SelectionDAGBuilder.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/StackMaps.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DebugInfo.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/InlineAsm.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Intrinsics.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/Module.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include "llvm/Target/TargetSelectionDAGInfo.h"
62#include <algorithm>
63using namespace llvm;
64
65/// LimitFloatPrecision - Generate low-precision inline sequences for
66/// some float libcalls (6, 8 or 12 bits).
67static unsigned LimitFloatPrecision;
68
69static cl::opt<unsigned, true>
70LimitFPPrecision("limit-float-precision",
71                 cl::desc("Generate low-precision inline sequences "
72                          "for some float libcalls"),
73                 cl::location(LimitFloatPrecision),
74                 cl::init(0));
75
76// Limit the width of DAG chains. This is important in general to prevent
77// prevent DAG-based analysis from blowing up. For example, alias analysis and
78// load clustering may not complete in reasonable time. It is difficult to
79// recognize and avoid this situation within each individual analysis, and
80// future analyses are likely to have the same behavior. Limiting DAG width is
81// the safe approach, and will be especially important with global DAGs.
82//
83// MaxParallelChains default is arbitrarily high to avoid affecting
84// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
85// sequence over this should have been converted to llvm.memcpy by the
86// frontend. It easy to induce this behavior with .ll code such as:
87// %buffer = alloca [4096 x i8]
88// %data = load [4096 x i8]* %argPtr
89// store [4096 x i8] %data, [4096 x i8]* %buffer
90static const unsigned MaxParallelChains = 64;
91
92static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
93                                      const SDValue *Parts, unsigned NumParts,
94                                      MVT PartVT, EVT ValueVT, const Value *V);
95
96/// getCopyFromParts - Create a value that contains the specified legal parts
97/// combined into the value they represent.  If the parts combine to a type
98/// larger then ValueVT then AssertOp can be used to specify whether the extra
99/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
100/// (ISD::AssertSext).
101static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
102                                const SDValue *Parts,
103                                unsigned NumParts, MVT PartVT, EVT ValueVT,
104                                const Value *V,
105                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
106  if (ValueVT.isVector())
107    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
108                                  PartVT, ValueVT, V);
109
110  assert(NumParts > 0 && "No parts to assemble!");
111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
112  SDValue Val = Parts[0];
113
114  if (NumParts > 1) {
115    // Assemble the value from multiple parts.
116    if (ValueVT.isInteger()) {
117      unsigned PartBits = PartVT.getSizeInBits();
118      unsigned ValueBits = ValueVT.getSizeInBits();
119
120      // Assemble the power of 2 part.
121      unsigned RoundParts = NumParts & (NumParts - 1) ?
122        1 << Log2_32(NumParts) : NumParts;
123      unsigned RoundBits = PartBits * RoundParts;
124      EVT RoundVT = RoundBits == ValueBits ?
125        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
126      SDValue Lo, Hi;
127
128      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
129
130      if (RoundParts > 2) {
131        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
132                              PartVT, HalfVT, V);
133        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
134                              RoundParts / 2, PartVT, HalfVT, V);
135      } else {
136        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
137        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
138      }
139
140      if (TLI.isBigEndian())
141        std::swap(Lo, Hi);
142
143      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
144
145      if (RoundParts < NumParts) {
146        // Assemble the trailing non-power-of-2 part.
147        unsigned OddParts = NumParts - RoundParts;
148        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
149        Hi = getCopyFromParts(DAG, DL,
150                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
151
152        // Combine the round and odd parts.
153        Lo = Val;
154        if (TLI.isBigEndian())
155          std::swap(Lo, Hi);
156        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
157        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
158        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
159                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
160                                         TLI.getPointerTy()));
161        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
162        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
163      }
164    } else if (PartVT.isFloatingPoint()) {
165      // FP split into multiple FP parts (for ppcf128)
166      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
167             "Unexpected split");
168      SDValue Lo, Hi;
169      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
170      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
171      if (TLI.isBigEndian())
172        std::swap(Lo, Hi);
173      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
174    } else {
175      // FP split into integer parts (soft fp)
176      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
177             !PartVT.isVector() && "Unexpected split");
178      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
179      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
180    }
181  }
182
183  // There is now one part, held in Val.  Correct it to match ValueVT.
184  EVT PartEVT = Val.getValueType();
185
186  if (PartEVT == ValueVT)
187    return Val;
188
189  if (PartEVT.isInteger() && ValueVT.isInteger()) {
190    if (ValueVT.bitsLT(PartEVT)) {
191      // For a truncate, see if we have any information to
192      // indicate whether the truncated bits will always be
193      // zero or sign-extension.
194      if (AssertOp != ISD::DELETED_NODE)
195        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
196                          DAG.getValueType(ValueVT));
197      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
198    }
199    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
200  }
201
202  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
203    // FP_ROUND's are always exact here.
204    if (ValueVT.bitsLT(Val.getValueType()))
205      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
206                         DAG.getTargetConstant(1, TLI.getPointerTy()));
207
208    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
209  }
210
211  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
212    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
213
214  llvm_unreachable("Unknown mismatch!");
215}
216
217static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
218                                              const Twine &ErrMsg) {
219  const Instruction *I = dyn_cast_or_null<Instruction>(V);
220  if (!V)
221    return Ctx.emitError(ErrMsg);
222
223  const char *AsmError = ", possible invalid constraint for vector type";
224  if (const CallInst *CI = dyn_cast<CallInst>(I))
225    if (isa<InlineAsm>(CI->getCalledValue()))
226      return Ctx.emitError(I, ErrMsg + AsmError);
227
228  return Ctx.emitError(I, ErrMsg);
229}
230
231/// getCopyFromPartsVector - Create a value that contains the specified legal
232/// parts combined into the value they represent.  If the parts combine to a
233/// type larger then ValueVT then AssertOp can be used to specify whether the
234/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
235/// ValueVT (ISD::AssertSext).
236static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
237                                      const SDValue *Parts, unsigned NumParts,
238                                      MVT PartVT, EVT ValueVT, const Value *V) {
239  assert(ValueVT.isVector() && "Not a vector value");
240  assert(NumParts > 0 && "No parts to assemble!");
241  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
242  SDValue Val = Parts[0];
243
244  // Handle a multi-element vector.
245  if (NumParts > 1) {
246    EVT IntermediateVT;
247    MVT RegisterVT;
248    unsigned NumIntermediates;
249    unsigned NumRegs =
250    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
251                               NumIntermediates, RegisterVT);
252    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
253    NumParts = NumRegs; // Silence a compiler warning.
254    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
255    assert(RegisterVT == Parts[0].getSimpleValueType() &&
256           "Part type doesn't match part!");
257
258    // Assemble the parts into intermediate operands.
259    SmallVector<SDValue, 8> Ops(NumIntermediates);
260    if (NumIntermediates == NumParts) {
261      // If the register was not expanded, truncate or copy the value,
262      // as appropriate.
263      for (unsigned i = 0; i != NumParts; ++i)
264        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
265                                  PartVT, IntermediateVT, V);
266    } else if (NumParts > 0) {
267      // If the intermediate type was expanded, build the intermediate
268      // operands from the parts.
269      assert(NumParts % NumIntermediates == 0 &&
270             "Must expand into a divisible number of parts!");
271      unsigned Factor = NumParts / NumIntermediates;
272      for (unsigned i = 0; i != NumIntermediates; ++i)
273        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
274                                  PartVT, IntermediateVT, V);
275    }
276
277    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
278    // intermediate operands.
279    Val = DAG.getNode(IntermediateVT.isVector() ?
280                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
281                      ValueVT, &Ops[0], NumIntermediates);
282  }
283
284  // There is now one part, held in Val.  Correct it to match ValueVT.
285  EVT PartEVT = Val.getValueType();
286
287  if (PartEVT == ValueVT)
288    return Val;
289
290  if (PartEVT.isVector()) {
291    // If the element type of the source/dest vectors are the same, but the
292    // parts vector has more elements than the value vector, then we have a
293    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
294    // elements we want.
295    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
296      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
297             "Cannot narrow, it would be a lossy transformation");
298      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
299                         DAG.getConstant(0, TLI.getVectorIdxTy()));
300    }
301
302    // Vector/Vector bitcast.
303    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
304      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
307      "Cannot handle this kind of promotion");
308    // Promoted vector extract
309    bool Smaller = ValueVT.bitsLE(PartEVT);
310    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
311                       DL, ValueVT, Val);
312
313  }
314
315  // Trivial bitcast if the types are the same size and the destination
316  // vector type is legal.
317  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
318      TLI.isTypeLegal(ValueVT))
319    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
320
321  // Handle cases such as i8 -> <1 x i1>
322  if (ValueVT.getVectorNumElements() != 1) {
323    diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
324                                      "non-trivial scalar-to-vector conversion");
325    return DAG.getUNDEF(ValueVT);
326  }
327
328  if (ValueVT.getVectorNumElements() == 1 &&
329      ValueVT.getVectorElementType() != PartEVT) {
330    bool Smaller = ValueVT.bitsLE(PartEVT);
331    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
332                       DL, ValueVT.getScalarType(), Val);
333  }
334
335  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
336}
337
338static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
339                                 SDValue Val, SDValue *Parts, unsigned NumParts,
340                                 MVT PartVT, const Value *V);
341
342/// getCopyToParts - Create a series of nodes that contain the specified value
343/// split into legal parts.  If the parts contain more bits than Val, then, for
344/// integers, ExtendKind can be used to specify how to generate the extra bits.
345static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
346                           SDValue Val, SDValue *Parts, unsigned NumParts,
347                           MVT PartVT, const Value *V,
348                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
349  EVT ValueVT = Val.getValueType();
350
351  // Handle the vector case separately.
352  if (ValueVT.isVector())
353    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
354
355  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356  unsigned PartBits = PartVT.getSizeInBits();
357  unsigned OrigNumParts = NumParts;
358  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
359
360  if (NumParts == 0)
361    return;
362
363  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
364  EVT PartEVT = PartVT;
365  if (PartEVT == ValueVT) {
366    assert(NumParts == 1 && "No-op copy with multiple parts!");
367    Parts[0] = Val;
368    return;
369  }
370
371  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
372    // If the parts cover more bits than the value has, promote the value.
373    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
374      assert(NumParts == 1 && "Do not know what to promote to!");
375      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
376    } else {
377      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
378             ValueVT.isInteger() &&
379             "Unknown mismatch!");
380      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
382      if (PartVT == MVT::x86mmx)
383        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
384    }
385  } else if (PartBits == ValueVT.getSizeInBits()) {
386    // Different types of the same size.
387    assert(NumParts == 1 && PartEVT != ValueVT);
388    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
389  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
390    // If the parts cover less bits than value has, truncate the value.
391    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
392           ValueVT.isInteger() &&
393           "Unknown mismatch!");
394    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
395    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
396    if (PartVT == MVT::x86mmx)
397      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
398  }
399
400  // The value may have changed - recompute ValueVT.
401  ValueVT = Val.getValueType();
402  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
403         "Failed to tile the value with PartVT!");
404
405  if (NumParts == 1) {
406    if (PartEVT != ValueVT)
407      diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
408                                        "scalar-to-vector conversion failed");
409
410    Parts[0] = Val;
411    return;
412  }
413
414  // Expand the value into multiple parts.
415  if (NumParts & (NumParts - 1)) {
416    // The number of parts is not a power of 2.  Split off and copy the tail.
417    assert(PartVT.isInteger() && ValueVT.isInteger() &&
418           "Do not know what to expand to!");
419    unsigned RoundParts = 1 << Log2_32(NumParts);
420    unsigned RoundBits = RoundParts * PartBits;
421    unsigned OddParts = NumParts - RoundParts;
422    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
423                                 DAG.getIntPtrConstant(RoundBits));
424    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
425
426    if (TLI.isBigEndian())
427      // The odd parts were reversed by getCopyToParts - unreverse them.
428      std::reverse(Parts + RoundParts, Parts + NumParts);
429
430    NumParts = RoundParts;
431    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
432    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
433  }
434
435  // The number of parts is a power of 2.  Repeatedly bisect the value using
436  // EXTRACT_ELEMENT.
437  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
438                         EVT::getIntegerVT(*DAG.getContext(),
439                                           ValueVT.getSizeInBits()),
440                         Val);
441
442  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
443    for (unsigned i = 0; i < NumParts; i += StepSize) {
444      unsigned ThisBits = StepSize * PartBits / 2;
445      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
446      SDValue &Part0 = Parts[i];
447      SDValue &Part1 = Parts[i+StepSize/2];
448
449      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
450                          ThisVT, Part0, DAG.getIntPtrConstant(1));
451      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                          ThisVT, Part0, DAG.getIntPtrConstant(0));
453
454      if (ThisBits == PartBits && ThisVT != PartVT) {
455        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
456        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
457      }
458    }
459  }
460
461  if (TLI.isBigEndian())
462    std::reverse(Parts, Parts + OrigNumParts);
463}
464
465
466/// getCopyToPartsVector - Create a series of nodes that contain the specified
467/// value split into legal parts.
468static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
469                                 SDValue Val, SDValue *Parts, unsigned NumParts,
470                                 MVT PartVT, const Value *V) {
471  EVT ValueVT = Val.getValueType();
472  assert(ValueVT.isVector() && "Not a vector");
473  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
474
475  if (NumParts == 1) {
476    EVT PartEVT = PartVT;
477    if (PartEVT == ValueVT) {
478      // Nothing to do.
479    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
480      // Bitconvert vector->vector case.
481      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
482    } else if (PartVT.isVector() &&
483               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
484               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
485      EVT ElementVT = PartVT.getVectorElementType();
486      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
487      // undef elements.
488      SmallVector<SDValue, 16> Ops;
489      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
490        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491                                  ElementVT, Val, DAG.getConstant(i,
492                                                  TLI.getVectorIdxTy())));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getConstant(i * (NumElements / NumIntermediates),
549                                   TLI.getVectorIdxTy()));
550    else
551      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
552                           IntermediateVT, Val,
553                           DAG.getConstant(i, TLI.getVectorIdxTy()));
554  }
555
556  // Split the intermediate operands into legal parts.
557  if (NumParts == NumIntermediates) {
558    // If the register was not expanded, promote or copy the value,
559    // as appropriate.
560    for (unsigned i = 0; i != NumParts; ++i)
561      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
562  } else if (NumParts > 0) {
563    // If the intermediate type was expanded, split each the value into
564    // legal parts.
565    assert(NumParts % NumIntermediates == 0 &&
566           "Must expand into a divisible number of parts!");
567    unsigned Factor = NumParts / NumIntermediates;
568    for (unsigned i = 0; i != NumIntermediates; ++i)
569      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
570  }
571}
572
573namespace {
574  /// RegsForValue - This struct represents the registers (physical or virtual)
575  /// that a particular set of values is assigned, and the type information
576  /// about the value. The most common situation is to represent one value at a
577  /// time, but struct or array values are handled element-wise as multiple
578  /// values.  The splitting of aggregates is performed recursively, so that we
579  /// never have aggregate-typed registers. The values at this point do not
580  /// necessarily have legal types, so each value may require one or more
581  /// registers of some legal type.
582  ///
583  struct RegsForValue {
584    /// ValueVTs - The value types of the values, which may not be legal, and
585    /// may need be promoted or synthesized from one or more registers.
586    ///
587    SmallVector<EVT, 4> ValueVTs;
588
589    /// RegVTs - The value types of the registers. This is the same size as
590    /// ValueVTs and it records, for each value, what the type of the assigned
591    /// register or registers are. (Individual values are never synthesized
592    /// from more than one type of register.)
593    ///
594    /// With virtual registers, the contents of RegVTs is redundant with TLI's
595    /// getRegisterType member function, however when with physical registers
596    /// it is necessary to have a separate record of the types.
597    ///
598    SmallVector<MVT, 4> RegVTs;
599
600    /// Regs - This list holds the registers assigned to the values.
601    /// Each legal or promoted value requires one register, and each
602    /// expanded value requires multiple registers.
603    ///
604    SmallVector<unsigned, 4> Regs;
605
606    RegsForValue() {}
607
608    RegsForValue(const SmallVector<unsigned, 4> &regs,
609                 MVT regvt, EVT valuevt)
610      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
611
612    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
613                 unsigned Reg, Type *Ty) {
614      ComputeValueVTs(tli, Ty, ValueVTs);
615
616      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
617        EVT ValueVT = ValueVTs[Value];
618        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
619        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
620        for (unsigned i = 0; i != NumRegs; ++i)
621          Regs.push_back(Reg + i);
622        RegVTs.push_back(RegisterVT);
623        Reg += NumRegs;
624      }
625    }
626
627    /// append - Add the specified values to this one.
628    void append(const RegsForValue &RHS) {
629      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
630      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
631      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
632    }
633
634    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
635    /// this value and returns the result as a ValueVTs value.  This uses
636    /// Chain/Flag as the input and updates them for the output Chain/Flag.
637    /// If the Flag pointer is NULL, no flag is used.
638    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
639                            SDLoc dl,
640                            SDValue &Chain, SDValue *Flag,
641                            const Value *V = 0) const;
642
643    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
644    /// specified value into the registers specified by this object.  This uses
645    /// Chain/Flag as the input and updates them for the output Chain/Flag.
646    /// If the Flag pointer is NULL, no flag is used.
647    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
648                       SDValue &Chain, SDValue *Flag, const Value *V) const;
649
650    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
651    /// operand list.  This adds the code marker, matching input operand index
652    /// (if applicable), and includes the number of values added into it.
653    void AddInlineAsmOperands(unsigned Kind,
654                              bool HasMatching, unsigned MatchingIdx,
655                              SelectionDAG &DAG,
656                              std::vector<SDValue> &Ops) const;
657  };
658}
659
660/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
661/// this value and returns the result as a ValueVT value.  This uses
662/// Chain/Flag as the input and updates them for the output Chain/Flag.
663/// If the Flag pointer is NULL, no flag is used.
664SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
665                                      FunctionLoweringInfo &FuncInfo,
666                                      SDLoc dl,
667                                      SDValue &Chain, SDValue *Flag,
668                                      const Value *V) const {
669  // A Value with type {} or [0 x %t] needs no registers.
