOperand(1));
483  SDValue RHS = GetPromotedInteger(N->getOperand(2));
484  return DAG.getSelect(SDLoc(N),
485                       LHS.getValueType(), N->getOperand(0), LHS, RHS);
486}
487
488SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
489  SDValue Mask = N->getOperand(0);
490  EVT OpTy = N->getOperand(1).getValueType();
491
492  // Promote all the way up to the canonical SetCC type.
493  Mask = PromoteTargetBoolean(Mask, getSetCCResultType(OpTy));
494  SDValue LHS = GetPromotedInteger(N->getOperand(1));
495  SDValue RHS = GetPromotedInteger(N->getOperand(2));
496  return DAG.getNode(ISD::VSELECT, SDLoc(N),
497                     LHS.getValueType(), Mask, LHS, RHS);
498}
499
500SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
501  SDValue LHS = GetPromotedInteger(N->getOperand(2));
502  SDValue RHS = GetPromotedInteger(N->getOperand(3));
503  return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
504                     LHS.getValueType(), N->getOperand(0),
505                     N->getOperand(1), LHS, RHS, N->getOperand(4));
506}
507
508SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
509  EVT SVT = getSetCCResultType(N->getOperand(0).getValueType());
510
511  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
512
513  // Only use the result of getSetCCResultType if it is legal,
514  // otherwise just use the promoted result type (NVT).
515  if (!TLI.isTypeLegal(SVT))
516    SVT = NVT;
517
518  SDLoc dl(N);
519  assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
520         "Vector compare must return a vector result!");
521
522  SDValue LHS = N->getOperand(0);
523  SDValue RHS = N->getOperand(1);
524  if (LHS.getValueType() != RHS.getValueType()) {
525    if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger &&
526        !LHS.getValueType().isVector())
527      LHS = GetPromotedInteger(LHS);
528    if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger &&
529        !RHS.getValueType().isVector())
530      RHS = GetPromotedInteger(RHS);
531  }
532
533  // Get the SETCC result using the canonical SETCC type.
534  SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, LHS, RHS,
535                              N->getOperand(2));
536
537  assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
538  // Convert to the expected type.
539  return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
540}
541
542SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
543  SDValue Res = GetPromotedInteger(N->getOperand(0));
544  SDValue Amt = N->getOperand(1);
545  Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
546  return DAG.getNode(ISD::SHL, SDLoc(N), Res.getValueType(), Res, Amt);
547}
548
549SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
550  SDValue Op = GetPromotedInteger(N->getOperand(0));
551  return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
552                     Op.getValueType(), Op, N->getOperand(1));
553}
554
555SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
556  // The input may have strange things in the top bits of the registers, but
557  // these operations don't care.  They may have weird bits going out, but
558  // that too is okay if they are integer operations.
559  SDValue LHS = GetPromotedInteger(N->getOperand(0));
560  SDValue RHS = GetPromotedInteger(N->getOperand(1));
561  return DAG.getNode(N->getOpcode(), SDLoc(N),
562                     LHS.getValueType(), LHS, RHS);
563}
564
565SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
566  // The input value must be properly sign extended.
567  SDValue Res = SExtPromotedInteger(N->getOperand(0));
568  SDValue Amt = N->getOperand(1);
569  Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
570  return DAG.getNode(ISD::SRA, SDLoc(N), Res.getValueType(), Res, Amt);
571}
572
573SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
574  // The input value must be properly zero extended.
575  SDValue Res = ZExtPromotedInteger(N->getOperand(0));
576  SDValue Amt = N->getOperand(1);
577  Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
578  return DAG.getNode(ISD::SRL, SDLoc(N), Res.getValueType(), Res, Amt);
579}
580
581SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
582  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
583  SDValue Res;
584  SDValue InOp = N->getOperand(0);
585  SDLoc dl(N);
586
587  switch (getTypeAction(InOp.getValueType())) {
588  default: llvm_unreachable("Unknown type action!");
589  case TargetLowering::TypeLegal:
590  case TargetLowering::TypeExpandInteger:
591    Res = InOp;
592    break;
593  case TargetLowering::TypePromoteInteger:
594    Res = GetPromotedInteger(InOp);
595    break;
596  case TargetLowering::TypeSplitVector:
597    EVT InVT = InOp.getValueType();
598    assert(InVT.isVector() && "Cannot split scalar types");
599    unsigned NumElts = InVT.getVectorNumElements();
600    assert(NumElts == NVT.getVectorNumElements() &&
601           "Dst and Src must have the same number of elements");
602    assert(isPowerOf2_32(NumElts) &&
603           "Promoted vector type must be a power of two");
604
605    SDValue EOp1, EOp2;
606    GetSplitVector(InOp, EOp1, EOp2);
607
608    EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
609                                   NumElts/2);
610    EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
611    EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
612
613    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
614  }
615
616  // Truncate to NVT instead of VT
617  return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
618}
619
620SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
621  if (ResNo == 1)
622    return PromoteIntRes_Overflow(N);
623
624  // The operation overflowed iff the result in the larger type is not the
625  // zero extension of its truncation to the original type.
626  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
627  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
628  EVT OVT = N->getOperand(0).getValueType();
629  EVT NVT = LHS.getValueType();
630  SDLoc dl(N);
631
632  // Do the arithmetic in the larger type.
633  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
634  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
635
636  // Calculate the overflow flag: zero extend the arithmetic result from
637  // the original type.
638  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
639  // Overflowed if and only if this is not equal to Res.
640  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
641
642  // Use the calculated overflow everywhere.
643  ReplaceValueWith(SDValue(N, 1), Ofl);
644
645  return Res;
646}
647
648SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
649  // Promote the overflow bit trivially.
650  if (ResNo == 1)
651    return PromoteIntRes_Overflow(N);
652
653  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
654  SDLoc DL(N);
655  EVT SmallVT = LHS.getValueType();
656
657  // To determine if the result overflowed in a larger type, we extend the
658  // input to the larger type, do the multiply (checking if it overflows),
659  // then also check the high bits of the result to see if overflow happened
660  // there.
661  if (N->getOpcode() == ISD::SMULO) {
662    LHS = SExtPromotedInteger(LHS);
663    RHS = SExtPromotedInteger(RHS);
664  } else {
665    LHS = ZExtPromotedInteger(LHS);
666    RHS = ZExtPromotedInteger(RHS);
667  }
668  SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
669  SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
670
671  // Overflow occurred if it occurred in the larger type, or if the high part
672  // of the result does not zero/sign-extend the low part.  Check this second
673  // possibility first.
674  SDValue Overflow;
675  if (N->getOpcode() == ISD::UMULO) {
676    // Unsigned overflow occurred if the high part is non-zero.
677    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
678                             DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
679    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
680                            DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
681  } else {
682    // Signed overflow occurred if the high part does not sign extend the low.
683    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
684                               Mul, DAG.getValueType(SmallVT));
685    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
686  }
687
688  // The only other way for overflow to occur is if the multiplication in the
689  // larger type itself overflowed.
690  Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
691                         SDValue(Mul.getNode(), 1));
692
693  // Use the calculated overflow everywhere.
694  ReplaceValueWith(SDValue(N, 1), Overflow);
695  return Mul;
696}
697
698SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
699  // Zero extend the input.
700  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
701  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
702  return DAG.getNode(N->getOpcode(), SDLoc(N),
703                     LHS.getValueType(), LHS, RHS);
704}
705
706SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
707  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
708                                               N->getValueType(0)));
709}
710
711SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
712  SDValue Chain = N->getOperand(0); // Get the chain.
713  SDValue Ptr = N->getOperand(1); // Get the pointer.
714  EVT VT = N->getValueType(0);
715  SDLoc dl(N);
716
717  MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
718  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
719  // The argument is passed as NumRegs registers of type RegVT.
720
721  SmallVector<SDValue, 8> Parts(NumRegs);
722  for (unsigned i = 0; i < NumRegs; ++i) {
723    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
724                            N->getConstantOperandVal(3));
725    Chain = Parts[i].getValue(1);
726  }
727
728  // Handle endianness of the load.
729  if (TLI.isBigEndian())
730    std::reverse(Parts.begin(), Parts.end());
731
732  // Assemble the parts in the promoted type.
733  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
734  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
735  for (unsigned i = 1; i < NumRegs; ++i) {
736    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
737    // Shift it to the right position and "or" it in.
738    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
739                       DAG.getConstant(i * RegVT.getSizeInBits(),
740                                       TLI.getPointerTy()));
741    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
742  }
743
744  // Modified the chain result - switch anything that used the old chain to
745  // use the new one.
746  ReplaceValueWith(SDValue(N, 1), Chain);
747
748  return Res;
749}
750
751//===----------------------------------------------------------------------===//
752//  Integer Operand Promotion
753//===----------------------------------------------------------------------===//
754
755/// PromoteIntegerOperand - This method is called when the specified operand of
756/// the specified node is found to need promotion.  At this point, all of the
757/// result types of the node are known to be legal, but other operands of the
758/// node may need promotion or expansion as well as the specified one.
759bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
760  DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
761  SDValue Res = SDValue();
762
763  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
764    return false;
765
766  switch (N->getOpcode()) {
767    default:
768  #ifndef NDEBUG
769    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
770    N->dump(&DAG); dbgs() << "\n";
771  #endif
772    llvm_unreachable("Do not know how to promote this operator's operand!");
773
774  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
775  case ISD::ATOMIC_STORE:
776    Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
777    break;
778  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
779  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
780  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
781  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
782  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
783  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
784  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
785  case ISD::CONVERT_RNDSAT:
786                          Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
787  case ISD::INSERT_VECTOR_ELT:
788                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
789  case ISD::SCALAR_TO_VECTOR:
790                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
791  case ISD::VSELECT:
792  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
793  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
794  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
795  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
796  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
797  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
798                                                   OpNo); break;
799  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
800  case ISD::FP16_TO_FP32:
801  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
802  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
803
804  case ISD::SHL:
805  case ISD::SRA:
806  case ISD::SRL:
807  case ISD::ROTL:
808  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
809  }
810
811  // If the result is null, the sub-method took care of registering results etc.
