LegalizeTypes.h revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Target/TargetLowering.h"
25
26namespace llvm {
27
28//===----------------------------------------------------------------------===//
29/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30/// on it until only value types the target machine can handle are left.  This
31/// involves promoting small sizes to large sizes or splitting up large values
32/// into small values.
33///
34class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
35  const TargetLowering &TLI;
36  SelectionDAG &DAG;
37public:
38  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
39  // about the state of the node.  The enum has all the values.
40  enum NodeIdFlags {
41    /// ReadyToProcess - All operands have been processed, so this node is ready
42    /// to be handled.
43    ReadyToProcess = 0,
44
45    /// NewNode - This is a new node, not before seen, that was created in the
46    /// process of legalizing some other node.
47    NewNode = -1,
48
49    /// Unanalyzed - This node's ID needs to be set to the number of its
50    /// unprocessed operands.
51    Unanalyzed = -2,
52
53    /// Processed - This is a node that has already been processed.
54    Processed = -3
55
56    // 1+ - This is a node which has this many unprocessed operands.
57  };
58private:
59
60  /// ValueTypeActions - This is a bitvector that contains two bits for each
61  /// simple value type, where the two bits correspond to the LegalizeAction
62  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
63  TargetLowering::ValueTypeActionImpl ValueTypeActions;
64
65  /// getTypeAction - Return how we should legalize values of this type.
66  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
67    return TLI.getTypeAction(*DAG.getContext(), VT);
68  }
69
70  /// isTypeLegal - Return true if this type is legal on this target.
71  bool isTypeLegal(EVT VT) const {
72    return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
73  }
74
75  EVT getSetCCResultType(EVT VT) const {
76    return TLI.getSetCCResultType(*DAG.getContext(), VT);
77  }
78
79  /// IgnoreNodeResults - Pretend all of this node's results are legal.
80  bool IgnoreNodeResults(SDNode *N) const {
81    return N->getOpcode() == ISD::TargetConstant;
82  }
83
84  /// PromotedIntegers - For integer nodes that are below legal width, this map
85  /// indicates what promoted value to use.
86  SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
87
88  /// ExpandedIntegers - For integer nodes that need to be expanded this map
89  /// indicates which operands are the expanded version of the input.
90  SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
91
92  /// SoftenedFloats - For floating point nodes converted to integers of
93  /// the same size, this map indicates the converted value to use.
94  SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
95
96  /// ExpandedFloats - For float nodes that need to be expanded this map
97  /// indicates which operands are the expanded version of the input.
98  SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
99
100  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
101  /// scalar value of type 'ty' to use.
102  SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
103
104  /// SplitVectors - For nodes that need to be split this map indicates
105  /// which operands are the expanded version of the input.
106  SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
107
108  /// WidenedVectors - For vector nodes that need to be widened, indicates
109  /// the widened value to use.
110  SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
111
112  /// ReplacedValues - For values that have been replaced with another,
113  /// indicates the replacement value to use.
114  SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
115
116  /// Worklist - This defines a worklist of nodes to process.  In order to be
117  /// pushed onto this worklist, all operands of a node must have already been
118  /// processed.
119  SmallVector<SDNode*, 128> Worklist;
120
121public:
122  explicit DAGTypeLegalizer(SelectionDAG &dag)
123    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
124    ValueTypeActions(TLI.getValueTypeActions()) {
125    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
126           "Too many value types for ValueTypeActions to hold!");
127  }
128
129  /// run - This is the main entry point for the type legalizer.  This does a
130  /// top-down traversal of the dag, legalizing types as it goes.  Returns
131  /// "true" if it made any changes.
132  bool run();
133
134  void NoteDeletion(SDNode *Old, SDNode *New) {
135    ExpungeNode(Old);
136    ExpungeNode(New);
137    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
138      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
139  }
140
141  SelectionDAG &getDAG() const { return DAG; }
142
143private:
144  SDNode *AnalyzeNewNode(SDNode *N);
145  void AnalyzeNewValue(SDValue &Val);
146  void ExpungeNode(SDNode *N);
147  void PerformExpensiveChecks();
148  void RemapValue(SDValue &N);
149
150  // Common routines.
151  SDValue BitConvertToInteger(SDValue Op);
152  SDValue BitConvertVectorToIntegerVector(SDValue Op);
153  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
154  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
155  bool CustomWidenLowerNode(SDNode *N, EVT VT);
156
157  /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
158  /// node with the corresponding input operand, except for the result 'ResNo',
159  /// for which the corresponding input operand is returned.
