ScheduleDAGRRList.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/CodeGen/SchedulerRegistry.h"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25#include "llvm/CodeGen/SelectionDAGISel.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/InlineAsm.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include <climits>
36using namespace llvm;
37
38#define DEBUG_TYPE "pre-RA-sched"
39
40STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
41STATISTIC(NumUnfolds,    "Number of nodes unfolded");
42STATISTIC(NumDups,       "Number of duplicated nodes");
43STATISTIC(NumPRCopies,   "Number of physical register copies");
44
45static RegisterScheduler
46  burrListDAGScheduler("list-burr",
47                       "Bottom-up register reduction list scheduling",
48                       createBURRListDAGScheduler);
49static RegisterScheduler
50  sourceListDAGScheduler("source",
51                         "Similar to list-burr but schedules in source "
52                         "order when possible",
53                         createSourceListDAGScheduler);
54
55static RegisterScheduler
56  hybridListDAGScheduler("list-hybrid",
57                         "Bottom-up register pressure aware list scheduling "
58                         "which tries to balance latency and register pressure",
59                         createHybridListDAGScheduler);
60
61static RegisterScheduler
62  ILPListDAGScheduler("list-ilp",
63                      "Bottom-up register pressure aware list scheduling "
64                      "which tries to balance ILP and register pressure",
65                      createILPListDAGScheduler);
66
67static cl::opt<bool> DisableSchedCycles(
68  "disable-sched-cycles", cl::Hidden, cl::init(false),
69  cl::desc("Disable cycle-level precision during preRA scheduling"));
70
71// Temporary sched=list-ilp flags until the heuristics are robust.
72// Some options are also available under sched=list-hybrid.
73static cl::opt<bool> DisableSchedRegPressure(
74  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
75  cl::desc("Disable regpressure priority in sched=list-ilp"));
76static cl::opt<bool> DisableSchedLiveUses(
77  "disable-sched-live-uses", cl::Hidden, cl::init(true),
78  cl::desc("Disable live use priority in sched=list-ilp"));
79static cl::opt<bool> DisableSchedVRegCycle(
80  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
81  cl::desc("Disable virtual register cycle interference checks"));
82static cl::opt<bool> DisableSchedPhysRegJoin(
83  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
84  cl::desc("Disable physreg def-use affinity"));
85static cl::opt<bool> DisableSchedStalls(
86  "disable-sched-stalls", cl::Hidden, cl::init(true),
87  cl::desc("Disable no-stall priority in sched=list-ilp"));
88static cl::opt<bool> DisableSchedCriticalPath(
89  "disable-sched-critical-path", cl::Hidden, cl::init(false),
90  cl::desc("Disable critical path priority in sched=list-ilp"));
91static cl::opt<bool> DisableSchedHeight(
92  "disable-sched-height", cl::Hidden, cl::init(false),
93  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
94static cl::opt<bool> Disable2AddrHack(
95  "disable-2addr-hack", cl::Hidden, cl::init(true),
96  cl::desc("Disable scheduler's two-address hack"));
97
98static cl::opt<int> MaxReorderWindow(
99  "max-sched-reorder", cl::Hidden, cl::init(6),
100  cl::desc("Number of instructions to allow ahead of the critical path "
101           "in sched=list-ilp"));
102
103static cl::opt<unsigned> AvgIPC(
104  "sched-avg-ipc", cl::Hidden, cl::init(1),
105  cl::desc("Average inst/cycle whan no target itinerary exists."));
106
107namespace {
108//===----------------------------------------------------------------------===//
109/// ScheduleDAGRRList - The actual register reduction list scheduler
110/// implementation.  This supports both top-down and bottom-up scheduling.
111///
112class ScheduleDAGRRList : public ScheduleDAGSDNodes {
113private:
114  /// NeedLatency - True if the scheduler will make use of latency information.
115  ///
116  bool NeedLatency;
117
118  /// AvailableQueue - The priority queue to use for the available SUnits.
119  SchedulingPriorityQueue *AvailableQueue;
120
121  /// PendingQueue - This contains all of the instructions whose operands have
122  /// been issued, but their results are not ready yet (due to the latency of
123  /// the operation).  Once the operands becomes available, the instruction is
124  /// added to the AvailableQueue.
125  std::vector<SUnit*> PendingQueue;
126
127  /// HazardRec - The hazard recognizer to use.
128  ScheduleHazardRecognizer *HazardRec;
129
130  /// CurCycle - The current scheduler state corresponds to this cycle.
131  unsigned CurCycle;
132
133  /// MinAvailableCycle - Cycle of the soonest available instruction.
134  unsigned MinAvailableCycle;
135
136  /// IssueCount - Count instructions issued in this cycle
137  /// Currently valid only for bottom-up scheduling.
138  unsigned IssueCount;
139
140  /// LiveRegDefs - A set of physical registers and their definition
141  /// that are "live". These nodes must be scheduled before any other nodes that
142  /// modifies the registers can be scheduled.
143  unsigned NumLiveRegs;
144  std::vector<SUnit*> LiveRegDefs;
145  std::vector<SUnit*> LiveRegGens;
146
147  // Collect interferences between physical register use/defs.
148  // Each interference is an SUnit and set of physical registers.
149  SmallVector<SUnit*, 4> Interferences;
150  typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
151  LRegsMapT LRegsMap;
152
153  /// Topo - A topological ordering for SUnits which permits fast IsReachable
154  /// and similar queries.
155  ScheduleDAGTopologicalSort Topo;
156
157  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
158  // DAG crawling.
159  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
160
161public:
162  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
163                    SchedulingPriorityQueue *availqueue,
164                    CodeGenOpt::Level OptLevel)
165    : ScheduleDAGSDNodes(mf),
166      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
167      Topo(SUnits, nullptr) {
168
169    const TargetMachine &tm = mf.getTarget();
170    if (DisableSchedCycles || !NeedLatency)
171      HazardRec = new ScheduleHazardRecognizer();
172    else
173      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(
174          tm.getSubtargetImpl(), this);
175  }
176
177  ~ScheduleDAGRRList() {
178    delete HazardRec;
179    delete AvailableQueue;
180  }
181
182  void Schedule() override;
183
184  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
185
186  /// IsReachable - Checks if SU is reachable from TargetSU.
187  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
188    return Topo.IsReachable(SU, TargetSU);
189  }
190
191  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
192  /// create a cycle.
193  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
194    return Topo.WillCreateCycle(SU, TargetSU);
195  }
196
197  /// AddPred - adds a predecessor edge to SUnit SU.
198  /// This returns true if this is a new predecessor.
199  /// Updates the topological ordering if required.
200  void AddPred(SUnit *SU, const SDep &D) {
201    Topo.AddPred(SU, D.getSUnit());
202    SU->addPred(D);
203  }
204
205  /// RemovePred - removes a predecessor edge from SUnit SU.
206  /// This returns true if an edge was removed.
207  /// Updates the topological ordering if required.
208  void RemovePred(SUnit *SU, const SDep &D) {
209    Topo.RemovePred(SU, D.getSUnit());
210    SU->removePred(D);
211  }
212
213private:
214  bool isReady(SUnit *SU) {
215    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
216      AvailableQueue->isReady(SU);
217  }
218
219  void ReleasePred(SUnit *SU, const SDep *PredEdge);
220  void ReleasePredecessors(SUnit *SU);
221  void ReleasePending();
222  void AdvanceToCycle(unsigned NextCycle);
223  void AdvancePastStalls(SUnit *SU);
224  void EmitNode(SUnit *SU);
225  void ScheduleNodeBottomUp(SUnit*);
226  void CapturePred(SDep *PredEdge);
227  void UnscheduleNodeBottomUp(SUnit*);
228  void RestoreHazardCheckerBottomUp();
229  void BacktrackBottomUp(SUnit*, SUnit*);
230  SUnit *CopyAndMoveSuccessors(SUnit*);
231  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
232                                const TargetRegisterClass*,
233                                const TargetRegisterClass*,
234                                SmallVectorImpl<SUnit*>&);
235  bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
236
237  void releaseInterferences(unsigned Reg = 0);
238
239  SUnit *PickNodeToScheduleBottomUp();
240  void ListScheduleBottomUp();
241
242  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
243  /// Updates the topological ordering if required.
244  SUnit *CreateNewSUnit(SDNode *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = newSUnit(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// CreateClone - Creates a new SUnit from an existing one.
254  /// Updates the topological ordering if required.
255  SUnit *CreateClone(SUnit *N) {
256    unsigned NumSUnits = SUnits.size();
257    SUnit *NewNode = Clone(N);
258    // Update the topological ordering.
259    if (NewNode->NodeNum >= NumSUnits)
260      Topo.InitDAGTopologicalSorting();
261    return NewNode;
262  }
263
264  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
265  /// need actual latency information but the hybrid scheduler does.
266  bool forceUnitLatencies() const override {
267    return !NeedLatency;
268  }
269};
270}  // end anonymous namespace
271
272/// GetCostForDef - Looks up the register class and cost for a given definition.
273/// Typically this just means looking up the representative register class,
274/// but for untyped values (MVT::Untyped) it means inspecting the node's
275/// opcode to determine what register class is being generated.
276static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
277                          const TargetLowering *TLI,
278                          const TargetInstrInfo *TII,
279                          const TargetRegisterInfo *TRI,
280                          unsigned &RegClass, unsigned &Cost,
281                          const MachineFunction &MF) {
282  MVT VT = RegDefPos.GetValue();
283
284  // Special handling for untyped values.  These values can only come from
285  // the expansion of custom DAG-to-DAG patterns.
286  if (VT == MVT::Untyped) {
287    const SDNode *Node = RegDefPos.GetNode();
288
289    // Special handling for CopyFromReg of untyped values.
290    if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
291      unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
292      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
293      RegClass = RC->getID();
294      Cost = 1;
295      return;
296    }
297
298    unsigned Opcode = Node->getMachineOpcode();
299    if (Opcode == TargetOpcode::REG_SEQUENCE) {
300      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
301      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
302      RegClass = RC->getID();
303      Cost = 1;
304      return;
305    }
306
307    unsigned Idx = RegDefPos.GetIdx();
308    const MCInstrDesc Desc = TII->get(Opcode);
309    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
310    RegClass = RC->getID();
311    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
312    // better way to determine it.
313    Cost = 1;
314  } else {
315    RegClass = TLI->getRepRegClassFor(VT)->getID();
316    Cost = TLI->getRepRegClassCostFor(VT);
317  }
318}
319
320/// Schedule - Schedule the DAG using list scheduling.
321void ScheduleDAGRRList::Schedule() {
322  DEBUG(dbgs()
323        << "********** List Scheduling BB#" << BB->getNumber()
324        << " '" << BB->getName() << "' **********\n");
325
326  CurCycle = 0;
327  IssueCount = 0;
328  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
329  NumLiveRegs = 0;
330  // Allocate slots for each physical register, plus one for a special register
331  // to track the virtual resource of a calling sequence.
332  LiveRegDefs.resize(TRI->getNumRegs() + 1, nullptr);
333  LiveRegGens.resize(TRI->getNumRegs() + 1, nullptr);
334  CallSeqEndForStart.clear();
335  assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
336
337  // Build the scheduling graph.
338  BuildSchedGraph(nullptr);
339
340  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
341          SUnits[su].dumpAll(this));
342  Topo.InitDAGTopologicalSorting();
343
344  AvailableQueue->initNodes(SUnits);
345
346  HazardRec->Reset();
347
348  // Execute the actual scheduling loop.
349  ListScheduleBottomUp();
350
351  AvailableQueue->releaseState();
352
353  DEBUG({
354      dbgs() << "*** Final schedule ***\n";
355      dumpSchedule();
356      dbgs() << '\n';
357    });
358}
359
360//===----------------------------------------------------------------------===//
361//  Bottom-Up Scheduling
362//===----------------------------------------------------------------------===//
363
364/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
365/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
366void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
367  SUnit *PredSU = PredEdge->getSUnit();
368
369#ifndef NDEBUG
370  if (PredSU->NumSuccsLeft == 0) {
371    dbgs() << "*** Scheduling failed! ***\n";
372    PredSU->dump(this);
373    dbgs() << " has been released too many times!\n";
374    llvm_unreachable(nullptr);
375  }
376#endif
377  --PredSU->NumSuccsLeft;
378
379  if (!forceUnitLatencies()) {
380    // Updating predecessor's height. This is now the cycle when the
381    // predecessor can be scheduled without causing a pipeline stall.
