1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12// is common code shared among the LegalizeTypes*.cpp files.
13//
14//===----------------------------------------------------------------------===//
15
16#include "LegalizeTypes.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/IR/CallingConv.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace llvm;
24
25#define DEBUG_TYPE "legalize-types"
26
27static cl::opt<bool>
28EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
29
30/// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
31void DAGTypeLegalizer::PerformExpensiveChecks() {
32  // If a node is not processed, then none of its values should be mapped by any
33  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
34
35  // If a node is processed, then each value with an illegal type must be mapped
36  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
37  // Values with a legal type may be mapped by ReplacedValues, but not by any of
38  // the other maps.
39
40  // Note that these invariants may not hold momentarily when processing a node:
41  // the node being processed may be put in a map before being marked Processed.
42
43  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
44  // occur in two ways.  Firstly, a node may be created during legalization but
45  // never passed to the legalization core.  This is usually due to the implicit
46  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
47  // node may be passed to the legalization core, but when analyzed may morph
48  // into a different node, leaving the original node as a NewNode in the DAG.
49  // A node may morph if one of its operands changes during analysis.  Whether
50  // it actually morphs or not depends on whether, after updating its operands,
51  // it is equivalent to an existing node: if so, it morphs into that existing
52  // node (CSE).  An operand can change during analysis if the operand is a new
53  // node that morphs, or it is a processed value that was mapped to some other
54  // value (as recorded in ReplacedValues) in which case the operand is turned
55  // into that other value.  If a node morphs then the node it morphed into will
56  // be used instead of it for legalization, however the original node continues
57  // to live on in the DAG.
58  // The conclusion is that though there may be nodes marked NewNode in the DAG,
59  // all uses of such nodes are also marked NewNode: the result is a fungus of
60  // NewNodes growing on top of the useful nodes, and perhaps using them, but
61  // not used by them.
62
63  // If a value is mapped by ReplacedValues, then it must have no uses, except
64  // by nodes marked NewNode (see above).
65
66  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
67  // Note that ReplacedValues should be applied iteratively.
68
69  // Note that the ReplacedValues map may also map deleted nodes (by iterating
70  // over the DAG we never dereference deleted nodes).  This means that it may
71  // also map nodes marked NewNode if the deallocated memory was reallocated as
72  // another node, and that new node was not seen by the LegalizeTypes machinery
73  // (for example because it was created but not used).  In general, we cannot
74  // distinguish between new nodes and deleted nodes.
75  SmallVector<SDNode*, 16> NewNodes;
76  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
77       E = DAG.allnodes_end(); I != E; ++I) {
78    // Remember nodes marked NewNode - they are subject to extra checking below.
79    if (I->getNodeId() == NewNode)
80      NewNodes.push_back(I);
81
82    for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
83      SDValue Res(I, i);
84      bool Failed = false;
85
86      unsigned Mapped = 0;
87      if (ReplacedValues.find(Res) != ReplacedValues.end()) {
88        Mapped |= 1;
89        // Check that remapped values are only used by nodes marked NewNode.
90        for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
91             UI != UE; ++UI)
92          if (UI.getUse().getResNo() == i)
93            assert(UI->getNodeId() == NewNode &&
94                   "Remapped value has non-trivial use!");
95
96        // Check that the final result of applying ReplacedValues is not
97        // marked NewNode.
98        SDValue NewVal = ReplacedValues[Res];
99        DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
100        while (I != ReplacedValues.end()) {
101          NewVal = I->second;
102          I = ReplacedValues.find(NewVal);
103        }
104        assert(NewVal.getNode()->getNodeId() != NewNode &&
105               "ReplacedValues maps to a new node!");
106      }
107      if (PromotedIntegers.find(Res) != PromotedIntegers.end())
108        Mapped |= 2;
109      if (SoftenedFloats.find(Res) != SoftenedFloats.end())
110        Mapped |= 4;
111      if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
112        Mapped |= 8;
113      if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
114        Mapped |= 16;
115      if (ExpandedFloats.find(Res) != ExpandedFloats.end())
116        Mapped |= 32;
117      if (SplitVectors.find(Res) != SplitVectors.end())
118        Mapped |= 64;
119      if (WidenedVectors.find(Res) != WidenedVectors.end())
120        Mapped |= 128;
121
122      if (I->getNodeId() != Processed) {
123        // Since we allow ReplacedValues to map deleted nodes, it may map nodes
124        // marked NewNode too, since a deleted node may have been reallocated as
125        // another node that has not been seen by the LegalizeTypes machinery.