160  SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
161
162  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
163  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
164  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
165
166  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
167                                                 SDNode *Node, bool isSigned);
168  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
169
170  SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
171  void ReplaceValueWith(SDValue From, SDValue To);
172  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
173  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
174                    SDValue &Lo, SDValue &Hi);
175
176  //===--------------------------------------------------------------------===//
177  // Integer Promotion Support: LegalizeIntegerTypes.cpp
178  //===--------------------------------------------------------------------===//
179
180  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
181  /// larger integer type, this returns the promoted value.  The low bits of the
182  /// promoted value corresponding to the original type are exactly equal to Op.
183  /// The extra bits contain rubbish, so the promoted value may need to be zero-
184  /// or sign-extended from the original type before it is usable (the helpers
185  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
186  /// For example, if Op is an i16 and was promoted to an i32, then this method
187  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
188  /// 16 bits of which contain rubbish.
189  SDValue GetPromotedInteger(SDValue Op) {
190    SDValue &PromotedOp = PromotedIntegers[Op];
191    RemapValue(PromotedOp);
192    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
193    return PromotedOp;
194  }
195  void SetPromotedInteger(SDValue Op, SDValue Result);
196
197  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
198  /// final size.
199  SDValue SExtPromotedInteger(SDValue Op) {
200    EVT OldVT = Op.getValueType();
201    SDLoc dl(Op);
202    Op = GetPromotedInteger(Op);
203    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
204                       DAG.getValueType(OldVT));
205  }
206
207  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
208  /// final size.
209  SDValue ZExtPromotedInteger(SDValue Op) {
210    EVT OldVT = Op.getValueType();
211    SDLoc dl(Op);
212    Op = GetPromotedInteger(Op);
213    return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
214  }
215
216  // Integer Result Promotion.
217  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
218  SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
219  SDValue PromoteIntRes_AssertSext(SDNode *N);
220  SDValue PromoteIntRes_AssertZext(SDNode *N);
221  SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
222  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
223  SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
224  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
225  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
226  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
227  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
228  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
229  SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
230  SDValue PromoteIntRes_BITCAST(SDNode *N);
231  SDValue PromoteIntRes_BSWAP(SDNode *N);
232  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
233  SDValue PromoteIntRes_Constant(SDNode *N);
234  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
235  SDValue PromoteIntRes_CTLZ(SDNode *N);
236  SDValue PromoteIntRes_CTPOP(SDNode *N);
237  SDValue PromoteIntRes_CTTZ(SDNode *N);
238  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
239  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
240  SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
241  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
242  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
243  SDValue PromoteIntRes_Overflow(SDNode *N);
244  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
245  SDValue PromoteIntRes_SDIV(SDNode *N);
246  SDValue PromoteIntRes_SELECT(SDNode *N);
247  SDValue PromoteIntRes_VSELECT(SDNode *N);
248  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
249  SDValue PromoteIntRes_SETCC(SDNode *N);
250  SDValue PromoteIntRes_SHL(SDNode *N);
251  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
252  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
253  SDValue PromoteIntRes_SRA(SDNode *N);
254  SDValue PromoteIntRes_SRL(SDNode *N);
255  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
256  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
257  SDValue PromoteIntRes_UDIV(SDNode *N);
258  SDValue PromoteIntRes_UNDEF(SDNode *N);
259  SDValue PromoteIntRes_VAARG(SDNode *N);
260  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
261
262  // Integer Operand Promotion.
263  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
264  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
265  SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
266  SDValue PromoteIntOp_BITCAST(SDNode *N);
267  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
268  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
269  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
270  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
271  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
272  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
273  SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
274  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
275  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
276  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
277  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
278  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
279  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
280  SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
281  SDValue PromoteIntOp_Shift(SDNode *N);
282  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
283  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
284  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
285  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
286  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
287  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
288
289  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
290
291  //===--------------------------------------------------------------------===//
292  // Integer Expansion Support: LegalizeIntegerTypes.cpp
293  //===--------------------------------------------------------------------===//
294
295  /// GetExpandedInteger - Given a processed operand Op which was expanded into
296  /// two integers of half the size, this returns the two halves.  The low bits
297  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
298  /// For example, if Op is an i64 which was expanded into two i32's, then this
299  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
300  /// Op, and Hi being equal to the upper 32 bits.
301  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
302  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
303
304  // Integer Result Expansion.