812  if (!Res.getNode()) return false;
813
814  // If the result is N, the sub-method updated N in place.  Tell the legalizer
815  // core about this.
816  if (Res.getNode() == N)
817    return true;
818
819  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
820         "Invalid operand expansion");
821
822  ReplaceValueWith(SDValue(N, 0), Res);
823  return false;
824}
825
826/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
827/// shared among BR_CC, SELECT_CC, and SETCC handlers.
828void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
829                                            ISD::CondCode CCCode) {
830  // We have to insert explicit sign or zero extends.  Note that we could
831  // insert sign extends for ALL conditions, but zero extend is cheaper on
832  // many machines (an AND instead of two shifts), so prefer it.
833  switch (CCCode) {
834  default: llvm_unreachable("Unknown integer comparison!");
835  case ISD::SETEQ:
836  case ISD::SETNE:
837  case ISD::SETUGE:
838  case ISD::SETUGT:
839  case ISD::SETULE:
840  case ISD::SETULT:
841    // ALL of these operations will work if we either sign or zero extend
842    // the operands (including the unsigned comparisons!).  Zero extend is
843    // usually a simpler/cheaper operation, so prefer it.
844    NewLHS = ZExtPromotedInteger(NewLHS);
845    NewRHS = ZExtPromotedInteger(NewRHS);
846    break;
847  case ISD::SETGE:
848  case ISD::SETGT:
849  case ISD::SETLT:
850  case ISD::SETLE:
851    NewLHS = SExtPromotedInteger(NewLHS);
852    NewRHS = SExtPromotedInteger(NewRHS);
853    break;
854  }
855}
856
857SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
858  SDValue Op = GetPromotedInteger(N->getOperand(0));
859  return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
860}
861
862SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
863  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
864  return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
865                       N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
866                       N->getOrdering(), N->getSynchScope());
867}
868
869SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
870  // This should only occur in unusual situations like bitcasting to an
871  // x86_fp80, so just turn it into a store+load
872  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
873}
874
875SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
876  assert(OpNo == 2 && "Don't know how to promote this operand!");
877
878  SDValue LHS = N->getOperand(2);
879  SDValue RHS = N->getOperand(3);
880  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
881
882  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
883  // legal types.
884  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
885                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
886                 0);
887}
888
889SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
890  assert(OpNo == 1 && "only know how to promote condition");
891
892  // Promote all the way up to the canonical SetCC type.
893  EVT SVT = getSetCCResultType(MVT::Other);
894  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
895
896  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
897  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
898                                        N->getOperand(2)), 0);
899}
900
901SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
902  // Since the result type is legal, the operands must promote to it.
903  EVT OVT = N->getOperand(0).getValueType();
904  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
905  SDValue Hi = GetPromotedInteger(N->getOperand(1));
906  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
907  SDLoc dl(N);
908
909  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
910                   DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
911  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
912}
913
914SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
915  // The vector type is legal but the element type is not.  This implies
916  // that the vector is a power-of-two in length and that the element
917  // type does not have a strange size (eg: it is not i1).
918  EVT VecVT = N->getValueType(0);
919  unsigned NumElts = VecVT.getVectorNumElements();
920  assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
921		 "Legal vector of one illegal element?");
922
923  // Promote the inserted value.  The type does not need to match the
924  // vector element type.  Check that any extra bits introduced will be
925  // truncated away.
926  assert(N->getOperand(0).getValueType().getSizeInBits() >=
927         N->getValueType(0).getVectorElementType().getSizeInBits() &&
928         "Type of inserted value narrower than vector element type!");
929
930  SmallVector<SDValue, 16> NewOps;
931  for (unsigned i = 0; i < NumElts; ++i)
932    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
933
934  return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
935}
936
937SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
938  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
939  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
940           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
941           CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
942           "can only promote integer arguments");
943  SDValue InOp = GetPromotedInteger(N->getOperand(0));
944  return DAG.getConvertRndSat(N->getValueType(0), SDLoc(N), InOp,
945                              N->getOperand(1), N->getOperand(2),
946                              N->getOperand(3), N->getOperand(4), CvtCode);
947}
948
949SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
950                                                         unsigned OpNo) {
951  if (OpNo == 1) {
952    // Promote the inserted value.  This is valid because the type does not
953    // have to match the vector element type.
954
955    // Check that any extra bits introduced will be truncated away.
956    assert(N->getOperand(1).getValueType().getSizeInBits() >=
957           N->getValueType(0).getVectorElementType().getSizeInBits() &&
958           "Type of inserted value narrower than vector element type!");
959    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
960                                  GetPromotedInteger(N->getOperand(1)),
961                                  N->getOperand(2)),
962                   0);
963  }
964
965  assert(OpNo == 2 && "Different operand and result vector types?");
966
967  // Promote the index.
968  SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N),
969                                   TLI.getVectorIdxTy());
970  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
971                                N->getOperand(1), Idx), 0);
972}
973
974SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
975  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
976  // the operand in place.
977  return SDValue(DAG.UpdateNodeOperands(N,
978                                GetPromotedInteger(N->getOperand(0))), 0);
979}
980
981SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
982  assert(OpNo == 0 && "Only know how to promote the condition!");
983  SDValue Cond = N->getOperand(0);
984  EVT OpTy = N->getOperand(1).getValueType();
985
986  // Promote all the way up to the canonical SetCC type.
987  EVT SVT = getSetCCResultType(N->getOpcode() == ISD::SELECT ?
988                                   OpTy.getScalarType() : OpTy);
989  Cond = PromoteTargetBoolean(Cond, SVT);
990
991  return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
992                                        N->getOperand(2)), 0);
993}
994
995SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
996  assert(OpNo == 0 && "Don't know how to promote this operand!");
997
998  SDValue LHS = N->getOperand(0);
999  SDValue RHS = N->getOperand(1);
1000  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
1001
1002  // The CC (#4) and the possible return values (#2 and #3) have legal types.
1003  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
1004                                N->getOperand(3), N->getOperand(4)), 0);
1005}
1006
1007SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1008  assert(OpNo == 0 && "Don't know how to promote this operand!");
1009
1010  SDValue LHS = N->getOperand(0);
1011  SDValue RHS = N->getOperand(1);
1012  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1013
1014  // The CC (#2) is always legal.
1015  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1016}
1017
1018SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1019  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1020                                ZExtPromotedInteger(N->getOperand(1))), 0);
1021}
1022
1023SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1024  SDValue Op = GetPromotedInteger(N->getOperand(0));
1025  SDLoc dl(N);
1026  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1027  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1028                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1029}
1030
1031SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1032  return SDValue(DAG.UpdateNodeOperands(N,
1033                                SExtPromotedInteger(N->getOperand(0))), 0);
1034}
1035
1036SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1037  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1038  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1039  SDLoc dl(N);
1040
1041  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
1042
1043  // Truncate the value and store the result.
1044  return DAG.getTruncStore(Ch, dl, Val, Ptr,
1045                           N->getMemoryVT(), N->getMemOperand());
1046}
1047
1048SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1049  SDValue Op = GetPromotedInteger(N->getOperand(0));
1050  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
1051}
1052
1053SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1054  return SDValue(DAG.UpdateNodeOperands(N,
1055                                ZExtPromotedInteger(N->getOperand(0))), 0);
1056}
1057
1058SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1059  SDLoc dl(N);
1060  SDValue Op = GetPromotedInteger(N->getOperand(0));
1061  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1062  return DAG.getZeroExtendInReg(Op, dl,
1063                                N->getOperand(0).getValueType().getScalarType());
1064}
1065
1066
1067//===----------------------------------------------------------------------===//
1068//  Integer Result Expansion
1069//===----------------------------------------------------------------------===//
1070
1071/// ExpandIntegerResult - This method is called when the specified result of the
1072/// specified node is found to need expansion.  At this point, the node may also
1073/// have invalid operands or may have other results that need promotion, we just
1074/// know that (at least) one result needs expansion.
1075void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1076  DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1077  SDValue Lo, Hi;
1078  Lo = Hi = SDValue();
1079
1080  // See if the target wants to custom expand this node.
1081  if (CustomLowerNode(N, N->getValueType(ResNo), true))
1082    return;
1083
1084  switch (N->getOpcode()) {
1085  default:
1086#ifndef NDEBUG
1087    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1088    N->dump(&DAG); dbgs() << "\n";
1089#endif
1090    llvm_unreachable("Do not know how to expand the result of this operator!");
1091
1092  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1093  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1094  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1095  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1096
1097  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1098  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1099  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1100  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1101  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1102
1103  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1104  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1105  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1106  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1107  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1108  case ISD::CTLZ_ZERO_UNDEF:
1109  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1110  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1111  case ISD::CTTZ_ZERO_UNDEF:
1112  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1113  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1114  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1115  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1116  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1117  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1118  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1119  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1120  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1121  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1122  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1123  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1124  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1125  case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1126
1127  case ISD::ATOMIC_LOAD_ADD:
1128  case ISD::ATOMIC_LOAD_SUB:
1129  case ISD::ATOMIC_LOAD_AND:
1130  case ISD::ATOMIC_LOAD_OR:
1131  case ISD::ATOMIC_LOAD_XOR:
1132  case ISD::ATOMIC_LOAD_NAND:
1133  case ISD::ATOMIC_LOAD_MIN:
1134  case ISD::ATOMIC_LOAD_MAX:
1135  case ISD::ATOMIC_LOAD_UMIN:
1136  case ISD::ATOMIC_LOAD_UMAX:
1137  case ISD::ATOMIC_SWAP:
1138  case ISD::ATOMIC_CMP_SWAP: {
1139    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1140    SplitInteger(Tmp.first, Lo, Hi);
1141    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1142    break;
1143  }
1144
1145  case ISD::AND:
1146  case ISD::OR:
1147  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1148
1149  case ISD::ADD:
1150  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1151
1152  case ISD::ADDC:
1153  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1154
1155  case ISD::ADDE:
1156  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1157
1158  case ISD::SHL:
1159  case ISD::SRA:
1160  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1161
1162  case ISD::SADDO:
1163  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1164  case ISD::UADDO:
1165  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1166  case ISD::UMULO:
1167  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1168  }
1169
1170  // If Lo/Hi is null, the sub-method took care of registering results etc.