126        if ((I->getNodeId() == NewNode && Mapped > 1) ||
127            (I->getNodeId() != NewNode && Mapped != 0)) {
128          dbgs() << "Unprocessed value in a map!";
129          Failed = true;
130        }
131      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
132        if (Mapped > 1) {
133          dbgs() << "Value with legal type was transformed!";
134          Failed = true;
135        }
136      } else {
137        if (Mapped == 0) {
138          dbgs() << "Processed value not in any map!";
139          Failed = true;
140        } else if (Mapped & (Mapped - 1)) {
141          dbgs() << "Value in multiple maps!";
142          Failed = true;
143        }
144      }
145
146      if (Failed) {
147        if (Mapped & 1)
148          dbgs() << " ReplacedValues";
149        if (Mapped & 2)
150          dbgs() << " PromotedIntegers";
151        if (Mapped & 4)
152          dbgs() << " SoftenedFloats";
153        if (Mapped & 8)
154          dbgs() << " ScalarizedVectors";
155        if (Mapped & 16)
156          dbgs() << " ExpandedIntegers";
157        if (Mapped & 32)
158          dbgs() << " ExpandedFloats";
159        if (Mapped & 64)
160          dbgs() << " SplitVectors";
161        if (Mapped & 128)
162          dbgs() << " WidenedVectors";
163        dbgs() << "\n";
164        llvm_unreachable(nullptr);
165      }
166    }
167  }
168
169  // Checked that NewNodes are only used by other NewNodes.
170  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
171    SDNode *N = NewNodes[i];
172    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
173         UI != UE; ++UI)
174      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
175  }
176}
177
178/// run - This is the main entry point for the type legalizer.  This does a
179/// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
180/// if it made any changes.
181bool DAGTypeLegalizer::run() {
182  bool Changed = false;
183
184  // Create a dummy node (which is not added to allnodes), that adds a reference
185  // to the root node, preventing it from being deleted, and tracking any
186  // changes of the root.
187  HandleSDNode Dummy(DAG.getRoot());
188  Dummy.setNodeId(Unanalyzed);
189
190  // The root of the dag may dangle to deleted nodes until the type legalizer is
191  // done.  Set it to null to avoid confusion.
192  DAG.setRoot(SDValue());
193
194  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
195  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
196  // non-leaves.
197  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
198       E = DAG.allnodes_end(); I != E; ++I) {
199    if (I->getNumOperands() == 0) {
200      I->setNodeId(ReadyToProcess);
201      Worklist.push_back(I);
202    } else {
203      I->setNodeId(Unanalyzed);
204    }
205  }
206
207  // Now that we have a set of nodes to process, handle them all.
208  while (!Worklist.empty()) {
209#ifndef XDEBUG
210    if (EnableExpensiveChecks)
211#endif
212      PerformExpensiveChecks();
213
214    SDNode *N = Worklist.back();
215    Worklist.pop_back();
216    assert(N->getNodeId() == ReadyToProcess &&
217           "Node should be ready if on worklist!");
218
219    if (IgnoreNodeResults(N))
220      goto ScanOperands;
221
222    // Scan the values produced by the node, checking to see if any result
223    // types are illegal.
224    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
225      EVT ResultVT = N->getValueType(i);
226      switch (getTypeAction(ResultVT)) {
227      case TargetLowering::TypeLegal:
228        break;
229      // The following calls must take care of *all* of the node's results,
230      // not just the illegal result they were passed (this includes results
231      // with a legal type).  Results can be remapped using ReplaceValueWith,
232      // or their promoted/expanded/etc values registered in PromotedIntegers,
233      // ExpandedIntegers etc.
234      case TargetLowering::TypePromoteInteger:
235        PromoteIntegerResult(N, i);
236        Changed = true;
237        goto NodeDone;
238      case TargetLowering::TypeExpandInteger:
239        ExpandIntegerResult(N, i);
240        Changed = true;
241        goto NodeDone;
242      case TargetLowering::TypeSoftenFloat:
243        SoftenFloatResult(N, i);
244        Changed = true;
245        goto NodeDone;
246      case TargetLowering::TypeExpandFloat:
247        ExpandFloatResult(N, i);
248        Changed = true;
249        goto NodeDone;
250      case TargetLowering::TypeScalarizeVector:
251        ScalarizeVectorResult(N, i);
252        Changed = true;
253        goto NodeDone;
254      case TargetLowering::TypeSplitVector:
255        SplitVectorResult(N, i);
256        Changed = true;
257        goto NodeDone;
258      case TargetLowering::TypeWidenVector:
259        WidenVectorResult(N, i);
260        Changed = true;
261        goto NodeDone;
262      }
263    }
264
265ScanOperands:
266    // Scan the operand list for the node, handling any nodes with operands that
267    // are illegal.