305  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
306  void ExpandIntRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
307                                       SDValue &Lo, SDValue &Hi);
308  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
309  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
310  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
311  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
312  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
313  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
314  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
315  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
316  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
317  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
318  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
319  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
320  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
322
323  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
332  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
333  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
334
335  void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
336  void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
337  void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
338
339  void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
340
341  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
342                             SDValue &Lo, SDValue &Hi);
343  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
344  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
345
346  // Integer Operand Expansion.
347  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
348  SDValue ExpandIntOp_BITCAST(SDNode *N);
349  SDValue ExpandIntOp_BR_CC(SDNode *N);
350  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
351  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
352  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
353  SDValue ExpandIntOp_SETCC(SDNode *N);
354  SDValue ExpandIntOp_Shift(SDNode *N);
355  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
356  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
357  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
358  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
359  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
360  SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
361
362  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
363                                  ISD::CondCode &CCCode, SDLoc dl);
364
365  //===--------------------------------------------------------------------===//
366  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
367  //===--------------------------------------------------------------------===//
368
369  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
370  /// integer of the same size, this returns the integer.  The integer contains
371  /// exactly the same bits as Op - only the type changed.  For example, if Op
372  /// is an f32 which was softened to an i32, then this method returns an i32,
373  /// the bits of which coincide with those of Op.
374  SDValue GetSoftenedFloat(SDValue Op) {
375    SDValue &SoftenedOp = SoftenedFloats[Op];
376    RemapValue(SoftenedOp);
377    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
378    return SoftenedOp;
379  }
380  void SetSoftenedFloat(SDValue Op, SDValue Result);
381
382  // Result Float to Integer Conversion.
383  void SoftenFloatResult(SDNode *N, unsigned OpNo);
384  SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
385  SDValue SoftenFloatRes_BITCAST(SDNode *N);
386  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
387  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
388  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
389  SDValue SoftenFloatRes_FABS(SDNode *N);
390  SDValue SoftenFloatRes_FADD(SDNode *N);
391  SDValue SoftenFloatRes_FCEIL(SDNode *N);
392  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
393  SDValue SoftenFloatRes_FCOS(SDNode *N);
394  SDValue SoftenFloatRes_FDIV(SDNode *N);
395  SDValue SoftenFloatRes_FEXP(SDNode *N);
396  SDValue SoftenFloatRes_FEXP2(SDNode *N);
397  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
398  SDValue SoftenFloatRes_FLOG(SDNode *N);
399  SDValue SoftenFloatRes_FLOG2(SDNode *N);
400  SDValue SoftenFloatRes_FLOG10(SDNode *N);
401  SDValue SoftenFloatRes_FMA(SDNode *N);
402  SDValue SoftenFloatRes_FMUL(SDNode *N);
403  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
404  SDValue SoftenFloatRes_FNEG(SDNode *N);
405  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
406  SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
407  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
408  SDValue SoftenFloatRes_FPOW(SDNode *N);
409  SDValue SoftenFloatRes_FPOWI(SDNode *N);
410  SDValue SoftenFloatRes_FREM(SDNode *N);
411  SDValue SoftenFloatRes_FRINT(SDNode *N);
412  SDValue SoftenFloatRes_FROUND(SDNode *N);
413  SDValue SoftenFloatRes_FSIN(SDNode *N);
414  SDValue SoftenFloatRes_FSQRT(SDNode *N);
415  SDValue SoftenFloatRes_FSUB(SDNode *N);
416  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
417  SDValue SoftenFloatRes_LOAD(SDNode *N);
418  SDValue SoftenFloatRes_SELECT(SDNode *N);
419  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
420  SDValue SoftenFloatRes_UNDEF(SDNode *N);
421  SDValue SoftenFloatRes_VAARG(SDNode *N);
422  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
423
424  // Operand Float to Integer Conversion.
425  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
426  SDValue SoftenFloatOp_BITCAST(SDNode *N);
427  SDValue SoftenFloatOp_BR_CC(SDNode *N);
428  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
429  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
430  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
431  SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
432  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
433  SDValue SoftenFloatOp_SETCC(SDNode *N);
434  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
435
436  //===--------------------------------------------------------------------===//
437  // Float Expansion Support: LegalizeFloatTypes.cpp
438  //===--------------------------------------------------------------------===//
439
440  /// GetExpandedFloat - Given a processed operand Op which was expanded into
441  /// two floating point values of half the size, this returns the two halves.
442  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
443  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
444  /// into two f64's, then this method returns the two f64's, with Lo being
445  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
446  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
447  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
448
449  // Float Result Expansion.
450  void ExpandFloatResult(SDNode *N, unsigned ResNo);
451  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
474  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
475  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
476  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
477  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
478  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
479  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
480
481  // Float Operand Expansion.