1171  if (Lo.getNode())
1172    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1173}
1174
1175/// Lower an atomic node to the appropriate builtin call.
1176std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1177  unsigned Opc = Node->getOpcode();
1178  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1179  RTLIB::Libcall LC;
1180
1181  switch (Opc) {
1182  default:
1183    llvm_unreachable("Unhandled atomic intrinsic Expand!");
1184  case ISD::ATOMIC_SWAP:
1185    switch (VT.SimpleTy) {
1186    default: llvm_unreachable("Unexpected value type for atomic!");
1187    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1188    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1189    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1190    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1191    case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
1192    }
1193    break;
1194  case ISD::ATOMIC_CMP_SWAP:
1195    switch (VT.SimpleTy) {
1196    default: llvm_unreachable("Unexpected value type for atomic!");
1197    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1198    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1199    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1200    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1201    case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
1202    }
1203    break;
1204  case ISD::ATOMIC_LOAD_ADD:
1205    switch (VT.SimpleTy) {
1206    default: llvm_unreachable("Unexpected value type for atomic!");
1207    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1208    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1209    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1210    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1211    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
1212    }
1213    break;
1214  case ISD::ATOMIC_LOAD_SUB:
1215    switch (VT.SimpleTy) {
1216    default: llvm_unreachable("Unexpected value type for atomic!");
1217    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1218    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1219    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1220    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1221    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
1222    }
1223    break;
1224  case ISD::ATOMIC_LOAD_AND:
1225    switch (VT.SimpleTy) {
1226    default: llvm_unreachable("Unexpected value type for atomic!");
1227    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1228    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1229    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1230    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1231    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
1232    }
1233    break;
1234  case ISD::ATOMIC_LOAD_OR:
1235    switch (VT.SimpleTy) {
1236    default: llvm_unreachable("Unexpected value type for atomic!");
1237    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1238    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1239    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1240    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1241    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
1242    }
1243    break;
1244  case ISD::ATOMIC_LOAD_XOR:
1245    switch (VT.SimpleTy) {
1246    default: llvm_unreachable("Unexpected value type for atomic!");
1247    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1248    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1249    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1250    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1251    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
1252    }
1253    break;
1254  case ISD::ATOMIC_LOAD_NAND:
1255    switch (VT.SimpleTy) {
1256    default: llvm_unreachable("Unexpected value type for atomic!");
1257    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1258    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1259    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1260    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1261    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
1262    }
1263    break;
1264  }
1265
1266  return ExpandChainLibCall(LC, Node, false);
1267}
1268
1269/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1270/// and the shift amount is a constant 'Amt'.  Expand the operation.
1271void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1272                                             SDValue &Lo, SDValue &Hi) {
1273  SDLoc DL(N);
1274  // Expand the incoming operand to be shifted, so that we have its parts
1275  SDValue InL, InH;
1276  GetExpandedInteger(N->getOperand(0), InL, InH);
1277
1278  EVT NVT = InL.getValueType();
1279  unsigned VTBits = N->getValueType(0).getSizeInBits();
1280  unsigned NVTBits = NVT.getSizeInBits();
1281  EVT ShTy = N->getOperand(1).getValueType();
1282
1283  if (N->getOpcode() == ISD::SHL) {
1284    if (Amt > VTBits) {
1285      Lo = Hi = DAG.getConstant(0, NVT);
1286    } else if (Amt > NVTBits) {
1287      Lo = DAG.getConstant(0, NVT);
1288      Hi = DAG.getNode(ISD::SHL, DL,
1289                       NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1290    } else if (Amt == NVTBits) {
1291      Lo = DAG.getConstant(0, NVT);
1292      Hi = InL;
1293    } else if (Amt == 1 &&
1294               TLI.isOperationLegalOrCustom(ISD::ADDC,
1295                              TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1296      // Emit this X << 1 as X+X.
1297      SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1298      SDValue LoOps[2] = { InL, InL };
1299      Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1300      SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1301      Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1302    } else {
1303      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1304      Hi = DAG.getNode(ISD::OR, DL, NVT,
1305                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1306                                   DAG.getConstant(Amt, ShTy)),
1307                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1308                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1309    }
1310    return;
1311  }
1312
1313  if (N->getOpcode() == ISD::SRL) {
1314    if (Amt > VTBits) {
1315      Lo = DAG.getConstant(0, NVT);
1316      Hi = DAG.getConstant(0, NVT);
1317    } else if (Amt > NVTBits) {
1318      Lo = DAG.getNode(ISD::SRL, DL,
1319                       NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1320      Hi = DAG.getConstant(0, NVT);
1321    } else if (Amt == NVTBits) {
1322      Lo = InH;
1323      Hi = DAG.getConstant(0, NVT);
1324    } else {
1325      Lo = DAG.getNode(ISD::OR, DL, NVT,
1326                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1327                                   DAG.getConstant(Amt, ShTy)),
1328                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1329                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1330      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1331    }
1332    return;
1333  }
1334
1335  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1336  if (Amt > VTBits) {
1337    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1338                          DAG.getConstant(NVTBits-1, ShTy));
1339  } else if (Amt > NVTBits) {
1340    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1341                     DAG.getConstant(Amt-NVTBits, ShTy));
1342    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1343                     DAG.getConstant(NVTBits-1, ShTy));
1344  } else if (Amt == NVTBits) {
1345    Lo = InH;
1346    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1347                     DAG.getConstant(NVTBits-1, ShTy));
1348  } else {
1349    Lo = DAG.getNode(ISD::OR, DL, NVT,
1350                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1351                                 DAG.getConstant(Amt, ShTy)),
1352                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1353                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1354    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1355  }
1356}
1357
1358/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1359/// this shift based on knowledge of the high bit of the shift amount.  If we
1360/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1361/// shift amount.
1362bool DAGTypeLegalizer::
1363ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1364  SDValue Amt = N->getOperand(1);
1365  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1366  EVT ShTy = Amt.getValueType();
1367  unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1368  unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1369  assert(isPowerOf2_32(NVTBits) &&
1370         "Expanded integer type size not a power of two!");
1371  SDLoc dl(N);
1372
1373  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1374  APInt KnownZero, KnownOne;
1375  DAG.ComputeMaskedBits(N->getOperand(1), KnownZero, KnownOne);
1376
1377  // If we don't know anything about the high bits, exit.
1378  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1379    return false;
1380
1381  // Get the incoming operand to be shifted.
1382  SDValue InL, InH;
1383  GetExpandedInteger(N->getOperand(0), InL, InH);
1384
1385  // If we know that any of the high bits of the shift amount are one, then we
1386  // can do this as a couple of simple shifts.
1387  if (KnownOne.intersects(HighBitMask)) {
1388    // Mask out the high bit, which we know is set.
1389    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1390                      DAG.getConstant(~HighBitMask, ShTy));
1391
1392    switch (N->getOpcode()) {
1393    default: llvm_unreachable("Unknown shift");
1394    case ISD::SHL:
1395      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1396      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1397      return true;
1398    case ISD::SRL:
1399      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1400      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1401      return true;
1402    case ISD::SRA:
1403      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1404                       DAG.getConstant(NVTBits-1, ShTy));
1405      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1406      return true;
1407    }
1408  }
1409
1410  // If we know that all of the high bits of the shift amount are zero, then we
1411  // can do this as a couple of simple shifts.
1412  if ((KnownZero & HighBitMask) == HighBitMask) {
1413    // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
1414    // shift if x is zero.  We can use XOR here because x is known to be smaller
1415    // than 32.
1416    SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
1417                               DAG.getConstant(NVTBits-1, ShTy));
1418
1419    unsigned Op1, Op2;
1420    switch (N->getOpcode()) {
1421    default: llvm_unreachable("Unknown shift");
1422    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1423    case ISD::SRL:
1424    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1425    }
1426
1427    // When shifting right the arithmetic for Lo and Hi is swapped.
1428    if (N->getOpcode() != ISD::SHL)
1429      std::swap(InL, InH);
1430
1431    // Use a little trick to get the bits that move from Lo to Hi. First
1432    // shift by one bit.
1433    SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, ShTy));
1434    // Then compute the remaining shift with amount-1.
1435    SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
1436
1437    Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
1438    Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
1439
1440    if (N->getOpcode() != ISD::SHL)
1441      std::swap(Hi, Lo);
1442    return true;
1443  }
1444
1445  return false;
1446}
1447
1448/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1449/// of any size.
1450bool DAGTypeLegalizer::
1451ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1452  SDValue Amt = N->getOperand(1);
1453  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1454  EVT ShTy = Amt.getValueType();
1455  unsigned NVTBits = NVT.getSizeInBits();
1456  assert(isPowerOf2_32(NVTBits) &&
1457         "Expanded integer type size not a power of two!");
1458  SDLoc dl(N);
1459
1460  // Get the incoming operand to be shifted.
1461  SDValue InL, InH;
1462  GetExpandedInteger(N->getOperand(0), InL, InH);
1463
1464  SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1465  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1466  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1467  SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy),
1468                                 Amt, NVBitsNode, ISD::SETULT);
1469
1470  SDValue LoS, HiS, LoL, HiL;
1471  switch (N->getOpcode()) {
1472  default: llvm_unreachable("Unknown shift");
1473  case ISD::SHL:
1474    // Short: ShAmt < NVTBits
1475    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1476    HiS = DAG.getNode(ISD::OR, dl, NVT,
1477                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1478    // FIXME: If Amt is zero, the following shift generates an undefined result
1479    // on some architectures.