382    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
383  }
384
385  // If all the node's successors are scheduled, this node is ready
386  // to be scheduled. Ignore the special EntrySU node.
387  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
388    PredSU->isAvailable = true;
389
390    unsigned Height = PredSU->getHeight();
391    if (Height < MinAvailableCycle)
392      MinAvailableCycle = Height;
393
394    if (isReady(PredSU)) {
395      AvailableQueue->push(PredSU);
396    }
397    // CapturePred and others may have left the node in the pending queue, avoid
398    // adding it twice.
399    else if (!PredSU->isPending) {
400      PredSU->isPending = true;
401      PendingQueue.push_back(PredSU);
402    }
403  }
404}
405
406/// IsChainDependent - Test if Outer is reachable from Inner through
407/// chain dependencies.
408static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
409                             unsigned NestLevel,
410                             const TargetInstrInfo *TII) {
411  SDNode *N = Outer;
412  for (;;) {
413    if (N == Inner)
414      return true;
415    // For a TokenFactor, examine each operand. There may be multiple ways
416    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
417    // most nesting in order to ensure that we find the corresponding match.
418    if (N->getOpcode() == ISD::TokenFactor) {
419      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
420        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
421          return true;
422      return false;
423    }
424    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
425    if (N->isMachineOpcode()) {
426      if (N->getMachineOpcode() ==
427          (unsigned)TII->getCallFrameDestroyOpcode()) {
428        ++NestLevel;
429      } else if (N->getMachineOpcode() ==
430                 (unsigned)TII->getCallFrameSetupOpcode()) {
431        if (NestLevel == 0)
432          return false;
433        --NestLevel;
434      }
435    }
436    // Otherwise, find the chain and continue climbing.
437    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
438      if (N->getOperand(i).getValueType() == MVT::Other) {
439        N = N->getOperand(i).getNode();
440        goto found_chain_operand;
441      }
442    return false;
443  found_chain_operand:;
444    if (N->getOpcode() == ISD::EntryToken)
445      return false;
446  }
447}
448
449/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
450/// the corresponding (lowered) CALLSEQ_BEGIN node.
451///
452/// NestLevel and MaxNested are used in recursion to indcate the current level
453/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
454/// level seen so far.
455///
456/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
457/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
458static SDNode *
459FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
460                 const TargetInstrInfo *TII) {
461  for (;;) {
462    // For a TokenFactor, examine each operand. There may be multiple ways
463    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
464    // most nesting in order to ensure that we find the corresponding match.
465    if (N->getOpcode() == ISD::TokenFactor) {
466      SDNode *Best = nullptr;
467      unsigned BestMaxNest = MaxNest;
468      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
469        unsigned MyNestLevel = NestLevel;
470        unsigned MyMaxNest = MaxNest;
471        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
472                                           MyNestLevel, MyMaxNest, TII))
473          if (!Best || (MyMaxNest > BestMaxNest)) {
474            Best = New;
475            BestMaxNest = MyMaxNest;
476          }
477      }
478      assert(Best);
479      MaxNest = BestMaxNest;
480      return Best;
481    }
482    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
483    if (N->isMachineOpcode()) {
484      if (N->getMachineOpcode() ==
485          (unsigned)TII->getCallFrameDestroyOpcode()) {
486        ++NestLevel;
487        MaxNest = std::max(MaxNest, NestLevel);
488      } else if (N->getMachineOpcode() ==
489                 (unsigned)TII->getCallFrameSetupOpcode()) {
490        assert(NestLevel != 0);
491        --NestLevel;
492        if (NestLevel == 0)
493          return N;
494      }
495    }
496    // Otherwise, find the chain and continue climbing.
497    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
498      if (N->getOperand(i).getValueType() == MVT::Other) {
499        N = N->getOperand(i).getNode();
500        goto found_chain_operand;
501      }
502    return nullptr;
503  found_chain_operand:;
504    if (N->getOpcode() == ISD::EntryToken)
505      return nullptr;
506  }
507}
508
509/// Call ReleasePred for each predecessor, then update register live def/gen.
510/// Always update LiveRegDefs for a register dependence even if the current SU
511/// also defines the register. This effectively create one large live range
512/// across a sequence of two-address node. This is important because the
513/// entire chain must be scheduled together. Example:
514///
515/// flags = (3) add
516/// flags = (2) addc flags
517/// flags = (1) addc flags
518///
519/// results in
520///
521/// LiveRegDefs[flags] = 3
522/// LiveRegGens[flags] = 1
523///
524/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
525/// interference on flags.
526void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
527  // Bottom up: release predecessors
528  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
529       I != E; ++I) {
530    ReleasePred(SU, &*I);
531    if (I->isAssignedRegDep()) {
532      // This is a physical register dependency and it's impossible or
533      // expensive to copy the register. Make sure nothing that can
534      // clobber the register is scheduled between the predecessor and
535      // this node.
536      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
537      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
538             "interference on register dependence");
539      LiveRegDefs[I->getReg()] = I->getSUnit();
540      if (!LiveRegGens[I->getReg()]) {
541        ++NumLiveRegs;
542        LiveRegGens[I->getReg()] = SU;
543      }
544    }
545  }
546
547  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
548  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
549  // these nodes, to prevent other calls from being interscheduled with them.
550  unsigned CallResource = TRI->getNumRegs();
551  if (!LiveRegDefs[CallResource])
552    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
553      if (Node->isMachineOpcode() &&
554          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
555        unsigned NestLevel = 0;
556        unsigned MaxNest = 0;
557        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
558
559        SUnit *Def = &SUnits[N->getNodeId()];
560        CallSeqEndForStart[Def] = SU;
561
562        ++NumLiveRegs;
563        LiveRegDefs[CallResource] = Def;
564        LiveRegGens[CallResource] = SU;
565        break;
566      }
567}
568
569/// Check to see if any of the pending instructions are ready to issue.  If
570/// so, add them to the available queue.
571void ScheduleDAGRRList::ReleasePending() {
572  if (DisableSchedCycles) {
573    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
574    return;
575  }
576
577  // If the available queue is empty, it is safe to reset MinAvailableCycle.
578  if (AvailableQueue->empty())
579    MinAvailableCycle = UINT_MAX;
580
581  // Check to see if any of the pending instructions are ready to issue.  If
582  // so, add them to the available queue.
583  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
584    unsigned ReadyCycle = PendingQueue[i]->getHeight();
585    if (ReadyCycle < MinAvailableCycle)
586      MinAvailableCycle = ReadyCycle;
587
588    if (PendingQueue[i]->isAvailable) {
589      if (!isReady(PendingQueue[i]))
590          continue;
591      AvailableQueue->push(PendingQueue[i]);
592    }
593    PendingQueue[i]->isPending = false;
594    PendingQueue[i] = PendingQueue.back();
595    PendingQueue.pop_back();
596    --i; --e;
597  }
598}
599
600/// Move the scheduler state forward by the specified number of Cycles.
601void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
602  if (NextCycle <= CurCycle)
603    return;
604
605  IssueCount = 0;
606  AvailableQueue->setCurCycle(NextCycle);
607  if (!HazardRec->isEnabled()) {
608    // Bypass lots of virtual calls in case of long latency.
609    CurCycle = NextCycle;
610  }
611  else {
612    for (; CurCycle != NextCycle; ++CurCycle) {
613      HazardRec->RecedeCycle();
614    }
615  }
616  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
617  // available Q to release pending nodes at least once before popping.
618  ReleasePending();
619}
620
621/// Move the scheduler state forward until the specified node's dependents are
622/// ready and can be scheduled with no resource conflicts.
623void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
624  if (DisableSchedCycles)
625    return;
626
627  // FIXME: Nodes such as CopyFromReg probably should not advance the current
628  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
629  // has predecessors the cycle will be advanced when they are scheduled.
630  // But given the crude nature of modeling latency though such nodes, we
631  // currently need to treat these nodes like real instructions.
632  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
633
634  unsigned ReadyCycle = SU->getHeight();
635
636  // Bump CurCycle to account for latency. We assume the latency of other
637  // available instructions may be hidden by the stall (not a full pipe stall).
638  // This updates the hazard recognizer's cycle before reserving resources for
639  // this instruction.
640  AdvanceToCycle(ReadyCycle);
641
642  // Calls are scheduled in their preceding cycle, so don't conflict with
643  // hazards from instructions after the call. EmitNode will reset the
644  // scoreboard state before emitting the call.
645  if (SU->isCall)
646    return;
647
648  // FIXME: For resource conflicts in very long non-pipelined stages, we
649  // should probably skip ahead here to avoid useless scoreboard checks.
650  int Stalls = 0;
651  while (true) {
652    ScheduleHazardRecognizer::HazardType HT =
653      HazardRec->getHazardType(SU, -Stalls);
654
655    if (HT == ScheduleHazardRecognizer::NoHazard)
656      break;
657
658    ++Stalls;
659  }
660  AdvanceToCycle(CurCycle + Stalls);
661}
662
663/// Record this SUnit in the HazardRecognizer.
664/// Does not update CurCycle.
665void ScheduleDAGRRList::EmitNode(SUnit *SU) {
666  if (!HazardRec->isEnabled())
667    return;
668
669  // Check for phys reg copy.
670  if (!SU->getNode())
671    return;
672
673  switch (SU->getNode()->getOpcode()) {
674  default:
675    assert(SU->getNode()->isMachineOpcode() &&
676           "This target-independent node should not be scheduled.");
677    break;
678  case ISD::MERGE_VALUES:
679  case ISD::TokenFactor:
680  case ISD::LIFETIME_START:
681  case ISD::LIFETIME_END:
682  case ISD::CopyToReg:
683  case ISD::CopyFromReg:
684  case ISD::EH_LABEL:
685    // Noops don't affect the scoreboard state. Copies are likely to be
686    // removed.
687    return;
688  case ISD::INLINEASM:
689    // For inline asm, clear the pipeline state.
690    HazardRec->Reset();
691    return;
692  }
693  if (SU->isCall) {
694    // Calls are scheduled with their preceding instructions. For bottom-up
695    // scheduling, clear the pipeline state before emitting.
696    HazardRec->Reset();
697  }
698
699  HazardRec->EmitInstruction(SU);
700}
701
702static void resetVRegCycle(SUnit *SU);
703
704/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
705/// count of its predecessors. If a predecessor pending count is zero, add it to
706/// the Available queue.
707void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
708  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
709  DEBUG(SU->dump(this));
710
711#ifndef NDEBUG
712  if (CurCycle < SU->getHeight())
713    DEBUG(dbgs() << "   Height [" << SU->getHeight()
714          << "] pipeline stall!\n");
715#endif
716
717  // FIXME: Do not modify node height. It may interfere with
718  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
719  // node its ready cycle can aid heuristics, and after scheduling it can
720  // indicate the scheduled cycle.
721  SU->setHeightToAtLeast(CurCycle);
722
723  // Reserve resources for the scheduled instruction.
724  EmitNode(SU);
725
726  Sequence.push_back(SU);
727
728  AvailableQueue->scheduledNode(SU);
729
730  // If HazardRec is disabled, and each inst counts as one cycle, then
731  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
732  // PendingQueue for schedulers that implement HasReadyFilter.
733  if (!HazardRec->isEnabled() && AvgIPC < 2)
734    AdvanceToCycle(CurCycle + 1);
735
736  // Update liveness of predecessors before successors to avoid treating a
737  // two-address node as a live range def.
738  ReleasePredecessors(SU);
739
740  // Release all the implicit physical register defs that are live.
741  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
742       I != E; ++I) {
743    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
744    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
745      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
746      --NumLiveRegs;
747      LiveRegDefs[I->getReg()] = nullptr;
748      LiveRegGens[I->getReg()] = nullptr;
749      releaseInterferences(I->getReg());
750    }
751  }
752  // Release the special call resource dependence, if this is the beginning
753  // of a call.