268    {
269    unsigned NumOperands = N->getNumOperands();
270    bool NeedsReanalyzing = false;
271    unsigned i;
272    for (i = 0; i != NumOperands; ++i) {
273      if (IgnoreNodeResults(N->getOperand(i).getNode()))
274        continue;
275
276      EVT OpVT = N->getOperand(i).getValueType();
277      switch (getTypeAction(OpVT)) {
278      case TargetLowering::TypeLegal:
279        continue;
280      // The following calls must either replace all of the node's results
281      // using ReplaceValueWith, and return "false"; or update the node's
282      // operands in place, and return "true".
283      case TargetLowering::TypePromoteInteger:
284        NeedsReanalyzing = PromoteIntegerOperand(N, i);
285        Changed = true;
286        break;
287      case TargetLowering::TypeExpandInteger:
288        NeedsReanalyzing = ExpandIntegerOperand(N, i);
289        Changed = true;
290        break;
291      case TargetLowering::TypeSoftenFloat:
292        NeedsReanalyzing = SoftenFloatOperand(N, i);
293        Changed = true;
294        break;
295      case TargetLowering::TypeExpandFloat:
296        NeedsReanalyzing = ExpandFloatOperand(N, i);
297        Changed = true;
298        break;
299      case TargetLowering::TypeScalarizeVector:
300        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
301        Changed = true;
302        break;
303      case TargetLowering::TypeSplitVector:
304        NeedsReanalyzing = SplitVectorOperand(N, i);
305        Changed = true;
306        break;
307      case TargetLowering::TypeWidenVector:
308        NeedsReanalyzing = WidenVectorOperand(N, i);
309        Changed = true;
310        break;
311      }
312      break;
313    }
314
315    // The sub-method updated N in place.  Check to see if any operands are new,
316    // and if so, mark them.  If the node needs revisiting, don't add all users
317    // to the worklist etc.
318    if (NeedsReanalyzing) {
319      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
320      N->setNodeId(NewNode);
321      // Recompute the NodeId and correct processed operands, adding the node to
322      // the worklist if ready.
323      SDNode *M = AnalyzeNewNode(N);
324      if (M == N)
325        // The node didn't morph - nothing special to do, it will be revisited.
326        continue;
327
328      // The node morphed - this is equivalent to legalizing by replacing every
329      // value of N with the corresponding value of M.  So do that now.
330      assert(N->getNumValues() == M->getNumValues() &&
331             "Node morphing changed the number of results!");
332      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
333        // Replacing the value takes care of remapping the new value.
334        ReplaceValueWith(SDValue(N, i), SDValue(M, i));
335      assert(N->getNodeId() == NewNode && "Unexpected node state!");
336      // The node continues to live on as part of the NewNode fungus that
337      // grows on top of the useful nodes.  Nothing more needs to be done
338      // with it - move on to the next node.
339      continue;
340    }
341
342    if (i == NumOperands) {
343      DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
344    }
345    }
346NodeDone:
347
348    // If we reach here, the node was processed, potentially creating new nodes.
349    // Mark it as processed and add its users to the worklist as appropriate.
350    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
351    N->setNodeId(Processed);
352
353    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
354         UI != E; ++UI) {
355      SDNode *User = *UI;
356      int NodeId = User->getNodeId();
357
358      // This node has two options: it can either be a new node or its Node ID
359      // may be a count of the number of operands it has that are not ready.
360      if (NodeId > 0) {
361        User->setNodeId(NodeId-1);
362
363        // If this was the last use it was waiting on, add it to the ready list.
364        if (NodeId-1 == ReadyToProcess)
365          Worklist.push_back(User);
366        continue;
367      }
368
369      // If this is an unreachable new node, then ignore it.  If it ever becomes
370      // reachable by being used by a newly created node then it will be handled
371      // by AnalyzeNewNode.
372      if (NodeId == NewNode)
373        continue;
374
375      // Otherwise, this node is new: this is the first operand of it that
376      // became ready.  Its new NodeId is the number of operands it has minus 1
377      // (as this node is now processed).
378      assert(NodeId == Unanalyzed && "Unknown node ID!");
379      User->setNodeId(User->getNumOperands() - 1);
380
381      // If the node only has a single operand, it is now ready.
382      if (User->getNumOperands() == 1)
383        Worklist.push_back(User);
384    }
385  }
386
387#ifndef XDEBUG
388  if (EnableExpensiveChecks)
389#endif
390    PerformExpensiveChecks();
391
392  // If the root changed (e.g. it was a dead load) update the root.
393  DAG.setRoot(Dummy.getValue());
394
395  // Remove dead nodes.  This is important to do for cleanliness but also before
396  // the checking loop below.  Implicit folding by the DAG.getNode operators and
397  // node morphing can cause unreachable nodes to be around with their flags set
398  // to new.