670  if (ValueVTs.empty())
671    return SDValue();
672
673  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
674
675  // Assemble the legal parts into the final values.
676  SmallVector<SDValue, 4> Values(ValueVTs.size());
677  SmallVector<SDValue, 8> Parts;
678  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
679    // Copy the legal parts from the registers.
680    EVT ValueVT = ValueVTs[Value];
681    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
682    MVT RegisterVT = RegVTs[Value];
683
684    Parts.resize(NumRegs);
685    for (unsigned i = 0; i != NumRegs; ++i) {
686      SDValue P;
687      if (Flag == 0) {
688        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
689      } else {
690        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
691        *Flag = P.getValue(2);
692      }
693
694      Chain = P.getValue(1);
695      Parts[i] = P;
696
697      // If the source register was virtual and if we know something about it,
698      // add an assert node.
699      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
700          !RegisterVT.isInteger() || RegisterVT.isVector())
701        continue;
702
703      const FunctionLoweringInfo::LiveOutInfo *LOI =
704        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
705      if (!LOI)
706        continue;
707
708      unsigned RegSize = RegisterVT.getSizeInBits();
709      unsigned NumSignBits = LOI->NumSignBits;
710      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
711
712      if (NumZeroBits == RegSize) {
713        // The current value is a zero.
714        // Explicitly express that as it would be easier for
715        // optimizations to kick in.
716        Parts[i] = DAG.getConstant(0, RegisterVT);
717        continue;
718      }
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
842  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
843    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
844    MVT RegisterVT = RegVTs[Value];
845    for (unsigned i = 0; i != NumRegs; ++i) {
846      assert(Reg < Regs.size() && "Mismatch in # registers expected");
847      unsigned TheReg = Regs[Reg++];
848      Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
849
850      if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
851        // If we clobbered the stack pointer, MFI should know about it.
852        assert(DAG.getMachineFunction().getFrameInfo()->
853            hasInlineAsmWithSPAdjust());
854      }
855    }
856  }
857}
858
859void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
860                               const TargetLibraryInfo *li) {
861  AA = &aa;
862  GFI = gfi;
863  LibInfo = li;
864  DL = DAG.getTarget().getDataLayout();
865  Context = DAG.getContext();
866  LPadToCallSiteMap.clear();
867}
868
869/// clear - Clear out the current SelectionDAG and the associated
870/// state and prepare this SelectionDAGBuilder object to be used
871/// for a new block. This doesn't clear out information about
872/// additional blocks that are needed to complete switch lowering
873/// or PHI node updating; that information is cleared out as it is
874/// consumed.
875void SelectionDAGBuilder::clear() {
876  NodeMap.clear();
877  UnusedArgNodeMap.clear();
878  PendingLoads.clear();
879  PendingExports.clear();
880  CurInst = NULL;
881  HasTailCall = false;
882  SDNodeOrder = LowestSDNodeOrder;
883}
884
885/// clearDanglingDebugInfo - Clear the dangling debug information
886/// map. This function is separated from the clear so that debug
887/// information that is dangling in a basic block can be properly
888/// resolved in a different basic block. This allows the
889/// SelectionDAG to resolve dangling debug information attached
890/// to PHI nodes.
891void SelectionDAGBuilder::clearDanglingDebugInfo() {
892  DanglingDebugInfoMap.clear();
893}
894
895/// getRoot - Return the current virtual root of the Selection DAG,
896/// flushing any PendingLoad items. This must be done before emitting
897/// a store or any other node that may need to be ordered after any
898/// prior load instructions.
899///
900SDValue SelectionDAGBuilder::getRoot() {
901  if (PendingLoads.empty())
902    return DAG.getRoot();
903
904  if (PendingLoads.size() == 1) {
905    SDValue Root = PendingLoads[0];
906    DAG.setRoot(Root);
907    PendingLoads.clear();
908    return Root;
909  }
910
911  // Otherwise, we have to make a token factor node.
912  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
913                               &PendingLoads[0], PendingLoads.size());
914  PendingLoads.clear();
915  DAG.setRoot(Root);
916  return Root;
917}
918
919/// getControlRoot - Similar to getRoot, but instead of flushing all the
920/// PendingLoad items, flush all the PendingExports items. It is necessary
921/// to do this before emitting a terminator instruction.
922///
923SDValue SelectionDAGBuilder::getControlRoot() {
924  SDValue Root = DAG.getRoot();
925
926  if (PendingExports.empty())
927    return Root;
928
929  // Turn all of the CopyToReg chains into one factored node.
930  if (Root.getOpcode() != ISD::EntryToken) {
931    unsigned i = 0, e = PendingExports.size();
932    for (; i != e; ++i) {
933      assert(PendingExports[i].getNode()->getNumOperands() > 1);
934      if (PendingExports[i].getNode()->getOperand(0) == Root)
935        break;  // Don't add the root if we already indirectly depend on it.
936    }
937
938    if (i == e)
939      PendingExports.push_back(Root);
940  }
941
942  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
943                     &PendingExports[0],
944                     PendingExports.size());
945  PendingExports.clear();
946  DAG.setRoot(Root);
947  return Root;
948}
949
950void SelectionDAGBuilder::visit(const Instruction &I) {
951  // Set up outgoing PHI node register values before emitting the terminator.
952  if (isa<TerminatorInst>(&I))
953    HandlePHINodesInSuccessorBlocks(I.getParent());
954
955  ++SDNodeOrder;
956
957  CurInst = &I;
958
959  visit(I.getOpcode(), I);
960
961  if (!isa<TerminatorInst>(&I) && !HasTailCall)
962    CopyToExportRegsIfNeeded(&I);
963
964  CurInst = NULL;
965}
966
967void SelectionDAGBuilder::visitPHI(const PHINode &) {
968  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
969}
970
971void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
972  // Note: this doesn't use InstVisitor, because it has to work with
973  // ConstantExpr's in addition to instructions.
974  switch (Opcode) {
975  default: llvm_unreachable("Unknown instruction type encountered!");
976    // Build the switch statement using the Instruction.def file.
977#define HANDLE_INST(NUM, OPCODE, CLASS) \
978    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
979#include "llvm/IR/Instruction.def"
980  }
981}
982
983// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
984// generate the debug data structures now that we've seen its definition.
985void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
986                                                   SDValue Val) {
987  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
988  if (DDI.getDI()) {
989    const DbgValueInst *DI = DDI.getDI();
990    DebugLoc dl = DDI.getdl();
991    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
992    MDNode *Variable = DI->getVariable();
993    uint64_t Offset = DI->getOffset();
994    SDDbgValue *SDV;
995    if (Val.getNode()) {
996      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
997        SDV = DAG.getDbgValue(Variable, Val.getNode(),
998                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
999        DAG.AddDbgValue(SDV, Val.getNode(), false);
1000      }
1001    } else
1002      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1003    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1004  }
1005}
1006
1007/// getValue - Return an SDValue for the given Value.
1008SDValue SelectionDAGBuilder::getValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it. It's important
1010  // to do this first, so that we don't create a CopyFromReg if we already
1011  // have a regular SDValue.
1012  SDValue &N = NodeMap[V];
1013  if (N.getNode()) return N;
1014
1015  // If there's a virtual register allocated and initialized for this
1016  // value, use it.
1017  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1018  if (It != FuncInfo.ValueMap.end()) {
1019    unsigned InReg = It->second;
1020    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1021                     InReg, V->getType());
1022    SDValue Chain = DAG.getEntryNode();
1023    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1024    resolveDanglingDebugInfo(V, N);
1025    return N;
1026  }
1027
1028  // Otherwise create a new SDValue and remember it.
1029  SDValue Val = getValueImpl(V);
1030  NodeMap[V] = Val;
1031  resolveDanglingDebugInfo(V, Val);
1032  return Val;
1033}
1034
1035/// getNonRegisterValue - Return an SDValue for the given Value, but
1036/// don't look in FuncInfo.ValueMap for a virtual register.
1037SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1038  // If we already have an SDValue for this value, use it.
1039  SDValue &N = NodeMap[V];
1040  if (N.getNode()) return N;
1041
1042  // Otherwise create a new SDValue and remember it.
1043  SDValue Val = getValueImpl(V);
1044  NodeMap[V] = Val;
1045  resolveDanglingDebugInfo(V, Val);
1046  return Val;
1047}
1048
1049/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1050/// Create an SDValue for the given value.
1051SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1052  const TargetLowering *TLI = TM.getTargetLowering();
1053
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI->getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C)) {
1064      unsigned AS = V->getType()->getPointerAddressSpace();
1065      return DAG.getConstant(0, TLI->getPointerTy(AS));
1066    }
1067
1068    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1069      return DAG.getConstantFP(*CFP, VT);
1070
1071    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1072      return DAG.getUNDEF(VT);
1073
1074    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1075      visit(CE->getOpcode(), *CE);
1076      SDValue N1 = NodeMap[V];
1077      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1078      return N1;
1079    }
1080
1081    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1082      SmallVector<SDValue, 4> Constants;
1083      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1084           OI != OE; ++OI) {
1085        SDNode *Val = getValue(*OI).getNode();
1086        // If the operand is an empty aggregate, there are no values.
1087        if (!Val) continue;
1088        // Add each leaf value from the operand to the Constants list
1089        // to form a flattened list of all the values.
1090        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1091          Constants.push_back(SDValue(Val, i));
1092      }
1093
1094      return DAG.getMergeValues(&Constants[0], Constants.size(),
1095                                getCurSDLoc());
1096    }
1097
1098    if (const ConstantDataSequential *CDS =
1099          dyn_cast<ConstantDataSequential>(C)) {
1100      SmallVector<SDValue, 4> Ops;
1101      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1102        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1103        // Add each leaf value from the operand to the Constants list
1104        // to form a flattened list of all the values.
1105        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1106          Ops.push_back(SDValue(Val, i));
1107      }
1108
1109      if (isa<ArrayType>(CDS->getType()))
1110        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1111      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1112                                      VT, &Ops[0], Ops.size());
1113    }
1114
1115    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1116      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1117             "Unknown struct or array constant!");
1118
1119      SmallVector<EVT, 4> ValueVTs;
1120      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1121      unsigned NumElts = ValueVTs.size();
1122      if (NumElts == 0)
1123        return SDValue(); // empty struct
1124      SmallVector<SDValue, 4> Constants(NumElts);
1125      for (unsigned i = 0; i != NumElts; ++i) {
1126        EVT EltVT = ValueVTs[i];
1127        if (isa<UndefValue>(C))
1128          Constants[i] = DAG.getUNDEF(EltVT);
1129        else if (EltVT.isFloatingPoint())
1130          Constants[i] = DAG.getConstantFP(0, EltVT);
1131        else
1132          Constants[i] = DAG.getConstant(0, EltVT);
1133      }
1134
1135      return DAG.getMergeValues(&Constants[0], NumElts,
1136                                getCurSDLoc());
1137    }
1138
1139    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1140      return DAG.getBlockAddress(BA, VT);
1141
1142    VectorType *VecTy = cast<VectorType>(V->getType());
1143    unsigned NumElements = VecTy->getNumElements();
1144
1145    // Now that we know the number and type of the elements, get that number of
1146    // elements into the Ops array based on what kind of constant it is.
1147    SmallVector<SDValue, 16> Ops;
1148    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1149      for (unsigned i = 0; i != NumElements; ++i)
1150        Ops.push_back(getValue(CV->getOperand(i)));
1151    } else {
1152      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1153      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1154
1155      SDValue Op;
1156      if (EltVT.isFloatingPoint())
1157        Op = DAG.getConstantFP(0, EltVT);
1158      else
1159        Op = DAG.getConstant(0, EltVT);
1160      Ops.assign(NumElements, Op);
1161    }
1162
1163    // Create a BUILD_VECTOR node.
1164    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1165                                    VT, &Ops[0], Ops.size());
1166  }
1167
1168  // If this is a static alloca, generate it as the frameindex instead of
1169  // computation.
1170  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1171    DenseMap<const AllocaInst*, int>::iterator SI =
1172      FuncInfo.StaticAllocaMap.find(AI);
1173    if (SI != FuncInfo.StaticAllocaMap.end())
1174      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1175  }
1176
1177  // If this is an instruction which fast-isel has deferred, select it now.
1178  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1179    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1180    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1181    SDValue Chain = DAG.getEntryNode();
1182    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1183  }
1184
1185  llvm_unreachable("Can't get register for value!");
1186}
1187
1188void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1189  const TargetLowering *TLI = TM.getTargetLowering();
1190  SDValue Chain = getControlRoot();
1191  SmallVector<ISD::OutputArg, 8> Outs;
1192  SmallVector<SDValue, 8> OutVals;
1193
1194  if (!FuncInfo.CanLowerReturn) {
1195    unsigned DemoteReg = FuncInfo.DemoteRegister;
1196    const Function *F = I.getParent()->getParent();
1197
1198    // Emit a store of the return value through the virtual register.
1199    // Leave Outs empty so that LowerReturn won't try to load return
1200    // registers the usual way.
1201    SmallVector<EVT, 1> PtrValueVTs;
1202    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1203                    PtrValueVTs);
1204
1205    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1206    SDValue RetOp = getValue(I.getOperand(0));
1207
1208    SmallVector<EVT, 4> ValueVTs;
1209    SmallVector<uint64_t, 4> Offsets;
1210    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1211    unsigned NumValues = ValueVTs.size();
1212
1213    SmallVector<SDValue, 4> Chains(NumValues);
1214    for (unsigned i = 0; i != NumValues; ++i) {
1215      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1216                                RetPtr.getValueType(), RetPtr,
1217                                DAG.getIntPtrConstant(Offsets[i]));
1218      Chains[i] =
1219        DAG.getStore(Chain, getCurSDLoc(),
1220                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1221                     // FIXME: better loc info would be nice.
1222                     Add, MachinePointerInfo(), false, false, 0);
1223    }
1224
1225    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1226                        MVT::Other, &Chains[0], NumValues);
1227  } else if (I.getNumOperands() != 0) {
1228    SmallVector<EVT, 4> ValueVTs;
1229    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1230    unsigned NumValues = ValueVTs.size();
1231    if (NumValues) {
1232      SDValue RetOp = getValue(I.getOperand(0));
1233      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1234        EVT VT = ValueVTs[j];
1235
1236        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1237
1238        const Function *F = I.getParent()->getParent();
1239        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240                                            Attribute::SExt))
1241          ExtendKind = ISD::SIGN_EXTEND;
1242        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1243                                                 Attribute::ZExt))
1244          ExtendKind = ISD::ZERO_EXTEND;
1245
1246        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1247          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1248
1249        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1250        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1251        SmallVector<SDValue, 4> Parts(NumParts);
1252        getCopyToParts(DAG, getCurSDLoc(),
1253                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1254                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1255
1256        // 'inreg' on function refers to return value
1257        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1258        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1259                                            Attribute::InReg))
1260          Flags.setInReg();
1261
1262        // Propagate extension type if any
1263        if (ExtendKind == ISD::SIGN_EXTEND)
1264          Flags.setSExt();
1265        else if (ExtendKind == ISD::ZERO_EXTEND)
1266          Flags.setZExt();
1267
1268        for (unsigned i = 0; i < NumParts; ++i) {
1269          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1270                                        VT, /*isfixed=*/true, 0, 0));
1271          OutVals.push_back(Parts[i]);
1272        }
1273      }
1274    }
1275  }
1276
1277  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1278  CallingConv::ID CallConv =
1279    DAG.getMachineFunction().getFunction()->getCallingConv();
1280  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1281                                              Outs, OutVals, getCurSDLoc(),
1282                                              DAG);
1283
1284  // Verify that the target's LowerReturn behaved as expected.
1285  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1286         "LowerReturn didn't return a valid chain!");
1287
1288  // Update the DAG with the new chain value resulting from return lowering.
1289  DAG.setRoot(Chain);
1290}
1291
1292/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1293/// created for it, emit nodes to copy the value into the virtual
1294/// registers.
1295void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1296  // Skip empty types
1297  if (V->getType()->isEmptyTy())
1298    return;
1299
1300  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1301  if (VMI != FuncInfo.ValueMap.end()) {
1302    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1303    CopyValueToVirtualRegister(V, VMI->second);
1304  }
1305}
1306
1307/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1308/// the current basic block, add it to ValueMap now so that we'll get a
1309/// CopyTo/FromReg.
1310void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1311  // No need to export constants.
1312  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1313
1314  // Already exported?
1315  if (FuncInfo.isExportedInst(V)) return;
1316
1317  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1318  CopyValueToVirtualRegister(V, Reg);
1319}
1320
1321bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1322                                                     const BasicBlock *FromBB) {
1323  // The operands of the setcc have to be in this block.  We don't know
1324  // how to export them from some other block.
1325  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1326    // Can export from current BB.
1327    if (VI->getParent() == FromBB)
1328      return true;
1329
1330    // Is already exported, noop.
1331    return FuncInfo.isExportedInst(V);
1332  }
1333
1334  // If this is an argument, we can export it if the BB is the entry block or
1335  // if it is already exported.
1336  if (isa<Argument>(V)) {
1337    if (FromBB == &FromBB->getParent()->getEntryBlock())
1338      return true;
1339
1340    // Otherwise, can only export this if it is already exported.
1341    return FuncInfo.isExportedInst(V);
1342  }
1343
1344  // Otherwise, constants can always be exported.
1345  return true;
1346}
1347
1348/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1349uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1350                                            const MachineBasicBlock *Dst) const {
1351  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352  if (!BPI)
1353    return 0;
1354  const BasicBlock *SrcBB = Src->getBasicBlock();
1355  const BasicBlock *DstBB = Dst->getBasicBlock();
1356  return BPI->getEdgeWeight(SrcBB, DstBB);
1357}
1358
1359void SelectionDAGBuilder::
1360addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1361                       uint32_t Weight /* = 0 */) {
1362  if (!Weight)
1363    Weight = getEdgeWeight(Src, Dst);
1364  Src->addSuccessor(Dst, Weight);
1365}
1366
1367
1368static bool InBlock(const Value *V, const BasicBlock *BB) {
1369  if (const Instruction *I = dyn_cast<Instruction>(V))
1370    return I->getParent() == BB;
1371  return true;
1372}
1373
1374/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1375/// This function emits a branch and is used at the leaves of an OR or an
1376/// AND operator tree.