754  unsigned CallResource = TRI->getNumRegs();
755  if (LiveRegDefs[CallResource] == SU)
756    for (const SDNode *SUNode = SU->getNode(); SUNode;
757         SUNode = SUNode->getGluedNode()) {
758      if (SUNode->isMachineOpcode() &&
759          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
760        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
761        --NumLiveRegs;
762        LiveRegDefs[CallResource] = nullptr;
763        LiveRegGens[CallResource] = nullptr;
764        releaseInterferences(CallResource);
765      }
766    }
767
768  resetVRegCycle(SU);
769
770  SU->isScheduled = true;
771
772  // Conditions under which the scheduler should eagerly advance the cycle:
773  // (1) No available instructions
774  // (2) All pipelines full, so available instructions must have hazards.
775  //
776  // If HazardRec is disabled, the cycle was pre-advanced before calling
777  // ReleasePredecessors. In that case, IssueCount should remain 0.
778  //
779  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
780  if (HazardRec->isEnabled() || AvgIPC > 1) {
781    if (SU->getNode() && SU->getNode()->isMachineOpcode())
782      ++IssueCount;
783    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
784        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
785      AdvanceToCycle(CurCycle + 1);
786  }
787}
788
789/// CapturePred - This does the opposite of ReleasePred. Since SU is being
790/// unscheduled, incrcease the succ left count of its predecessors. Remove
791/// them from AvailableQueue if necessary.
792void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
793  SUnit *PredSU = PredEdge->getSUnit();
794  if (PredSU->isAvailable) {
795    PredSU->isAvailable = false;
796    if (!PredSU->isPending)
797      AvailableQueue->remove(PredSU);
798  }
799
800  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
801  ++PredSU->NumSuccsLeft;
802}
803
804/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
805/// its predecessor states to reflect the change.
806void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
807  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
808  DEBUG(SU->dump(this));
809
810  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
811       I != E; ++I) {
812    CapturePred(&*I);
813    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
814      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
815      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
816             "Physical register dependency violated?");
817      --NumLiveRegs;
818      LiveRegDefs[I->getReg()] = nullptr;
819      LiveRegGens[I->getReg()] = nullptr;
820      releaseInterferences(I->getReg());
821    }
822  }
823
824  // Reclaim the special call resource dependence, if this is the beginning
825  // of a call.
826  unsigned CallResource = TRI->getNumRegs();
827  for (const SDNode *SUNode = SU->getNode(); SUNode;
828       SUNode = SUNode->getGluedNode()) {
829    if (SUNode->isMachineOpcode() &&
830        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
831      ++NumLiveRegs;
832      LiveRegDefs[CallResource] = SU;
833      LiveRegGens[CallResource] = CallSeqEndForStart[SU];
834    }
835  }
836
837  // Release the special call resource dependence, if this is the end
838  // of a call.
839  if (LiveRegGens[CallResource] == SU)
840    for (const SDNode *SUNode = SU->getNode(); SUNode;
841         SUNode = SUNode->getGluedNode()) {
842      if (SUNode->isMachineOpcode() &&
843          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
844        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
845        --NumLiveRegs;
846        LiveRegDefs[CallResource] = nullptr;
847        LiveRegGens[CallResource] = nullptr;
848        releaseInterferences(CallResource);
849      }
850    }
851
852  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
853       I != E; ++I) {
854    if (I->isAssignedRegDep()) {
855      if (!LiveRegDefs[I->getReg()])
856        ++NumLiveRegs;
857      // This becomes the nearest def. Note that an earlier def may still be
858      // pending if this is a two-address node.
859      LiveRegDefs[I->getReg()] = SU;
860      if (LiveRegGens[I->getReg()] == nullptr ||
861          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
862        LiveRegGens[I->getReg()] = I->getSUnit();
863    }
864  }
865  if (SU->getHeight() < MinAvailableCycle)
866    MinAvailableCycle = SU->getHeight();
867
868  SU->setHeightDirty();
869  SU->isScheduled = false;
870  SU->isAvailable = true;
871  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
872    // Don't make available until backtracking is complete.
873    SU->isPending = true;
874    PendingQueue.push_back(SU);
875  }
876  else {
877    AvailableQueue->push(SU);
878  }
879  AvailableQueue->unscheduledNode(SU);
880}
881
882/// After backtracking, the hazard checker needs to be restored to a state
883/// corresponding the current cycle.
884void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
885  HazardRec->Reset();
886
887  unsigned LookAhead = std::min((unsigned)Sequence.size(),
888                                HazardRec->getMaxLookAhead());
889  if (LookAhead == 0)
890    return;
891
892  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
893  unsigned HazardCycle = (*I)->getHeight();
894  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
895    SUnit *SU = *I;
896    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
897      HazardRec->RecedeCycle();
898    }
899    EmitNode(SU);
900  }
901}
902
903/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
904/// BTCycle in order to schedule a specific node.
905void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
906  SUnit *OldSU = Sequence.back();
907  while (true) {
908    Sequence.pop_back();
909    // FIXME: use ready cycle instead of height
910    CurCycle = OldSU->getHeight();
911    UnscheduleNodeBottomUp(OldSU);
912    AvailableQueue->setCurCycle(CurCycle);
913    if (OldSU == BtSU)
914      break;
915    OldSU = Sequence.back();
916  }
917
918  assert(!SU->isSucc(OldSU) && "Something is wrong!");
919
920  RestoreHazardCheckerBottomUp();
921
922  ReleasePending();
923
924  ++NumBacktracks;
925}
926
927static bool isOperandOf(const SUnit *SU, SDNode *N) {
928  for (const SDNode *SUNode = SU->getNode(); SUNode;
929       SUNode = SUNode->getGluedNode()) {
930    if (SUNode->isOperandOf(N))
931      return true;
932  }
933  return false;
934}
935
936/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
937/// successors to the newly created node.
938SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
939  SDNode *N = SU->getNode();
940  if (!N)
941    return nullptr;
942
943  if (SU->getNode()->getGluedNode())
944    return nullptr;
945
946  SUnit *NewSU;
947  bool TryUnfold = false;
948  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
949    EVT VT = N->getValueType(i);
950    if (VT == MVT::Glue)
951      return nullptr;
952    else if (VT == MVT::Other)
953      TryUnfold = true;
954  }
955  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
956    const SDValue &Op = N->getOperand(i);
957    EVT VT = Op.getNode()->getValueType(Op.getResNo());
958    if (VT == MVT::Glue)
959      return nullptr;
960  }
961
962  if (TryUnfold) {
963    SmallVector<SDNode*, 2> NewNodes;
964    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
965      return nullptr;
966
967    // unfolding an x86 DEC64m operation results in store, dec, load which
968    // can't be handled here so quit
969    if (NewNodes.size() == 3)
970      return nullptr;
971
972    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
973    assert(NewNodes.size() == 2 && "Expected a load folding node!");
974
975    N = NewNodes[1];
976    SDNode *LoadNode = NewNodes[0];
977    unsigned NumVals = N->getNumValues();
978    unsigned OldNumVals = SU->getNode()->getNumValues();
979    for (unsigned i = 0; i != NumVals; ++i)
980      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
981    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
982                                   SDValue(LoadNode, 1));
983
984    // LoadNode may already exist. This can happen when there is another
985    // load from the same location and producing the same type of value
986    // but it has different alignment or volatileness.
987    bool isNewLoad = true;
988    SUnit *LoadSU;
989    if (LoadNode->getNodeId() != -1) {
990      LoadSU = &SUnits[LoadNode->getNodeId()];
991      isNewLoad = false;
992    } else {
993      LoadSU = CreateNewSUnit(LoadNode);
994      LoadNode->setNodeId(LoadSU->NodeNum);
995
996      InitNumRegDefsLeft(LoadSU);
997      computeLatency(LoadSU);
998    }
999
1000    SUnit *NewSU = CreateNewSUnit(N);
1001    assert(N->getNodeId() == -1 && "Node already inserted!");
1002    N->setNodeId(NewSU->NodeNum);
1003
1004    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1005    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1006      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1007        NewSU->isTwoAddress = true;
1008        break;
1009      }
1010    }
1011    if (MCID.isCommutable())
1012      NewSU->isCommutable = true;
1013
1014    InitNumRegDefsLeft(NewSU);
1015    computeLatency(NewSU);
1016
1017    // Record all the edges to and from the old SU, by category.
1018    SmallVector<SDep, 4> ChainPreds;
1019    SmallVector<SDep, 4> ChainSuccs;
1020    SmallVector<SDep, 4> LoadPreds;
1021    SmallVector<SDep, 4> NodePreds;
1022    SmallVector<SDep, 4> NodeSuccs;
1023    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1024         I != E; ++I) {
1025      if (I->isCtrl())
1026        ChainPreds.push_back(*I);
1027      else if (isOperandOf(I->getSUnit(), LoadNode))
1028        LoadPreds.push_back(*I);
1029      else
1030        NodePreds.push_back(*I);
1031    }
1032    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1033         I != E; ++I) {
1034      if (I->isCtrl())
1035        ChainSuccs.push_back(*I);
1036      else
1037        NodeSuccs.push_back(*I);
1038    }
1039
1040    // Now assign edges to the newly-created nodes.
1041    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1042      const SDep &Pred = ChainPreds[i];
1043      RemovePred(SU, Pred);
1044      if (isNewLoad)
1045        AddPred(LoadSU, Pred);
1046    }
1047    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1048      const SDep &Pred = LoadPreds[i];
1049      RemovePred(SU, Pred);
1050      if (isNewLoad)
1051        AddPred(LoadSU, Pred);
1052    }
1053    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1054      const SDep &Pred = NodePreds[i];
1055      RemovePred(SU, Pred);
1056      AddPred(NewSU, Pred);
1057    }
1058    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1059      SDep D = NodeSuccs[i];
1060      SUnit *SuccDep = D.getSUnit();
1061      D.setSUnit(SU);
1062      RemovePred(SuccDep, D);
1063      D.setSUnit(NewSU);
1064      AddPred(SuccDep, D);
1065      // Balance register pressure.
1066      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1067          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1068        --NewSU->NumRegDefsLeft;
1069    }
1070    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1071      SDep D = ChainSuccs[i];
1072      SUnit *SuccDep = D.getSUnit();
1073      D.setSUnit(SU);
1074      RemovePred(SuccDep, D);
1075      if (isNewLoad) {
1076        D.setSUnit(LoadSU);
1077        AddPred(SuccDep, D);
1078      }
1079    }
1080
1081    // Add a data dependency to reflect that NewSU reads the value defined
1082    // by LoadSU.
1083    SDep D(LoadSU, SDep::Data, 0);
1084    D.setLatency(LoadSU->Latency);
1085    AddPred(NewSU, D);
1086
1087    if (isNewLoad)
1088      AvailableQueue->addNode(LoadSU);
1089    AvailableQueue->addNode(NewSU);
1090
1091    ++NumUnfolds;
1092
1093    if (NewSU->NumSuccsLeft == 0) {
1094      NewSU->isAvailable = true;
1095      return NewSU;
1096    }
1097    SU = NewSU;
1098  }
1099
1100  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1101  NewSU = CreateClone(SU);
1102
1103  // New SUnit has the exact same predecessors.
1104  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1105       I != E; ++I)
1106    if (!I->isArtificial())
1107      AddPred(NewSU, *I);
1108
1109  // Only copy scheduled successors. Cut them from old node's successor
1110  // list and move them over.
1111  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1112  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1113       I != E; ++I) {
1114    if (I->isArtificial())
1115      continue;
1116    SUnit *SuccSU = I->getSUnit();
1117    if (SuccSU->isScheduled) {
1118      SDep D = *I;
1119      D.setSUnit(NewSU);
1120      AddPred(SuccSU, D);
1121      D.setSUnit(SU);
1122      DelDeps.push_back(std::make_pair(SuccSU, D));
1123    }
1124  }
1125  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1126    RemovePred(DelDeps[i].first, DelDeps[i].second);
1127
1128  AvailableQueue->updateNode(SU);
1129  AvailableQueue->addNode(NewSU);
1130
1131  ++NumDups;
1132  return NewSU;
1133}
1134
1135/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1136/// scheduled successors of the given SUnit to the last copy.