1480                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1481
1482    // Long: ShAmt >= NVTBits
1483    LoL = DAG.getConstant(0, NVT);                        // Lo part is zero.
1484    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1485
1486    Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1487    Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1488    return true;
1489  case ISD::SRL:
1490    // Short: ShAmt < NVTBits
1491    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1492    LoS = DAG.getNode(ISD::OR, dl, NVT,
1493                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1494    // FIXME: If Amt is zero, the following shift generates an undefined result
1495    // on some architectures.
1496                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1497
1498    // Long: ShAmt >= NVTBits
1499    HiL = DAG.getConstant(0, NVT);                        // Hi part is zero.
1500    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1501
1502    Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1503    Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1504    return true;
1505  case ISD::SRA:
1506    // Short: ShAmt < NVTBits
1507    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1508    LoS = DAG.getNode(ISD::OR, dl, NVT,
1509                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1510    // FIXME: If Amt is zero, the following shift generates an undefined result
1511    // on some architectures.
1512                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1513
1514    // Long: ShAmt >= NVTBits
1515    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1516                      DAG.getConstant(NVTBits-1, ShTy));
1517    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1518
1519    Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1520    Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1521    return true;
1522  }
1523}
1524
1525void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1526                                           SDValue &Lo, SDValue &Hi) {
1527  SDLoc dl(N);
1528  // Expand the subcomponents.
1529  SDValue LHSL, LHSH, RHSL, RHSH;
1530  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1531  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1532
1533  EVT NVT = LHSL.getValueType();
1534  SDValue LoOps[2] = { LHSL, RHSL };
1535  SDValue HiOps[3] = { LHSH, RHSH };
1536
1537  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1538  // them.  TODO: Teach operation legalization how to expand unsupported
1539  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
1540  // a carry of type MVT::Glue, but there doesn't seem to be any way to
1541  // generate a value of this type in the expanded code sequence.
1542  bool hasCarry =
1543    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1544                                   ISD::ADDC : ISD::SUBC,
1545                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1546
1547  if (hasCarry) {
1548    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1549    if (N->getOpcode() == ISD::ADD) {
1550      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1551      HiOps[2] = Lo.getValue(1);
1552      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1553    } else {
1554      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1555      HiOps[2] = Lo.getValue(1);
1556      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1557    }
1558    return;
1559  }
1560
1561  if (N->getOpcode() == ISD::ADD) {
1562    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1563    Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1564    SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0],
1565                                ISD::SETULT);
1566    SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1,
1567                                   DAG.getConstant(1, NVT),
1568                                   DAG.getConstant(0, NVT));
1569    SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1],
1570                                ISD::SETULT);
1571    SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2,
1572                                   DAG.getConstant(1, NVT), Carry1);
1573    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1574  } else {
1575    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1576    Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1577    SDValue Cmp =
1578      DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()),
1579                   LoOps[0], LoOps[1], ISD::SETULT);
1580    SDValue Borrow = DAG.getSelect(dl, NVT, Cmp,
1581                                   DAG.getConstant(1, NVT),
1582                                   DAG.getConstant(0, NVT));
1583    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1584  }
1585}
1586
1587void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1588                                            SDValue &Lo, SDValue &Hi) {
1589  // Expand the subcomponents.
1590  SDValue LHSL, LHSH, RHSL, RHSH;
1591  SDLoc dl(N);
1592  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1593  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1594  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1595  SDValue LoOps[2] = { LHSL, RHSL };
1596  SDValue HiOps[3] = { LHSH, RHSH };
1597
1598  if (N->getOpcode() == ISD::ADDC) {
1599    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1600    HiOps[2] = Lo.getValue(1);
1601    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1602  } else {
1603    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1604    HiOps[2] = Lo.getValue(1);
1605    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1606  }
1607
1608  // Legalized the flag result - switch anything that used the old flag to
1609  // use the new one.
1610  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1611}
1612
1613void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1614                                            SDValue &Lo, SDValue &Hi) {
1615  // Expand the subcomponents.
1616  SDValue LHSL, LHSH, RHSL, RHSH;
1617  SDLoc dl(N);
1618  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1619  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1620  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1621  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1622  SDValue HiOps[3] = { LHSH, RHSH };
1623
1624  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1625  HiOps[2] = Lo.getValue(1);
1626  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1627
1628  // Legalized the flag result - switch anything that used the old flag to
1629  // use the new one.
1630  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1631}
1632
1633void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1634                                                 SDValue &Lo, SDValue &Hi) {
1635  SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1636  SplitInteger(Res, Lo, Hi);
1637}
1638
1639void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1640                                               SDValue &Lo, SDValue &Hi) {
1641  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1642  SDLoc dl(N);
1643  SDValue Op = N->getOperand(0);
1644  if (Op.getValueType().bitsLE(NVT)) {
1645    // The low part is any extension of the input (which degenerates to a copy).
1646    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1647    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
1648  } else {
1649    // For example, extension of an i48 to an i64.  The operand type necessarily
1650    // promotes to the result type, so will end up being expanded too.
1651    assert(getTypeAction(Op.getValueType()) ==
1652           TargetLowering::TypePromoteInteger &&
1653           "Only know how to promote this result!");
1654    SDValue Res = GetPromotedInteger(Op);
1655    assert(Res.getValueType() == N->getValueType(0) &&
1656           "Operand over promoted?");
1657    // Split the promoted operand.  This will simplify when it is expanded.
1658    SplitInteger(Res, Lo, Hi);
1659  }
1660}
1661
1662void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1663                                               SDValue &Lo, SDValue &Hi) {
1664  SDLoc dl(N);
1665  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1666  EVT NVT = Lo.getValueType();
1667  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1668  unsigned NVTBits = NVT.getSizeInBits();
1669  unsigned EVTBits = EVT.getSizeInBits();
1670
1671  if (NVTBits < EVTBits) {
1672    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1673                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1674                                                        EVTBits - NVTBits)));
1675  } else {
1676    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1677    // The high part replicates the sign bit of Lo, make it explicit.
1678    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1679                     DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1680  }
1681}
1682
1683void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1684                                               SDValue &Lo, SDValue &Hi) {
1685  SDLoc dl(N);
1686  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1687  EVT NVT = Lo.getValueType();
1688  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1689  unsigned NVTBits = NVT.getSizeInBits();
1690  unsigned EVTBits = EVT.getSizeInBits();
1691
1692  if (NVTBits < EVTBits) {
1693    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1694                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1695                                                        EVTBits - NVTBits)));
1696  } else {
1697    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1698    // The high part must be zero, make it explicit.
1699    Hi = DAG.getConstant(0, NVT);
1700  }
1701}
1702
1703void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1704                                          SDValue &Lo, SDValue &Hi) {
1705  SDLoc dl(N);
1706  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1707  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1708  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1709}
1710
1711void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1712                                             SDValue &Lo, SDValue &Hi) {
1713  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1714  unsigned NBitWidth = NVT.getSizeInBits();
1715  const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1716  Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1717  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1718}
1719
1720void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1721                                         SDValue &Lo, SDValue &Hi) {
1722  SDLoc dl(N);
1723  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1724  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1725  EVT NVT = Lo.getValueType();
1726
1727  SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi,
1728                                   DAG.getConstant(0, NVT), ISD::SETNE);
1729
1730  SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1731  SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1732
1733  Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ,
1734                     DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1735                                 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1736  Hi = DAG.getConstant(0, NVT);
1737}
1738
1739void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1740                                          SDValue &Lo, SDValue &Hi) {
1741  SDLoc dl(N);
1742  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1743  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1744  EVT NVT = Lo.getValueType();
1745  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1746                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1747  Hi = DAG.getConstant(0, NVT);
1748}
1749
1750void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1751                                         SDValue &Lo, SDValue &Hi) {
1752  SDLoc dl(N);
1753  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1754  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1755  EVT NVT = Lo.getValueType();
1756
1757  SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo,
1758                                   DAG.getConstant(0, NVT), ISD::SETNE);
1759
1760  SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1761  SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1762
1763  Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ,
1764                     DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1765                                 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1766  Hi = DAG.getConstant(0, NVT);
1767}
1768
1769void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1770                                               SDValue &Hi) {
1771  SDLoc dl(N);
1772  EVT VT = N->getValueType(0);
1773  SDValue Op = N->getOperand(0);
1774  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1775  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1776  SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, true/*irrelevant*/,
1777                               dl).first,
1778               Lo, Hi);
1779}
1780
1781void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1782                                               SDValue &Hi) {
1783  SDLoc dl(N);
1784  EVT VT = N->getValueType(0);
1785  SDValue Op = N->getOperand(0);
1786  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1787  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1788  SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, false/*irrelevant*/,
1789                               dl).first,
1790               Lo, Hi);
1791}
1792
1793void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1794                                         SDValue &Lo, SDValue &Hi) {
1795  if (ISD::isNormalLoad(N)) {
1796    ExpandRes_NormalLoad(N, Lo, Hi);
1797    return;
1798  }
1799
1800  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1801
1802  EVT VT = N->getValueType(0);
1803  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1804  SDValue Ch  = N->getChain();
1805  SDValue Ptr = N->getBasePtr();
1806  ISD::LoadExtType ExtType = N->getExtensionType();
1807  unsigned Alignment = N->getAlignment();
1808  bool isVolatile = N->isVolatile();
1809  bool isNonTemporal = N->isNonTemporal();
1810  bool isInvariant = N->isInvariant();
1811  const MDNode *TBAAInfo = N->getTBAAInfo();
1812  SDLoc dl(N);
1813
1814  assert(NVT.isByteSized() && "Expanded type not byte sized!");
1815
1816  if (N->getMemoryVT().bitsLE(NVT)) {
1817    EVT MemVT = N->getMemoryVT();
1818
1819    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1820                        MemVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
1821
1822    // Remember the chain.
1823    Ch = Lo.getValue(1);
1824
1825    if (ExtType == ISD::SEXTLOAD) {
1826      // The high part is obtained by SRA'ing all but one of the bits of the
1827      // lo part.