1377///
1378void
1379SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1380                                                  MachineBasicBlock *TBB,
1381                                                  MachineBasicBlock *FBB,
1382                                                  MachineBasicBlock *CurBB,
1383                                                  MachineBasicBlock *SwitchBB,
1384                                                  uint32_t TWeight,
1385                                                  uint32_t FWeight) {
1386  const BasicBlock *BB = CurBB->getBasicBlock();
1387
1388  // If the leaf of the tree is a comparison, merge the condition into
1389  // the caseblock.
1390  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1391    // The operands of the cmp have to be in this block.  We don't know
1392    // how to export them from some other block.  If this is the first block
1393    // of the sequence, no exporting is needed.
1394    if (CurBB == SwitchBB ||
1395        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1396         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1397      ISD::CondCode Condition;
1398      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1399        Condition = getICmpCondCode(IC->getPredicate());
1400      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1401        Condition = getFCmpCondCode(FC->getPredicate());
1402        if (TM.Options.NoNaNsFPMath)
1403          Condition = getFCmpCodeWithoutNaN(Condition);
1404      } else {
1405        Condition = ISD::SETEQ; // silence warning.
1406        llvm_unreachable("Unknown compare instruction");
1407      }
1408
1409      CaseBlock CB(Condition, BOp->getOperand(0),
1410                   BOp->getOperand(1), NULL, TBB, FBB, CurBB, TWeight, FWeight);
1411      SwitchCases.push_back(CB);
1412      return;
1413    }
1414  }
1415
1416  // Create a CaseBlock record representing this branch.
1417  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1418               NULL, TBB, FBB, CurBB, TWeight, FWeight);
1419  SwitchCases.push_back(CB);
1420}
1421
1422/// Scale down both weights to fit into uint32_t.
1423static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1424  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1425  uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1426  NewTrue = NewTrue / Scale;
1427  NewFalse = NewFalse / Scale;
1428}
1429
1430/// FindMergedConditions - If Cond is an expression like
1431void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1432                                               MachineBasicBlock *TBB,
1433                                               MachineBasicBlock *FBB,
1434                                               MachineBasicBlock *CurBB,
1435                                               MachineBasicBlock *SwitchBB,
1436                                               unsigned Opc, uint32_t TWeight,
1437                                               uint32_t FWeight) {
1438  // If this node is not part of the or/and tree, emit it as a branch.
1439  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1440  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1441      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1442      BOp->getParent() != CurBB->getBasicBlock() ||
1443      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1444      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1445    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1446                                 TWeight, FWeight);
1447    return;
1448  }
1449
1450  //  Create TmpBB after CurBB.
1451  MachineFunction::iterator BBI = CurBB;
1452  MachineFunction &MF = DAG.getMachineFunction();
1453  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1454  CurBB->getParent()->insert(++BBI, TmpBB);
1455
1456  if (Opc == Instruction::Or) {
1457    // Codegen X | Y as:
1458    // BB1:
1459    //   jmp_if_X TBB
1460    //   jmp TmpBB
1461    // TmpBB:
1462    //   jmp_if_Y TBB
1463    //   jmp FBB
1464    //
1465
1466    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1467    // The requirement is that
1468    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1469    //     = TrueProb for orignal BB.
1470    // Assuming the orignal weights are A and B, one choice is to set BB1's
1471    // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1472    // assumes that
1473    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1474    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1475    // TmpBB, but the math is more complicated.
1476
1477    uint64_t NewTrueWeight = TWeight;
1478    uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1479    ScaleWeights(NewTrueWeight, NewFalseWeight);
1480    // Emit the LHS condition.
1481    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1482                         NewTrueWeight, NewFalseWeight);
1483
1484    NewTrueWeight = TWeight;
1485    NewFalseWeight = 2 * (uint64_t)FWeight;
1486    ScaleWeights(NewTrueWeight, NewFalseWeight);
1487    // Emit the RHS condition into TmpBB.
1488    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1489                         NewTrueWeight, NewFalseWeight);
1490  } else {
1491    assert(Opc == Instruction::And && "Unknown merge op!");
1492    // Codegen X & Y as:
1493    // BB1:
1494    //   jmp_if_X TmpBB
1495    //   jmp FBB
1496    // TmpBB:
1497    //   jmp_if_Y TBB
1498    //   jmp FBB
1499    //
1500    //  This requires creation of TmpBB after CurBB.
1501
1502    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1503    // The requirement is that
1504    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1505    //     = FalseProb for orignal BB.
1506    // Assuming the orignal weights are A and B, one choice is to set BB1's
1507    // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1508    // assumes that
1509    //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1510
1511    uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1512    uint64_t NewFalseWeight = FWeight;
1513    ScaleWeights(NewTrueWeight, NewFalseWeight);
1514    // Emit the LHS condition.
1515    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1516                         NewTrueWeight, NewFalseWeight);
1517
1518    NewTrueWeight = 2 * (uint64_t)TWeight;
1519    NewFalseWeight = FWeight;
1520    ScaleWeights(NewTrueWeight, NewFalseWeight);
1521    // Emit the RHS condition into TmpBB.
1522    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1523                         NewTrueWeight, NewFalseWeight);
1524  }
1525}
1526
1527/// If the set of cases should be emitted as a series of branches, return true.
1528/// If we should emit this as a bunch of and/or'd together conditions, return
1529/// false.
1530bool
1531SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1532  if (Cases.size() != 2) return true;
1533
1534  // If this is two comparisons of the same values or'd or and'd together, they
1535  // will get folded into a single comparison, so don't emit two blocks.
1536  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1537       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1538      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1539       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1540    return false;
1541  }
1542
1543  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1544  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1545  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1546      Cases[0].CC == Cases[1].CC &&
1547      isa<Constant>(Cases[0].CmpRHS) &&
1548      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1549    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1550      return false;
1551    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1552      return false;
1553  }
1554
1555  return true;
1556}
1557
1558void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1559  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1560
1561  // Update machine-CFG edges.
1562  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1563
1564  // Figure out which block is immediately after the current one.
1565  MachineBasicBlock *NextBlock = 0;
1566  MachineFunction::iterator BBI = BrMBB;
1567  if (++BBI != FuncInfo.MF->end())
1568    NextBlock = BBI;
1569
1570  if (I.isUnconditional()) {
1571    // Update machine-CFG edges.
1572    BrMBB->addSuccessor(Succ0MBB);
1573
1574    // If this is not a fall-through branch or optimizations are switched off,
1575    // emit the branch.
1576    if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1577      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1578                              MVT::Other, getControlRoot(),
1579                              DAG.getBasicBlock(Succ0MBB)));
1580
1581    return;
1582  }
1583
1584  // If this condition is one of the special cases we handle, do special stuff
1585  // now.
1586  const Value *CondVal = I.getCondition();
1587  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1588
1589  // If this is a series of conditions that are or'd or and'd together, emit
1590  // this as a sequence of branches instead of setcc's with and/or operations.
1591  // As long as jumps are not expensive, this should improve performance.
1592  // For example, instead of something like:
1593  //     cmp A, B
1594  //     C = seteq
1595  //     cmp D, E
1596  //     F = setle
1597  //     or C, F
1598  //     jnz foo
1599  // Emit:
1600  //     cmp A, B
1601  //     je foo
1602  //     cmp D, E
1603  //     jle foo
1604  //
1605  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1606    if (!TM.getTargetLowering()->isJumpExpensive() &&
1607        BOp->hasOneUse() &&
1608        (BOp->getOpcode() == Instruction::And ||
1609         BOp->getOpcode() == Instruction::Or)) {
1610      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1611                           BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1612                           getEdgeWeight(BrMBB, Succ1MBB));
1613      // If the compares in later blocks need to use values not currently
1614      // exported from this block, export them now.  This block should always
1615      // be the first entry.
1616      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1617
1618      // Allow some cases to be rejected.
1619      if (ShouldEmitAsBranches(SwitchCases)) {
1620        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1621          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1622          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1623        }
1624
1625        // Emit the branch for this block.
1626        visitSwitchCase(SwitchCases[0], BrMBB);
1627        SwitchCases.erase(SwitchCases.begin());
1628        return;
1629      }
1630
1631      // Okay, we decided not to do this, remove any inserted MBB's and clear
1632      // SwitchCases.
1633      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1634        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1635
1636      SwitchCases.clear();
1637    }
1638  }
1639
1640  // Create a CaseBlock record representing this branch.
1641  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1642               NULL, Succ0MBB, Succ1MBB, BrMBB);
1643
1644  // Use visitSwitchCase to actually insert the fast branch sequence for this
1645  // cond branch.
1646  visitSwitchCase(CB, BrMBB);
1647}
1648
1649/// visitSwitchCase - Emits the necessary code to represent a single node in
1650/// the binary search tree resulting from lowering a switch instruction.
1651void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1652                                          MachineBasicBlock *SwitchBB) {
1653  SDValue Cond;
1654  SDValue CondLHS = getValue(CB.CmpLHS);
1655  SDLoc dl = getCurSDLoc();
1656
1657  // Build the setcc now.
1658  if (CB.CmpMHS == NULL) {
1659    // Fold "(X == true)" to X and "(X == false)" to !X to
1660    // handle common cases produced by branch lowering.
1661    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1662        CB.CC == ISD::SETEQ)
1663      Cond = CondLHS;
1664    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1665             CB.CC == ISD::SETEQ) {
1666      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1667      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1668    } else
1669      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1670  } else {
1671    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1672
1673    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1674    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1675
1676    SDValue CmpOp = getValue(CB.CmpMHS);
1677    EVT VT = CmpOp.getValueType();
1678
1679    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1680      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1681                          ISD::SETLE);
1682    } else {
1683      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1684                                VT, CmpOp, DAG.getConstant(Low, VT));
1685      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1686                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1687    }
1688  }
1689
1690  // Update successor info
1691  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1692  // TrueBB and FalseBB are always different unless the incoming IR is
1693  // degenerate. This only happens when running llc on weird IR.
1694  if (CB.TrueBB != CB.FalseBB)
1695    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = SwitchBB;
1701  if (++BBI != FuncInfo.MF->end())
1702    NextBlock = BBI;
1703
1704  // If the lhs block is the next block, invert the condition so that we can
1705  // fall through to the lhs instead of the rhs block.
1706  if (CB.TrueBB == NextBlock) {
1707    std::swap(CB.TrueBB, CB.FalseBB);
1708    SDValue True = DAG.getConstant(1, Cond.getValueType());
1709    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1710  }
1711
1712  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1713                               MVT::Other, getControlRoot(), Cond,
1714                               DAG.getBasicBlock(CB.TrueBB));
1715
1716  // Insert the false branch. Do this even if it's a fall through branch,
1717  // this makes it easier to do DAG optimizations which require inverting
1718  // the branch condition.
1719  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1720                       DAG.getBasicBlock(CB.FalseBB));
1721
1722  DAG.setRoot(BrCond);
1723}
1724
1725/// visitJumpTable - Emit JumpTable node in the current MBB
1726void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1727  // Emit the code for the jump table
1728  assert(JT.Reg != -1U && "Should lower JT Header first!");
1729  EVT PTy = TM.getTargetLowering()->getPointerTy();
1730  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1731                                     JT.Reg, PTy);
1732  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1733  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1734                                    MVT::Other, Index.getValue(1),
1735                                    Table, Index);
1736  DAG.setRoot(BrJumpTable);
1737}
1738
1739/// visitJumpTableHeader - This function emits necessary code to produce index
1740/// in the JumpTable from switch case.
1741void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1742                                               JumpTableHeader &JTH,
1743                                               MachineBasicBlock *SwitchBB) {
1744  // Subtract the lowest switch case value from the value being switched on and
1745  // conditional branch to default mbb if the result is greater than the
1746  // difference between smallest and largest cases.
1747  SDValue SwitchOp = getValue(JTH.SValue);
1748  EVT VT = SwitchOp.getValueType();
1749  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1750                            DAG.getConstant(JTH.First, VT));
1751
1752  // The SDNode we just created, which holds the value being switched on minus
1753  // the smallest case value, needs to be copied to a virtual register so it
1754  // can be used as an index into the jump table in a subsequent basic block.
1755  // This value may be smaller or larger than the target's pointer type, and
1756  // therefore require extension or truncating.
1757  const TargetLowering *TLI = TM.getTargetLowering();
1758  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1759
1760  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1761  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1762                                    JumpTableReg, SwitchOp);
1763  JT.Reg = JumpTableReg;
1764
1765  // Emit the range check for the jump table, and branch to the default block
1766  // for the switch statement if the value being switched on exceeds the largest
1767  // case in the switch.
1768  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1769                             TLI->getSetCCResultType(*DAG.getContext(),
1770                                                     Sub.getValueType()),
1771                             Sub,
1772                             DAG.getConstant(JTH.Last - JTH.First,VT),
1773                             ISD::SETUGT);
1774
1775  // Set NextBlock to be the MBB immediately after the current one, if any.
1776  // This is used to avoid emitting unnecessary branches to the next block.
1777  MachineBasicBlock *NextBlock = 0;
1778  MachineFunction::iterator BBI = SwitchBB;
1779
1780  if (++BBI != FuncInfo.MF->end())
1781    NextBlock = BBI;
1782
1783  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1784                               MVT::Other, CopyTo, CMP,
1785                               DAG.getBasicBlock(JT.Default));
1786
1787  if (JT.MBB != NextBlock)
1788    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1789                         DAG.getBasicBlock(JT.MBB));
1790
1791  DAG.setRoot(BrCond);
1792}
1793
1794/// Codegen a new tail for a stack protector check ParentMBB which has had its
1795/// tail spliced into a stack protector check success bb.
1796///
1797/// For a high level explanation of how this fits into the stack protector
1798/// generation see the comment on the declaration of class
1799/// StackProtectorDescriptor.
1800void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1801                                                  MachineBasicBlock *ParentBB) {
1802
1803  // First create the loads to the guard/stack slot for the comparison.
1804  const TargetLowering *TLI = TM.getTargetLowering();
1805  EVT PtrTy = TLI->getPointerTy();
1806
1807  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1808  int FI = MFI->getStackProtectorIndex();
1809
1810  const Value *IRGuard = SPD.getGuard();
1811  SDValue GuardPtr = getValue(IRGuard);
1812  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1813
1814  unsigned Align =
1815    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1816  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1817                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1818                              true, false, false, Align);
1819
1820  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1821                                  StackSlotPtr,
1822                                  MachinePointerInfo::getFixedStack(FI),
1823                                  true, false, false, Align);
1824
1825  // Perform the comparison via a subtract/getsetcc.
1826  EVT VT = Guard.getValueType();
1827  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1828
1829  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1830                             TLI->getSetCCResultType(*DAG.getContext(),
1831                                                     Sub.getValueType()),
1832                             Sub, DAG.getConstant(0, VT),
1833                             ISD::SETNE);
1834
1835  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1836  // branch to failure MBB.
1837  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1838                               MVT::Other, StackSlot.getOperand(0),
1839                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1840  // Otherwise branch to success MBB.
1841  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1842                           MVT::Other, BrCond,
1843                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1844
1845  DAG.setRoot(Br);
1846}
1847
1848/// Codegen the failure basic block for a stack protector check.
1849///
1850/// A failure stack protector machine basic block consists simply of a call to
1851/// __stack_chk_fail().
1852///
1853/// For a high level explanation of how this fits into the stack protector
1854/// generation see the comment on the declaration of class
1855/// StackProtectorDescriptor.
1856void
1857SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1858  const TargetLowering *TLI = TM.getTargetLowering();
1859  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1860                                   MVT::isVoid, 0, 0, false, getCurSDLoc(),
1861                                   false, false).second;
1862  DAG.setRoot(Chain);
1863}
1864
1865/// visitBitTestHeader - This function emits necessary code to produce value
1866/// suitable for "bit tests"
1867void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1868                                             MachineBasicBlock *SwitchBB) {
1869  // Subtract the minimum value
1870  SDValue SwitchOp = getValue(B.SValue);
1871  EVT VT = SwitchOp.getValueType();
1872  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1873                            DAG.getConstant(B.First, VT));
1874
1875  // Check range
1876  const TargetLowering *TLI = TM.getTargetLowering();
1877  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1878                                  TLI->getSetCCResultType(*DAG.getContext(),
1879                                                         Sub.getValueType()),
1880                                  Sub, DAG.getConstant(B.Range, VT),
1881                                  ISD::SETUGT);
1882
1883  // Determine the type of the test operands.
1884  bool UsePtrType = false;
1885  if (!TLI->isTypeLegal(VT))
1886    UsePtrType = true;
1887  else {
1888    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1889      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1890        // Switch table case range are encoded into series of masks.
1891        // Just use pointer type, it's guaranteed to fit.
1892        UsePtrType = true;
1893        break;
1894      }
1895  }
1896  if (UsePtrType) {
1897    VT = TLI->getPointerTy();
1898    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1899  }
1900
1901  B.RegVT = VT.getSimpleVT();
1902  B.Reg = FuncInfo.CreateReg(B.RegVT);
1903  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1904                                    B.Reg, Sub);
1905
1906  // Set NextBlock to be the MBB immediately after the current one, if any.
1907  // This is used to avoid emitting unnecessary branches to the next block.
1908  MachineBasicBlock *NextBlock = 0;
1909  MachineFunction::iterator BBI = SwitchBB;
1910  if (++BBI != FuncInfo.MF->end())
1911    NextBlock = BBI;
1912
1913  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1914
1915  addSuccessorWithWeight(SwitchBB, B.Default);
1916  addSuccessorWithWeight(SwitchBB, MBB);
1917
1918  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1919                                MVT::Other, CopyTo, RangeCmp,
1920                                DAG.getBasicBlock(B.Default));
1921
1922  if (MBB != NextBlock)
1923    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1924                          DAG.getBasicBlock(MBB));
1925
1926  DAG.setRoot(BrRange);
1927}
1928
1929/// visitBitTestCase - this function produces one "bit test"
1930void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1931                                           MachineBasicBlock* NextMBB,
1932                                           uint32_t BranchWeightToNext,
1933                                           unsigned Reg,
1934                                           BitTestCase &B,
1935                                           MachineBasicBlock *SwitchBB) {
1936  MVT VT = BB.RegVT;
1937  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1938                                       Reg, VT);
1939  SDValue Cmp;
1940  unsigned PopCount = CountPopulation_64(B.Mask);
1941  const TargetLowering *TLI = TM.getTargetLowering();
1942  if (PopCount == 1) {
1943    // Testing for a single bit; just compare the shift count with what it
1944    // would need to be to shift a 1 bit in that position.