1137void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1138                                              const TargetRegisterClass *DestRC,
1139                                              const TargetRegisterClass *SrcRC,
1140                                              SmallVectorImpl<SUnit*> &Copies) {
1141  SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1142  CopyFromSU->CopySrcRC = SrcRC;
1143  CopyFromSU->CopyDstRC = DestRC;
1144
1145  SUnit *CopyToSU = CreateNewSUnit(nullptr);
1146  CopyToSU->CopySrcRC = DestRC;
1147  CopyToSU->CopyDstRC = SrcRC;
1148
1149  // Only copy scheduled successors. Cut them from old node's successor
1150  // list and move them over.
1151  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1152  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1153       I != E; ++I) {
1154    if (I->isArtificial())
1155      continue;
1156    SUnit *SuccSU = I->getSUnit();
1157    if (SuccSU->isScheduled) {
1158      SDep D = *I;
1159      D.setSUnit(CopyToSU);
1160      AddPred(SuccSU, D);
1161      DelDeps.push_back(std::make_pair(SuccSU, *I));
1162    }
1163    else {
1164      // Avoid scheduling the def-side copy before other successors. Otherwise
1165      // we could introduce another physreg interference on the copy and
1166      // continue inserting copies indefinitely.
1167      AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1168    }
1169  }
1170  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1171    RemovePred(DelDeps[i].first, DelDeps[i].second);
1172
1173  SDep FromDep(SU, SDep::Data, Reg);
1174  FromDep.setLatency(SU->Latency);
1175  AddPred(CopyFromSU, FromDep);
1176  SDep ToDep(CopyFromSU, SDep::Data, 0);
1177  ToDep.setLatency(CopyFromSU->Latency);
1178  AddPred(CopyToSU, ToDep);
1179
1180  AvailableQueue->updateNode(SU);
1181  AvailableQueue->addNode(CopyFromSU);
1182  AvailableQueue->addNode(CopyToSU);
1183  Copies.push_back(CopyFromSU);
1184  Copies.push_back(CopyToSU);
1185
1186  ++NumPRCopies;
1187}
1188
1189/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1190/// definition of the specified node.
1191/// FIXME: Move to SelectionDAG?
1192static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1193                                 const TargetInstrInfo *TII) {
1194  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1195  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1196  unsigned NumRes = MCID.getNumDefs();
1197  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1198    if (Reg == *ImpDef)
1199      break;
1200    ++NumRes;
1201  }
1202  return N->getValueType(NumRes);
1203}
1204
1205/// CheckForLiveRegDef - Return true and update live register vector if the
1206/// specified register def of the specified SUnit clobbers any "live" registers.
1207static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1208                               std::vector<SUnit*> &LiveRegDefs,
1209                               SmallSet<unsigned, 4> &RegAdded,
1210                               SmallVectorImpl<unsigned> &LRegs,
1211                               const TargetRegisterInfo *TRI) {
1212  for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1213
1214    // Check if Ref is live.
1215    if (!LiveRegDefs[*AliasI]) continue;
1216
1217    // Allow multiple uses of the same def.
1218    if (LiveRegDefs[*AliasI] == SU) continue;
1219
1220    // Add Reg to the set of interfering live regs.
1221    if (RegAdded.insert(*AliasI)) {
1222      LRegs.push_back(*AliasI);
1223    }
1224  }
1225}
1226
1227/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1228/// by RegMask, and add them to LRegs.
1229static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1230                                     std::vector<SUnit*> &LiveRegDefs,
1231                                     SmallSet<unsigned, 4> &RegAdded,
1232                                     SmallVectorImpl<unsigned> &LRegs) {
1233  // Look at all live registers. Skip Reg0 and the special CallResource.
1234  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1235    if (!LiveRegDefs[i]) continue;
1236    if (LiveRegDefs[i] == SU) continue;
1237    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1238    if (RegAdded.insert(i))
1239      LRegs.push_back(i);
1240  }
1241}
1242
1243/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1244static const uint32_t *getNodeRegMask(const SDNode *N) {
1245  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1246    if (const RegisterMaskSDNode *Op =
1247        dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1248      return Op->getRegMask();
1249  return nullptr;
1250}
1251
1252/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1253/// scheduling of the given node to satisfy live physical register dependencies.
1254/// If the specific node is the last one that's available to schedule, do
1255/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1256bool ScheduleDAGRRList::
1257DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1258  if (NumLiveRegs == 0)
1259    return false;
1260
1261  SmallSet<unsigned, 4> RegAdded;
1262  // If this node would clobber any "live" register, then it's not ready.
1263  //
1264  // If SU is the currently live definition of the same register that it uses,
1265  // then we are free to schedule it.
1266  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1267       I != E; ++I) {
1268    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1269      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1270                         RegAdded, LRegs, TRI);
1271  }
1272
1273  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1274    if (Node->getOpcode() == ISD::INLINEASM) {
1275      // Inline asm can clobber physical defs.
1276      unsigned NumOps = Node->getNumOperands();
1277      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1278        --NumOps;  // Ignore the glue operand.
1279
1280      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1281        unsigned Flags =
1282          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1283        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1284
1285        ++i; // Skip the ID value.
1286        if (InlineAsm::isRegDefKind(Flags) ||
1287            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1288            InlineAsm::isClobberKind(Flags)) {
1289          // Check for def of register or earlyclobber register.
1290          for (; NumVals; --NumVals, ++i) {
1291            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1292            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1293              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1294          }
1295        } else
1296          i += NumVals;
1297      }
1298      continue;
1299    }
1300
1301    if (!Node->isMachineOpcode())
1302      continue;
1303    // If we're in the middle of scheduling a call, don't begin scheduling
1304    // another call. Also, don't allow any physical registers to be live across
1305    // the call.
1306    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1307      // Check the special calling-sequence resource.
1308      unsigned CallResource = TRI->getNumRegs();
1309      if (LiveRegDefs[CallResource]) {
1310        SDNode *Gen = LiveRegGens[CallResource]->getNode();
1311        while (SDNode *Glued = Gen->getGluedNode())
1312          Gen = Glued;
1313        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1314          LRegs.push_back(CallResource);
1315      }
1316    }
1317    if (const uint32_t *RegMask = getNodeRegMask(Node))
1318      CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1319
1320    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1321    if (!MCID.ImplicitDefs)
1322      continue;
1323    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1324      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1325  }
1326
1327  return !LRegs.empty();
1328}
1329
1330void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1331  // Add the nodes that aren't ready back onto the available list.
1332  for (unsigned i = Interferences.size(); i > 0; --i) {
1333    SUnit *SU = Interferences[i-1];
1334    LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1335    if (Reg) {
1336      SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1337      if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
1338        continue;
1339    }
1340    SU->isPending = false;
1341    // The interfering node may no longer be available due to backtracking.
1342    // Furthermore, it may have been made available again, in which case it is
1343    // now already in the AvailableQueue.
1344    if (SU->isAvailable && !SU->NodeQueueId) {
1345      DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
1346      AvailableQueue->push(SU);
1347    }
1348    if (i < Interferences.size())
1349      Interferences[i-1] = Interferences.back();
1350    Interferences.pop_back();
1351    LRegsMap.erase(LRegsPos);
1352  }
1353}
1354
1355/// Return a node that can be scheduled in this cycle. Requirements:
1356/// (1) Ready: latency has been satisfied
1357/// (2) No Hazards: resources are available
1358/// (3) No Interferences: may unschedule to break register interferences.
1359SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1360  SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1361  while (CurSU) {
1362    SmallVector<unsigned, 4> LRegs;
1363    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1364      break;
1365    DEBUG(dbgs() << "    Interfering reg " <<
1366          (LRegs[0] == TRI->getNumRegs() ? "CallResource"
1367           : TRI->getName(LRegs[0]))
1368           << " SU #" << CurSU->NodeNum << '\n');
1369    std::pair<LRegsMapT::iterator, bool> LRegsPair =
1370      LRegsMap.insert(std::make_pair(CurSU, LRegs));
1371    if (LRegsPair.second) {
1372      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1373      Interferences.push_back(CurSU);
1374    }
1375    else {
1376      assert(CurSU->isPending && "Intereferences are pending");
1377      // Update the interference with current live regs.
1378      LRegsPair.first->second = LRegs;
1379    }
1380    CurSU = AvailableQueue->pop();
1381  }
1382  if (CurSU)
1383    return CurSU;
1384
1385  // All candidates are delayed due to live physical reg dependencies.
1386  // Try backtracking, code duplication, or inserting cross class copies
1387  // to resolve it.
1388  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1389    SUnit *TrySU = Interferences[i];
1390    SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1391
1392    // Try unscheduling up to the point where it's safe to schedule
1393    // this node.
1394    SUnit *BtSU = nullptr;
1395    unsigned LiveCycle = UINT_MAX;
1396    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1397      unsigned Reg = LRegs[j];
1398      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1399        BtSU = LiveRegGens[Reg];
1400        LiveCycle = BtSU->getHeight();
1401      }
1402    }
1403    if (!WillCreateCycle(TrySU, BtSU))  {
1404      // BacktrackBottomUp mutates Interferences!
1405      BacktrackBottomUp(TrySU, BtSU);
1406
1407      // Force the current node to be scheduled before the node that
1408      // requires the physical reg dep.
1409      if (BtSU->isAvailable) {
1410        BtSU->isAvailable = false;
1411        if (!BtSU->isPending)
1412          AvailableQueue->remove(BtSU);
1413      }
1414      DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
1415            << TrySU->NodeNum << ")\n");
1416      AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1417
1418      // If one or more successors has been unscheduled, then the current
1419      // node is no longer available.
1420      if (!TrySU->isAvailable)
1421        CurSU = AvailableQueue->pop();
1422      else {
1423        AvailableQueue->remove(TrySU);
1424        CurSU = TrySU;
1425      }
1426      // Interferences has been mutated. We must break.
1427      break;
1428    }
1429  }
1430
1431  if (!CurSU) {
1432    // Can't backtrack. If it's too expensive to copy the value, then try
1433    // duplicate the nodes that produces these "too expensive to copy"
1434    // values to break the dependency. In case even that doesn't work,
1435    // insert cross class copies.
1436    // If it's not too expensive, i.e. cost != -1, issue copies.
1437    SUnit *TrySU = Interferences[0];
1438    SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1439    assert(LRegs.size() == 1 && "Can't handle this yet!");
1440    unsigned Reg = LRegs[0];
1441    SUnit *LRDef = LiveRegDefs[Reg];
1442    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1443    const TargetRegisterClass *RC =
1444      TRI->getMinimalPhysRegClass(Reg, VT);
1445    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1446
1447    // If cross copy register class is the same as RC, then it must be possible
1448    // copy the value directly. Do not try duplicate the def.
1449    // If cross copy register class is not the same as RC, then it's possible to
1450    // copy the value but it require cross register class copies and it is
1451    // expensive.
1452    // If cross copy register class is null, then it's not possible to copy
1453    // the value at all.
1454    SUnit *NewDef = nullptr;
1455    if (DestRC != RC) {
1456      NewDef = CopyAndMoveSuccessors(LRDef);
1457      if (!DestRC && !NewDef)
1458        report_fatal_error("Can't handle live physical register dependency!");
1459    }
1460    if (!NewDef) {
1461      // Issue copies, these can be expensive cross register class copies.
1462      SmallVector<SUnit*, 2> Copies;
1463      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1464      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1465            << " to SU #" << Copies.front()->NodeNum << "\n");
1466      AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1467      NewDef = Copies.back();
1468    }
1469
1470    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1471          << " to SU #" << TrySU->NodeNum << "\n");
1472    LiveRegDefs[Reg] = NewDef;
1473    AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1474    TrySU->isAvailable = false;
1475    CurSU = NewDef;
1476  }
1477  assert(CurSU && "Unable to resolve live physical register dependencies!");
1478  return CurSU;
1479}
1480
1481/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1482/// schedulers.
1483void ScheduleDAGRRList::ListScheduleBottomUp() {
1484  // Release any predecessors of the special Exit node.
1485  ReleasePredecessors(&ExitSU);
1486
1487  // Add root to Available queue.
1488  if (!SUnits.empty()) {
1489    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1490    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1491    RootSU->isAvailable = true;
1492    AvailableQueue->push(RootSU);
1493  }
1494
1495  // While Available queue is not empty, grab the node with the highest
1496  // priority. If it is not ready put it back.  Schedule the node.