482  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
483  SDValue ExpandFloatOp_BR_CC(SDNode *N);
484  SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
485  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
486  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
487  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
488  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
489  SDValue ExpandFloatOp_SETCC(SDNode *N);
490  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
491
492  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
493                                ISD::CondCode &CCCode, SDLoc dl);
494
495  //===--------------------------------------------------------------------===//
496  // Scalarization Support: LegalizeVectorTypes.cpp
497  //===--------------------------------------------------------------------===//
498
499  /// GetScalarizedVector - Given a processed one-element vector Op which was
500  /// scalarized to its element type, this returns the element.  For example,
501  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
502  SDValue GetScalarizedVector(SDValue Op) {
503    SDValue &ScalarizedOp = ScalarizedVectors[Op];
504    RemapValue(ScalarizedOp);
505    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
506    return ScalarizedOp;
507  }
508  void SetScalarizedVector(SDValue Op, SDValue Result);
509
510  // Vector Result Scalarization: <1 x ty> -> ty.
511  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
512  SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
513  SDValue ScalarizeVecRes_BinOp(SDNode *N);
514  SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
515  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
516  SDValue ScalarizeVecRes_InregOp(SDNode *N);
517
518  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
519  SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
520  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
521  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
522  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
523  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
524  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
525  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
526  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
527  SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
528  SDValue ScalarizeVecRes_VSELECT(SDNode *N);
529  SDValue ScalarizeVecRes_SELECT(SDNode *N);
530  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
531  SDValue ScalarizeVecRes_SETCC(SDNode *N);
532  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
533  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
534  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
535
536  // Vector Operand Scalarization: <1 x ty> -> ty.
537  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
538  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
539  SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
540  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
541  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
542  SDValue ScalarizeVecOp_VSELECT(SDNode *N);
543  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
544  SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
545
546  //===--------------------------------------------------------------------===//
547  // Vector Splitting Support: LegalizeVectorTypes.cpp
548  //===--------------------------------------------------------------------===//
549
550  /// GetSplitVector - Given a processed vector Op which was split into vectors
551  /// of half the size, this method returns the halves.  The first elements of
552  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
553  /// with the elements of Hi: Op is what you would get by concatenating Lo and
554  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
555  /// this method returns the two v4i32's, with Lo corresponding to the first 4
556  /// elements of Op, and Hi to the last 4 elements.
557  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
558  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
559
560  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
561  void SplitVectorResult(SDNode *N, unsigned OpNo);
562  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
563  void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
564  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
565  void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
566  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
567
568  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
569  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
570  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
571  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
572  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
573  void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
574  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
575  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
576  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
577  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
578  void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
579  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
580  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
581  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
582                                  SDValue &Hi);
583
584  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
585  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
586  SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
587  SDValue SplitVecOp_UnaryOp(SDNode *N);
588
589  SDValue SplitVecOp_BITCAST(SDNode *N);
590  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
591  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
592  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
593  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
594  SDValue SplitVecOp_TRUNCATE(SDNode *N);
595  SDValue SplitVecOp_VSETCC(SDNode *N);
596  SDValue SplitVecOp_FP_ROUND(SDNode *N);
597
598  //===--------------------------------------------------------------------===//
599  // Vector Widening Support: LegalizeVectorTypes.cpp
600  //===--------------------------------------------------------------------===//
601
602  /// GetWidenedVector - Given a processed vector Op which was widened into a
603  /// larger vector, this method returns the larger vector.  The elements of
604  /// the returned vector consist of the elements of Op followed by elements
605  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
606  /// v4i32, then this method returns a v4i32 for which the first two elements
607  /// are the same as those of Op, while the last two elements contain rubbish.
608  SDValue GetWidenedVector(SDValue Op) {
609    SDValue &WidenedOp = WidenedVectors[Op];
610    RemapValue(WidenedOp);
611    assert(WidenedOp.getNode() && "Operand wasn't widened?");
612    return WidenedOp;
613  }
614  void SetWidenedVector(SDValue Op, SDValue Result);
615
616  // Widen Vector Result Promotion.