399  DAG.RemoveDeadNodes();
400
401  // In a debug build, scan all the nodes to make sure we found them all.  This
402  // ensures that there are no cycles and that everything got processed.
403#ifndef NDEBUG
404  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
405       E = DAG.allnodes_end(); I != E; ++I) {
406    bool Failed = false;
407
408    // Check that all result types are legal.
409    if (!IgnoreNodeResults(I))
410      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
411        if (!isTypeLegal(I->getValueType(i))) {
412          dbgs() << "Result type " << i << " illegal!\n";
413          Failed = true;
414        }
415
416    // Check that all operand types are legal.
417    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
418      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
419          !isTypeLegal(I->getOperand(i).getValueType())) {
420        dbgs() << "Operand type " << i << " illegal!\n";
421        Failed = true;
422      }
423
424    if (I->getNodeId() != Processed) {
425       if (I->getNodeId() == NewNode)
426         dbgs() << "New node not analyzed?\n";
427       else if (I->getNodeId() == Unanalyzed)
428         dbgs() << "Unanalyzed node not noticed?\n";
429       else if (I->getNodeId() > 0)
430         dbgs() << "Operand not processed?\n";
431       else if (I->getNodeId() == ReadyToProcess)
432         dbgs() << "Not added to worklist?\n";
433       Failed = true;
434    }
435
436    if (Failed) {
437      I->dump(&DAG); dbgs() << "\n";
438      llvm_unreachable(nullptr);
439    }
440  }
441#endif
442
443  return Changed;
444}
445
446/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
447/// new nodes.  Correct any processed operands (this may change the node) and
448/// calculate the NodeId.  If the node itself changes to a processed node, it
449/// is not remapped - the caller needs to take care of this.
450/// Returns the potentially changed node.
451SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
452  // If this was an existing node that is already done, we're done.
453  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
454    return N;
455
456  // Remove any stale map entries.
457  ExpungeNode(N);
458
459  // Okay, we know that this node is new.  Recursively walk all of its operands
460  // to see if they are new also.  The depth of this walk is bounded by the size
461  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
462  // about revisiting of nodes.
463  //
464  // As we walk the operands, keep track of the number of nodes that are
465  // processed.  If non-zero, this will become the new nodeid of this node.
466  // Operands may morph when they are analyzed.  If so, the node will be
467  // updated after all operands have been analyzed.  Since this is rare,
468  // the code tries to minimize overhead in the non-morphing case.
469
470  SmallVector<SDValue, 8> NewOps;
471  unsigned NumProcessed = 0;
472  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
473    SDValue OrigOp = N->getOperand(i);
474    SDValue Op = OrigOp;
475
476    AnalyzeNewValue(Op); // Op may morph.
477
478    if (Op.getNode()->getNodeId() == Processed)
479      ++NumProcessed;
480
481    if (!NewOps.empty()) {
482      // Some previous operand changed.  Add this one to the list.
483      NewOps.push_back(Op);
484    } else if (Op != OrigOp) {
485      // This is the first operand to change - add all operands so far.
486      NewOps.append(N->op_begin(), N->op_begin() + i);
487      NewOps.push_back(Op);
488    }
489  }
490
491  // Some operands changed - update the node.
492  if (!NewOps.empty()) {
493    SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
494    if (M != N) {
495      // The node morphed into a different node.  Normally for this to happen
496      // the original node would have to be marked NewNode.  However this can
497      // in theory momentarily not be the case while ReplaceValueWith is doing
498      // its stuff.  Mark the original node NewNode to help sanity checking.
499      N->setNodeId(NewNode);
500      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
501        // It morphed into a previously analyzed node - nothing more to do.
502        return M;
503
504      // It morphed into a different new node.  Do the equivalent of passing
505      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
506      // to remap the operands, since they are the same as the operands we
507      // remapped above.
508      N = M;
509      ExpungeNode(N);
510    }
511  }
512
513  // Calculate the NodeId.
514  N->setNodeId(N->getNumOperands() - NumProcessed);
515  if (N->getNodeId() == ReadyToProcess)
516    Worklist.push_back(N);
517
518  return N;
519}
520
521/// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
522/// If the node changes to a processed node, then remap it.
523void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
524  Val.setNode(AnalyzeNewNode(Val.getNode()));
525  if (Val.getNode()->getNodeId() == Processed)
526    // We were passed a processed node, or it morphed into one - remap it.
527    RemapValue(Val);
528}
529
530/// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
531/// This can occur when a node is deleted then reallocated as a new node -
532/// the mapping in ReplacedValues applies to the deleted node, not the new
533/// one.