1497  Sequence.reserve(SUnits.size());
1498  while (!AvailableQueue->empty() || !Interferences.empty()) {
1499    DEBUG(dbgs() << "\nExamining Available:\n";
1500          AvailableQueue->dump(this));
1501
1502    // Pick the best node to schedule taking all constraints into
1503    // consideration.
1504    SUnit *SU = PickNodeToScheduleBottomUp();
1505
1506    AdvancePastStalls(SU);
1507
1508    ScheduleNodeBottomUp(SU);
1509
1510    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1511      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1512      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1513      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1514    }
1515  }
1516
1517  // Reverse the order if it is bottom up.
1518  std::reverse(Sequence.begin(), Sequence.end());
1519
1520#ifndef NDEBUG
1521  VerifyScheduledSequence(/*isBottomUp=*/true);
1522#endif
1523}
1524
1525//===----------------------------------------------------------------------===//
1526//                RegReductionPriorityQueue Definition
1527//===----------------------------------------------------------------------===//
1528//
1529// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1530// to reduce register pressure.
1531//
1532namespace {
1533class RegReductionPQBase;
1534
1535struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1536  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1537};
1538
1539#ifndef NDEBUG
1540template<class SF>
1541struct reverse_sort : public queue_sort {
1542  SF &SortFunc;
1543  reverse_sort(SF &sf) : SortFunc(sf) {}
1544
1545  bool operator()(SUnit* left, SUnit* right) const {
1546    // reverse left/right rather than simply !SortFunc(left, right)
1547    // to expose different paths in the comparison logic.
1548    return SortFunc(right, left);
1549  }
1550};
1551#endif // NDEBUG
1552
1553/// bu_ls_rr_sort - Priority function for bottom up register pressure
1554// reduction scheduler.
1555struct bu_ls_rr_sort : public queue_sort {
1556  enum {
1557    IsBottomUp = true,
1558    HasReadyFilter = false
1559  };
1560
1561  RegReductionPQBase *SPQ;
1562  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1563
1564  bool operator()(SUnit* left, SUnit* right) const;
1565};
1566
1567// src_ls_rr_sort - Priority function for source order scheduler.
1568struct src_ls_rr_sort : public queue_sort {
1569  enum {
1570    IsBottomUp = true,
1571    HasReadyFilter = false
1572  };
1573
1574  RegReductionPQBase *SPQ;
1575  src_ls_rr_sort(RegReductionPQBase *spq)
1576    : SPQ(spq) {}
1577
1578  bool operator()(SUnit* left, SUnit* right) const;
1579};
1580
1581// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1582struct hybrid_ls_rr_sort : public queue_sort {
1583  enum {
1584    IsBottomUp = true,
1585    HasReadyFilter = false
1586  };
1587
1588  RegReductionPQBase *SPQ;
1589  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1590    : SPQ(spq) {}
1591
1592  bool isReady(SUnit *SU, unsigned CurCycle) const;
1593
1594  bool operator()(SUnit* left, SUnit* right) const;
1595};
1596
1597// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1598// scheduler.
1599struct ilp_ls_rr_sort : public queue_sort {
1600  enum {
1601    IsBottomUp = true,
1602    HasReadyFilter = false
1603  };
1604
1605  RegReductionPQBase *SPQ;
1606  ilp_ls_rr_sort(RegReductionPQBase *spq)
1607    : SPQ(spq) {}
1608
1609  bool isReady(SUnit *SU, unsigned CurCycle) const;
1610
1611  bool operator()(SUnit* left, SUnit* right) const;
1612};
1613
1614class RegReductionPQBase : public SchedulingPriorityQueue {
1615protected:
1616  std::vector<SUnit*> Queue;
1617  unsigned CurQueueId;
1618  bool TracksRegPressure;
1619  bool SrcOrder;
1620
1621  // SUnits - The SUnits for the current graph.
1622  std::vector<SUnit> *SUnits;
1623
1624  MachineFunction &MF;
1625  const TargetInstrInfo *TII;
1626  const TargetRegisterInfo *TRI;
1627  const TargetLowering *TLI;
1628  ScheduleDAGRRList *scheduleDAG;
1629
1630  // SethiUllmanNumbers - The SethiUllman number for each node.
1631  std::vector<unsigned> SethiUllmanNumbers;
1632
1633  /// RegPressure - Tracking current reg pressure per register class.
1634  ///
1635  std::vector<unsigned> RegPressure;
1636
1637  /// RegLimit - Tracking the number of allocatable registers per register
1638  /// class.
1639  std::vector<unsigned> RegLimit;
1640
1641public:
1642  RegReductionPQBase(MachineFunction &mf,
1643                     bool hasReadyFilter,
1644                     bool tracksrp,
1645                     bool srcorder,
1646                     const TargetInstrInfo *tii,
1647                     const TargetRegisterInfo *tri,
1648                     const TargetLowering *tli)
1649    : SchedulingPriorityQueue(hasReadyFilter),
1650      CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1651      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
1652    if (TracksRegPressure) {
1653      unsigned NumRC = TRI->getNumRegClasses();
1654      RegLimit.resize(NumRC);
1655      RegPressure.resize(NumRC);
1656      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1657      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1658      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1659             E = TRI->regclass_end(); I != E; ++I)
1660        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1661    }
1662  }
1663
1664  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1665    scheduleDAG = scheduleDag;
1666  }
1667
1668  ScheduleHazardRecognizer* getHazardRec() {
1669    return scheduleDAG->getHazardRec();
1670  }
1671
1672  void initNodes(std::vector<SUnit> &sunits) override;
1673
1674  void addNode(const SUnit *SU) override;
1675
1676  void updateNode(const SUnit *SU) override;
1677
1678  void releaseState() override {
1679    SUnits = nullptr;
1680    SethiUllmanNumbers.clear();
1681    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1682  }
1683
1684  unsigned getNodePriority(const SUnit *SU) const;
1685
1686  unsigned getNodeOrdering(const SUnit *SU) const {
1687    if (!SU->getNode()) return 0;
1688
1689    return SU->getNode()->getIROrder();
1690  }
1691
1692  bool empty() const override { return Queue.empty(); }
1693
1694  void push(SUnit *U) override {
1695    assert(!U->NodeQueueId && "Node in the queue already");
1696    U->NodeQueueId = ++CurQueueId;
1697    Queue.push_back(U);
1698  }
1699
1700  void remove(SUnit *SU) override {
1701    assert(!Queue.empty() && "Queue is empty!");
1702    assert(SU->NodeQueueId != 0 && "Not in queue!");
1703    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1704                                                 SU);
1705    if (I != std::prev(Queue.end()))
1706      std::swap(*I, Queue.back());
1707    Queue.pop_back();
1708    SU->NodeQueueId = 0;
1709  }
1710
1711  bool tracksRegPressure() const override { return TracksRegPressure; }
1712
1713  void dumpRegPressure() const;
1714
1715  bool HighRegPressure(const SUnit *SU) const;
1716
1717  bool MayReduceRegPressure(SUnit *SU) const;
1718
1719  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1720
1721  void scheduledNode(SUnit *SU) override;
1722
1723  void unscheduledNode(SUnit *SU) override;
1724
1725protected:
1726  bool canClobber(const SUnit *SU, const SUnit *Op);
1727  void AddPseudoTwoAddrDeps();
1728  void PrescheduleNodesWithMultipleUses();
1729  void CalculateSethiUllmanNumbers();
1730};
1731
1732template<class SF>
1733static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1734  std::vector<SUnit *>::iterator Best = Q.begin();
1735  for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
1736         E = Q.end(); I != E; ++I)
1737    if (Picker(*Best, *I))
1738      Best = I;
1739  SUnit *V = *Best;
1740  if (Best != std::prev(Q.end()))
1741    std::swap(*Best, Q.back());
1742  Q.pop_back();
1743  return V;
1744}
1745
1746template<class SF>
1747SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1748#ifndef NDEBUG
1749  if (DAG->StressSched) {
1750    reverse_sort<SF> RPicker(Picker);
1751    return popFromQueueImpl(Q, RPicker);
1752  }
1753#endif
1754  (void)DAG;
1755  return popFromQueueImpl(Q, Picker);
1756}
1757
1758template<class SF>
1759class RegReductionPriorityQueue : public RegReductionPQBase {
1760  SF Picker;
1761
1762public:
1763  RegReductionPriorityQueue(MachineFunction &mf,
1764                            bool tracksrp,
1765                            bool srcorder,
1766                            const TargetInstrInfo *tii,
1767                            const TargetRegisterInfo *tri,
1768                            const TargetLowering *tli)
1769    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1770                         tii, tri, tli),
1771      Picker(this) {}
1772
1773  bool isBottomUp() const override { return SF::IsBottomUp; }
1774
1775  bool isReady(SUnit *U) const override {
1776    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1777  }
1778
1779  SUnit *pop() override {
1780    if (Queue.empty()) return nullptr;
1781
1782    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1783    V->NodeQueueId = 0;
1784    return V;
1785  }
1786
1787#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1788  void dump(ScheduleDAG *DAG) const override {
1789    // Emulate pop() without clobbering NodeQueueIds.
1790    std::vector<SUnit*> DumpQueue = Queue;
1791    SF DumpPicker = Picker;
1792    while (!DumpQueue.empty()) {
1793      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1794      dbgs() << "Height " << SU->getHeight() << ": ";
1795      SU->dump(DAG);
1796    }
1797  }
1798#endif
1799};
1800
1801typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1802BURegReductionPriorityQueue;
1803
1804typedef RegReductionPriorityQueue<src_ls_rr_sort>
1805SrcRegReductionPriorityQueue;
1806
1807typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1808HybridBURRPriorityQueue;
1809
1810typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1811ILPBURRPriorityQueue;
1812} // end anonymous namespace
1813
1814//===----------------------------------------------------------------------===//
1815//           Static Node Priority for Register Pressure Reduction
1816//===----------------------------------------------------------------------===//
1817
1818// Check for special nodes that bypass scheduling heuristics.
1819// Currently this pushes TokenFactor nodes down, but may be used for other
1820// pseudo-ops as well.
1821//
1822// Return -1 to schedule right above left, 1 for left above right.
1823// Return 0 if no bias exists.
1824static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1825  bool LSchedLow = left->isScheduleLow;
1826  bool RSchedLow = right->isScheduleLow;
1827  if (LSchedLow != RSchedLow)
1828    return LSchedLow < RSchedLow ? 1 : -1;
1829  return 0;
1830}
1831
1832/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1833/// Smaller number is the higher priority.
1834static unsigned
1835CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1836  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1837  if (SethiUllmanNumber != 0)
1838    return SethiUllmanNumber;
1839
1840  unsigned Extra = 0;
1841  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1842       I != E; ++I) {
1843    if (I->isCtrl()) continue;  // ignore chain preds
1844    SUnit *PredSU = I->getSUnit();
1845    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1846    if (PredSethiUllman > SethiUllmanNumber) {
1847      SethiUllmanNumber = PredSethiUllman;
1848      Extra = 0;
1849    } else if (PredSethiUllman == SethiUllmanNumber)
1850      ++Extra;
1851  }
1852
1853  SethiUllmanNumber += Extra;
1854
1855  if (SethiUllmanNumber == 0)
1856    SethiUllmanNumber = 1;
1857
1858  return SethiUllmanNumber;
1859}
1860
1861/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1862/// scheduling units.
1863void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1864  SethiUllmanNumbers.assign(SUnits->size(), 0);
1865
1866  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1867    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1868}
1869
1870void RegReductionPQBase::addNode(const SUnit *SU) {
1871  unsigned SUSize = SethiUllmanNumbers.size();
1872  if (SUnits->size() > SUSize)
1873    SethiUllmanNumbers.resize(SUSize*2, 0);
1874  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1875}
1876
1877void RegReductionPQBase::updateNode(const SUnit *SU) {
1878  SethiUllmanNumbers[SU->NodeNum] = 0;
1879  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1880}
1881
1882// Lower priority means schedule further down. For bottom-up scheduling, lower
1883// priority SUs are scheduled before higher priority SUs.
1884unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1885  assert(SU->NodeNum < SethiUllmanNumbers.size());
1886  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1887  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1888    // CopyToReg should be close to its uses to facilitate coalescing and
1889    // avoid spilling.