617  void WidenVectorResult(SDNode *N, unsigned ResNo);
618  SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
619  SDValue WidenVecRes_BITCAST(SDNode* N);
620  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
621  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
622  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
623  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
624  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
625  SDValue WidenVecRes_LOAD(SDNode* N);
626  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
627  SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
628  SDValue WidenVecRes_SELECT(SDNode* N);
629  SDValue WidenVecRes_SELECT_CC(SDNode* N);
630  SDValue WidenVecRes_SETCC(SDNode* N);
631  SDValue WidenVecRes_UNDEF(SDNode *N);
632  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
633  SDValue WidenVecRes_VSETCC(SDNode* N);
634
635  SDValue WidenVecRes_Ternary(SDNode *N);
636  SDValue WidenVecRes_Binary(SDNode *N);
637  SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
638  SDValue WidenVecRes_Convert(SDNode *N);
639  SDValue WidenVecRes_POWI(SDNode *N);
640  SDValue WidenVecRes_Shift(SDNode *N);
641  SDValue WidenVecRes_Unary(SDNode *N);
642  SDValue WidenVecRes_InregOp(SDNode *N);
643
644  // Widen Vector Operand.
645  bool WidenVectorOperand(SDNode *N, unsigned OpNo);
646  SDValue WidenVecOp_BITCAST(SDNode *N);
647  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
648  SDValue WidenVecOp_EXTEND(SDNode *N);
649  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
650  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
651  SDValue WidenVecOp_STORE(SDNode* N);
652  SDValue WidenVecOp_SETCC(SDNode* N);
653
654  SDValue WidenVecOp_Convert(SDNode *N);
655
656  //===--------------------------------------------------------------------===//
657  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
658  //===--------------------------------------------------------------------===//
659
660  /// Helper GenWidenVectorLoads - Helper function to generate a set of
661  /// loads to load a vector with a resulting wider type. It takes
662  ///   LdChain: list of chains for the load to be generated.
663  ///   Ld:      load to widen
664  SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
665                              LoadSDNode *LD);
666
667  /// GenWidenVectorExtLoads - Helper function to generate a set of extension
668  /// loads to load a ector with a resulting wider type.  It takes
669  ///   LdChain: list of chains for the load to be generated.
670  ///   Ld:      load to widen
671  ///   ExtType: extension element type
672  SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
673                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
674
675  /// Helper genWidenVectorStores - Helper function to generate a set of
676  /// stores to store a widen vector into non-widen memory
677  ///   StChain: list of chains for the stores we have generated
678  ///   ST:      store of a widen value
679  void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
680
681  /// Helper genWidenVectorTruncStores - Helper function to generate a set of
682  /// stores to store a truncate widen vector into non-widen memory
683  ///   StChain: list of chains for the stores we have generated
684  ///   ST:      store of a widen value
685  void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
686                                 StoreSDNode *ST);
687
688  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
689  /// input vector must have the same element type as NVT.
690  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
691
692
693  //===--------------------------------------------------------------------===//
694  // Generic Splitting: LegalizeTypesGeneric.cpp
695  //===--------------------------------------------------------------------===//
696
697  // Legalization methods which only use that the illegal type is split into two
698  // not necessarily identical types.  As such they can be used for splitting
699  // vectors and expanding integers and floats.
700
701  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
702    if (Op.getValueType().isVector())
703      GetSplitVector(Op, Lo, Hi);
704    else if (Op.getValueType().isInteger())
705      GetExpandedInteger(Op, Lo, Hi);
706    else
707      GetExpandedFloat(Op, Lo, Hi);
708  }
709
710  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
711  /// high parts of the given value.
712  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
713
714  // Generic Result Splitting.
715  void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
716                             SDValue &Lo, SDValue &Hi);
717  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
718  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
719  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
720
721  //===--------------------------------------------------------------------===//
722  // Generic Expansion: LegalizeTypesGeneric.cpp
723  //===--------------------------------------------------------------------===//
724
725  // Legalization methods which only use that the illegal type is split into two
726  // identical types of half the size, and that the Lo/Hi part is stored first
727  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
728  // such they can be used for expanding integers and floats.
729
730  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
731    if (Op.getValueType().isInteger())
732      GetExpandedInteger(Op, Lo, Hi);
733    else
734      GetExpandedFloat(Op, Lo, Hi);
735  }
736
737
738  /// This function will split the integer \p Op into \p NumElements
739  /// operations of type \p EltVT and store them in \p Ops.
740  void IntegerToVector(SDValue Op, unsigned NumElements,
741                       SmallVectorImpl<SDValue> &Ops, EVT EltVT);
742
743  // Generic Result Expansion.
744  void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
745                                    SDValue &Lo, SDValue &Hi);
746  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
747  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
748  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
749  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
750  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
751  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
752
753  // Generic Operand Expansion.
754  SDValue ExpandOp_BITCAST          (SDNode *N);
755  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
756  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
757  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
758  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
759  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
760};
761
762} // end namespace llvm.
763
764#endif
765