1945    Cmp = DAG.getSetCC(getCurSDLoc(),
1946                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1947                       ShiftOp,
1948                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1949                       ISD::SETEQ);
1950  } else if (PopCount == BB.Range) {
1951    // There is only one zero bit in the range, test for it directly.
1952    Cmp = DAG.getSetCC(getCurSDLoc(),
1953                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1954                       ShiftOp,
1955                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1956                       ISD::SETNE);
1957  } else {
1958    // Make desired shift
1959    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1960                                    DAG.getConstant(1, VT), ShiftOp);
1961
1962    // Emit bit tests and jumps
1963    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1964                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1965    Cmp = DAG.getSetCC(getCurSDLoc(),
1966                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1967                       AndOp, DAG.getConstant(0, VT),
1968                       ISD::SETNE);
1969  }
1970
1971  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1972  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1973  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1974  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1975
1976  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1977                              MVT::Other, getControlRoot(),
1978                              Cmp, DAG.getBasicBlock(B.TargetBB));
1979
1980  // Set NextBlock to be the MBB immediately after the current one, if any.
1981  // This is used to avoid emitting unnecessary branches to the next block.
1982  MachineBasicBlock *NextBlock = 0;
1983  MachineFunction::iterator BBI = SwitchBB;
1984  if (++BBI != FuncInfo.MF->end())
1985    NextBlock = BBI;
1986
1987  if (NextMBB != NextBlock)
1988    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1989                        DAG.getBasicBlock(NextMBB));
1990
1991  DAG.setRoot(BrAnd);
1992}
1993
1994void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1995  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1996
1997  // Retrieve successors.
1998  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1999  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
2000
2001  const Value *Callee(I.getCalledValue());
2002  const Function *Fn = dyn_cast<Function>(Callee);
2003  if (isa<InlineAsm>(Callee))
2004    visitInlineAsm(&I);
2005  else if (Fn && Fn->isIntrinsic()) {
2006    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
2007    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2008  } else
2009    LowerCallTo(&I, getValue(Callee), false, LandingPad);
2010
2011  // If the value of the invoke is used outside of its defining block, make it
2012  // available as a virtual register.
2013  CopyToExportRegsIfNeeded(&I);
2014
2015  // Update successor info
2016  addSuccessorWithWeight(InvokeMBB, Return);
2017  addSuccessorWithWeight(InvokeMBB, LandingPad);
2018
2019  // Drop into normal successor.
2020  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2021                          MVT::Other, getControlRoot(),
2022                          DAG.getBasicBlock(Return)));
2023}
2024
2025void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2026  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2027}
2028
2029void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2030  assert(FuncInfo.MBB->isLandingPad() &&
2031         "Call to landingpad not in landing pad!");
2032
2033  MachineBasicBlock *MBB = FuncInfo.MBB;
2034  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2035  AddLandingPadInfo(LP, MMI, MBB);
2036
2037  // If there aren't registers to copy the values into (e.g., during SjLj
2038  // exceptions), then don't bother to create these DAG nodes.
2039  const TargetLowering *TLI = TM.getTargetLowering();
2040  if (TLI->getExceptionPointerRegister() == 0 &&
2041      TLI->getExceptionSelectorRegister() == 0)
2042    return;
2043
2044  SmallVector<EVT, 2> ValueVTs;
2045  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
2046  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2047
2048  // Get the two live-in registers as SDValues. The physregs have already been
2049  // copied into virtual registers.
2050  SDValue Ops[2];
2051  Ops[0] = DAG.getZExtOrTrunc(
2052    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2053                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2054    getCurSDLoc(), ValueVTs[0]);
2055  Ops[1] = DAG.getZExtOrTrunc(
2056    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2057                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2058    getCurSDLoc(), ValueVTs[1]);
2059
2060  // Merge into one.
2061  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2062                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
2063                            &Ops[0], 2);
2064  setValue(&LP, Res);
2065}
2066
2067/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2068/// small case ranges).
2069bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2070                                                 CaseRecVector& WorkList,
2071                                                 const Value* SV,
2072                                                 MachineBasicBlock *Default,
2073                                                 MachineBasicBlock *SwitchBB) {
2074  // Size is the number of Cases represented by this range.
2075  size_t Size = CR.Range.second - CR.Range.first;
2076  if (Size > 3)
2077    return false;
2078
2079  // Get the MachineFunction which holds the current MBB.  This is used when
2080  // inserting any additional MBBs necessary to represent the switch.
2081  MachineFunction *CurMF = FuncInfo.MF;
2082
2083  // Figure out which block is immediately after the current one.
2084  MachineBasicBlock *NextBlock = 0;
2085  MachineFunction::iterator BBI = CR.CaseBB;
2086
2087  if (++BBI != FuncInfo.MF->end())
2088    NextBlock = BBI;
2089
2090  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2091  // If any two of the cases has the same destination, and if one value
2092  // is the same as the other, but has one bit unset that the other has set,
2093  // use bit manipulation to do two compares at once.  For example:
2094  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2095  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2096  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2097  if (Size == 2 && CR.CaseBB == SwitchBB) {
2098    Case &Small = *CR.Range.first;
2099    Case &Big = *(CR.Range.second-1);
2100
2101    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2102      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2103      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2104
2105      // Check that there is only one bit different.
2106      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2107          (SmallValue | BigValue) == BigValue) {
2108        // Isolate the common bit.
2109        APInt CommonBit = BigValue & ~SmallValue;
2110        assert((SmallValue | CommonBit) == BigValue &&
2111               CommonBit.countPopulation() == 1 && "Not a common bit?");
2112
2113        SDValue CondLHS = getValue(SV);
2114        EVT VT = CondLHS.getValueType();
2115        SDLoc DL = getCurSDLoc();
2116
2117        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2118                                 DAG.getConstant(CommonBit, VT));
2119        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2120                                    Or, DAG.getConstant(BigValue, VT),
2121                                    ISD::SETEQ);
2122
2123        // Update successor info.
2124        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2125        addSuccessorWithWeight(SwitchBB, Small.BB,
2126                               Small.ExtraWeight + Big.ExtraWeight);
2127        addSuccessorWithWeight(SwitchBB, Default,
2128          // The default destination is the first successor in IR.
2129          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2130
2131        // Insert the true branch.
2132        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2133                                     getControlRoot(), Cond,
2134                                     DAG.getBasicBlock(Small.BB));
2135
2136        // Insert the false branch.
2137        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2138                             DAG.getBasicBlock(Default));
2139
2140        DAG.setRoot(BrCond);
2141        return true;
2142      }
2143    }
2144  }
2145
2146  // Order cases by weight so the most likely case will be checked first.
2147  uint32_t UnhandledWeights = 0;
2148  if (BPI) {
2149    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2150      uint32_t IWeight = I->ExtraWeight;
2151      UnhandledWeights += IWeight;
2152      for (CaseItr J = CR.Range.first; J < I; ++J) {
2153        uint32_t JWeight = J->ExtraWeight;
2154        if (IWeight > JWeight)
2155          std::swap(*I, *J);
2156      }
2157    }
2158  }
2159  // Rearrange the case blocks so that the last one falls through if possible.
2160  Case &BackCase = *(CR.Range.second-1);
2161  if (Size > 1 &&
2162      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2163    // The last case block won't fall through into 'NextBlock' if we emit the
2164    // branches in this order.  See if rearranging a case value would help.
2165    // We start at the bottom as it's the case with the least weight.
2166    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2167      if (I->BB == NextBlock) {
2168        std::swap(*I, BackCase);
2169        break;
2170      }
2171  }
2172
2173  // Create a CaseBlock record representing a conditional branch to
2174  // the Case's target mbb if the value being switched on SV is equal
2175  // to C.
2176  MachineBasicBlock *CurBlock = CR.CaseBB;
2177  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2178    MachineBasicBlock *FallThrough;
2179    if (I != E-1) {
2180      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2181      CurMF->insert(BBI, FallThrough);
2182
2183      // Put SV in a virtual register to make it available from the new blocks.
2184      ExportFromCurrentBlock(SV);
2185    } else {
2186      // If the last case doesn't match, go to the default block.
2187      FallThrough = Default;
2188    }
2189
2190    const Value *RHS, *LHS, *MHS;
2191    ISD::CondCode CC;
2192    if (I->High == I->Low) {
2193      // This is just small small case range :) containing exactly 1 case
2194      CC = ISD::SETEQ;
2195      LHS = SV; RHS = I->High; MHS = NULL;
2196    } else {
2197      CC = ISD::SETLE;
2198      LHS = I->Low; MHS = SV; RHS = I->High;
2199    }
2200
2201    // The false weight should be sum of all un-handled cases.
2202    UnhandledWeights -= I->ExtraWeight;
2203    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2204                 /* me */ CurBlock,
2205                 /* trueweight */ I->ExtraWeight,
2206                 /* falseweight */ UnhandledWeights);
2207
2208    // If emitting the first comparison, just call visitSwitchCase to emit the
2209    // code into the current block.  Otherwise, push the CaseBlock onto the
2210    // vector to be later processed by SDISel, and insert the node's MBB
2211    // before the next MBB.
2212    if (CurBlock == SwitchBB)
2213      visitSwitchCase(CB, SwitchBB);
2214    else
2215      SwitchCases.push_back(CB);
2216
2217    CurBlock = FallThrough;
2218  }
2219
2220  return true;
2221}
2222
2223static inline bool areJTsAllowed(const TargetLowering &TLI) {
2224  return TLI.supportJumpTables() &&
2225          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2226           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2227}
2228
2229static APInt ComputeRange(const APInt &First, const APInt &Last) {
2230  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2231  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2232  return (LastExt - FirstExt + 1ULL);
2233}
2234
2235/// handleJTSwitchCase - Emit jumptable for current switch case range
2236bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2237                                             CaseRecVector &WorkList,
2238                                             const Value *SV,
2239                                             MachineBasicBlock *Default,
2240                                             MachineBasicBlock *SwitchBB) {
2241  Case& FrontCase = *CR.Range.first;
2242  Case& BackCase  = *(CR.Range.second-1);
2243
2244  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2245  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2246
2247  APInt TSize(First.getBitWidth(), 0);
2248  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2249    TSize += I->size();
2250
2251  const TargetLowering *TLI = TM.getTargetLowering();
2252  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2253    return false;
2254
2255  APInt Range = ComputeRange(First, Last);
2256  // The density is TSize / Range. Require at least 40%.
2257  // It should not be possible for IntTSize to saturate for sane code, but make
2258  // sure we handle Range saturation correctly.
2259  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2260  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2261  if (IntTSize * 10 < IntRange * 4)
2262    return false;
2263
2264  DEBUG(dbgs() << "Lowering jump table\n"
2265               << "First entry: " << First << ". Last entry: " << Last << '\n'
2266               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2267
2268  // Get the MachineFunction which holds the current MBB.  This is used when
2269  // inserting any additional MBBs necessary to represent the switch.
2270  MachineFunction *CurMF = FuncInfo.MF;
2271
2272  // Figure out which block is immediately after the current one.
2273  MachineFunction::iterator BBI = CR.CaseBB;
2274  ++BBI;
2275
2276  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2277
2278  // Create a new basic block to hold the code for loading the address
2279  // of the jump table, and jumping to it.  Update successor information;
2280  // we will either branch to the default case for the switch, or the jump
2281  // table.
2282  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2283  CurMF->insert(BBI, JumpTableBB);
2284
2285  addSuccessorWithWeight(CR.CaseBB, Default);
2286  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2287
2288  // Build a vector of destination BBs, corresponding to each target
2289  // of the jump table. If the value of the jump table slot corresponds to
2290  // a case statement, push the case's BB onto the vector, otherwise, push
2291  // the default BB.
2292  std::vector<MachineBasicBlock*> DestBBs;
2293  APInt TEI = First;
2294  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2295    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2296    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2297
2298    if (Low.sle(TEI) && TEI.sle(High)) {
2299      DestBBs.push_back(I->BB);
2300      if (TEI==High)
2301        ++I;
2302    } else {
2303      DestBBs.push_back(Default);
2304    }
2305  }
2306
2307  // Calculate weight for each unique destination in CR.
2308  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2309  if (FuncInfo.BPI)
2310    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2311      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2312          DestWeights.find(I->BB);
2313      if (Itr != DestWeights.end())
2314        Itr->second += I->ExtraWeight;
2315      else
2316        DestWeights[I->BB] = I->ExtraWeight;
2317    }
2318
2319  // Update successor info. Add one edge to each unique successor.
2320  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2321  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2322         E = DestBBs.end(); I != E; ++I) {
2323    if (!SuccsHandled[(*I)->getNumber()]) {
2324      SuccsHandled[(*I)->getNumber()] = true;
2325      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2326          DestWeights.find(*I);
2327      addSuccessorWithWeight(JumpTableBB, *I,
2328                             Itr != DestWeights.end() ? Itr->second : 0);
2329    }
2330  }
2331
2332  // Create a jump table index for this jump table.
2333  unsigned JTEncoding = TLI->getJumpTableEncoding();
2334  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2335                       ->createJumpTableIndex(DestBBs);
2336
2337  // Set the jump table information so that we can codegen it as a second
2338  // MachineBasicBlock
2339  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2340  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2341  if (CR.CaseBB == SwitchBB)
2342    visitJumpTableHeader(JT, JTH, SwitchBB);
2343
2344  JTCases.push_back(JumpTableBlock(JTH, JT));
2345  return true;
2346}
2347
2348/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2349/// 2 subtrees.
2350bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2351                                                  CaseRecVector& WorkList,
2352                                                  const Value* SV,
2353                                                  MachineBasicBlock* Default,
2354                                                  MachineBasicBlock* SwitchBB) {
2355  // Get the MachineFunction which holds the current MBB.  This is used when
2356  // inserting any additional MBBs necessary to represent the switch.
2357  MachineFunction *CurMF = FuncInfo.MF;
2358
2359  // Figure out which block is immediately after the current one.
2360  MachineFunction::iterator BBI = CR.CaseBB;
2361  ++BBI;
2362
2363  Case& FrontCase = *CR.Range.first;
2364  Case& BackCase  = *(CR.Range.second-1);
2365  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2366
2367  // Size is the number of Cases represented by this range.
2368  unsigned Size = CR.Range.second - CR.Range.first;
2369
2370  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2371  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2372  double FMetric = 0;
2373  CaseItr Pivot = CR.Range.first + Size/2;
2374
2375  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2376  // (heuristically) allow us to emit JumpTable's later.
2377  APInt TSize(First.getBitWidth(), 0);
2378  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2379       I!=E; ++I)
2380    TSize += I->size();
2381
2382  APInt LSize = FrontCase.size();
2383  APInt RSize = TSize-LSize;
2384  DEBUG(dbgs() << "Selecting best pivot: \n"
2385               << "First: " << First << ", Last: " << Last <<'\n'
2386               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2387  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2388       J!=E; ++I, ++J) {
2389    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2390    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2391    APInt Range = ComputeRange(LEnd, RBegin);
2392    assert((Range - 2ULL).isNonNegative() &&
2393           "Invalid case distance");
2394    // Use volatile double here to avoid excess precision issues on some hosts,
2395    // e.g. that use 80-bit X87 registers.
2396    volatile double LDensity =
2397       (double)LSize.roundToDouble() /
2398                           (LEnd - First + 1ULL).roundToDouble();
2399    volatile double RDensity =
2400      (double)RSize.roundToDouble() /
2401                           (Last - RBegin + 1ULL).roundToDouble();
2402    volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2403    // Should always split in some non-trivial place
2404    DEBUG(dbgs() <<"=>Step\n"
2405                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2406                 << "LDensity: " << LDensity
2407                 << ", RDensity: " << RDensity << '\n'
2408                 << "Metric: " << Metric << '\n');
2409    if (FMetric < Metric) {
2410      Pivot = J;
2411      FMetric = Metric;
2412      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2413    }
2414
2415    LSize += J->size();
2416    RSize -= J->size();
2417  }
2418
2419  const TargetLowering *TLI = TM.getTargetLowering();
2420  if (areJTsAllowed(*TLI)) {
2421    // If our case is dense we *really* should handle it earlier!
2422    assert((FMetric > 0) && "Should handle dense range earlier!");
2423  } else {
2424    Pivot = CR.Range.first + Size/2;
2425  }
2426
2427  CaseRange LHSR(CR.Range.first, Pivot);
2428  CaseRange RHSR(Pivot, CR.Range.second);
2429  const Constant *C = Pivot->Low;
2430  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2431
2432  // We know that we branch to the LHS if the Value being switched on is
2433  // less than the Pivot value, C.  We use this to optimize our binary
2434  // tree a bit, by recognizing that if SV is greater than or equal to the
2435  // LHS's Case Value, and that Case Value is exactly one less than the
2436  // Pivot's Value, then we can branch directly to the LHS's Target,
2437  // rather than creating a leaf node for it.
2438  if ((LHSR.second - LHSR.first) == 1 &&
2439      LHSR.first->High == CR.GE &&
2440      cast<ConstantInt>(C)->getValue() ==
2441      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2442    TrueBB = LHSR.first->BB;
2443  } else {
2444    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2445    CurMF->insert(BBI, TrueBB);
2446    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2447
2448    // Put SV in a virtual register to make it available from the new blocks.
2449    ExportFromCurrentBlock(SV);
2450  }
2451
2452  // Similar to the optimization above, if the Value being switched on is
2453  // known to be less than the Constant CR.LT, and the current Case Value
2454  // is CR.LT - 1, then we can branch directly to the target block for
2455  // the current Case Value, rather than emitting a RHS leaf node for it.