1890    return 0;
1891  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1892      Opc == TargetOpcode::SUBREG_TO_REG ||
1893      Opc == TargetOpcode::INSERT_SUBREG)
1894    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1895    // close to their uses to facilitate coalescing.
1896    return 0;
1897  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1898    // If SU does not have a register use, i.e. it doesn't produce a value
1899    // that would be consumed (e.g. store), then it terminates a chain of
1900    // computation.  Give it a large SethiUllman number so it will be
1901    // scheduled right before its predecessors that it doesn't lengthen
1902    // their live ranges.
1903    return 0xffff;
1904  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1905    // If SU does not have a register def, schedule it close to its uses
1906    // because it does not lengthen any live ranges.
1907    return 0;
1908#if 1
1909  return SethiUllmanNumbers[SU->NodeNum];
1910#else
1911  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1912  if (SU->isCallOp) {
1913    // FIXME: This assumes all of the defs are used as call operands.
1914    int NP = (int)Priority - SU->getNode()->getNumValues();
1915    return (NP > 0) ? NP : 0;
1916  }
1917  return Priority;
1918#endif
1919}
1920
1921//===----------------------------------------------------------------------===//
1922//                     Register Pressure Tracking
1923//===----------------------------------------------------------------------===//
1924
1925void RegReductionPQBase::dumpRegPressure() const {
1926#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1927  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1928         E = TRI->regclass_end(); I != E; ++I) {
1929    const TargetRegisterClass *RC = *I;
1930    unsigned Id = RC->getID();
1931    unsigned RP = RegPressure[Id];
1932    if (!RP) continue;
1933    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1934          << '\n');
1935  }
1936#endif
1937}
1938
1939bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1940  if (!TLI)
1941    return false;
1942
1943  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1944       I != E; ++I) {
1945    if (I->isCtrl())
1946      continue;
1947    SUnit *PredSU = I->getSUnit();
1948    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1949    // to cover the number of registers defined (they are all live).
1950    if (PredSU->NumRegDefsLeft == 0) {
1951      continue;
1952    }
1953    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1954         RegDefPos.IsValid(); RegDefPos.Advance()) {
1955      unsigned RCId, Cost;
1956      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1957
1958      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1959        return true;
1960    }
1961  }
1962  return false;
1963}
1964
1965bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1966  const SDNode *N = SU->getNode();
1967
1968  if (!N->isMachineOpcode() || !SU->NumSuccs)
1969    return false;
1970
1971  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1972  for (unsigned i = 0; i != NumDefs; ++i) {
1973    MVT VT = N->getSimpleValueType(i);
1974    if (!N->hasAnyUseOfValue(i))
1975      continue;
1976    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1977    if (RegPressure[RCId] >= RegLimit[RCId])
1978      return true;
1979  }
1980  return false;
1981}
1982
1983// Compute the register pressure contribution by this instruction by count up
1984// for uses that are not live and down for defs. Only count register classes
1985// that are already under high pressure. As a side effect, compute the number of
1986// uses of registers that are already live.
1987//
1988// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1989// so could probably be factored.
1990int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1991  LiveUses = 0;
1992  int PDiff = 0;
1993  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1994       I != E; ++I) {
1995    if (I->isCtrl())
1996      continue;
1997    SUnit *PredSU = I->getSUnit();
1998    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1999    // to cover the number of registers defined (they are all live).
2000    if (PredSU->NumRegDefsLeft == 0) {
2001      if (PredSU->getNode()->isMachineOpcode())
2002        ++LiveUses;
2003      continue;
2004    }
2005    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2006         RegDefPos.IsValid(); RegDefPos.Advance()) {
2007      MVT VT = RegDefPos.GetValue();
2008      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2009      if (RegPressure[RCId] >= RegLimit[RCId])
2010        ++PDiff;
2011    }
2012  }
2013  const SDNode *N = SU->getNode();
2014
2015  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2016    return PDiff;
2017
2018  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2019  for (unsigned i = 0; i != NumDefs; ++i) {
2020    MVT VT = N->getSimpleValueType(i);
2021    if (!N->hasAnyUseOfValue(i))
2022      continue;
2023    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2024    if (RegPressure[RCId] >= RegLimit[RCId])
2025      --PDiff;
2026  }
2027  return PDiff;
2028}
2029
2030void RegReductionPQBase::scheduledNode(SUnit *SU) {
2031  if (!TracksRegPressure)
2032    return;
2033
2034  if (!SU->getNode())
2035    return;
2036
2037  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2038       I != E; ++I) {
2039    if (I->isCtrl())
2040      continue;
2041    SUnit *PredSU = I->getSUnit();
2042    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2043    // to cover the number of registers defined (they are all live).
2044    if (PredSU->NumRegDefsLeft == 0) {
2045      continue;
2046    }
2047    // FIXME: The ScheduleDAG currently loses information about which of a
2048    // node's values is consumed by each dependence. Consequently, if the node
2049    // defines multiple register classes, we don't know which to pressurize
2050    // here. Instead the following loop consumes the register defs in an
2051    // arbitrary order. At least it handles the common case of clustered loads
2052    // to the same class. For precise liveness, each SDep needs to indicate the
2053    // result number. But that tightly couples the ScheduleDAG with the
2054    // SelectionDAG making updates tricky. A simpler hack would be to attach a
2055    // value type or register class to SDep.
2056    //
2057    // The most important aspect of register tracking is balancing the increase
2058    // here with the reduction further below. Note that this SU may use multiple
2059    // defs in PredSU. The can't be determined here, but we've already
2060    // compensated by reducing NumRegDefsLeft in PredSU during
2061    // ScheduleDAGSDNodes::AddSchedEdges.
2062    --PredSU->NumRegDefsLeft;
2063    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2064    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2065         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2066      if (SkipRegDefs)
2067        continue;
2068
2069      unsigned RCId, Cost;
2070      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2071      RegPressure[RCId] += Cost;
2072      break;
2073    }
2074  }
2075
2076  // We should have this assert, but there may be dead SDNodes that never
2077  // materialize as SUnits, so they don't appear to generate liveness.
2078  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2079  int SkipRegDefs = (int)SU->NumRegDefsLeft;
2080  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2081       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2082    if (SkipRegDefs > 0)
2083      continue;
2084    unsigned RCId, Cost;
2085    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2086    if (RegPressure[RCId] < Cost) {
2087      // Register pressure tracking is imprecise. This can happen. But we try
2088      // hard not to let it happen because it likely results in poor scheduling.
2089      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2090      RegPressure[RCId] = 0;
2091    }
2092    else {
2093      RegPressure[RCId] -= Cost;
2094    }
2095  }
2096  dumpRegPressure();
2097}
2098
2099void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2100  if (!TracksRegPressure)
2101    return;
2102
2103  const SDNode *N = SU->getNode();
2104  if (!N) return;
2105
2106  if (!N->isMachineOpcode()) {
2107    if (N->getOpcode() != ISD::CopyToReg)
2108      return;
2109  } else {
2110    unsigned Opc = N->getMachineOpcode();
2111    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2112        Opc == TargetOpcode::INSERT_SUBREG ||
2113        Opc == TargetOpcode::SUBREG_TO_REG ||
2114        Opc == TargetOpcode::REG_SEQUENCE ||
2115        Opc == TargetOpcode::IMPLICIT_DEF)
2116      return;
2117  }
2118
2119  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2120       I != E; ++I) {
2121    if (I->isCtrl())
2122      continue;
2123    SUnit *PredSU = I->getSUnit();
2124    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2125    // counts data deps.
2126    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2127      continue;
2128    const SDNode *PN = PredSU->getNode();
2129    if (!PN->isMachineOpcode()) {
2130      if (PN->getOpcode() == ISD::CopyFromReg) {
2131        MVT VT = PN->getSimpleValueType(0);
2132        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2133        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2134      }
2135      continue;
2136    }
2137    unsigned POpc = PN->getMachineOpcode();
2138    if (POpc == TargetOpcode::IMPLICIT_DEF)
2139      continue;
2140    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2141        POpc == TargetOpcode::INSERT_SUBREG ||
2142        POpc == TargetOpcode::SUBREG_TO_REG) {
2143      MVT VT = PN->getSimpleValueType(0);
2144      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2145      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2146      continue;
2147    }
2148    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2149    for (unsigned i = 0; i != NumDefs; ++i) {
2150      MVT VT = PN->getSimpleValueType(i);
2151      if (!PN->hasAnyUseOfValue(i))
2152        continue;
2153      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2154      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2155        // Register pressure tracking is imprecise. This can happen.
2156        RegPressure[RCId] = 0;
2157      else
2158        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2159    }
2160  }
2161
2162  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2163  // may transfer data dependencies to CopyToReg.
2164  if (SU->NumSuccs && N->isMachineOpcode()) {
2165    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2166    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2167      MVT VT = N->getSimpleValueType(i);
2168      if (VT == MVT::Glue || VT == MVT::Other)
2169        continue;
2170      if (!N->hasAnyUseOfValue(i))
2171        continue;
2172      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2173      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2174    }
2175  }
2176
2177  dumpRegPressure();
2178}
2179
2180//===----------------------------------------------------------------------===//
2181//           Dynamic Node Priority for Register Pressure Reduction
2182//===----------------------------------------------------------------------===//
2183
2184/// closestSucc - Returns the scheduled cycle of the successor which is
2185/// closest to the current cycle.
2186static unsigned closestSucc(const SUnit *SU) {
2187  unsigned MaxHeight = 0;
2188  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2189       I != E; ++I) {
2190    if (I->isCtrl()) continue;  // ignore chain succs
2191    unsigned Height = I->getSUnit()->getHeight();
2192    // If there are bunch of CopyToRegs stacked up, they should be considered
2193    // to be at the same position.
2194    if (I->getSUnit()->getNode() &&
2195        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2196      Height = closestSucc(I->getSUnit())+1;
2197    if (Height > MaxHeight)
2198      MaxHeight = Height;
2199  }
2200  return MaxHeight;
2201}
2202
2203/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2204/// for scratch registers, i.e. number of data dependencies.
2205static unsigned calcMaxScratches(const SUnit *SU) {
2206  unsigned Scratches = 0;
2207  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2208       I != E; ++I) {
2209    if (I->isCtrl()) continue;  // ignore chain preds
2210    Scratches++;
2211  }
2212  return Scratches;
2213}
2214
2215/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2216/// CopyFromReg from a virtual register.
2217static bool hasOnlyLiveInOpers(const SUnit *SU) {
2218  bool RetVal = false;
2219  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2220       I != E; ++I) {
2221    if (I->isCtrl()) continue;
2222    const SUnit *PredSU = I->getSUnit();
2223    if (PredSU->getNode() &&
2224        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2225      unsigned Reg =
2226        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2227      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2228        RetVal = true;
2229        continue;
2230      }
2231    }
2232    return false;
2233  }
2234  return RetVal;
2235}
2236
2237/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2238/// CopyToReg to a virtual register. This SU def is probably a liveout and
2239/// it has no other use. It should be scheduled closer to the terminator.
2240static bool hasOnlyLiveOutUses(const SUnit *SU) {
2241  bool RetVal = false;
2242  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2243       I != E; ++I) {
2244    if (I->isCtrl()) continue;
2245    const SUnit *SuccSU = I->getSUnit();
2246    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2247      unsigned Reg =
2248        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2249      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2250        RetVal = true;
2251        continue;
2252      }
2253    }
2254    return false;
2255  }
2256  return RetVal;
2257}
2258
2259// Set isVRegCycle for a node with only live in opers and live out uses. Also
2260// set isVRegCycle for its CopyFromReg operands.
2261//
2262// This is only relevant for single-block loops, in which case the VRegCycle
2263// node is likely an induction variable in which the operand and target virtual
2264// registers should be coalesced (e.g. pre/post increment values). Setting the
2265// isVRegCycle flag helps the scheduler prioritize other uses of the same
2266// CopyFromReg so that this node becomes the virtual register "kill". This
2267// avoids interference between the values live in and out of the block and
2268// eliminates a copy inside the loop.