1828      unsigned LoSize = Lo.getValueType().getSizeInBits();
1829      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1830                       DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1831    } else if (ExtType == ISD::ZEXTLOAD) {
1832      // The high part is just a zero.
1833      Hi = DAG.getConstant(0, NVT);
1834    } else {
1835      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1836      // The high part is undefined.
1837      Hi = DAG.getUNDEF(NVT);
1838    }
1839  } else if (TLI.isLittleEndian()) {
1840    // Little-endian - low bits are at low addresses.
1841    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1842                     isVolatile, isNonTemporal, isInvariant, Alignment,
1843                     TBAAInfo);
1844
1845    unsigned ExcessBits =
1846      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1847    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1848
1849    // Increment the pointer to the other half.
1850    unsigned IncrementSize = NVT.getSizeInBits()/8;
1851    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1852                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
1853    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1854                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1855                        isVolatile, isNonTemporal,
1856                        MinAlign(Alignment, IncrementSize), TBAAInfo);
1857
1858    // Build a factor node to remember that this load is independent of the
1859    // other one.
1860    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1861                     Hi.getValue(1));
1862  } else {
1863    // Big-endian - high bits are at low addresses.  Favor aligned loads at
1864    // the cost of some bit-fiddling.
1865    EVT MemVT = N->getMemoryVT();
1866    unsigned EBytes = MemVT.getStoreSize();
1867    unsigned IncrementSize = NVT.getSizeInBits()/8;
1868    unsigned ExcessBits = (EBytes - IncrementSize)*8;
1869
1870    // Load both the high bits and maybe some of the low bits.
1871    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1872                        EVT::getIntegerVT(*DAG.getContext(),
1873                                          MemVT.getSizeInBits() - ExcessBits),
1874                        isVolatile, isNonTemporal, Alignment, TBAAInfo);
1875
1876    // Increment the pointer to the other half.
1877    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1878                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
1879    // Load the rest of the low bits.
1880    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1881                        N->getPointerInfo().getWithOffset(IncrementSize),
1882                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1883                        isVolatile, isNonTemporal,
1884                        MinAlign(Alignment, IncrementSize), TBAAInfo);
1885
1886    // Build a factor node to remember that this load is independent of the
1887    // other one.
1888    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1889                     Hi.getValue(1));
1890
1891    if (ExcessBits < NVT.getSizeInBits()) {
1892      // Transfer low bits from the bottom of Hi to the top of Lo.
1893      Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1894                       DAG.getNode(ISD::SHL, dl, NVT, Hi,
1895                                   DAG.getConstant(ExcessBits,
1896                                                   TLI.getPointerTy())));
1897      // Move high bits to the right position in Hi.
1898      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1899                       NVT, Hi,
1900                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1901                                       TLI.getPointerTy()));
1902    }
1903  }
1904
1905  // Legalized the chain result - switch anything that used the old chain to
1906  // use the new one.
1907  ReplaceValueWith(SDValue(N, 1), Ch);
1908}
1909
1910void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1911                                            SDValue &Lo, SDValue &Hi) {
1912  SDLoc dl(N);
1913  SDValue LL, LH, RL, RH;
1914  GetExpandedInteger(N->getOperand(0), LL, LH);
1915  GetExpandedInteger(N->getOperand(1), RL, RH);
1916  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1917  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1918}
1919
1920void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1921                                        SDValue &Lo, SDValue &Hi) {
1922  EVT VT = N->getValueType(0);
1923  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1924  SDLoc dl(N);
1925
1926  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1927  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1928  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1929  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1930  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1931    SDValue LL, LH, RL, RH;
1932    GetExpandedInteger(N->getOperand(0), LL, LH);
1933    GetExpandedInteger(N->getOperand(1), RL, RH);
1934    unsigned OuterBitSize = VT.getSizeInBits();
1935    unsigned InnerBitSize = NVT.getSizeInBits();
1936    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1937    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1938
1939    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1940    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1941        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1942      // The inputs are both zero-extended.
1943      if (HasUMUL_LOHI) {
1944        // We can emit a umul_lohi.
1945        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1946        Hi = SDValue(Lo.getNode(), 1);
1947        return;
1948      }
1949      if (HasMULHU) {
1950        // We can emit a mulhu+mul.
1951        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1952        Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1953        return;
1954      }
1955    }
1956    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1957      // The input values are both sign-extended.
1958      if (HasSMUL_LOHI) {
1959        // We can emit a smul_lohi.
1960        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1961        Hi = SDValue(Lo.getNode(), 1);
1962        return;
1963      }
1964      if (HasMULHS) {
1965        // We can emit a mulhs+mul.
1966        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1967        Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1968        return;
1969      }
1970    }
1971    if (HasUMUL_LOHI) {
1972      // Lo,Hi = umul LHS, RHS.
1973      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1974                                       DAG.getVTList(NVT, NVT), LL, RL);
1975      Lo = UMulLOHI;
1976      Hi = UMulLOHI.getValue(1);
1977      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1978      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1979      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1980      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1981      return;
1982    }
1983    if (HasMULHU) {
1984      Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1985      Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1986      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1987      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1988      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1989      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1990      return;
1991    }
1992  }
1993
1994  // If nothing else, we can make a libcall.
1995  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1996  if (VT == MVT::i16)
1997    LC = RTLIB::MUL_I16;
1998  else if (VT == MVT::i32)
1999    LC = RTLIB::MUL_I32;
2000  else if (VT == MVT::i64)
2001    LC = RTLIB::MUL_I64;
2002  else if (VT == MVT::i128)
2003    LC = RTLIB::MUL_I128;
2004  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
2005
2006  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2007  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true/*irrelevant*/,
2008                               dl).first,
2009               Lo, Hi);
2010}
2011
2012void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
2013                                             SDValue &Lo, SDValue &Hi) {
2014  SDValue LHS = Node->getOperand(0);
2015  SDValue RHS = Node->getOperand(1);
2016  SDLoc dl(Node);
2017
2018  // Expand the result by simply replacing it with the equivalent
2019  // non-overflow-checking operation.
2020  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2021                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2022                            LHS, RHS);
2023  SplitInteger(Sum, Lo, Hi);
2024
2025  // Compute the overflow.
2026  //
2027  //   LHSSign -> LHS >= 0
2028  //   RHSSign -> RHS >= 0
2029  //   SumSign -> Sum >= 0
2030  //
2031  //   Add:
2032  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2033  //   Sub:
2034  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2035  //
2036  EVT OType = Node->getValueType(1);
2037  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2038
2039  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2040  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2041  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2042                                    Node->getOpcode() == ISD::SADDO ?
2043                                    ISD::SETEQ : ISD::SETNE);
2044
2045  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2046  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2047
2048  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2049
2050  // Use the calculated overflow everywhere.
2051  ReplaceValueWith(SDValue(Node, 1), Cmp);
2052}
2053
2054void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2055                                         SDValue &Lo, SDValue &Hi) {
2056  EVT VT = N->getValueType(0);
2057  SDLoc dl(N);
2058
2059  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2060  if (VT == MVT::i16)
2061    LC = RTLIB::SDIV_I16;
2062  else if (VT == MVT::i32)
2063    LC = RTLIB::SDIV_I32;
2064  else if (VT == MVT::i64)
2065    LC = RTLIB::SDIV_I64;
2066  else if (VT == MVT::i128)
2067    LC = RTLIB::SDIV_I128;
2068  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2069
2070  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2071  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi);
2072}
2073
2074void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2075                                          SDValue &Lo, SDValue &Hi) {
2076  EVT VT = N->getValueType(0);
2077  SDLoc dl(N);
2078
2079  // If we can emit an efficient shift operation, do so now.  Check to see if
2080  // the RHS is a constant.
2081  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2082    return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2083
2084  // If we can determine that the high bit of the shift is zero or one, even if
2085  // the low bits are variable, emit this shift in an optimized form.
2086  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2087    return;
2088
2089  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
2090  unsigned PartsOpc;
2091  if (N->getOpcode() == ISD::SHL) {
2092    PartsOpc = ISD::SHL_PARTS;
2093  } else if (N->getOpcode() == ISD::SRL) {
2094    PartsOpc = ISD::SRL_PARTS;
2095  } else {
2096    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2097    PartsOpc = ISD::SRA_PARTS;
2098  }
2099
2100  // Next check to see if the target supports this SHL_PARTS operation or if it
2101  // will custom expand it.
2102  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2103  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2104  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2105      Action == TargetLowering::Custom) {
2106    // Expand the subcomponents.
2107    SDValue LHSL, LHSH;
2108    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2109    EVT VT = LHSL.getValueType();
2110
2111    // If the shift amount operand is coming from a vector legalization it may
2112    // have an illegal type.  Fix that first by casting the operand, otherwise
2113    // the new SHL_PARTS operation would need further legalization.
2114    SDValue ShiftOp = N->getOperand(1);
2115    EVT ShiftTy = TLI.getShiftAmountTy(VT);
2116    assert(ShiftTy.getScalarType().getSizeInBits() >=
2117           Log2_32_Ceil(VT.getScalarType().getSizeInBits()) &&
2118           "ShiftAmountTy is too small to cover the range of this type!");
2119    if (ShiftOp.getValueType() != ShiftTy)
2120      ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
2121
2122    SDValue Ops[] = { LHSL, LHSH, ShiftOp };
2123    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2124    Hi = Lo.getValue(1);
2125    return;
2126  }
2127
2128  // Otherwise, emit a libcall.