2456  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2457      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2458      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2459    FalseBB = RHSR.first->BB;
2460  } else {
2461    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2462    CurMF->insert(BBI, FalseBB);
2463    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2464
2465    // Put SV in a virtual register to make it available from the new blocks.
2466    ExportFromCurrentBlock(SV);
2467  }
2468
2469  // Create a CaseBlock record representing a conditional branch to
2470  // the LHS node if the value being switched on SV is less than C.
2471  // Otherwise, branch to LHS.
2472  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2473
2474  if (CR.CaseBB == SwitchBB)
2475    visitSwitchCase(CB, SwitchBB);
2476  else
2477    SwitchCases.push_back(CB);
2478
2479  return true;
2480}
2481
2482/// handleBitTestsSwitchCase - if current case range has few destination and
2483/// range span less, than machine word bitwidth, encode case range into series
2484/// of masks and emit bit tests with these masks.
2485bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2486                                                   CaseRecVector& WorkList,
2487                                                   const Value* SV,
2488                                                   MachineBasicBlock* Default,
2489                                                   MachineBasicBlock* SwitchBB) {
2490  const TargetLowering *TLI = TM.getTargetLowering();
2491  EVT PTy = TLI->getPointerTy();
2492  unsigned IntPtrBits = PTy.getSizeInBits();
2493
2494  Case& FrontCase = *CR.Range.first;
2495  Case& BackCase  = *(CR.Range.second-1);
2496
2497  // Get the MachineFunction which holds the current MBB.  This is used when
2498  // inserting any additional MBBs necessary to represent the switch.
2499  MachineFunction *CurMF = FuncInfo.MF;
2500
2501  // If target does not have legal shift left, do not emit bit tests at all.
2502  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2503    return false;
2504
2505  size_t numCmps = 0;
2506  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2507       I!=E; ++I) {
2508    // Single case counts one, case range - two.
2509    numCmps += (I->Low == I->High ? 1 : 2);
2510  }
2511
2512  // Count unique destinations
2513  SmallSet<MachineBasicBlock*, 4> Dests;
2514  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2515    Dests.insert(I->BB);
2516    if (Dests.size() > 3)
2517      // Don't bother the code below, if there are too much unique destinations
2518      return false;
2519  }
2520  DEBUG(dbgs() << "Total number of unique destinations: "
2521        << Dests.size() << '\n'
2522        << "Total number of comparisons: " << numCmps << '\n');
2523
2524  // Compute span of values.
2525  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2526  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2527  APInt cmpRange = maxValue - minValue;
2528
2529  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2530               << "Low bound: " << minValue << '\n'
2531               << "High bound: " << maxValue << '\n');
2532
2533  if (cmpRange.uge(IntPtrBits) ||
2534      (!(Dests.size() == 1 && numCmps >= 3) &&
2535       !(Dests.size() == 2 && numCmps >= 5) &&
2536       !(Dests.size() >= 3 && numCmps >= 6)))
2537    return false;
2538
2539  DEBUG(dbgs() << "Emitting bit tests\n");
2540  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2541
2542  // Optimize the case where all the case values fit in a
2543  // word without having to subtract minValue. In this case,
2544  // we can optimize away the subtraction.
2545  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2546    cmpRange = maxValue;
2547  } else {
2548    lowBound = minValue;
2549  }
2550
2551  CaseBitsVector CasesBits;
2552  unsigned i, count = 0;
2553
2554  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2555    MachineBasicBlock* Dest = I->BB;
2556    for (i = 0; i < count; ++i)
2557      if (Dest == CasesBits[i].BB)
2558        break;
2559
2560    if (i == count) {
2561      assert((count < 3) && "Too much destinations to test!");
2562      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2563      count++;
2564    }
2565
2566    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2567    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2568
2569    uint64_t lo = (lowValue - lowBound).getZExtValue();
2570    uint64_t hi = (highValue - lowBound).getZExtValue();
2571    CasesBits[i].ExtraWeight += I->ExtraWeight;
2572
2573    for (uint64_t j = lo; j <= hi; j++) {
2574      CasesBits[i].Mask |=  1ULL << j;
2575      CasesBits[i].Bits++;
2576    }
2577
2578  }
2579  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2580
2581  BitTestInfo BTC;
2582
2583  // Figure out which block is immediately after the current one.
2584  MachineFunction::iterator BBI = CR.CaseBB;
2585  ++BBI;
2586
2587  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2588
2589  DEBUG(dbgs() << "Cases:\n");
2590  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2591    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2592                 << ", Bits: " << CasesBits[i].Bits
2593                 << ", BB: " << CasesBits[i].BB << '\n');
2594
2595    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2596    CurMF->insert(BBI, CaseBB);
2597    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2598                              CaseBB,
2599                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2600
2601    // Put SV in a virtual register to make it available from the new blocks.
2602    ExportFromCurrentBlock(SV);
2603  }
2604
2605  BitTestBlock BTB(lowBound, cmpRange, SV,
2606                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2607                   CR.CaseBB, Default, BTC);
2608
2609  if (CR.CaseBB == SwitchBB)
2610    visitBitTestHeader(BTB, SwitchBB);
2611
2612  BitTestCases.push_back(BTB);
2613
2614  return true;
2615}
2616
2617/// Clusterify - Transform simple list of Cases into list of CaseRange's
2618size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2619                                       const SwitchInst& SI) {
2620  size_t numCmps = 0;
2621
2622  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2623  // Start with "simple" cases
2624  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2625       i != e; ++i) {
2626    const BasicBlock *SuccBB = i.getCaseSuccessor();
2627    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2628
2629    uint32_t ExtraWeight =
2630      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2631
2632    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2633                         SMBB, ExtraWeight));
2634  }
2635  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2636
2637  // Merge case into clusters
2638  if (Cases.size() >= 2)
2639    // Must recompute end() each iteration because it may be
2640    // invalidated by erase if we hold on to it
2641    for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2642         J != Cases.end(); ) {
2643      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2644      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2645      MachineBasicBlock* nextBB = J->BB;
2646      MachineBasicBlock* currentBB = I->BB;
2647
2648      // If the two neighboring cases go to the same destination, merge them
2649      // into a single case.
2650      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2651        I->High = J->High;
2652        I->ExtraWeight += J->ExtraWeight;
2653        J = Cases.erase(J);
2654      } else {
2655        I = J++;
2656      }
2657    }
2658
2659  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2660    if (I->Low != I->High)
2661      // A range counts double, since it requires two compares.
2662      ++numCmps;
2663  }
2664
2665  return numCmps;
2666}
2667
2668void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2669                                           MachineBasicBlock *Last) {
2670  // Update JTCases.
2671  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2672    if (JTCases[i].first.HeaderBB == First)
2673      JTCases[i].first.HeaderBB = Last;
2674
2675  // Update BitTestCases.
2676  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2677    if (BitTestCases[i].Parent == First)
2678      BitTestCases[i].Parent = Last;
2679}
2680
2681void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2682  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2683
2684  // Figure out which block is immediately after the current one.
2685  MachineBasicBlock *NextBlock = 0;
2686  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2687
2688  // If there is only the default destination, branch to it if it is not the
2689  // next basic block.  Otherwise, just fall through.
2690  if (!SI.getNumCases()) {
2691    // Update machine-CFG edges.
2692
2693    // If this is not a fall-through branch, emit the branch.
2694    SwitchMBB->addSuccessor(Default);
2695    if (Default != NextBlock)
2696      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2697                              MVT::Other, getControlRoot(),
2698                              DAG.getBasicBlock(Default)));
2699
2700    return;
2701  }
2702
2703  // If there are any non-default case statements, create a vector of Cases
2704  // representing each one, and sort the vector so that we can efficiently
2705  // create a binary search tree from them.
2706  CaseVector Cases;
2707  size_t numCmps = Clusterify(Cases, SI);
2708  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2709               << ". Total compares: " << numCmps << '\n');
2710  (void)numCmps;
2711
2712  // Get the Value to be switched on and default basic blocks, which will be
2713  // inserted into CaseBlock records, representing basic blocks in the binary
2714  // search tree.
2715  const Value *SV = SI.getCondition();
2716
2717  // Push the initial CaseRec onto the worklist
2718  CaseRecVector WorkList;
2719  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2720                             CaseRange(Cases.begin(),Cases.end())));
2721
2722  while (!WorkList.empty()) {
2723    // Grab a record representing a case range to process off the worklist
2724    CaseRec CR = WorkList.back();
2725    WorkList.pop_back();
2726
2727    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2728      continue;
2729
2730    // If the range has few cases (two or less) emit a series of specific
2731    // tests.
2732    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2733      continue;
2734
2735    // If the switch has more than N blocks, and is at least 40% dense, and the
2736    // target supports indirect branches, then emit a jump table rather than
2737    // lowering the switch to a binary tree of conditional branches.
2738    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2739    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2740      continue;
2741
2742    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2743    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2744    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2745  }
2746}
2747
2748void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2749  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2750
2751  // Update machine-CFG edges with unique successors.
2752  SmallSet<BasicBlock*, 32> Done;
2753  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2754    BasicBlock *BB = I.getSuccessor(i);
2755    bool Inserted = Done.insert(BB);
2756    if (!Inserted)
2757        continue;
2758
2759    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2760    addSuccessorWithWeight(IndirectBrMBB, Succ);
2761  }
2762
2763  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2764                          MVT::Other, getControlRoot(),
2765                          getValue(I.getAddress())));
2766}
2767
2768void SelectionDAGBuilder::visitFSub(const User &I) {
2769  // -0.0 - X --> fneg
2770  Type *Ty = I.getType();
2771  if (isa<Constant>(I.getOperand(0)) &&
2772      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2773    SDValue Op2 = getValue(I.getOperand(1));
2774    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2775                             Op2.getValueType(), Op2));
2776    return;
2777  }
2778
2779  visitBinary(I, ISD::FSUB);
2780}
2781
2782void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2783  SDValue Op1 = getValue(I.getOperand(0));
2784  SDValue Op2 = getValue(I.getOperand(1));
2785  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2786                           Op1.getValueType(), Op1, Op2));
2787}
2788
2789void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2790  SDValue Op1 = getValue(I.getOperand(0));
2791  SDValue Op2 = getValue(I.getOperand(1));
2792
2793  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2794
2795  // Coerce the shift amount to the right type if we can.
2796  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2797    unsigned ShiftSize = ShiftTy.getSizeInBits();
2798    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2799    SDLoc DL = getCurSDLoc();
2800
2801    // If the operand is smaller than the shift count type, promote it.
2802    if (ShiftSize > Op2Size)
2803      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2804
2805    // If the operand is larger than the shift count type but the shift
2806    // count type has enough bits to represent any shift value, truncate
2807    // it now. This is a common case and it exposes the truncate to
2808    // optimization early.
2809    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2810      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2811    // Otherwise we'll need to temporarily settle for some other convenient
2812    // type.  Type legalization will make adjustments once the shiftee is split.
2813    else
2814      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2815  }
2816
2817  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2818                           Op1.getValueType(), Op1, Op2));
2819}
2820
2821void SelectionDAGBuilder::visitSDiv(const User &I) {
2822  SDValue Op1 = getValue(I.getOperand(0));
2823  SDValue Op2 = getValue(I.getOperand(1));
2824
2825  // Turn exact SDivs into multiplications.
2826  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2827  // exact bit.
2828  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2829      !isa<ConstantSDNode>(Op1) &&
2830      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2831    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2832                                                        getCurSDLoc(), DAG));
2833  else
2834    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2835                             Op1, Op2));
2836}
2837
2838void SelectionDAGBuilder::visitICmp(const User &I) {
2839  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2840  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2841    predicate = IC->getPredicate();
2842  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2843    predicate = ICmpInst::Predicate(IC->getPredicate());
2844  SDValue Op1 = getValue(I.getOperand(0));
2845  SDValue Op2 = getValue(I.getOperand(1));
2846  ISD::CondCode Opcode = getICmpCondCode(predicate);
2847
2848  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2849  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2850}
2851
2852void SelectionDAGBuilder::visitFCmp(const User &I) {
2853  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2854  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2855    predicate = FC->getPredicate();
2856  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2857    predicate = FCmpInst::Predicate(FC->getPredicate());
2858  SDValue Op1 = getValue(I.getOperand(0));
2859  SDValue Op2 = getValue(I.getOperand(1));
2860  ISD::CondCode Condition = getFCmpCondCode(predicate);
2861  if (TM.Options.NoNaNsFPMath)
2862    Condition = getFCmpCodeWithoutNaN(Condition);
2863  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2864  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2865}
2866
2867void SelectionDAGBuilder::visitSelect(const User &I) {
2868  SmallVector<EVT, 4> ValueVTs;
2869  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2870  unsigned NumValues = ValueVTs.size();
2871  if (NumValues == 0) return;
2872
2873  SmallVector<SDValue, 4> Values(NumValues);
2874  SDValue Cond     = getValue(I.getOperand(0));
2875  SDValue TrueVal  = getValue(I.getOperand(1));
2876  SDValue FalseVal = getValue(I.getOperand(2));
2877  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2878    ISD::VSELECT : ISD::SELECT;
2879
2880  for (unsigned i = 0; i != NumValues; ++i)
2881    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2882                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2883                            Cond,
2884                            SDValue(TrueVal.getNode(),
2885                                    TrueVal.getResNo() + i),
2886                            SDValue(FalseVal.getNode(),
2887                                    FalseVal.getResNo() + i));
2888
2889  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2890                           DAG.getVTList(&ValueVTs[0], NumValues),
2891                           &Values[0], NumValues));
2892}
2893
2894void SelectionDAGBuilder::visitTrunc(const User &I) {
2895  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2896  SDValue N = getValue(I.getOperand(0));
2897  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2898  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2899}
2900
2901void SelectionDAGBuilder::visitZExt(const User &I) {
2902  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2903  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2904  SDValue N = getValue(I.getOperand(0));
2905  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2906  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2907}
2908
2909void SelectionDAGBuilder::visitSExt(const User &I) {
2910  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2911  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2912  SDValue N = getValue(I.getOperand(0));
2913  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2914  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2915}
2916
2917void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2918  // FPTrunc is never a no-op cast, no need to check
2919  SDValue N = getValue(I.getOperand(0));
2920  const TargetLowering *TLI = TM.getTargetLowering();
2921  EVT DestVT = TLI->getValueType(I.getType());
2922  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2923                           DestVT, N,
2924                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2925}
2926
2927void SelectionDAGBuilder::visitFPExt(const User &I) {
2928  // FPExt is never a no-op cast, no need to check
2929  SDValue N = getValue(I.getOperand(0));
2930  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2931  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2932}
2933
2934void SelectionDAGBuilder::visitFPToUI(const User &I) {
2935  // FPToUI is never a no-op cast, no need to check
2936  SDValue N = getValue(I.getOperand(0));
2937  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2938  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2939}
2940
2941void SelectionDAGBuilder::visitFPToSI(const User &I) {
2942  // FPToSI is never a no-op cast, no need to check
2943  SDValue N = getValue(I.getOperand(0));
2944  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2945  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2946}
2947
2948void SelectionDAGBuilder::visitUIToFP(const User &I) {
2949  // UIToFP is never a no-op cast, no need to check
2950  SDValue N = getValue(I.getOperand(0));
2951  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2952  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2953}
2954
2955void SelectionDAGBuilder::visitSIToFP(const User &I) {
2956  // SIToFP is never a no-op cast, no need to check
2957  SDValue N = getValue(I.getOperand(0));
2958  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2959  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2960}
2961
2962void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2963  // What to do depends on the size of the integer and the size of the pointer.
2964  // We can either truncate, zero extend, or no-op, accordingly.
2965  SDValue N = getValue(I.getOperand(0));
2966  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2967  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2968}
2969
2970void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2971  // What to do depends on the size of the integer and the size of the pointer.
2972  // We can either truncate, zero extend, or no-op, accordingly.
2973  SDValue N = getValue(I.getOperand(0));
2974  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2975  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2976}
2977
2978void SelectionDAGBuilder::visitBitCast(const User &I) {
2979  SDValue N = getValue(I.getOperand(0));
2980  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2981
2982  // BitCast assures us that source and destination are the same size so this is
2983  // either a BITCAST or a no-op.
2984  if (DestVT != N.getValueType())
2985    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2986                             DestVT, N)); // convert types.
2987  // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2988  // might fold any kind of constant expression to an integer constant and that
2989  // is not what we are looking for. Only regcognize a bitcast of a genuine
2990  // constant integer as an opaque constant.
2991  else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2992    setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
2993                                 /*isOpaque*/true));
2994  else
2995    setValue(&I, N);            // noop cast.
2996}
2997
2998void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2999  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3000  const Value *SV = I.getOperand(0);
3001  SDValue N = getValue(SV);
3002  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3003
3004  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3005  unsigned DestAS = I.getType()->getPointerAddressSpace();
3006
3007  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3008    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3009
3010  setValue(&I, N);
3011}
3012
3013void SelectionDAGBuilder::visitInsertElement(const User &I) {
3014  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3015  SDValue InVec = getValue(I.getOperand(0));
3016  SDValue InVal = getValue(I.getOperand(1));
3017  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3018                                     getCurSDLoc(), TLI.getVectorIdxTy());
3019  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3020                           TM.getTargetLowering()->getValueType(I.getType()),
3021                           InVec, InVal, InIdx));
3022}
3023
3024void SelectionDAGBuilder::visitExtractElement(const User &I) {
3025  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3026  SDValue InVec = getValue(I.getOperand(0));
3027  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3028                                     getCurSDLoc(), TLI.getVectorIdxTy());
3029  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3030                           TM.getTargetLowering()->getValueType(I.getType()),
3031                           InVec, InIdx));
3032}
3033
3034// Utility for visitShuffleVector - Return true if every element in Mask,
3035// beginning from position Pos and ending in Pos+Size, falls within the
3036// specified sequential range [L, L+Pos). or is undef.