2269static void initVRegCycle(SUnit *SU) {
2270  if (DisableSchedVRegCycle)
2271    return;
2272
2273  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2274    return;
2275
2276  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2277
2278  SU->isVRegCycle = true;
2279
2280  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2281       I != E; ++I) {
2282    if (I->isCtrl()) continue;
2283    I->getSUnit()->isVRegCycle = true;
2284  }
2285}
2286
2287// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2288// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2289static void resetVRegCycle(SUnit *SU) {
2290  if (!SU->isVRegCycle)
2291    return;
2292
2293  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2294       I != E; ++I) {
2295    if (I->isCtrl()) continue;  // ignore chain preds
2296    SUnit *PredSU = I->getSUnit();
2297    if (PredSU->isVRegCycle) {
2298      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2299             "VRegCycle def must be CopyFromReg");
2300      I->getSUnit()->isVRegCycle = 0;
2301    }
2302  }
2303}
2304
2305// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2306// means a node that defines the VRegCycle has not been scheduled yet.
2307static bool hasVRegCycleUse(const SUnit *SU) {
2308  // If this SU also defines the VReg, don't hoist it as a "use".
2309  if (SU->isVRegCycle)
2310    return false;
2311
2312  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2313       I != E; ++I) {
2314    if (I->isCtrl()) continue;  // ignore chain preds
2315    if (I->getSUnit()->isVRegCycle &&
2316        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2317      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2318      return true;
2319    }
2320  }
2321  return false;
2322}
2323
2324// Check for either a dependence (latency) or resource (hazard) stall.
2325//
2326// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2327static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2328  if ((int)SPQ->getCurCycle() < Height) return true;
2329  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2330      != ScheduleHazardRecognizer::NoHazard)
2331    return true;
2332  return false;
2333}
2334
2335// Return -1 if left has higher priority, 1 if right has higher priority.
2336// Return 0 if latency-based priority is equivalent.
2337static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2338                            RegReductionPQBase *SPQ) {
2339  // Scheduling an instruction that uses a VReg whose postincrement has not yet
2340  // been scheduled will induce a copy. Model this as an extra cycle of latency.
2341  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2342  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2343  int LHeight = (int)left->getHeight() + LPenalty;
2344  int RHeight = (int)right->getHeight() + RPenalty;
2345
2346  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2347    BUHasStall(left, LHeight, SPQ);
2348  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2349    BUHasStall(right, RHeight, SPQ);
2350
2351  // If scheduling one of the node will cause a pipeline stall, delay it.
2352  // If scheduling either one of the node will cause a pipeline stall, sort
2353  // them according to their height.
2354  if (LStall) {
2355    if (!RStall)
2356      return 1;
2357    if (LHeight != RHeight)
2358      return LHeight > RHeight ? 1 : -1;
2359  } else if (RStall)
2360    return -1;
2361
2362  // If either node is scheduling for latency, sort them by height/depth
2363  // and latency.
2364  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2365                     right->SchedulingPref == Sched::ILP)) {
2366    // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2367    // is enabled, grouping instructions by cycle, then its height is already
2368    // covered so only its depth matters. We also reach this point if both stall
2369    // but have the same height.
2370    if (!SPQ->getHazardRec()->isEnabled()) {
2371      if (LHeight != RHeight)
2372        return LHeight > RHeight ? 1 : -1;
2373    }
2374    int LDepth = left->getDepth() - LPenalty;
2375    int RDepth = right->getDepth() - RPenalty;
2376    if (LDepth != RDepth) {
2377      DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2378            << ") depth " << LDepth << " vs SU (" << right->NodeNum
2379            << ") depth " << RDepth << "\n");
2380      return LDepth < RDepth ? 1 : -1;
2381    }
2382    if (left->Latency != right->Latency)
2383      return left->Latency > right->Latency ? 1 : -1;
2384  }
2385  return 0;
2386}
2387
2388static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2389  // Schedule physical register definitions close to their use. This is
2390  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2391  // long as shortening physreg live ranges is generally good, we can defer
2392  // creating a subtarget hook.
2393  if (!DisableSchedPhysRegJoin) {
2394    bool LHasPhysReg = left->hasPhysRegDefs;
2395    bool RHasPhysReg = right->hasPhysRegDefs;
2396    if (LHasPhysReg != RHasPhysReg) {
2397      #ifndef NDEBUG
2398      static const char *const PhysRegMsg[] = { " has no physreg",
2399                                                " defines a physreg" };
2400      #endif
2401      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2402            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2403            << PhysRegMsg[RHasPhysReg] << "\n");
2404      return LHasPhysReg < RHasPhysReg;
2405    }
2406  }
2407
2408  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2409  unsigned LPriority = SPQ->getNodePriority(left);
2410  unsigned RPriority = SPQ->getNodePriority(right);
2411
2412  // Be really careful about hoisting call operands above previous calls.
2413  // Only allows it if it would reduce register pressure.
2414  if (left->isCall && right->isCallOp) {
2415    unsigned RNumVals = right->getNode()->getNumValues();
2416    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2417  }
2418  if (right->isCall && left->isCallOp) {
2419    unsigned LNumVals = left->getNode()->getNumValues();
2420    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2421  }
2422
2423  if (LPriority != RPriority)
2424    return LPriority > RPriority;
2425
2426  // One or both of the nodes are calls and their sethi-ullman numbers are the
2427  // same, then keep source order.
2428  if (left->isCall || right->isCall) {
2429    unsigned LOrder = SPQ->getNodeOrdering(left);
2430    unsigned ROrder = SPQ->getNodeOrdering(right);
2431
2432    // Prefer an ordering where the lower the non-zero order number, the higher
2433    // the preference.
2434    if ((LOrder || ROrder) && LOrder != ROrder)
2435      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2436  }
2437
2438  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2439  // e.g.
2440  // t1 = op t2, c1
2441  // t3 = op t4, c2
2442  //
2443  // and the following instructions are both ready.
2444  // t2 = op c3
2445  // t4 = op c4
2446  //
2447  // Then schedule t2 = op first.
2448  // i.e.
2449  // t4 = op c4
2450  // t2 = op c3
2451  // t1 = op t2, c1
2452  // t3 = op t4, c2
2453  //
2454  // This creates more short live intervals.
2455  unsigned LDist = closestSucc(left);
2456  unsigned RDist = closestSucc(right);
2457  if (LDist != RDist)
2458    return LDist < RDist;
2459
2460  // How many registers becomes live when the node is scheduled.
2461  unsigned LScratch = calcMaxScratches(left);
2462  unsigned RScratch = calcMaxScratches(right);
2463  if (LScratch != RScratch)
2464    return LScratch > RScratch;
2465
2466  // Comparing latency against a call makes little sense unless the node
2467  // is register pressure-neutral.
2468  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2469    return (left->NodeQueueId > right->NodeQueueId);
2470
2471  // Do not compare latencies when one or both of the nodes are calls.
2472  if (!DisableSchedCycles &&
2473      !(left->isCall || right->isCall)) {
2474    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2475    if (result != 0)
2476      return result > 0;
2477  }
2478  else {
2479    if (left->getHeight() != right->getHeight())
2480      return left->getHeight() > right->getHeight();
2481
2482    if (left->getDepth() != right->getDepth())
2483      return left->getDepth() < right->getDepth();
2484  }
2485
2486  assert(left->NodeQueueId && right->NodeQueueId &&
2487         "NodeQueueId cannot be zero");
2488  return (left->NodeQueueId > right->NodeQueueId);
2489}
2490
2491// Bottom up
2492bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2493  if (int res = checkSpecialNodes(left, right))
2494    return res > 0;
2495
2496  return BURRSort(left, right, SPQ);
2497}
2498
2499// Source order, otherwise bottom up.
2500bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2501  if (int res = checkSpecialNodes(left, right))
2502    return res > 0;
2503
2504  unsigned LOrder = SPQ->getNodeOrdering(left);
2505  unsigned ROrder = SPQ->getNodeOrdering(right);
2506
2507  // Prefer an ordering where the lower the non-zero order number, the higher
2508  // the preference.
2509  if ((LOrder || ROrder) && LOrder != ROrder)
2510    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2511
2512  return BURRSort(left, right, SPQ);
2513}
2514
2515// If the time between now and when the instruction will be ready can cover
2516// the spill code, then avoid adding it to the ready queue. This gives long
2517// stalls highest priority and allows hoisting across calls. It should also
2518// speed up processing the available queue.
2519bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2520  static const unsigned ReadyDelay = 3;
2521
2522  if (SPQ->MayReduceRegPressure(SU)) return true;
2523
2524  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2525
2526  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2527      != ScheduleHazardRecognizer::NoHazard)
2528    return false;
2529
2530  return true;
2531}
2532
2533// Return true if right should be scheduled with higher priority than left.
2534bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2535  if (int res = checkSpecialNodes(left, right))
2536    return res > 0;
2537
2538  if (left->isCall || right->isCall)
2539    // No way to compute latency of calls.
2540    return BURRSort(left, right, SPQ);
2541
2542  bool LHigh = SPQ->HighRegPressure(left);
2543  bool RHigh = SPQ->HighRegPressure(right);
2544  // Avoid causing spills. If register pressure is high, schedule for
2545  // register pressure reduction.
2546  if (LHigh && !RHigh) {
2547    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2548          << right->NodeNum << ")\n");
2549    return true;
2550  }
2551  else if (!LHigh && RHigh) {
2552    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2553          << left->NodeNum << ")\n");
2554    return false;
2555  }
2556  if (!LHigh && !RHigh) {
2557    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2558    if (result != 0)
2559      return result > 0;
2560  }
2561  return BURRSort(left, right, SPQ);
2562}
2563
2564// Schedule as many instructions in each cycle as possible. So don't make an
2565// instruction available unless it is ready in the current cycle.
2566bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2567  if (SU->getHeight() > CurCycle) return false;
2568
2569  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2570      != ScheduleHazardRecognizer::NoHazard)
2571    return false;
2572
2573  return true;
2574}
2575
2576static bool canEnableCoalescing(SUnit *SU) {
2577  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2578  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2579    // CopyToReg should be close to its uses to facilitate coalescing and
2580    // avoid spilling.
2581    return true;
2582
2583  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2584      Opc == TargetOpcode::SUBREG_TO_REG ||
2585      Opc == TargetOpcode::INSERT_SUBREG)
2586    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2587    // close to their uses to facilitate coalescing.
2588    return true;
2589
2590  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2591    // If SU does not have a register def, schedule it close to its uses
2592    // because it does not lengthen any live ranges.
2593    return true;
2594
2595  return false;
2596}
2597
2598// list-ilp is currently an experimental scheduler that allows various
2599// heuristics to be enabled prior to the normal register reduction logic.
2600bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2601  if (int res = checkSpecialNodes(left, right))
2602    return res > 0;
2603
2604  if (left->isCall || right->isCall)
2605    // No way to compute latency of calls.
2606    return BURRSort(left, right, SPQ);
2607
2608  unsigned LLiveUses = 0, RLiveUses = 0;
2609  int LPDiff = 0, RPDiff = 0;
2610  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2611    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2612    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2613  }
2614  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2615    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2616          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2617    return LPDiff > RPDiff;
2618  }
2619
2620  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2621    bool LReduce = canEnableCoalescing(left);
2622    bool RReduce = canEnableCoalescing(right);
2623    if (LReduce && !RReduce) return false;
2624    if (RReduce && !LReduce) return true;
2625  }
2626
2627  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2628    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2629          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2630    return LLiveUses < RLiveUses;
2631  }
2632
2633  if (!DisableSchedStalls) {
2634    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2635    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2636    if (LStall != RStall)
2637      return left->getHeight() > right->getHeight();
2638  }
2639
2640  if (!DisableSchedCriticalPath) {
2641    int spread = (int)left->getDepth() - (int)right->getDepth();
2642    if (std::abs(spread) > MaxReorderWindow) {
2643      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2644            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2645            << right->getDepth() << "\n");
2646      return left->getDepth() < right->getDepth();
2647    }
2648  }
2649
2650  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2651    int spread = (int)left->getHeight() - (int)right->getHeight();
2652    if (std::abs(spread) > MaxReorderWindow)
2653      return left->getHeight() > right->getHeight();
2654  }
2655
2656  return BURRSort(left, right, SPQ);
2657}
2658
2659void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2660  SUnits = &sunits;
2661  // Add pseudo dependency edges for two-address nodes.
2662  if (!Disable2AddrHack)
2663    AddPseudoTwoAddrDeps();
2664  // Reroute edges to nodes with multiple uses.