2129  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2130  bool isSigned;
2131  if (N->getOpcode() == ISD::SHL) {
2132    isSigned = false; /*sign irrelevant*/
2133    if (VT == MVT::i16)
2134      LC = RTLIB::SHL_I16;
2135    else if (VT == MVT::i32)
2136      LC = RTLIB::SHL_I32;
2137    else if (VT == MVT::i64)
2138      LC = RTLIB::SHL_I64;
2139    else if (VT == MVT::i128)
2140      LC = RTLIB::SHL_I128;
2141  } else if (N->getOpcode() == ISD::SRL) {
2142    isSigned = false;
2143    if (VT == MVT::i16)
2144      LC = RTLIB::SRL_I16;
2145    else if (VT == MVT::i32)
2146      LC = RTLIB::SRL_I32;
2147    else if (VT == MVT::i64)
2148      LC = RTLIB::SRL_I64;
2149    else if (VT == MVT::i128)
2150      LC = RTLIB::SRL_I128;
2151  } else {
2152    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2153    isSigned = true;
2154    if (VT == MVT::i16)
2155      LC = RTLIB::SRA_I16;
2156    else if (VT == MVT::i32)
2157      LC = RTLIB::SRA_I32;
2158    else if (VT == MVT::i64)
2159      LC = RTLIB::SRA_I64;
2160    else if (VT == MVT::i128)
2161      LC = RTLIB::SRA_I128;
2162  }
2163
2164  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2165    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2166    SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, isSigned, dl).first, Lo,
2167                 Hi);
2168    return;
2169  }
2170
2171  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2172    llvm_unreachable("Unsupported shift!");
2173}
2174
2175void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2176                                                SDValue &Lo, SDValue &Hi) {
2177  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2178  SDLoc dl(N);
2179  SDValue Op = N->getOperand(0);
2180  if (Op.getValueType().bitsLE(NVT)) {
2181    // The low part is sign extension of the input (degenerates to a copy).
2182    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2183    // The high part is obtained by SRA'ing all but one of the bits of low part.
2184    unsigned LoSize = NVT.getSizeInBits();
2185    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2186                     DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2187  } else {
2188    // For example, extension of an i48 to an i64.  The operand type necessarily
2189    // promotes to the result type, so will end up being expanded too.
2190    assert(getTypeAction(Op.getValueType()) ==
2191           TargetLowering::TypePromoteInteger &&
2192           "Only know how to promote this result!");
2193    SDValue Res = GetPromotedInteger(Op);
2194    assert(Res.getValueType() == N->getValueType(0) &&
2195           "Operand over promoted?");
2196    // Split the promoted operand.  This will simplify when it is expanded.
2197    SplitInteger(Res, Lo, Hi);
2198    unsigned ExcessBits =
2199      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2200    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2201                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2202                                                        ExcessBits)));
2203  }
2204}
2205
2206void DAGTypeLegalizer::
2207ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2208  SDLoc dl(N);
2209  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2210  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2211
2212  if (EVT.bitsLE(Lo.getValueType())) {
2213    // sext_inreg the low part if needed.
2214    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2215                     N->getOperand(1));
2216
2217    // The high part gets the sign extension from the lo-part.  This handles
2218    // things like sextinreg V:i64 from i8.
2219    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2220                     DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2221                                     TLI.getPointerTy()));
2222  } else {
2223    // For example, extension of an i48 to an i64.  Leave the low part alone,
2224    // sext_inreg the high part.
2225    unsigned ExcessBits =
2226      EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2227    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2228                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2229                                                        ExcessBits)));
2230  }
2231}
2232
2233void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2234                                         SDValue &Lo, SDValue &Hi) {
2235  EVT VT = N->getValueType(0);
2236  SDLoc dl(N);
2237
2238  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2239  if (VT == MVT::i16)
2240    LC = RTLIB::SREM_I16;
2241  else if (VT == MVT::i32)
2242    LC = RTLIB::SREM_I32;
2243  else if (VT == MVT::i64)
2244    LC = RTLIB::SREM_I64;
2245  else if (VT == MVT::i128)
2246    LC = RTLIB::SREM_I128;
2247  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2248
2249  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2250  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi);
2251}
2252
2253void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2254                                             SDValue &Lo, SDValue &Hi) {
2255  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2256  SDLoc dl(N);
2257  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2258  Hi = DAG.getNode(ISD::SRL, dl,
2259                   N->getOperand(0).getValueType(), N->getOperand(0),
2260                   DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2261  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2262}
2263
2264void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2265                                             SDValue &Lo, SDValue &Hi) {
2266  SDValue LHS = N->getOperand(0);
2267  SDValue RHS = N->getOperand(1);
2268  SDLoc dl(N);
2269
2270  // Expand the result by simply replacing it with the equivalent
2271  // non-overflow-checking operation.
2272  SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2273                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2274                            LHS, RHS);
2275  SplitInteger(Sum, Lo, Hi);
2276
2277  // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2278  // overflows iff a - b > a.
2279  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2280                             N->getOpcode () == ISD::UADDO ?
2281                             ISD::SETULT : ISD::SETUGT);
2282
2283  // Use the calculated overflow everywhere.
2284  ReplaceValueWith(SDValue(N, 1), Ofl);
2285}
2286
2287void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2288                                          SDValue &Lo, SDValue &Hi) {
2289  EVT VT = N->getValueType(0);
2290  SDLoc dl(N);
2291
2292  // A divide for UMULO should be faster than a function call.
2293  if (N->getOpcode() == ISD::UMULO) {
2294    SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2295
2296    SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS);
2297    SplitInteger(MUL, Lo, Hi);
2298
2299    // A divide for UMULO will be faster than a function call. Select to
2300    // make sure we aren't using 0.
2301    SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(VT),
2302                                  RHS, DAG.getConstant(0, VT), ISD::SETEQ);
2303    SDValue NotZero = DAG.getSelect(dl, VT, isZero,
2304                                    DAG.getConstant(1, VT), RHS);
2305    SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero);
2306    SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS,
2307                                    ISD::SETNE);
2308    Overflow = DAG.getSelect(dl, N->getValueType(1), isZero,
2309                             DAG.getConstant(0, N->getValueType(1)),
2310                             Overflow);
2311    ReplaceValueWith(SDValue(N, 1), Overflow);
2312    return;
2313  }
2314
2315  Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2316  EVT PtrVT = TLI.getPointerTy();
2317  Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2318
2319  // Replace this with a libcall that will check overflow.
2320  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2321  if (VT == MVT::i32)
2322    LC = RTLIB::MULO_I32;
2323  else if (VT == MVT::i64)
2324    LC = RTLIB::MULO_I64;
2325  else if (VT == MVT::i128)
2326    LC = RTLIB::MULO_I128;
2327  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2328
2329  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2330  // Temporary for the overflow value, default it to zero.
2331  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2332                               DAG.getConstant(0, PtrVT), Temp,
2333                               MachinePointerInfo(), false, false, 0);
2334
2335  TargetLowering::ArgListTy Args;
2336  TargetLowering::ArgListEntry Entry;
2337  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2338    EVT ArgVT = N->getOperand(i).getValueType();
2339    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2340    Entry.Node = N->getOperand(i);
2341    Entry.Ty = ArgTy;
2342    Entry.isSExt = true;
2343    Entry.isZExt = false;
2344    Args.push_back(Entry);
2345  }
2346
2347  // Also pass the address of the overflow check.
2348  Entry.Node = Temp;
2349  Entry.Ty = PtrTy->getPointerTo();
2350  Entry.isSExt = true;
2351  Entry.isZExt = false;
2352  Args.push_back(Entry);
2353
2354  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2355  TargetLowering::
2356  CallLoweringInfo CLI(Chain, RetTy, true, false, false, false,
2357                       0, TLI.getLibcallCallingConv(LC),
2358                       /*isTailCall=*/false,
2359                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2360                       Func, Args, DAG, dl);
2361  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2362
2363  SplitInteger(CallInfo.first, Lo, Hi);
2364  SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2365                              MachinePointerInfo(), false, false, false, 0);
2366  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2367                             DAG.getConstant(0, PtrVT),
2368                             ISD::SETNE);
2369  // Use the overflow from the libcall everywhere.
2370  ReplaceValueWith(SDValue(N, 1), Ofl);
2371}
2372
2373void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2374                                         SDValue &Lo, SDValue &Hi) {
2375  EVT VT = N->getValueType(0);
2376  SDLoc dl(N);
2377
2378  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2379  if (VT == MVT::i16)
2380    LC = RTLIB::UDIV_I16;
2381  else if (VT == MVT::i32)
2382    LC = RTLIB::UDIV_I32;
2383  else if (VT == MVT::i64)
2384    LC = RTLIB::UDIV_I64;
2385  else if (VT == MVT::i128)
2386    LC = RTLIB::UDIV_I128;
2387  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2388
2389  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2390  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi);
2391}
2392
2393void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2394                                         SDValue &Lo, SDValue &Hi) {
2395  EVT VT = N->getValueType(0);
2396  SDLoc dl(N);
2397
2398  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2399  if (VT == MVT::i16)
2400    LC = RTLIB::UREM_I16;
2401  else if (VT == MVT::i32)
2402    LC = RTLIB::UREM_I32;
2403  else if (VT == MVT::i64)
2404    LC = RTLIB::UREM_I64;
2405  else if (VT == MVT::i128)
2406    LC = RTLIB::UREM_I128;
2407  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2408
2409  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2410  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi);
2411}
2412
2413void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2414                                                SDValue &Lo, SDValue &Hi) {
2415  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2416  SDLoc dl(N);
2417  SDValue Op = N->getOperand(0);
2418  if (Op.getValueType().bitsLE(NVT)) {
2419    // The low part is zero extension of the input (degenerates to a copy).
2420    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2421    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
2422  } else {
2423    // For example, extension of an i48 to an i64.  The operand type necessarily
2424    // promotes to the result type, so will end up being expanded too.
2425    assert(getTypeAction(Op.getValueType()) ==
2426           TargetLowering::TypePromoteInteger &&
2427           "Only know how to promote this result!");
2428    SDValue Res = GetPromotedInteger(Op);
2429    assert(Res.getValueType() == N->getValueType(0) &&
2430           "Operand over promoted?");
2431    // Split the promoted operand.  This will simplify when it is expanded.