3037static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3038                                unsigned Pos, unsigned Size, int Low) {
3039  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3040    if (Mask[i] >= 0 && Mask[i] != Low)
3041      return false;
3042  return true;
3043}
3044
3045void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3046  SDValue Src1 = getValue(I.getOperand(0));
3047  SDValue Src2 = getValue(I.getOperand(1));
3048
3049  SmallVector<int, 8> Mask;
3050  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3051  unsigned MaskNumElts = Mask.size();
3052
3053  const TargetLowering *TLI = TM.getTargetLowering();
3054  EVT VT = TLI->getValueType(I.getType());
3055  EVT SrcVT = Src1.getValueType();
3056  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3057
3058  if (SrcNumElts == MaskNumElts) {
3059    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3060                                      &Mask[0]));
3061    return;
3062  }
3063
3064  // Normalize the shuffle vector since mask and vector length don't match.
3065  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3066    // Mask is longer than the source vectors and is a multiple of the source
3067    // vectors.  We can use concatenate vector to make the mask and vectors
3068    // lengths match.
3069    if (SrcNumElts*2 == MaskNumElts) {
3070      // First check for Src1 in low and Src2 in high
3071      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3072          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3073        // The shuffle is concatenating two vectors together.
3074        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3075                                 VT, Src1, Src2));
3076        return;
3077      }
3078      // Then check for Src2 in low and Src1 in high
3079      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3080          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3081        // The shuffle is concatenating two vectors together.
3082        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3083                                 VT, Src2, Src1));
3084        return;
3085      }
3086    }
3087
3088    // Pad both vectors with undefs to make them the same length as the mask.
3089    unsigned NumConcat = MaskNumElts / SrcNumElts;
3090    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3091    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3092    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3093
3094    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3095    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3096    MOps1[0] = Src1;
3097    MOps2[0] = Src2;
3098
3099    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3100                                                  getCurSDLoc(), VT,
3101                                                  &MOps1[0], NumConcat);
3102    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3103                                                  getCurSDLoc(), VT,
3104                                                  &MOps2[0], NumConcat);
3105
3106    // Readjust mask for new input vector length.
3107    SmallVector<int, 8> MappedOps;
3108    for (unsigned i = 0; i != MaskNumElts; ++i) {
3109      int Idx = Mask[i];
3110      if (Idx >= (int)SrcNumElts)
3111        Idx -= SrcNumElts - MaskNumElts;
3112      MappedOps.push_back(Idx);
3113    }
3114
3115    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3116                                      &MappedOps[0]));
3117    return;
3118  }
3119
3120  if (SrcNumElts > MaskNumElts) {
3121    // Analyze the access pattern of the vector to see if we can extract
3122    // two subvectors and do the shuffle. The analysis is done by calculating
3123    // the range of elements the mask access on both vectors.
3124    int MinRange[2] = { static_cast<int>(SrcNumElts),
3125                        static_cast<int>(SrcNumElts)};
3126    int MaxRange[2] = {-1, -1};
3127
3128    for (unsigned i = 0; i != MaskNumElts; ++i) {
3129      int Idx = Mask[i];
3130      unsigned Input = 0;
3131      if (Idx < 0)
3132        continue;
3133
3134      if (Idx >= (int)SrcNumElts) {
3135        Input = 1;
3136        Idx -= SrcNumElts;
3137      }
3138      if (Idx > MaxRange[Input])
3139        MaxRange[Input] = Idx;
3140      if (Idx < MinRange[Input])
3141        MinRange[Input] = Idx;
3142    }
3143
3144    // Check if the access is smaller than the vector size and can we find
3145    // a reasonable extract index.
3146    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3147                                   // Extract.
3148    int StartIdx[2];  // StartIdx to extract from
3149    for (unsigned Input = 0; Input < 2; ++Input) {
3150      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3151        RangeUse[Input] = 0; // Unused
3152        StartIdx[Input] = 0;
3153        continue;
3154      }
3155
3156      // Find a good start index that is a multiple of the mask length. Then
3157      // see if the rest of the elements are in range.
3158      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3159      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3160          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3161        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3162    }
3163
3164    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3165      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3166      return;
3167    }
3168    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3169      // Extract appropriate subvector and generate a vector shuffle
3170      for (unsigned Input = 0; Input < 2; ++Input) {
3171        SDValue &Src = Input == 0 ? Src1 : Src2;
3172        if (RangeUse[Input] == 0)
3173          Src = DAG.getUNDEF(VT);
3174        else
3175          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3176                            Src, DAG.getConstant(StartIdx[Input],
3177                                                 TLI->getVectorIdxTy()));
3178      }
3179
3180      // Calculate new mask.
3181      SmallVector<int, 8> MappedOps;
3182      for (unsigned i = 0; i != MaskNumElts; ++i) {
3183        int Idx = Mask[i];
3184        if (Idx >= 0) {
3185          if (Idx < (int)SrcNumElts)
3186            Idx -= StartIdx[0];
3187          else
3188            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3189        }
3190        MappedOps.push_back(Idx);
3191      }
3192
3193      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3194                                        &MappedOps[0]));
3195      return;
3196    }
3197  }
3198
3199  // We can't use either concat vectors or extract subvectors so fall back to
3200  // replacing the shuffle with extract and build vector.
3201  // to insert and build vector.
3202  EVT EltVT = VT.getVectorElementType();
3203  EVT IdxVT = TLI->getVectorIdxTy();
3204  SmallVector<SDValue,8> Ops;
3205  for (unsigned i = 0; i != MaskNumElts; ++i) {
3206    int Idx = Mask[i];
3207    SDValue Res;
3208
3209    if (Idx < 0) {
3210      Res = DAG.getUNDEF(EltVT);
3211    } else {
3212      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3213      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3214
3215      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3216                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3217    }
3218
3219    Ops.push_back(Res);
3220  }
3221
3222  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3223                           VT, &Ops[0], Ops.size()));
3224}
3225
3226void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3227  const Value *Op0 = I.getOperand(0);
3228  const Value *Op1 = I.getOperand(1);
3229  Type *AggTy = I.getType();
3230  Type *ValTy = Op1->getType();
3231  bool IntoUndef = isa<UndefValue>(Op0);
3232  bool FromUndef = isa<UndefValue>(Op1);
3233
3234  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3235
3236  const TargetLowering *TLI = TM.getTargetLowering();
3237  SmallVector<EVT, 4> AggValueVTs;
3238  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3239  SmallVector<EVT, 4> ValValueVTs;
3240  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3241
3242  unsigned NumAggValues = AggValueVTs.size();
3243  unsigned NumValValues = ValValueVTs.size();
3244  SmallVector<SDValue, 4> Values(NumAggValues);
3245
3246  SDValue Agg = getValue(Op0);
3247  unsigned i = 0;
3248  // Copy the beginning value(s) from the original aggregate.
3249  for (; i != LinearIndex; ++i)
3250    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3251                SDValue(Agg.getNode(), Agg.getResNo() + i);
3252  // Copy values from the inserted value(s).
3253  if (NumValValues) {
3254    SDValue Val = getValue(Op1);
3255    for (; i != LinearIndex + NumValValues; ++i)
3256      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3257                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3258  }
3259  // Copy remaining value(s) from the original aggregate.
3260  for (; i != NumAggValues; ++i)
3261    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3262                SDValue(Agg.getNode(), Agg.getResNo() + i);
3263
3264  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3265                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3266                           &Values[0], NumAggValues));
3267}
3268
3269void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3270  const Value *Op0 = I.getOperand(0);
3271  Type *AggTy = Op0->getType();
3272  Type *ValTy = I.getType();
3273  bool OutOfUndef = isa<UndefValue>(Op0);
3274
3275  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3276
3277  const TargetLowering *TLI = TM.getTargetLowering();
3278  SmallVector<EVT, 4> ValValueVTs;
3279  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3280
3281  unsigned NumValValues = ValValueVTs.size();
3282
3283  // Ignore a extractvalue that produces an empty object
3284  if (!NumValValues) {
3285    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3286    return;
3287  }
3288
3289  SmallVector<SDValue, 4> Values(NumValValues);
3290
3291  SDValue Agg = getValue(Op0);
3292  // Copy out the selected value(s).
3293  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3294    Values[i - LinearIndex] =
3295      OutOfUndef ?
3296        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3297        SDValue(Agg.getNode(), Agg.getResNo() + i);
3298
3299  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3300                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3301                           &Values[0], NumValValues));
3302}
3303
3304void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3305  Value *Op0 = I.getOperand(0);
3306  // Note that the pointer operand may be a vector of pointers. Take the scalar
3307  // element which holds a pointer.
3308  Type *Ty = Op0->getType()->getScalarType();
3309  unsigned AS = Ty->getPointerAddressSpace();
3310  SDValue N = getValue(Op0);
3311
3312  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3313       OI != E; ++OI) {
3314    const Value *Idx = *OI;
3315    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3316      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3317      if (Field) {
3318        // N = N + Offset
3319        uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3320        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3321                        DAG.getConstant(Offset, N.getValueType()));
3322      }
3323
3324      Ty = StTy->getElementType(Field);
3325    } else {
3326      Ty = cast<SequentialType>(Ty)->getElementType();
3327
3328      // If this is a constant subscript, handle it quickly.
3329      const TargetLowering *TLI = TM.getTargetLowering();
3330      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3331        if (CI->isZero()) continue;
3332        uint64_t Offs =
3333            DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3334        SDValue OffsVal;
3335        EVT PTy = TLI->getPointerTy(AS);
3336        unsigned PtrBits = PTy.getSizeInBits();
3337        if (PtrBits < 64)
3338          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3339                                DAG.getConstant(Offs, MVT::i64));
3340        else
3341          OffsVal = DAG.getConstant(Offs, PTy);
3342
3343        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3344                        OffsVal);
3345        continue;
3346      }
3347
3348      // N = N + Idx * ElementSize;
3349      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3350                                DL->getTypeAllocSize(Ty));
3351      SDValue IdxN = getValue(Idx);
3352
3353      // If the index is smaller or larger than intptr_t, truncate or extend
3354      // it.
3355      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3356
3357      // If this is a multiply by a power of two, turn it into a shl
3358      // immediately.  This is a very common case.
3359      if (ElementSize != 1) {
3360        if (ElementSize.isPowerOf2()) {
3361          unsigned Amt = ElementSize.logBase2();
3362          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3363                             N.getValueType(), IdxN,
3364                             DAG.getConstant(Amt, IdxN.getValueType()));
3365        } else {
3366          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3367          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3368                             N.getValueType(), IdxN, Scale);
3369        }
3370      }
3371
3372      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3373                      N.getValueType(), N, IdxN);
3374    }
3375  }
3376
3377  setValue(&I, N);
3378}
3379
3380void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3381  // If this is a fixed sized alloca in the entry block of the function,
3382  // allocate it statically on the stack.
3383  if (FuncInfo.StaticAllocaMap.count(&I))
3384    return;   // getValue will auto-populate this.
3385
3386  Type *Ty = I.getAllocatedType();
3387  const TargetLowering *TLI = TM.getTargetLowering();
3388  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3389  unsigned Align =
3390    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3391             I.getAlignment());
3392
3393  SDValue AllocSize = getValue(I.getArraySize());
3394
3395  EVT IntPtr = TLI->getPointerTy();
3396  if (AllocSize.getValueType() != IntPtr)
3397    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3398
3399  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3400                          AllocSize,
3401                          DAG.getConstant(TySize, IntPtr));
3402
3403  // Handle alignment.  If the requested alignment is less than or equal to
3404  // the stack alignment, ignore it.  If the size is greater than or equal to
3405  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3406  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3407  if (Align <= StackAlign)
3408    Align = 0;
3409
3410  // Round the size of the allocation up to the stack alignment size
3411  // by add SA-1 to the size.
3412  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3413                          AllocSize.getValueType(), AllocSize,
3414                          DAG.getIntPtrConstant(StackAlign-1));
3415
3416  // Mask out the low bits for alignment purposes.
3417  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3418                          AllocSize.getValueType(), AllocSize,
3419                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3420
3421  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3422  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3423  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3424                            VTs, Ops, 3);
3425  setValue(&I, DSA);
3426  DAG.setRoot(DSA.getValue(1));
3427
3428  assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3429}
3430
3431void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3432  if (I.isAtomic())
3433    return visitAtomicLoad(I);
3434
3435  const Value *SV = I.getOperand(0);
3436  SDValue Ptr = getValue(SV);
3437
3438  Type *Ty = I.getType();
3439
3440  bool isVolatile = I.isVolatile();
3441  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3442  bool isInvariant = I.getMetadata("invariant.load") != 0;
3443  unsigned Alignment = I.getAlignment();
3444  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3445  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3446
3447  SmallVector<EVT, 4> ValueVTs;
3448  SmallVector<uint64_t, 4> Offsets;
3449  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3450  unsigned NumValues = ValueVTs.size();
3451  if (NumValues == 0)
3452    return;
3453
3454  SDValue Root;
3455  bool ConstantMemory = false;
3456  if (isVolatile || NumValues > MaxParallelChains)
3457    // Serialize volatile loads with other side effects.
3458    Root = getRoot();
3459  else if (AA->pointsToConstantMemory(
3460             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3461    // Do not serialize (non-volatile) loads of constant memory with anything.
3462    Root = DAG.getEntryNode();
3463    ConstantMemory = true;
3464  } else {
3465    // Do not serialize non-volatile loads against each other.
3466    Root = DAG.getRoot();
3467  }
3468
3469  const TargetLowering *TLI = TM.getTargetLowering();
3470  if (isVolatile)
3471    Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3472
3473  SmallVector<SDValue, 4> Values(NumValues);
3474  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3475                                          NumValues));
3476  EVT PtrVT = Ptr.getValueType();
3477  unsigned ChainI = 0;
3478  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3479    // Serializing loads here may result in excessive register pressure, and
3480    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3481    // could recover a bit by hoisting nodes upward in the chain by recognizing
3482    // they are side-effect free or do not alias. The optimizer should really
3483    // avoid this case by converting large object/array copies to llvm.memcpy
3484    // (MaxParallelChains should always remain as failsafe).
3485    if (ChainI == MaxParallelChains) {
3486      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3487      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3488                                  MVT::Other, &Chains[0], ChainI);
3489      Root = Chain;
3490      ChainI = 0;
3491    }
3492    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3493                            PtrVT, Ptr,
3494                            DAG.getConstant(Offsets[i], PtrVT));
3495    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3496                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3497                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3498                            Ranges);
3499
3500    Values[i] = L;
3501    Chains[ChainI] = L.getValue(1);
3502  }
3503
3504  if (!ConstantMemory) {
3505    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3506                                MVT::Other, &Chains[0], ChainI);
3507    if (isVolatile)
3508      DAG.setRoot(Chain);
3509    else
3510      PendingLoads.push_back(Chain);
3511  }
3512
3513  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3514                           DAG.getVTList(&ValueVTs[0], NumValues),
3515                           &Values[0], NumValues));
3516}
3517
3518void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3519  if (I.isAtomic())
3520    return visitAtomicStore(I);
3521
3522  const Value *SrcV = I.getOperand(0);
3523  const Value *PtrV = I.getOperand(1);
3524
3525  SmallVector<EVT, 4> ValueVTs;
3526  SmallVector<uint64_t, 4> Offsets;
3527  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3528  unsigned NumValues = ValueVTs.size();
3529  if (NumValues == 0)
3530    return;
3531
3532  // Get the lowered operands. Note that we do this after
3533  // checking if NumResults is zero, because with zero results
3534  // the operands won't have values in the map.
3535  SDValue Src = getValue(SrcV);
3536  SDValue Ptr = getValue(PtrV);
3537
3538  SDValue Root = getRoot();
3539  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3540                                          NumValues));
3541  EVT PtrVT = Ptr.getValueType();
3542  bool isVolatile = I.isVolatile();
3543  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3544  unsigned Alignment = I.getAlignment();
3545  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3546
3547  unsigned ChainI = 0;
3548  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3549    // See visitLoad comments.