2665  if (!TracksRegPressure && !SrcOrder)
2666    PrescheduleNodesWithMultipleUses();
2667  // Calculate node priorities.
2668  CalculateSethiUllmanNumbers();
2669
2670  // For single block loops, mark nodes that look like canonical IV increments.
2671  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2672    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2673      initVRegCycle(&sunits[i]);
2674    }
2675  }
2676}
2677
2678//===----------------------------------------------------------------------===//
2679//                    Preschedule for Register Pressure
2680//===----------------------------------------------------------------------===//
2681
2682bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2683  if (SU->isTwoAddress) {
2684    unsigned Opc = SU->getNode()->getMachineOpcode();
2685    const MCInstrDesc &MCID = TII->get(Opc);
2686    unsigned NumRes = MCID.getNumDefs();
2687    unsigned NumOps = MCID.getNumOperands() - NumRes;
2688    for (unsigned i = 0; i != NumOps; ++i) {
2689      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2690        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2691        if (DU->getNodeId() != -1 &&
2692            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2693          return true;
2694      }
2695    }
2696  }
2697  return false;
2698}
2699
2700/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2701/// successor's explicit physregs whose definition can reach DepSU.
2702/// i.e. DepSU should not be scheduled above SU.
2703static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2704                                         ScheduleDAGRRList *scheduleDAG,
2705                                         const TargetInstrInfo *TII,
2706                                         const TargetRegisterInfo *TRI) {
2707  const uint16_t *ImpDefs
2708    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2709  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2710  if(!ImpDefs && !RegMask)
2711    return false;
2712
2713  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2714       SI != SE; ++SI) {
2715    SUnit *SuccSU = SI->getSUnit();
2716    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2717           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2718      if (!PI->isAssignedRegDep())
2719        continue;
2720
2721      if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2722          scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2723        return true;
2724
2725      if (ImpDefs)
2726        for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2727          // Return true if SU clobbers this physical register use and the
2728          // definition of the register reaches from DepSU. IsReachable queries
2729          // a topological forward sort of the DAG (following the successors).
2730          if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2731              scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2732            return true;
2733    }
2734  }
2735  return false;
2736}
2737
2738/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2739/// physical register defs.
2740static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2741                                  const TargetInstrInfo *TII,
2742                                  const TargetRegisterInfo *TRI) {
2743  SDNode *N = SuccSU->getNode();
2744  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2745  const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2746  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2747  for (const SDNode *SUNode = SU->getNode(); SUNode;
2748       SUNode = SUNode->getGluedNode()) {
2749    if (!SUNode->isMachineOpcode())
2750      continue;
2751    const uint16_t *SUImpDefs =
2752      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2753    const uint32_t *SURegMask = getNodeRegMask(SUNode);
2754    if (!SUImpDefs && !SURegMask)
2755      continue;
2756    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2757      EVT VT = N->getValueType(i);
2758      if (VT == MVT::Glue || VT == MVT::Other)
2759        continue;
2760      if (!N->hasAnyUseOfValue(i))
2761        continue;
2762      unsigned Reg = ImpDefs[i - NumDefs];
2763      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2764        return true;
2765      if (!SUImpDefs)
2766        continue;
2767      for (;*SUImpDefs; ++SUImpDefs) {
2768        unsigned SUReg = *SUImpDefs;
2769        if (TRI->regsOverlap(Reg, SUReg))
2770          return true;
2771      }
2772    }
2773  }
2774  return false;
2775}
2776
2777/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2778/// are not handled well by the general register pressure reduction
2779/// heuristics. When presented with code like this:
2780///
2781///      N
2782///    / |
2783///   /  |
2784///  U  store
2785///  |
2786/// ...
2787///
2788/// the heuristics tend to push the store up, but since the
2789/// operand of the store has another use (U), this would increase
2790/// the length of that other use (the U->N edge).
2791///
2792/// This function transforms code like the above to route U's
2793/// dependence through the store when possible, like this:
2794///
2795///      N
2796///      ||
2797///      ||
2798///     store
2799///       |
2800///       U
2801///       |
2802///      ...
2803///
2804/// This results in the store being scheduled immediately
2805/// after N, which shortens the U->N live range, reducing
2806/// register pressure.
2807///
2808void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2809  // Visit all the nodes in topological order, working top-down.
2810  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2811    SUnit *SU = &(*SUnits)[i];
2812    // For now, only look at nodes with no data successors, such as stores.
2813    // These are especially important, due to the heuristics in
2814    // getNodePriority for nodes with no data successors.
2815    if (SU->NumSuccs != 0)
2816      continue;
2817    // For now, only look at nodes with exactly one data predecessor.
2818    if (SU->NumPreds != 1)
2819      continue;
2820    // Avoid prescheduling copies to virtual registers, which don't behave
2821    // like other nodes from the perspective of scheduling heuristics.
2822    if (SDNode *N = SU->getNode())
2823      if (N->getOpcode() == ISD::CopyToReg &&
2824          TargetRegisterInfo::isVirtualRegister
2825            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2826        continue;
2827
2828    // Locate the single data predecessor.
2829    SUnit *PredSU = nullptr;
2830    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2831         EE = SU->Preds.end(); II != EE; ++II)
2832      if (!II->isCtrl()) {
2833        PredSU = II->getSUnit();
2834        break;
2835      }
2836    assert(PredSU);
2837
2838    // Don't rewrite edges that carry physregs, because that requires additional
2839    // support infrastructure.
2840    if (PredSU->hasPhysRegDefs)
2841      continue;
2842    // Short-circuit the case where SU is PredSU's only data successor.
2843    if (PredSU->NumSuccs == 1)
2844      continue;
2845    // Avoid prescheduling to copies from virtual registers, which don't behave
2846    // like other nodes from the perspective of scheduling heuristics.
2847    if (SDNode *N = SU->getNode())
2848      if (N->getOpcode() == ISD::CopyFromReg &&
2849          TargetRegisterInfo::isVirtualRegister
2850            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2851        continue;
2852
2853    // Perform checks on the successors of PredSU.
2854    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2855         EE = PredSU->Succs.end(); II != EE; ++II) {
2856      SUnit *PredSuccSU = II->getSUnit();
2857      if (PredSuccSU == SU) continue;
2858      // If PredSU has another successor with no data successors, for
2859      // now don't attempt to choose either over the other.
2860      if (PredSuccSU->NumSuccs == 0)
2861        goto outer_loop_continue;
2862      // Don't break physical register dependencies.
2863      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2864        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2865          goto outer_loop_continue;
2866      // Don't introduce graph cycles.
2867      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2868        goto outer_loop_continue;
2869    }
2870
2871    // Ok, the transformation is safe and the heuristics suggest it is
2872    // profitable. Update the graph.
2873    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2874                 << " next to PredSU #" << PredSU->NodeNum
2875                 << " to guide scheduling in the presence of multiple uses\n");
2876    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2877      SDep Edge = PredSU->Succs[i];
2878      assert(!Edge.isAssignedRegDep());
2879      SUnit *SuccSU = Edge.getSUnit();
2880      if (SuccSU != SU) {
2881        Edge.setSUnit(PredSU);
2882        scheduleDAG->RemovePred(SuccSU, Edge);
2883        scheduleDAG->AddPred(SU, Edge);
2884        Edge.setSUnit(SU);
2885        scheduleDAG->AddPred(SuccSU, Edge);
2886        --i;
2887      }
2888    }
2889  outer_loop_continue:;
2890  }
2891}
2892
2893/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2894/// it as a def&use operand. Add a pseudo control edge from it to the other
2895/// node (if it won't create a cycle) so the two-address one will be scheduled
2896/// first (lower in the schedule). If both nodes are two-address, favor the
2897/// one that has a CopyToReg use (more likely to be a loop induction update).
2898/// If both are two-address, but one is commutable while the other is not
2899/// commutable, favor the one that's not commutable.
2900void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2901  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2902    SUnit *SU = &(*SUnits)[i];
2903    if (!SU->isTwoAddress)
2904      continue;
2905
2906    SDNode *Node = SU->getNode();
2907    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2908      continue;
2909
2910    bool isLiveOut = hasOnlyLiveOutUses(SU);
2911    unsigned Opc = Node->getMachineOpcode();
2912    const MCInstrDesc &MCID = TII->get(Opc);
2913    unsigned NumRes = MCID.getNumDefs();
2914    unsigned NumOps = MCID.getNumOperands() - NumRes;
2915    for (unsigned j = 0; j != NumOps; ++j) {
2916      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2917        continue;
2918      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2919      if (DU->getNodeId() == -1)
2920        continue;
2921      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2922      if (!DUSU) continue;
2923      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2924           E = DUSU->Succs.end(); I != E; ++I) {
2925        if (I->isCtrl()) continue;
2926        SUnit *SuccSU = I->getSUnit();
2927        if (SuccSU == SU)
2928          continue;
2929        // Be conservative. Ignore if nodes aren't at roughly the same
2930        // depth and height.
2931        if (SuccSU->getHeight() < SU->getHeight() &&
2932            (SU->getHeight() - SuccSU->getHeight()) > 1)
2933          continue;
2934        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2935        // constrains whatever is using the copy, instead of the copy
2936        // itself. In the case that the copy is coalesced, this
2937        // preserves the intent of the pseudo two-address heurietics.
2938        while (SuccSU->Succs.size() == 1 &&
2939               SuccSU->getNode()->isMachineOpcode() &&
2940               SuccSU->getNode()->getMachineOpcode() ==
2941                 TargetOpcode::COPY_TO_REGCLASS)
2942          SuccSU = SuccSU->Succs.front().getSUnit();
2943        // Don't constrain non-instruction nodes.
2944        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2945          continue;
2946        // Don't constrain nodes with physical register defs if the
2947        // predecessor can clobber them.
2948        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2949          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2950            continue;
2951        }
2952        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2953        // these may be coalesced away. We want them close to their uses.
2954        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2955        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2956            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2957            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2958          continue;
2959        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2960            (!canClobber(SuccSU, DUSU) ||
2961             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2962             (!SU->isCommutable && SuccSU->isCommutable)) &&
2963            !scheduleDAG->IsReachable(SuccSU, SU)) {
2964          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2965                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2966          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
2967        }
2968      }
2969    }
2970  }
2971}
2972
2973//===----------------------------------------------------------------------===//
2974//                         Public Constructor Functions
2975//===----------------------------------------------------------------------===//
2976
2977llvm::ScheduleDAGSDNodes *
2978llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2979                                 CodeGenOpt::Level OptLevel) {
2980  const TargetMachine &TM = IS->TM;
2981  const TargetInstrInfo *TII = TM.getInstrInfo();
2982  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2983
2984  BURegReductionPriorityQueue *PQ =
2985    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
2986  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2987  PQ->setScheduleDAG(SD);
2988  return SD;
2989}
2990
2991llvm::ScheduleDAGSDNodes *
2992llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2993                                   CodeGenOpt::Level OptLevel) {
2994  const TargetMachine &TM = IS->TM;
2995  const TargetInstrInfo *TII = TM.getInstrInfo();
2996  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2997
2998  SrcRegReductionPriorityQueue *PQ =
2999    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3000  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3001  PQ->setScheduleDAG(SD);
3002  return SD;
3003}
3004
3005llvm::ScheduleDAGSDNodes *
3006llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3007                                   CodeGenOpt::Level OptLevel) {
3008  const TargetMachine &TM = IS->TM;
3009  const TargetInstrInfo *TII = TM.getInstrInfo();
3010  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3011  const TargetLowering *TLI = IS->getTargetLowering();
3012
3013  HybridBURRPriorityQueue *PQ =
3014    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3015
3016  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3017  PQ->setScheduleDAG(SD);
3018  return SD;
3019}
3020
3021llvm::ScheduleDAGSDNodes *
3022llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3023                                CodeGenOpt::Level OptLevel) {
3024  const TargetMachine &TM = IS->TM;
3025  const TargetInstrInfo *TII = TM.getInstrInfo();
3026  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3027  const TargetLowering *TLI = IS->getTargetLowering();
3028
3029  ILPBURRPriorityQueue *PQ =
3030    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3031  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3032  PQ->setScheduleDAG(SD);
3033  return SD;
3034}
3035