2432    SplitInteger(Res, Lo, Hi);
2433    unsigned ExcessBits =
2434      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2435    Hi = DAG.getZeroExtendInReg(Hi, dl,
2436                                EVT::getIntegerVT(*DAG.getContext(),
2437                                                  ExcessBits));
2438  }
2439}
2440
2441void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2442                                                SDValue &Lo, SDValue &Hi) {
2443  SDLoc dl(N);
2444  EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2445  SDValue Zero = DAG.getConstant(0, VT);
2446  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
2447                               N->getOperand(0),
2448                               N->getOperand(1), Zero, Zero,
2449                               cast<AtomicSDNode>(N)->getMemOperand(),
2450                               cast<AtomicSDNode>(N)->getOrdering(),
2451                               cast<AtomicSDNode>(N)->getOrdering(),
2452                               cast<AtomicSDNode>(N)->getSynchScope());
2453  ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2454  ReplaceValueWith(SDValue(N, 1), Swap.getValue(1));
2455}
2456
2457//===----------------------------------------------------------------------===//
2458//  Integer Operand Expansion
2459//===----------------------------------------------------------------------===//
2460
2461/// ExpandIntegerOperand - This method is called when the specified operand of
2462/// the specified node is found to need expansion.  At this point, all of the
2463/// result types of the node are known to be legal, but other operands of the
2464/// node may need promotion or expansion as well as the specified one.
2465bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2466  DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2467  SDValue Res = SDValue();
2468
2469  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2470    return false;
2471
2472  switch (N->getOpcode()) {
2473  default:
2474  #ifndef NDEBUG
2475    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2476    N->dump(&DAG); dbgs() << "\n";
2477  #endif
2478    llvm_unreachable("Do not know how to expand this operator's operand!");
2479
2480  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
2481  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
2482  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
2483  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2484  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2485  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2486  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
2487  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
2488  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
2489  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2490  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
2491  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
2492
2493  case ISD::SHL:
2494  case ISD::SRA:
2495  case ISD::SRL:
2496  case ISD::ROTL:
2497  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
2498  case ISD::RETURNADDR:
2499  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
2500
2501  case ISD::ATOMIC_STORE:      Res = ExpandIntOp_ATOMIC_STORE(N); break;
2502  }
2503
2504  // If the result is null, the sub-method took care of registering results etc.
2505  if (!Res.getNode()) return false;
2506
2507  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2508  // core about this.
2509  if (Res.getNode() == N)
2510    return true;
2511
2512  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2513         "Invalid operand expansion");
2514
2515  ReplaceValueWith(SDValue(N, 0), Res);
2516  return false;
2517}
2518
2519/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
2520/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2521void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2522                                                  SDValue &NewRHS,
2523                                                  ISD::CondCode &CCCode,
2524                                                  SDLoc dl) {
2525  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2526  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2527  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2528
2529  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2530    if (RHSLo == RHSHi) {
2531      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2532        if (RHSCST->isAllOnesValue()) {
2533          // Equality comparison to -1.
2534          NewLHS = DAG.getNode(ISD::AND, dl,
2535                               LHSLo.getValueType(), LHSLo, LHSHi);
2536          NewRHS = RHSLo;
2537          return;
2538        }
2539      }
2540    }
2541
2542    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2543    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2544    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2545    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2546    return;
2547  }
2548
2549  // If this is a comparison of the sign bit, just look at the top part.
2550  // X > -1,  x < 0
2551  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2552    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
2553        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
2554      NewLHS = LHSHi;
2555      NewRHS = RHSHi;
2556      return;
2557    }
2558
2559  // FIXME: This generated code sucks.
2560  ISD::CondCode LowCC;
2561  switch (CCCode) {
2562  default: llvm_unreachable("Unknown integer setcc!");
2563  case ISD::SETLT:
2564  case ISD::SETULT: LowCC = ISD::SETULT; break;
2565  case ISD::SETGT:
2566  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2567  case ISD::SETLE:
2568  case ISD::SETULE: LowCC = ISD::SETULE; break;
2569  case ISD::SETGE:
2570  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2571  }
2572
2573  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
2574  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
2575  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2576
2577  // NOTE: on targets without efficient SELECT of bools, we can always use
2578  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2579  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true, NULL);
2580  SDValue Tmp1, Tmp2;
2581  if (TLI.isTypeLegal(LHSLo.getValueType()) &&
2582      TLI.isTypeLegal(RHSLo.getValueType()))
2583    Tmp1 = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()),
2584                             LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2585  if (!Tmp1.getNode())
2586    Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()),
2587                        LHSLo, RHSLo, LowCC);
2588  if (TLI.isTypeLegal(LHSHi.getValueType()) &&
2589      TLI.isTypeLegal(RHSHi.getValueType()))
2590    Tmp2 = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
2591                             LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2592  if (!Tmp2.getNode())
2593    Tmp2 = DAG.getNode(ISD::SETCC, dl,
2594                       getSetCCResultType(LHSHi.getValueType()),
2595                       LHSHi, RHSHi, DAG.getCondCode(CCCode));
2596
2597  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2598  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2599  if ((Tmp1C && Tmp1C->isNullValue()) ||
2600      (Tmp2C && Tmp2C->isNullValue() &&
2601       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2602        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2603      (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2604       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2605        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2606    // low part is known false, returns high part.
2607    // For LE / GE, if high part is known false, ignore the low part.
2608    // For LT / GT, if high part is known true, ignore the low part.
2609    NewLHS = Tmp2;
2610    NewRHS = SDValue();
2611    return;
2612  }
2613
2614  NewLHS = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
2615                             LHSHi, RHSHi, ISD::SETEQ, false,
2616                             DagCombineInfo, dl);
2617  if (!NewLHS.getNode())
2618    NewLHS = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()),
2619                          LHSHi, RHSHi, ISD::SETEQ);
2620  NewLHS = DAG.getSelect(dl, Tmp1.getValueType(),
2621                         NewLHS, Tmp1, Tmp2);
2622  NewRHS = SDValue();
2623}
2624
2625SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2626  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2627  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2628  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2629
2630  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2631  // against zero to select between true and false values.
2632  if (NewRHS.getNode() == 0) {
2633    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2634    CCCode = ISD::SETNE;
2635  }
2636
2637  // Update N to have the operands specified.
2638  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2639                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
2640                                N->getOperand(4)), 0);
2641}
2642
2643SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2644  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2645  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2646  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2647
2648  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2649  // against zero to select between true and false values.
2650  if (NewRHS.getNode() == 0) {
2651    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2652    CCCode = ISD::SETNE;
2653  }
2654
2655  // Update N to have the operands specified.
2656  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2657                                N->getOperand(2), N->getOperand(3),
2658                                DAG.getCondCode(CCCode)), 0);
2659}
2660
2661SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2662  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2663  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2664  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2665
2666  // If ExpandSetCCOperands returned a scalar, use it.
2667  if (NewRHS.getNode() == 0) {
2668    assert(NewLHS.getValueType() == N->getValueType(0) &&
2669           "Unexpected setcc expansion!");
2670    return NewLHS;
2671  }
2672
2673  // Otherwise, update N to have the operands specified.
2674  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2675                                DAG.getCondCode(CCCode)), 0);
2676}
2677
2678SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2679  // The value being shifted is legal, but the shift amount is too big.
2680  // It follows that either the result of the shift is undefined, or the
2681  // upper half of the shift amount is zero.  Just use the lower half.
2682  SDValue Lo, Hi;
2683  GetExpandedInteger(N->getOperand(1), Lo, Hi);
2684  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2685}
2686
2687SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2688  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
2689  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2690  // constant to valid type.
2691  SDValue Lo, Hi;
2692  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2693  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2694}
2695
2696SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2697  SDValue Op = N->getOperand(0);
2698  EVT DstVT = N->getValueType(0);
2699  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2700  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2701         "Don't know how to expand this SINT_TO_FP!");
2702  return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, SDLoc(N)).first;
2703}
2704
2705SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2706  if (ISD::isNormalStore(N))
2707    return ExpandOp_NormalStore(N, OpNo);
2708
2709  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2710  assert(OpNo == 1 && "Can only expand the stored value so far");
2711
2712  EVT VT = N->getOperand(1).getValueType();
2713  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2714  SDValue Ch  = N->getChain();
2715  SDValue Ptr = N->getBasePtr();
2716  unsigned Alignment = N->getAlignment();
2717  bool isVolatile = N->isVolatile();
2718  bool isNonTemporal = N->isNonTemporal();
2719  const MDNode *TBAAInfo = N->getTBAAInfo();
2720  SDLoc dl(N);
2721  SDValue Lo, Hi;
2722
2723  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2724
2725  if (N->getMemoryVT().bitsLE(NVT)) {
2726    GetExpandedInteger(N->getValue(), Lo, Hi);
2727    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2728                             N->getMemoryVT(), isVolatile, isNonTemporal,
2729                             Alignment, TBAAInfo);
2730  }
2731
2732  if (TLI.isLittleEndian()) {
2733    // Little-endian - low bits are at low addresses.
2734    GetExpandedInteger(N->getValue(), Lo, Hi);
2735
2736    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2737                      isVolatile, isNonTemporal, Alignment, TBAAInfo);
2738
2739    unsigned ExcessBits =
2740      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2741    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2742
2743    // Increment the pointer to the other half.
2744    unsigned IncrementSize = NVT.getSizeInBits()/8;
2745    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2746                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
2747    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2748                           N->getPointerInfo().getWithOffset(IncrementSize),
2749                           NEVT, isVolatile, isNonTemporal,
2750                           MinAlign(Alignment, IncrementSize), TBAAInfo);
2751    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2752  }
2753
2754  // Big-endian - high bits are at low addresses.  Favor aligned stores at
2755  // the cost of some bit-fiddling.
2756  GetExpandedInteger(N->getValue(), Lo, Hi);
2757
2758  EVT ExtVT = N->getMemoryVT();
2759  unsigned EBytes = ExtVT.getStoreSize();
2760  unsigned IncrementSize = NVT.getSizeInBits()/8;
2761  unsigned ExcessBits = (EBytes - IncrementSize)*8;
2762  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2763                               ExtVT.getSizeInBits() - ExcessBits);
2764
2765  if (ExcessBits < NVT.getSizeInBits()) {
2766    // Transfer high bits from the top of Lo to the bottom of Hi.