3550    if (ChainI == MaxParallelChains) {
3551      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3552                                  MVT::Other, &Chains[0], ChainI);
3553      Root = Chain;
3554      ChainI = 0;
3555    }
3556    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3557                              DAG.getConstant(Offsets[i], PtrVT));
3558    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3559                              SDValue(Src.getNode(), Src.getResNo() + i),
3560                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3561                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3562    Chains[ChainI] = St;
3563  }
3564
3565  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3566                                  MVT::Other, &Chains[0], ChainI);
3567  DAG.setRoot(StoreNode);
3568}
3569
3570static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3571                                    SynchronizationScope Scope,
3572                                    bool Before, SDLoc dl,
3573                                    SelectionDAG &DAG,
3574                                    const TargetLowering &TLI) {
3575  // Fence, if necessary
3576  if (Before) {
3577    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3578      Order = Release;
3579    else if (Order == Acquire || Order == Monotonic)
3580      return Chain;
3581  } else {
3582    if (Order == AcquireRelease)
3583      Order = Acquire;
3584    else if (Order == Release || Order == Monotonic)
3585      return Chain;
3586  }
3587  SDValue Ops[3];
3588  Ops[0] = Chain;
3589  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3590  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3591  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3592}
3593
3594void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3595  SDLoc dl = getCurSDLoc();
3596  AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3597  AtomicOrdering FailureOrder = I.getFailureOrdering();
3598  SynchronizationScope Scope = I.getSynchScope();
3599
3600  SDValue InChain = getRoot();
3601
3602  const TargetLowering *TLI = TM.getTargetLowering();
3603  if (TLI->getInsertFencesForAtomic())
3604    InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
3605                                   DAG, *TLI);
3606
3607  SDValue L =
3608    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3609                  getValue(I.getCompareOperand()).getSimpleValueType(),
3610                  InChain,
3611                  getValue(I.getPointerOperand()),
3612                  getValue(I.getCompareOperand()),
3613                  getValue(I.getNewValOperand()),
3614                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3615                  TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
3616                  TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder,
3617                  Scope);
3618
3619  SDValue OutChain = L.getValue(1);
3620
3621  if (TLI->getInsertFencesForAtomic())
3622    OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
3623                                    DAG, *TLI);
3624
3625  setValue(&I, L);
3626  DAG.setRoot(OutChain);
3627}
3628
3629void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3630  SDLoc dl = getCurSDLoc();
3631  ISD::NodeType NT;
3632  switch (I.getOperation()) {
3633  default: llvm_unreachable("Unknown atomicrmw operation");
3634  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3635  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3636  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3637  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3638  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3639  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3640  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3641  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3642  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3643  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3644  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3645  }
3646  AtomicOrdering Order = I.getOrdering();
3647  SynchronizationScope Scope = I.getSynchScope();
3648
3649  SDValue InChain = getRoot();
3650
3651  const TargetLowering *TLI = TM.getTargetLowering();
3652  if (TLI->getInsertFencesForAtomic())
3653    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3654                                   DAG, *TLI);
3655
3656  SDValue L =
3657    DAG.getAtomic(NT, dl,
3658                  getValue(I.getValOperand()).getSimpleValueType(),
3659                  InChain,
3660                  getValue(I.getPointerOperand()),
3661                  getValue(I.getValOperand()),
3662                  I.getPointerOperand(), 0 /* Alignment */,
3663                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3664                  Scope);
3665
3666  SDValue OutChain = L.getValue(1);
3667
3668  if (TLI->getInsertFencesForAtomic())
3669    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3670                                    DAG, *TLI);
3671
3672  setValue(&I, L);
3673  DAG.setRoot(OutChain);
3674}
3675
3676void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3677  SDLoc dl = getCurSDLoc();
3678  const TargetLowering *TLI = TM.getTargetLowering();
3679  SDValue Ops[3];
3680  Ops[0] = getRoot();
3681  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3682  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3683  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3684}
3685
3686void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3687  SDLoc dl = getCurSDLoc();
3688  AtomicOrdering Order = I.getOrdering();
3689  SynchronizationScope Scope = I.getSynchScope();
3690
3691  SDValue InChain = getRoot();
3692
3693  const TargetLowering *TLI = TM.getTargetLowering();
3694  EVT VT = TLI->getValueType(I.getType());
3695
3696  if (I.getAlignment() < VT.getSizeInBits() / 8)
3697    report_fatal_error("Cannot generate unaligned atomic load");
3698
3699  InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3700  SDValue L =
3701    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3702                  getValue(I.getPointerOperand()),
3703                  I.getPointerOperand(), I.getAlignment(),
3704                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3705                  Scope);
3706
3707  SDValue OutChain = L.getValue(1);
3708
3709  if (TLI->getInsertFencesForAtomic())
3710    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3711                                    DAG, *TLI);
3712
3713  setValue(&I, L);
3714  DAG.setRoot(OutChain);
3715}
3716
3717void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3718  SDLoc dl = getCurSDLoc();
3719
3720  AtomicOrdering Order = I.getOrdering();
3721  SynchronizationScope Scope = I.getSynchScope();
3722
3723  SDValue InChain = getRoot();
3724
3725  const TargetLowering *TLI = TM.getTargetLowering();
3726  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3727
3728  if (I.getAlignment() < VT.getSizeInBits() / 8)
3729    report_fatal_error("Cannot generate unaligned atomic store");
3730
3731  if (TLI->getInsertFencesForAtomic())
3732    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3733                                   DAG, *TLI);
3734
3735  SDValue OutChain =
3736    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3737                  InChain,
3738                  getValue(I.getPointerOperand()),
3739                  getValue(I.getValueOperand()),
3740                  I.getPointerOperand(), I.getAlignment(),
3741                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3742                  Scope);
3743
3744  if (TLI->getInsertFencesForAtomic())
3745    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3746                                    DAG, *TLI);
3747
3748  DAG.setRoot(OutChain);
3749}
3750
3751/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3752/// node.
3753void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3754                                               unsigned Intrinsic) {
3755  bool HasChain = !I.doesNotAccessMemory();
3756  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3757
3758  // Build the operand list.
3759  SmallVector<SDValue, 8> Ops;
3760  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3761    if (OnlyLoad) {
3762      // We don't need to serialize loads against other loads.
3763      Ops.push_back(DAG.getRoot());
3764    } else {
3765      Ops.push_back(getRoot());
3766    }
3767  }
3768
3769  // Info is set by getTgtMemInstrinsic
3770  TargetLowering::IntrinsicInfo Info;
3771  const TargetLowering *TLI = TM.getTargetLowering();
3772  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3773
3774  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3775  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3776      Info.opc == ISD::INTRINSIC_W_CHAIN)
3777    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3778
3779  // Add all operands of the call to the operand list.
3780  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3781    SDValue Op = getValue(I.getArgOperand(i));
3782    Ops.push_back(Op);
3783  }
3784
3785  SmallVector<EVT, 4> ValueVTs;
3786  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3787
3788  if (HasChain)
3789    ValueVTs.push_back(MVT::Other);
3790
3791  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3792
3793  // Create the node.
3794  SDValue Result;
3795  if (IsTgtIntrinsic) {
3796    // This is target intrinsic that touches memory
3797    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3798                                     VTs, &Ops[0], Ops.size(),
3799                                     Info.memVT,
3800                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3801                                     Info.align, Info.vol,
3802                                     Info.readMem, Info.writeMem);
3803  } else if (!HasChain) {
3804    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3805                         VTs, &Ops[0], Ops.size());
3806  } else if (!I.getType()->isVoidTy()) {
3807    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3808                         VTs, &Ops[0], Ops.size());
3809  } else {
3810    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3811                         VTs, &Ops[0], Ops.size());
3812  }
3813
3814  if (HasChain) {
3815    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3816    if (OnlyLoad)
3817      PendingLoads.push_back(Chain);
3818    else
3819      DAG.setRoot(Chain);
3820  }
3821
3822  if (!I.getType()->isVoidTy()) {
3823    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3824      EVT VT = TLI->getValueType(PTy);
3825      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3826    }
3827
3828    setValue(&I, Result);
3829  }
3830}
3831
3832/// GetSignificand - Get the significand and build it into a floating-point
3833/// number with exponent of 1:
3834///
3835///   Op = (Op & 0x007fffff) | 0x3f800000;
3836///
3837/// where Op is the hexadecimal representation of floating point value.
3838static SDValue
3839GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3840  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3841                           DAG.getConstant(0x007fffff, MVT::i32));
3842  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3843                           DAG.getConstant(0x3f800000, MVT::i32));
3844  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3845}
3846
3847/// GetExponent - Get the exponent:
3848///
3849///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3850///
3851/// where Op is the hexadecimal representation of floating point value.
3852static SDValue
3853GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3854            SDLoc dl) {
3855  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3856                           DAG.getConstant(0x7f800000, MVT::i32));
3857  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3858                           DAG.getConstant(23, TLI.getPointerTy()));
3859  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3860                           DAG.getConstant(127, MVT::i32));
3861  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3862}
3863
3864/// getF32Constant - Get 32-bit floating point constant.
3865static SDValue
3866getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3867  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3868                           MVT::f32);
3869}
3870
3871/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3872/// limited-precision mode.
3873static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3874                         const TargetLowering &TLI) {
3875  if (Op.getValueType() == MVT::f32 &&
3876      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3877
3878    // Put the exponent in the right bit position for later addition to the
3879    // final result:
3880    //
3881    //   #define LOG2OFe 1.4426950f
3882    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3883    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3884                             getF32Constant(DAG, 0x3fb8aa3b));
3885    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3886
3887    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3888    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3889    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3890
3891    //   IntegerPartOfX <<= 23;
3892    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3893                                 DAG.getConstant(23, TLI.getPointerTy()));
3894
3895    SDValue TwoToFracPartOfX;
3896    if (LimitFloatPrecision <= 6) {
3897      // For floating-point precision of 6:
3898      //
3899      //   TwoToFractionalPartOfX =
3900      //     0.997535578f +
3901      //       (0.735607626f + 0.252464424f * x) * x;
3902      //
3903      // error 0.0144103317, which is 6 bits
3904      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3905                               getF32Constant(DAG, 0x3e814304));
3906      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3907                               getF32Constant(DAG, 0x3f3c50c8));
3908      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3909      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3910                                     getF32Constant(DAG, 0x3f7f5e7e));
3911    } else if (LimitFloatPrecision <= 12) {
3912      // For floating-point precision of 12:
3913      //
3914      //   TwoToFractionalPartOfX =
3915      //     0.999892986f +
3916      //       (0.696457318f +
3917      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3918      //
3919      // 0.000107046256 error, which is 13 to 14 bits
3920      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3921                               getF32Constant(DAG, 0x3da235e3));
3922      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3923                               getF32Constant(DAG, 0x3e65b8f3));
3924      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3925      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3926                               getF32Constant(DAG, 0x3f324b07));
3927      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3928      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3929                                     getF32Constant(DAG, 0x3f7ff8fd));
3930    } else { // LimitFloatPrecision <= 18
3931      // For floating-point precision of 18:
3932      //
3933      //   TwoToFractionalPartOfX =
3934      //     0.999999982f +
3935      //       (0.693148872f +
3936      //         (0.240227044f +
3937      //           (0.554906021e-1f +
3938      //             (0.961591928e-2f +
3939      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3940      //
3941      // error 2.47208000*10^(-7), which is better than 18 bits
3942      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3943                               getF32Constant(DAG, 0x3924b03e));
3944      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3945                               getF32Constant(DAG, 0x3ab24b87));
3946      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3947      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3948                               getF32Constant(DAG, 0x3c1d8c17));
3949      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3950      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3951                               getF32Constant(DAG, 0x3d634a1d));
3952      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3953      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3954                               getF32Constant(DAG, 0x3e75fe14));
3955      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3956      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3957                                getF32Constant(DAG, 0x3f317234));
3958      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3959      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3960                                     getF32Constant(DAG, 0x3f800000));
3961    }
3962
3963    // Add the exponent into the result in integer domain.
3964    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3965    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3966                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3967                                   t13, IntegerPartOfX));
3968  }
3969
3970  // No special expansion.
3971  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3972}
3973
3974/// expandLog - Lower a log intrinsic. Handles the special sequences for
3975/// limited-precision mode.
3976static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3977                         const TargetLowering &TLI) {
3978  if (Op.getValueType() == MVT::f32 &&
3979      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3980    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3981
3982    // Scale the exponent by log(2) [0.69314718f].
3983    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3984    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3985                                        getF32Constant(DAG, 0x3f317218));
3986
3987    // Get the significand and build it into a floating-point number with
3988    // exponent of 1.
3989    SDValue X = GetSignificand(DAG, Op1, dl);
3990
3991    SDValue LogOfMantissa;
3992    if (LimitFloatPrecision <= 6) {
3993      // For floating-point precision of 6:
3994      //
3995      //   LogofMantissa =
3996      //     -1.1609546f +
3997      //       (1.4034025f - 0.23903021f * x) * x;
3998      //
3999      // error 0.0034276066, which is better than 8 bits
4000      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4001                               getF32Constant(DAG, 0xbe74c456));
4002      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4003                               getF32Constant(DAG, 0x3fb3a2b1));
4004      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4005      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4006                                  getF32Constant(DAG, 0x3f949a29));
4007    } else if (LimitFloatPrecision <= 12) {
4008      // For floating-point precision of 12:
4009      //
4010      //   LogOfMantissa =
4011      //     -1.7417939f +
4012      //       (2.8212026f +
4013      //         (-1.4699568f +
4014      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4015      //
4016      // error 0.000061011436, which is 14 bits
4017      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4018                               getF32Constant(DAG, 0xbd67b6d6));
4019      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4020                               getF32Constant(DAG, 0x3ee4f4b8));
4021      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4022      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4023                               getF32Constant(DAG, 0x3fbc278b));
4024      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4025      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4026                               getF32Constant(DAG, 0x40348e95));
4027      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4028      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4029                                  getF32Constant(DAG, 0x3fdef31a));
4030    } else { // LimitFloatPrecision <= 18
4031      // For floating-point precision of 18:
4032      //
4033      //   LogOfMantissa =
4034      //     -2.1072184f +
4035      //       (4.2372794f +
4036      //         (-3.7029485f +
4037      //           (2.2781945f +
4038      //             (-0.87823314f +
4039      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4040      //
4041      // error 0.0000023660568, which is better than 18 bits
4042      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4043                               getF32Constant(DAG, 0xbc91e5ac));
4044      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4045                               getF32Constant(DAG, 0x3e4350aa));
4046      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4047      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4048                               getF32Constant(DAG, 0x3f60d3e3));
4049      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4050      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4051                               getF32Constant(DAG, 0x4011cdf0));
4052      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4053      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4054                               getF32Constant(DAG, 0x406cfd1c));
4055      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4056      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4057                               getF32Constant(DAG, 0x408797cb));
4058      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4059      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4060                                  getF32Constant(DAG, 0x4006dcab));
4061    }
4062
4063    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4064  }
4065
4066  // No special expansion.
4067  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4068}
4069
4070/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4071/// limited-precision mode.
4072static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4073                          const TargetLowering &TLI) {
4074  if (Op.getValueType() == MVT::f32 &&
4075      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4076    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4077
4078    // Get the exponent.
4079    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4080
4081    // Get the significand and build it into a floating-point number with
4082    // exponent of 1.
4083    SDValue X = GetSignificand(DAG, Op1, dl);
4084
4085    // Different possible minimax approximations of significand in
4086    // floating-point for various degrees of accuracy over [1,2].
4087    SDValue Log2ofMantissa;
4088    if (LimitFloatPrecision <= 6) {
4089      // For floating-point precision of 6:
4090      //
4091      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4092      //
4093      // error 0.0049451742, which is more than 7 bits
4094      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4095                               getF32Constant(DAG, 0xbeb08fe0));
4096      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4097                               getF32Constant(DAG, 0x40019463));
4098      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4099      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4100                                   getF32Constant(DAG, 0x3fd6633d));
4101    } else if (LimitFloatPrecision <= 12) {
4102      // For floating-point precision of 12:
4103      //
4104      //   Log2ofMantissa =
4105      //     -2.51285454f +
4106      //       (4.07009056f +
4107      //         (-2.12067489f +
4108      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4109      //
4110      // error 0.0000876136000, which is better than 13 bits
4111      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4112                               getF32Constant(DAG, 0xbda7262e));
4113      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4114                               getF32Constant(DAG, 0x3f25280b));
4115      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4116      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4117                               getF32Constant(DAG, 0x4007b923));
4118      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4119      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4120                               getF32Constant(DAG, 0x40823e2f));
4121      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4122      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4123                                   getF32Constant(DAG, 0x4020d29c));
4124    } else { // LimitFloatPrecision <= 18
4125      // For floating-point precision of 18:
4126      //
4127      //   Log2ofMantissa =
4128      //     -3.0400495f +
4129      //       (6.1129976f +
4130      //         (-5.3420409f +
4131      //           (3.2865683f +
4132      //             (-1.2669343f +
4133      //               (0.27515199f -
4134      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4135      //
4136      // error 0.0000018516, which is better than 18 bits
4137      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4138                               getF32Constant(DAG, 0xbcd2769e));
4139      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4140                               getF32Constant(DAG, 0x3e8ce0b9));
4141      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4142      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4143                               getF32Constant(DAG, 0x3fa22ae7));
4144      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4145      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4146                               getF32Constant(DAG, 0x40525723));
4147      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4148      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4149                               getF32Constant(DAG, 0x40aaf200));
4150      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4151      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4152                               getF32Constant(DAG, 0x40c39dad));
4153      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4154      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4155                                   getF32Constant(DAG, 0x4042902c));
4156    }
4157
4158    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4159  }
4160
4161  // No special expansion.
4162  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4163}
4164
4165/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4166/// limited-precision mode.
4167static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4168                           const TargetLowering &TLI) {
4169  if (Op.getValueType() == MVT::f32 &&
4170      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4171    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4172
4173    // Scale the exponent by log10(2) [0.30102999f].
4174    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4175    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4176                                        getF32Constant(DAG, 0x3e9a209a));
4177
4178    // Get the significand and build it into a floating-point number with
4179    // exponent of 1.
4180    SDValue X = GetSignificand(DAG, Op1, dl);
4181
4182    SDValue Log10ofMantissa;
4183    if (LimitFloatPrecision <= 6) {
4184      // For floating-point precision of 6:
4185      //
4186      //   Log10ofMantissa =
4187      //     -0.50419619f +
4188      //       (0.60948995f - 0.10380950f * x) * x;
4189      //
4190      // error 0.0014886165, which is 6 bits
4191      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4192                               getF32Constant(DAG, 0xbdd49a13));
4193      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4194                               getF32Constant(DAG, 0x3f1c0789));
4195      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4196      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4197                                    getF32Constant(DAG, 0x3f011300));
4198    } else if (LimitFloatPrecision <= 12) {
4199      // For floating-point precision of 12:
4200      //
4201      //   Log10ofMantissa =
4202      //     -0.64831180f +
4203      //       (0.91751397f +
4204      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4205      //
4206      // error 0.00019228036, which is better than 12 bits
4207      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4208                               getF32Constant(DAG, 0x3d431f31));
4209      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4210                               getF32Constant(DAG, 0x3ea21fb2));
4211      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4212      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4213                               getF32Constant(DAG, 0x3f6ae232));
4214      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4215      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4216                                    getF32Constant(DAG, 0x3f25f7c3));
4217    } else { // LimitFloatPrecision <= 18
4218      // For floating-point precision of 18:
4219      //
4220      //   Log10ofMantissa =
4221      //     -0.84299375f +
4222      //       (1.5327582f +
4223      //         (-1.0688956f +
4224      //           (0.49102474f +
4225      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4226      //
4227      // error 0.0000037995730, which is better than 18 bits
4228      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4229                               getF32Constant(DAG, 0x3c5d51ce));
4230      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4231                               getF32Constant(DAG, 0x3e00685a));
4232      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4233      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4234                               getF32Constant(DAG, 0x3efb6798));
4235      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4236      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4237                               getF32Constant(DAG, 0x3f88d192));
4238      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4239      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4240                               getF32Constant(DAG, 0x3fc4316c));
4241      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4242      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4243                                    getF32Constant(DAG, 0x3f57ce70));
4244    }
4245
4246    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4247  }
4248
4249  // No special expansion.
4250  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4251}
4252
4253/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4254/// limited-precision mode.