534/// The only map that can have a deleted node as a source is ReplacedValues.
535/// Other maps can have deleted nodes as targets, but since their looked-up
536/// values are always immediately remapped using RemapValue, resulting in a
537/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
538/// always performs correct mappings.  In order to keep the mapping correct,
539/// ExpungeNode should be called on any new nodes *before* adding them as
540/// either source or target to ReplacedValues (which typically means calling
541/// Expunge when a new node is first seen, since it may no longer be marked
542/// NewNode by the time it is added to ReplacedValues).
543void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
544  if (N->getNodeId() != NewNode)
545    return;
546
547  // If N is not remapped by ReplacedValues then there is nothing to do.
548  unsigned i, e;
549  for (i = 0, e = N->getNumValues(); i != e; ++i)
550    if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
551      break;
552
553  if (i == e)
554    return;
555
556  // Remove N from all maps - this is expensive but rare.
557
558  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
559       E = PromotedIntegers.end(); I != E; ++I) {
560    assert(I->first.getNode() != N);
561    RemapValue(I->second);
562  }
563
564  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
565       E = SoftenedFloats.end(); I != E; ++I) {
566    assert(I->first.getNode() != N);
567    RemapValue(I->second);
568  }
569
570  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
571       E = ScalarizedVectors.end(); I != E; ++I) {
572    assert(I->first.getNode() != N);
573    RemapValue(I->second);
574  }
575
576  for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
577       E = WidenedVectors.end(); I != E; ++I) {
578    assert(I->first.getNode() != N);
579    RemapValue(I->second);
580  }
581
582  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
583       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
584    assert(I->first.getNode() != N);
585    RemapValue(I->second.first);
586    RemapValue(I->second.second);
587  }
588
589  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
590       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
591    assert(I->first.getNode() != N);
592    RemapValue(I->second.first);
593    RemapValue(I->second.second);
594  }
595
596  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
597       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
598    assert(I->first.getNode() != N);
599    RemapValue(I->second.first);
600    RemapValue(I->second.second);
601  }
602
603  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
604       E = ReplacedValues.end(); I != E; ++I)
605    RemapValue(I->second);
606
607  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
608    ReplacedValues.erase(SDValue(N, i));
609}
610
611/// RemapValue - If the specified value was already legalized to another value,
612/// replace it by that value.
613void DAGTypeLegalizer::RemapValue(SDValue &N) {
614  DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
615  if (I != ReplacedValues.end()) {
616    // Use path compression to speed up future lookups if values get multiply
617    // replaced with other values.
618    RemapValue(I->second);
619    N = I->second;
620
621    // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
622    // this point because it is possible for a node to be put in the map before
623    // being processed.
624  }
625}
626
627namespace {
628  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
629  /// updates to nodes and recomputes their ready state.
630  class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
631    DAGTypeLegalizer &DTL;
632    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
633  public:
634    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
635                                SmallSetVector<SDNode*, 16> &nta)
636      : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
637        DTL(dtl), NodesToAnalyze(nta) {}
638
639    void NodeDeleted(SDNode *N, SDNode *E) override {
640      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
641             N->getNodeId() != DAGTypeLegalizer::Processed &&
642             "Invalid node ID for RAUW deletion!");
643      // It is possible, though rare, for the deleted node N to occur as a
644      // target in a map, so note the replacement N -> E in ReplacedValues.
645      assert(E && "Node not replaced?");
646      DTL.NoteDeletion(N, E);
647
648      // In theory the deleted node could also have been scheduled for analysis.
649      // So remove it from the set of nodes which will be analyzed.
650      NodesToAnalyze.remove(N);
651
652      // In general nothing needs to be done for E, since it didn't change but
653      // only gained new uses.  However N -> E was just added to ReplacedValues,
654      // and the result of a ReplacedValues mapping is not allowed to be marked
655      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
656      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
657        NodesToAnalyze.insert(E);
658    }
659
660    void NodeUpdated(SDNode *N) override {
661      // Node updates can mean pretty much anything.  It is possible that an
662      // operand was set to something already processed (f.e.) in which case
663      // this node could become ready.  Recompute its flags.
664      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
665             N->getNodeId() != DAGTypeLegalizer::Processed &&
666             "Invalid node ID for RAUW deletion!");
667      N->setNodeId(DAGTypeLegalizer::NewNode);
668      NodesToAnalyze.insert(N);
669    }
670  };
671}
672
673
674/// ReplaceValueWith - The specified value was legalized to the specified other
675/// value.  Update the DAG and NodeIds replacing any uses of From to use To
676/// instead.