2767    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2768                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2769                                     TLI.getPointerTy()));
2770    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2771                     DAG.getNode(ISD::SRL, dl, NVT, Lo,
2772                                 DAG.getConstant(ExcessBits,
2773                                                 TLI.getPointerTy())));
2774  }
2775
2776  // Store both the high bits and maybe some of the low bits.
2777  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2778                         HiVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
2779
2780  // Increment the pointer to the other half.
2781  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2782                    DAG.getConstant(IncrementSize, Ptr.getValueType()));
2783  // Store the lowest ExcessBits bits in the second half.
2784  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2785                         N->getPointerInfo().getWithOffset(IncrementSize),
2786                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2787                         isVolatile, isNonTemporal,
2788                         MinAlign(Alignment, IncrementSize), TBAAInfo);
2789  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2790}
2791
2792SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2793  SDValue InL, InH;
2794  GetExpandedInteger(N->getOperand(0), InL, InH);
2795  // Just truncate the low part of the source.
2796  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL);
2797}
2798
2799SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2800  SDValue Op = N->getOperand(0);
2801  EVT SrcVT = Op.getValueType();
2802  EVT DstVT = N->getValueType(0);
2803  SDLoc dl(N);
2804
2805  // The following optimization is valid only if every value in SrcVT (when
2806  // treated as signed) is representable in DstVT.  Check that the mantissa
2807  // size of DstVT is >= than the number of bits in SrcVT -1.
2808  const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
2809  if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
2810      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2811    // Do a signed conversion then adjust the result.
2812    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2813    SignedConv = TLI.LowerOperation(SignedConv, DAG);
2814
2815    // The result of the signed conversion needs adjusting if the 'sign bit' of
2816    // the incoming integer was set.  To handle this, we dynamically test to see
2817    // if it is set, and, if so, add a fudge factor.
2818
2819    const uint64_t F32TwoE32  = 0x4F800000ULL;
2820    const uint64_t F32TwoE64  = 0x5F800000ULL;
2821    const uint64_t F32TwoE128 = 0x7F800000ULL;
2822
2823    APInt FF(32, 0);
2824    if (SrcVT == MVT::i32)
2825      FF = APInt(32, F32TwoE32);
2826    else if (SrcVT == MVT::i64)
2827      FF = APInt(32, F32TwoE64);
2828    else if (SrcVT == MVT::i128)
2829      FF = APInt(32, F32TwoE128);
2830    else
2831      llvm_unreachable("Unsupported UINT_TO_FP!");
2832
2833    // Check whether the sign bit is set.
2834    SDValue Lo, Hi;
2835    GetExpandedInteger(Op, Lo, Hi);
2836    SDValue SignSet = DAG.getSetCC(dl,
2837                                   getSetCCResultType(Hi.getValueType()),
2838                                   Hi, DAG.getConstant(0, Hi.getValueType()),
2839                                   ISD::SETLT);
2840
2841    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2842    SDValue FudgePtr = DAG.getConstantPool(
2843                               ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2844                                           TLI.getPointerTy());
2845
2846    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2847    SDValue Zero = DAG.getIntPtrConstant(0);
2848    SDValue Four = DAG.getIntPtrConstant(4);
2849    if (TLI.isBigEndian()) std::swap(Zero, Four);
2850    SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet,
2851                                   Zero, Four);
2852    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2853    FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(),
2854                           FudgePtr, Offset);
2855    Alignment = std::min(Alignment, 4u);
2856
2857    // Load the value out, extending it from f32 to the destination float type.
2858    // FIXME: Avoid the extend by constructing the right constant pool?
2859    SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2860                                   FudgePtr,
2861                                   MachinePointerInfo::getConstantPool(),
2862                                   MVT::f32,
2863                                   false, false, Alignment);
2864    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2865  }
2866
2867  // Otherwise, use a libcall.
2868  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2869  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2870         "Don't know how to expand this UINT_TO_FP!");
2871  return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, dl).first;
2872}
2873
2874SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2875  SDLoc dl(N);
2876  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2877                               cast<AtomicSDNode>(N)->getMemoryVT(),
2878                               N->getOperand(0),
2879                               N->getOperand(1), N->getOperand(2),
2880                               cast<AtomicSDNode>(N)->getMemOperand(),
2881                               cast<AtomicSDNode>(N)->getOrdering(),
2882                               cast<AtomicSDNode>(N)->getSynchScope());
2883  return Swap.getValue(1);
2884}
2885
2886
2887SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2888  SDValue InOp0 = N->getOperand(0);
2889  EVT InVT = InOp0.getValueType();
2890
2891  EVT OutVT = N->getValueType(0);
2892  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2893  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2894  unsigned OutNumElems = OutVT.getVectorNumElements();
2895  EVT NOutVTElem = NOutVT.getVectorElementType();
2896
2897  SDLoc dl(N);
2898  SDValue BaseIdx = N->getOperand(1);
2899
2900  SmallVector<SDValue, 8> Ops;
2901  Ops.reserve(OutNumElems);
2902  for (unsigned i = 0; i != OutNumElems; ++i) {
2903
2904    // Extract the element from the original vector.
2905    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2906      BaseIdx, DAG.getConstant(i, BaseIdx.getValueType()));
2907    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2908      InVT.getVectorElementType(), N->getOperand(0), Index);
2909
2910    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2911    // Insert the converted element to the new vector.
2912    Ops.push_back(Op);
2913  }
2914
2915  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2916}
2917
2918
2919SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2920  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2921  EVT VT = N->getValueType(0);
2922  SDLoc dl(N);
2923
2924  unsigned NumElts = VT.getVectorNumElements();
2925  SmallVector<int, 8> NewMask;
2926  for (unsigned i = 0; i != NumElts; ++i) {
2927    NewMask.push_back(SV->getMaskElt(i));
2928  }
2929
2930  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2931  SDValue V1 = GetPromotedInteger(N->getOperand(1));
2932  EVT OutVT = V0.getValueType();
2933
2934  return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2935}
2936
2937
2938SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2939  EVT OutVT = N->getValueType(0);
2940  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2941  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2942  unsigned NumElems = N->getNumOperands();
2943  EVT NOutVTElem = NOutVT.getVectorElementType();
2944
2945  SDLoc dl(N);
2946
2947  SmallVector<SDValue, 8> Ops;
2948  Ops.reserve(NumElems);
2949  for (unsigned i = 0; i != NumElems; ++i) {
2950    SDValue Op;
2951    // BUILD_VECTOR integer operand types are allowed to be larger than the
2952    // result's element type. This may still be true after the promotion. For
2953    // example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to
2954    // (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>.
2955    if (N->getOperand(i).getValueType().bitsLT(NOutVTElem))
2956      Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2957    else
2958      Op = N->getOperand(i);
2959    Ops.push_back(Op);
2960  }
2961
2962  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2963}
2964
2965SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2966
2967  SDLoc dl(N);
2968
2969  assert(!N->getOperand(0).getValueType().isVector() &&
2970         "Input must be a scalar");
2971
2972  EVT OutVT = N->getValueType(0);
2973  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2974  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2975  EVT NOutVTElem = NOutVT.getVectorElementType();
2976
2977  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2978
2979  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2980}
2981
2982SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2983  SDLoc dl(N);
2984
2985  EVT OutVT = N->getValueType(0);
2986  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2987  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2988
2989  EVT InElemTy = OutVT.getVectorElementType();
2990  EVT OutElemTy = NOutVT.getVectorElementType();
2991
2992  unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
2993  unsigned NumOutElem = NOutVT.getVectorNumElements();
2994  unsigned NumOperands = N->getNumOperands();
2995  assert(NumElem * NumOperands == NumOutElem &&
2996         "Unexpected number of elements");
2997
2998  // Take the elements from the first vector.
2999  SmallVector<SDValue, 8> Ops(NumOutElem);
3000  for (unsigned i = 0; i < NumOperands; ++i) {
3001    SDValue Op = N->getOperand(i);
3002    for (unsigned j = 0; j < NumElem; ++j) {
3003      SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3004                                InElemTy, Op, DAG.getConstant(j,
3005                                              TLI.getVectorIdxTy()));
3006      Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
3007    }
3008  }
3009
3010  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
3011}
3012
3013SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
3014  EVT OutVT = N->getValueType(0);
3015  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3016  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3017
3018  EVT NOutVTElem = NOutVT.getVectorElementType();
3019
3020  SDLoc dl(N);
3021  SDValue V0 = GetPromotedInteger(N->getOperand(0));
3022
3023  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
3024    NOutVTElem, N->getOperand(1));
3025  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
3026    V0, ConvElem, N->getOperand(2));
3027}
3028
3029SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3030  SDLoc dl(N);
3031  SDValue V0 = GetPromotedInteger(N->getOperand(0));
3032  SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl, TLI.getVectorIdxTy());
3033  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3034    V0->getValueType(0).getScalarType(), V0, V1);
3035
3036  // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
3037  // element types. If this is the case then we need to expand the outgoing
3038  // value and not truncate it.
3039  return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
3040}
3041
3042SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
3043  SDLoc dl(N);
3044  unsigned NumElems = N->getNumOperands();
3045
3046  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
3047
3048  SmallVector<SDValue, 8> NewOps;
3049  NewOps.reserve(NumElems);
3050
3051  // For each incoming vector
3052  for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3053    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3054    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3055    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3056
3057    for (unsigned i=0; i<NumElem; ++i) {
3058      // Extract element from incoming vector
3059      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3060      Incoming, DAG.getConstant(i, TLI.getVectorIdxTy()));
3061      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3062      NewOps.push_back(Tr);
3063    }
3064  }
3065
3066  return DAG.getNode(ISD::BUILD_VECTOR, dl,  N->getValueType(0),
3067    &NewOps[0], NewOps.size());
3068  }
3069