677void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
678  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
679
680  // If expansion produced new nodes, make sure they are properly marked.
681  ExpungeNode(From.getNode());
682  AnalyzeNewValue(To); // Expunges To.
683
684  // Anything that used the old node should now use the new one.  Note that this
685  // can potentially cause recursive merging.
686  SmallSetVector<SDNode*, 16> NodesToAnalyze;
687  NodeUpdateListener NUL(*this, NodesToAnalyze);
688  do {
689    DAG.ReplaceAllUsesOfValueWith(From, To);
690
691    // The old node may still be present in a map like ExpandedIntegers or
692    // PromotedIntegers.  Inform maps about the replacement.
693    ReplacedValues[From] = To;
694
695    // Process the list of nodes that need to be reanalyzed.
696    while (!NodesToAnalyze.empty()) {
697      SDNode *N = NodesToAnalyze.back();
698      NodesToAnalyze.pop_back();
699      if (N->getNodeId() != DAGTypeLegalizer::NewNode)
700        // The node was analyzed while reanalyzing an earlier node - it is safe
701        // to skip.  Note that this is not a morphing node - otherwise it would
702        // still be marked NewNode.
703        continue;
704
705      // Analyze the node's operands and recalculate the node ID.
706      SDNode *M = AnalyzeNewNode(N);
707      if (M != N) {
708        // The node morphed into a different node.  Make everyone use the new
709        // node instead.
710        assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
711        assert(N->getNumValues() == M->getNumValues() &&
712               "Node morphing changed the number of results!");
713        for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
714          SDValue OldVal(N, i);
715          SDValue NewVal(M, i);
716          if (M->getNodeId() == Processed)
717            RemapValue(NewVal);
718          DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
719          // OldVal may be a target of the ReplacedValues map which was marked
720          // NewNode to force reanalysis because it was updated.  Ensure that
721          // anything that ReplacedValues mapped to OldVal will now be mapped
722          // all the way to NewVal.
723          ReplacedValues[OldVal] = NewVal;
724        }
725        // The original node continues to exist in the DAG, marked NewNode.
726      }
727    }
728    // When recursively update nodes with new nodes, it is possible to have
729    // new uses of From due to CSE. If this happens, replace the new uses of
730    // From with To.
731  } while (!From.use_empty());
732}
733
734void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
735  assert(Result.getValueType() ==
736         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
737         "Invalid type for promoted integer");
738  AnalyzeNewValue(Result);
739
740  SDValue &OpEntry = PromotedIntegers[Op];
741  assert(!OpEntry.getNode() && "Node is already promoted!");
742  OpEntry = Result;
743}
744
745void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
746  assert(Result.getValueType() ==
747         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
748         "Invalid type for softened float");
749  AnalyzeNewValue(Result);
750
751  SDValue &OpEntry = SoftenedFloats[Op];
752  assert(!OpEntry.getNode() && "Node is already converted to integer!");
753  OpEntry = Result;
754}
755
756void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
757  // Note that in some cases vector operation operands may be greater than
758  // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
759  // a constant i8 operand.
760  assert(Result.getValueType().getSizeInBits() >=
761         Op.getValueType().getVectorElementType().getSizeInBits() &&
762         "Invalid type for scalarized vector");
763  AnalyzeNewValue(Result);
764
765  SDValue &OpEntry = ScalarizedVectors[Op];
766  assert(!OpEntry.getNode() && "Node is already scalarized!");
767  OpEntry = Result;
768}
769
770void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
771                                          SDValue &Hi) {
772  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
773  RemapValue(Entry.first);
774  RemapValue(Entry.second);
775  assert(Entry.first.getNode() && "Operand isn't expanded");
776  Lo = Entry.first;
777  Hi = Entry.second;
778}
779
780void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
781                                          SDValue Hi) {
782  assert(Lo.getValueType() ==
783         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
784         Hi.getValueType() == Lo.getValueType() &&
785         "Invalid type for expanded integer");
786  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
787  AnalyzeNewValue(Lo);
788  AnalyzeNewValue(Hi);
789
790  // Remember that this is the result of the node.
791  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
792  assert(!Entry.first.getNode() && "Node already expanded");
793  Entry.first = Lo;
794  Entry.second = Hi;
795}
796
797void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
798                                        SDValue &Hi) {
799  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
800  RemapValue(Entry.first);
801  RemapValue(Entry.second);
802  assert(Entry.first.getNode() && "Operand isn't expanded");
803  Lo = Entry.first;
804  Hi = Entry.second;
805}
806
807void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
808                                        SDValue Hi) {
809  assert(Lo.getValueType() ==
810         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
811         Hi.getValueType() == Lo.getValueType() &&
812         "Invalid type for expanded float");
813  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
814  AnalyzeNewValue(Lo);
815  AnalyzeNewValue(Hi);
816
817  // Remember that this is the result of the node.
818  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
819  assert(!Entry.first.getNode() && "Node already expanded");
820  Entry.first = Lo;
821  Entry.second = Hi;
822}
823
824void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
825                                      SDValue &Hi) {
826  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
827  RemapValue(Entry.first);
828  RemapValue(Entry.second);
829  assert(Entry.first.getNode() && "Operand isn't split");
830  Lo = Entry.first;
831  Hi = Entry.second;
832}
833
834void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
835                                      SDValue Hi) {
836  assert(Lo.getValueType().getVectorElementType() ==
837         Op.getValueType().getVectorElementType() &&
838         2*Lo.getValueType().getVectorNumElements() ==
839         Op.getValueType().getVectorNumElements() &&
840         Hi.getValueType() == Lo.getValueType() &&
841         "Invalid type for split vector");
842  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
843  AnalyzeNewValue(Lo);
844  AnalyzeNewValue(Hi);
845
846  // Remember that this is the result of the node.
847  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
848  assert(!Entry.first.getNode() && "Node already split");
849  Entry.first = Lo;
850  Entry.second = Hi;
851}
852
853void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
854  assert(Result.getValueType() ==
855         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
856         "Invalid type for widened vector");
857  AnalyzeNewValue(Result);
858
859  SDValue &OpEntry = WidenedVectors[Op];
860  assert(!OpEntry.getNode() && "Node already widened!");
861  OpEntry = Result;
862}
863
864
865//===----------------------------------------------------------------------===//
866// Utilities.
867//===----------------------------------------------------------------------===//
868
869/// BitConvertToInteger - Convert to an integer of the same size.
870SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
871  unsigned BitWidth = Op.getValueType().getSizeInBits();
872  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
873                     EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
874}
875
876/// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
877/// same size.
878SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
879  assert(Op.getValueType().isVector() && "Only applies to vectors!");
880  unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
881  EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
882  unsigned NumElts = Op.getValueType().getVectorNumElements();
883  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
884                     EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
885}
886
887SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
888                                               EVT DestVT) {
889  SDLoc dl(Op);
890  // Create the stack frame object.  Make sure it is aligned for both
891  // the source and destination types.
892  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
893  // Emit a store to the stack slot.
894  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
895                               MachinePointerInfo(), false, false, 0);
896  // Result is a load from the stack slot.
897  return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
898                     false, false, false, 0);
899}
900
901/// CustomLowerNode - Replace the node's results with custom code provided
902/// by the target and return "true", or do nothing and return "false".
903/// The last parameter is FALSE if we are dealing with a node with legal
904/// result types and illegal operand. The second parameter denotes the type of
905/// illegal OperandNo in that case.
906/// The last parameter being TRUE means we are dealing with a
907/// node with illegal result types. The second parameter denotes the type of
908/// illegal ResNo in that case.
909bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
910  // See if the target wants to custom lower this node.
911  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
912    return false;
913
914  SmallVector<SDValue, 8> Results;
915  if (LegalizeResult)
916    TLI.ReplaceNodeResults(N, Results, DAG);
917  else
918    TLI.LowerOperationWrapper(N, Results, DAG);
919
920  if (Results.empty())
921    // The target didn't want to custom lower it after all.
922    return false;
923
924  // Make everything that once used N's values now use those in Results instead.
925  assert(Results.size() == N->getNumValues() &&
926         "Custom lowering returned the wrong number of results!");
927  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
928    ReplaceValueWith(SDValue(N, i), Results[i]);
929  }
930  return true;
931}
932
933
934/// CustomWidenLowerNode - Widen the node's results with custom code provided
935/// by the target and return "true", or do nothing and return "false".
936bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
937  // See if the target wants to custom lower this node.
938  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
939    return false;
940
941  SmallVector<SDValue, 8> Results;
942  TLI.ReplaceNodeResults(N, Results, DAG);
943
944  if (Results.empty())
945    // The target didn't want to custom widen lower its result  after all.
946    return false;
947
948  // Update the widening map.
949  assert(Results.size() == N->getNumValues() &&
950         "Custom lowering returned the wrong number of results!");
951  for (unsigned i = 0, e = Results.size(); i != e; ++i)
952    SetWidenedVector(SDValue(N, i), Results[i]);
953  return true;
954}
955
956SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
957  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
958    if (i != ResNo)
959      ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
960  return SDValue(N->getOperand(ResNo));
961}
962
963/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
964/// high parts of the given value.
965void DAGTypeLegalizer::GetPairElements(SDValue Pair,
966                                       SDValue &Lo, SDValue &Hi) {
967  SDLoc dl(Pair);
968  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
969  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
970                   DAG.getIntPtrConstant(0));
971  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
972                   DAG.getIntPtrConstant(1));
973}
974
975SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
976                                                  SDValue Index) {
977  SDLoc dl(Index);
978  // Make sure the index type is big enough to compute in.
979  Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy());
980
981  // Calculate the element offset and add it to the pointer.
982  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
983
984  Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
985                      DAG.getConstant(EltSize, Index.getValueType()));
986  return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
987}
988
989/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
990SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
991  // Arbitrarily use dlHi for result SDLoc
992  SDLoc dlHi(Hi);
993  SDLoc dlLo(Lo);
994  EVT LVT = Lo.getValueType();
995  EVT HVT = Hi.getValueType();
996  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
997                              LVT.getSizeInBits() + HVT.getSizeInBits());
998
999  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1000  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1001  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1002                   DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
1003  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1004}
1005
1006/// LibCallify - Convert the node into a libcall with the same prototype.
1007SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1008                                     bool isSigned) {
1009  unsigned NumOps = N->getNumOperands();
1010  SDLoc dl(N);
1011  if (NumOps == 0) {
1012    return TLI.makeLibCall(DAG, LC, N->getValueType(0), nullptr, 0, isSigned,
1013                           dl).first;
1014  } else if (NumOps == 1) {
1015    SDValue Op = N->getOperand(0);
1016    return TLI.makeLibCall(DAG, LC, N->getValueType(0), &Op, 1, isSigned,
1017                           dl).first;
1018  } else if (NumOps == 2) {
1019    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1020    return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, 2, isSigned,
1021                           dl).first;
1022  }
1023  SmallVector<SDValue, 8> Ops(NumOps);
1024  for (unsigned i = 0; i < NumOps; ++i)
1025    Ops[i] = N->getOperand(i);
1026
1027  return TLI.makeLibCall(DAG, LC, N->getValueType(0),
1028                         &Ops[0], NumOps, isSigned, dl).first;
1029}
1030
1031// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1032// ExpandLibCall except that the first operand is the in-chain.
1033std::pair<SDValue, SDValue>
1034DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
1035                                         SDNode *Node,
1036                                         bool isSigned) {
1037  SDValue InChain = Node->getOperand(0);
1038
1039  TargetLowering::ArgListTy Args;
1040  TargetLowering::ArgListEntry Entry;
1041  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1042    EVT ArgVT = Node->getOperand(i).getValueType();
1043    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1044    Entry.Node = Node->getOperand(i);
1045    Entry.Ty = ArgTy;
1046    Entry.isSExt = isSigned;
1047    Entry.isZExt = !isSigned;
1048    Args.push_back(Entry);
1049  }
1050  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1051                                         TLI.getPointerTy());
1052
1053  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1054
1055  TargetLowering::CallLoweringInfo CLI(DAG);
1056  CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
1057    .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
1058    .setSExtResult(isSigned).setZExtResult(!isSigned);
1059
1060  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1061
1062  return CallInfo;
1063}
1064
1065/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1066/// of the given type.  A target boolean is an integer value, not necessarily of
1067/// type i1, the bits of which conform to getBooleanContents.
1068///
1069/// ValVT is the type of values that produced the boolean.
1070SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1071  SDLoc dl(Bool);
1072  EVT BoolVT = getSetCCResultType(ValVT);
1073  ISD::NodeType ExtendCode =
1074      TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1075  return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1076}
1077
1078/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1079/// bits in Hi.
1080void DAGTypeLegalizer::SplitInteger(SDValue Op,
1081                                    EVT LoVT, EVT HiVT,
1082                                    SDValue &Lo, SDValue &Hi) {
1083  SDLoc dl(Op);
1084  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1085         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1086  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1087  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1088                   DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1089  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1090}
1091
1092/// SplitInteger - Return the lower and upper halves of Op's bits in a value
1093/// type half the size of Op's.
1094void DAGTypeLegalizer::SplitInteger(SDValue Op,
1095                                    SDValue &Lo, SDValue &Hi) {
1096  EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
1097                                 Op.getValueType().getSizeInBits()/2);
1098  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1099}
1100
1101
1102//===----------------------------------------------------------------------===//
1103//  Entry Point
1104//===----------------------------------------------------------------------===//
1105
1106/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1107/// only uses types natively supported by the target.  Returns "true" if it made
1108/// any changes.
1109///
1110/// Note that this is an involved process that may invalidate pointers into
1111/// the graph.
1112bool SelectionDAG::LegalizeTypes() {
1113  return DAGTypeLegalizer(*this).run();
1114}
1115