4255static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4256                          const TargetLowering &TLI) {
4257  if (Op.getValueType() == MVT::f32 &&
4258      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4259    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4260
4261    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4262    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4263    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4264
4265    //   IntegerPartOfX <<= 23;
4266    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4267                                 DAG.getConstant(23, TLI.getPointerTy()));
4268
4269    SDValue TwoToFractionalPartOfX;
4270    if (LimitFloatPrecision <= 6) {
4271      // For floating-point precision of 6:
4272      //
4273      //   TwoToFractionalPartOfX =
4274      //     0.997535578f +
4275      //       (0.735607626f + 0.252464424f * x) * x;
4276      //
4277      // error 0.0144103317, which is 6 bits
4278      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4279                               getF32Constant(DAG, 0x3e814304));
4280      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4281                               getF32Constant(DAG, 0x3f3c50c8));
4282      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4283      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4284                                           getF32Constant(DAG, 0x3f7f5e7e));
4285    } else if (LimitFloatPrecision <= 12) {
4286      // For floating-point precision of 12:
4287      //
4288      //   TwoToFractionalPartOfX =
4289      //     0.999892986f +
4290      //       (0.696457318f +
4291      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4292      //
4293      // error 0.000107046256, which is 13 to 14 bits
4294      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4295                               getF32Constant(DAG, 0x3da235e3));
4296      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4297                               getF32Constant(DAG, 0x3e65b8f3));
4298      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4299      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4300                               getF32Constant(DAG, 0x3f324b07));
4301      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4302      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4303                                           getF32Constant(DAG, 0x3f7ff8fd));
4304    } else { // LimitFloatPrecision <= 18
4305      // For floating-point precision of 18:
4306      //
4307      //   TwoToFractionalPartOfX =
4308      //     0.999999982f +
4309      //       (0.693148872f +
4310      //         (0.240227044f +
4311      //           (0.554906021e-1f +
4312      //             (0.961591928e-2f +
4313      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4314      // error 2.47208000*10^(-7), which is better than 18 bits
4315      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4316                               getF32Constant(DAG, 0x3924b03e));
4317      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4318                               getF32Constant(DAG, 0x3ab24b87));
4319      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4320      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4321                               getF32Constant(DAG, 0x3c1d8c17));
4322      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4323      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4324                               getF32Constant(DAG, 0x3d634a1d));
4325      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4326      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4327                               getF32Constant(DAG, 0x3e75fe14));
4328      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4329      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4330                                getF32Constant(DAG, 0x3f317234));
4331      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4332      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4333                                           getF32Constant(DAG, 0x3f800000));
4334    }
4335
4336    // Add the exponent into the result in integer domain.
4337    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4338                              TwoToFractionalPartOfX);
4339    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4340                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4341                                   t13, IntegerPartOfX));
4342  }
4343
4344  // No special expansion.
4345  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4346}
4347
4348/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4349/// limited-precision mode with x == 10.0f.
4350static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4351                         SelectionDAG &DAG, const TargetLowering &TLI) {
4352  bool IsExp10 = false;
4353  if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4354      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4355    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4356      APFloat Ten(10.0f);
4357      IsExp10 = LHSC->isExactlyValue(Ten);
4358    }
4359  }
4360
4361  if (IsExp10) {
4362    // Put the exponent in the right bit position for later addition to the
4363    // final result:
4364    //
4365    //   #define LOG2OF10 3.3219281f
4366    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4367    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4368                             getF32Constant(DAG, 0x40549a78));
4369    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4370
4371    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4372    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4373    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4374
4375    //   IntegerPartOfX <<= 23;
4376    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4377                                 DAG.getConstant(23, TLI.getPointerTy()));
4378
4379    SDValue TwoToFractionalPartOfX;
4380    if (LimitFloatPrecision <= 6) {
4381      // For floating-point precision of 6:
4382      //
4383      //   twoToFractionalPartOfX =
4384      //     0.997535578f +
4385      //       (0.735607626f + 0.252464424f * x) * x;
4386      //
4387      // error 0.0144103317, which is 6 bits
4388      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4389                               getF32Constant(DAG, 0x3e814304));
4390      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4391                               getF32Constant(DAG, 0x3f3c50c8));
4392      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4393      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4394                                           getF32Constant(DAG, 0x3f7f5e7e));
4395    } else if (LimitFloatPrecision <= 12) {
4396      // For floating-point precision of 12:
4397      //
4398      //   TwoToFractionalPartOfX =
4399      //     0.999892986f +
4400      //       (0.696457318f +
4401      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4402      //
4403      // error 0.000107046256, which is 13 to 14 bits
4404      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4405                               getF32Constant(DAG, 0x3da235e3));
4406      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4407                               getF32Constant(DAG, 0x3e65b8f3));
4408      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4409      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4410                               getF32Constant(DAG, 0x3f324b07));
4411      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4412      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4413                                           getF32Constant(DAG, 0x3f7ff8fd));
4414    } else { // LimitFloatPrecision <= 18
4415      // For floating-point precision of 18:
4416      //
4417      //   TwoToFractionalPartOfX =
4418      //     0.999999982f +
4419      //       (0.693148872f +
4420      //         (0.240227044f +
4421      //           (0.554906021e-1f +
4422      //             (0.961591928e-2f +
4423      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4424      // error 2.47208000*10^(-7), which is better than 18 bits
4425      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4426                               getF32Constant(DAG, 0x3924b03e));
4427      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4428                               getF32Constant(DAG, 0x3ab24b87));
4429      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4430      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4431                               getF32Constant(DAG, 0x3c1d8c17));
4432      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4433      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4434                               getF32Constant(DAG, 0x3d634a1d));
4435      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4436      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4437                               getF32Constant(DAG, 0x3e75fe14));
4438      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4439      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4440                                getF32Constant(DAG, 0x3f317234));
4441      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4442      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4443                                           getF32Constant(DAG, 0x3f800000));
4444    }
4445
4446    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4447    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4448                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4449                                   t13, IntegerPartOfX));
4450  }
4451
4452  // No special expansion.
4453  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4454}
4455
4456
4457/// ExpandPowI - Expand a llvm.powi intrinsic.
4458static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4459                          SelectionDAG &DAG) {
4460  // If RHS is a constant, we can expand this out to a multiplication tree,
4461  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4462  // optimizing for size, we only want to do this if the expansion would produce
4463  // a small number of multiplies, otherwise we do the full expansion.
4464  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4465    // Get the exponent as a positive value.
4466    unsigned Val = RHSC->getSExtValue();
4467    if ((int)Val < 0) Val = -Val;
4468
4469    // powi(x, 0) -> 1.0
4470    if (Val == 0)
4471      return DAG.getConstantFP(1.0, LHS.getValueType());
4472
4473    const Function *F = DAG.getMachineFunction().getFunction();
4474    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4475                                         Attribute::OptimizeForSize) ||
4476        // If optimizing for size, don't insert too many multiplies.  This
4477        // inserts up to 5 multiplies.
4478        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4479      // We use the simple binary decomposition method to generate the multiply
4480      // sequence.  There are more optimal ways to do this (for example,
4481      // powi(x,15) generates one more multiply than it should), but this has
4482      // the benefit of being both really simple and much better than a libcall.
4483      SDValue Res;  // Logically starts equal to 1.0
4484      SDValue CurSquare = LHS;
4485      while (Val) {
4486        if (Val & 1) {
4487          if (Res.getNode())
4488            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4489          else
4490            Res = CurSquare;  // 1.0*CurSquare.
4491        }
4492
4493        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4494                                CurSquare, CurSquare);
4495        Val >>= 1;
4496      }
4497
4498      // If the original was negative, invert the result, producing 1/(x*x*x).
4499      if (RHSC->getSExtValue() < 0)
4500        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4501                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4502      return Res;
4503    }
4504  }
4505
4506  // Otherwise, expand to a libcall.
4507  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4508}
4509
4510// getTruncatedArgReg - Find underlying register used for an truncated
4511// argument.
4512static unsigned getTruncatedArgReg(const SDValue &N) {
4513  if (N.getOpcode() != ISD::TRUNCATE)
4514    return 0;
4515
4516  const SDValue &Ext = N.getOperand(0);
4517  if (Ext.getOpcode() == ISD::AssertZext ||
4518      Ext.getOpcode() == ISD::AssertSext) {
4519    const SDValue &CFR = Ext.getOperand(0);
4520    if (CFR.getOpcode() == ISD::CopyFromReg)
4521      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4522    if (CFR.getOpcode() == ISD::TRUNCATE)
4523      return getTruncatedArgReg(CFR);
4524  }
4525  return 0;
4526}
4527
4528/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4529/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4530/// At the end of instruction selection, they will be inserted to the entry BB.
4531bool
4532SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4533                                              int64_t Offset,
4534                                              const SDValue &N) {
4535  const Argument *Arg = dyn_cast<Argument>(V);
4536  if (!Arg)
4537    return false;
4538
4539  MachineFunction &MF = DAG.getMachineFunction();
4540  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4541
4542  // Ignore inlined function arguments here.
4543  DIVariable DV(Variable);
4544  if (DV.isInlinedFnArgument(MF.getFunction()))
4545    return false;
4546
4547  Optional<MachineOperand> Op;
4548  // Some arguments' frame index is recorded during argument lowering.
4549  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4550    Op = MachineOperand::CreateFI(FI);
4551
4552  if (!Op && N.getNode()) {
4553    unsigned Reg;
4554    if (N.getOpcode() == ISD::CopyFromReg)
4555      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4556    else
4557      Reg = getTruncatedArgReg(N);
4558    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4559      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4560      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4561      if (PR)
4562        Reg = PR;
4563    }
4564    if (Reg)
4565      Op = MachineOperand::CreateReg(Reg, false);
4566  }
4567
4568  if (!Op) {
4569    // Check if ValueMap has reg number.
4570    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4571    if (VMI != FuncInfo.ValueMap.end())
4572      Op = MachineOperand::CreateReg(VMI->second, false);
4573  }
4574
4575  if (!Op && N.getNode())
4576    // Check if frame index is available.
4577    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4578      if (FrameIndexSDNode *FINode =
4579          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4580        Op = MachineOperand::CreateFI(FINode->getIndex());
4581
4582  if (!Op)
4583    return false;
4584
4585  // FIXME: This does not handle register-indirect values at offset 0.
4586  bool IsIndirect = Offset != 0;
4587  if (Op->isReg())
4588    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4589                                            TII->get(TargetOpcode::DBG_VALUE),
4590                                            IsIndirect,
4591                                            Op->getReg(), Offset, Variable));
4592  else
4593    FuncInfo.ArgDbgValues.push_back(
4594      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4595          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4596
4597  return true;
4598}
4599
4600// VisualStudio defines setjmp as _setjmp
4601#if defined(_MSC_VER) && defined(setjmp) && \
4602                         !defined(setjmp_undefined_for_msvc)
4603#  pragma push_macro("setjmp")
4604#  undef setjmp
4605#  define setjmp_undefined_for_msvc
4606#endif
4607
4608/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4609/// we want to emit this as a call to a named external function, return the name
4610/// otherwise lower it and return null.
4611const char *
4612SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4613  const TargetLowering *TLI = TM.getTargetLowering();
4614  SDLoc sdl = getCurSDLoc();
4615  DebugLoc dl = getCurDebugLoc();
4616  SDValue Res;
4617
4618  switch (Intrinsic) {
4619  default:
4620    // By default, turn this into a target intrinsic node.
4621    visitTargetIntrinsic(I, Intrinsic);
4622    return 0;
4623  case Intrinsic::vastart:  visitVAStart(I); return 0;
4624  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4625  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4626  case Intrinsic::returnaddress:
4627    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4628                             getValue(I.getArgOperand(0))));
4629    return 0;
4630  case Intrinsic::frameaddress:
4631    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4632                             getValue(I.getArgOperand(0))));
4633    return 0;
4634  case Intrinsic::setjmp:
4635    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4636  case Intrinsic::longjmp:
4637    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4638  case Intrinsic::memcpy: {
4639    // Assert for address < 256 since we support only user defined address
4640    // spaces.
4641    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4642           < 256 &&
4643           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4644           < 256 &&
4645           "Unknown address space");
4646    SDValue Op1 = getValue(I.getArgOperand(0));
4647    SDValue Op2 = getValue(I.getArgOperand(1));
4648    SDValue Op3 = getValue(I.getArgOperand(2));
4649    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4650    if (!Align)
4651      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4652    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4653    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4654                              MachinePointerInfo(I.getArgOperand(0)),
4655                              MachinePointerInfo(I.getArgOperand(1))));
4656    return 0;
4657  }
4658  case Intrinsic::memset: {
4659    // Assert for address < 256 since we support only user defined address
4660    // spaces.
4661    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4662           < 256 &&
4663           "Unknown address space");
4664    SDValue Op1 = getValue(I.getArgOperand(0));
4665    SDValue Op2 = getValue(I.getArgOperand(1));
4666    SDValue Op3 = getValue(I.getArgOperand(2));
4667    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4668    if (!Align)
4669      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4670    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4671    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4672                              MachinePointerInfo(I.getArgOperand(0))));
4673    return 0;
4674  }
4675  case Intrinsic::memmove: {
4676    // Assert for address < 256 since we support only user defined address
4677    // spaces.
4678    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4679           < 256 &&
4680           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4681           < 256 &&
4682           "Unknown address space");
4683    SDValue Op1 = getValue(I.getArgOperand(0));
4684    SDValue Op2 = getValue(I.getArgOperand(1));
4685    SDValue Op3 = getValue(I.getArgOperand(2));
4686    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4687    if (!Align)
4688      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4689    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4690    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4691                               MachinePointerInfo(I.getArgOperand(0)),
4692                               MachinePointerInfo(I.getArgOperand(1))));
4693    return 0;
4694  }
4695  case Intrinsic::dbg_declare: {
4696    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4697    MDNode *Variable = DI.getVariable();
4698    const Value *Address = DI.getAddress();
4699    DIVariable DIVar(Variable);
4700    assert((!DIVar || DIVar.isVariable()) &&
4701      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4702    if (!Address || !DIVar) {
4703      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4704      return 0;
4705    }
4706
4707    // Check if address has undef value.
4708    if (isa<UndefValue>(Address) ||
4709        (Address->use_empty() && !isa<Argument>(Address))) {
4710      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4711      return 0;
4712    }
4713
4714    SDValue &N = NodeMap[Address];
4715    if (!N.getNode() && isa<Argument>(Address))
4716      // Check unused arguments map.
4717      N = UnusedArgNodeMap[Address];
4718    SDDbgValue *SDV;
4719    if (N.getNode()) {
4720      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4721        Address = BCI->getOperand(0);
4722      // Parameters are handled specially.
4723      bool isParameter =
4724        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4725         isa<Argument>(Address));
4726
4727      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4728
4729      if (isParameter && !AI) {
4730        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4731        if (FINode)
4732          // Byval parameter.  We have a frame index at this point.
4733          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4734                                0, dl, SDNodeOrder);
4735        else {
4736          // Address is an argument, so try to emit its dbg value using
4737          // virtual register info from the FuncInfo.ValueMap.
4738          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4739          return 0;
4740        }
4741      } else if (AI)
4742        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4743                              0, dl, SDNodeOrder);
4744      else {
4745        // Can't do anything with other non-AI cases yet.
4746        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4747        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4748        DEBUG(Address->dump());
4749        return 0;
4750      }
4751      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4752    } else {
4753      // If Address is an argument then try to emit its dbg value using
4754      // virtual register info from the FuncInfo.ValueMap.
4755      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4756        // If variable is pinned by a alloca in dominating bb then
4757        // use StaticAllocaMap.
4758        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4759          if (AI->getParent() != DI.getParent()) {
4760            DenseMap<const AllocaInst*, int>::iterator SI =
4761              FuncInfo.StaticAllocaMap.find(AI);
4762            if (SI != FuncInfo.StaticAllocaMap.end()) {
4763              SDV = DAG.getDbgValue(Variable, SI->second,
4764                                    0, dl, SDNodeOrder);
4765              DAG.AddDbgValue(SDV, 0, false);
4766              return 0;
4767            }
4768          }
4769        }
4770        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4771      }
4772    }
4773    return 0;
4774  }
4775  case Intrinsic::dbg_value: {
4776    const DbgValueInst &DI = cast<DbgValueInst>(I);
4777    DIVariable DIVar(DI.getVariable());
4778    assert((!DIVar || DIVar.isVariable()) &&
4779      "Variable in DbgValueInst should be either null or a DIVariable.");
4780    if (!DIVar)
4781      return 0;
4782
4783    MDNode *Variable = DI.getVariable();
4784    uint64_t Offset = DI.getOffset();
4785    const Value *V = DI.getValue();
4786    if (!V)
4787      return 0;
4788
4789    SDDbgValue *SDV;
4790    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4791      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4792      DAG.AddDbgValue(SDV, 0, false);
4793    } else {
4794      // Do not use getValue() in here; we don't want to generate code at
4795      // this point if it hasn't been done yet.
4796      SDValue N = NodeMap[V];
4797      if (!N.getNode() && isa<Argument>(V))
4798        // Check unused arguments map.
4799        N = UnusedArgNodeMap[V];
4800      if (N.getNode()) {
4801        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4802          SDV = DAG.getDbgValue(Variable, N.getNode(),
4803                                N.getResNo(), Offset, dl, SDNodeOrder);
4804          DAG.AddDbgValue(SDV, N.getNode(), false);
4805        }
4806      } else if (!V->use_empty() ) {
4807        // Do not call getValue(V) yet, as we don't want to generate code.
4808        // Remember it for later.
4809        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4810        DanglingDebugInfoMap[V] = DDI;
4811      } else {
4812        // We may expand this to cover more cases.  One case where we have no
4813        // data available is an unreferenced parameter.
4814        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4815      }
4816    }
4817
4818    // Build a debug info table entry.
4819    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4820      V = BCI->getOperand(0);
4821    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4822    // Don't handle byval struct arguments or VLAs, for example.
4823    if (!AI) {
4824      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4825      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4826      return 0;
4827    }
4828    DenseMap<const AllocaInst*, int>::iterator SI =
4829      FuncInfo.StaticAllocaMap.find(AI);
4830    if (SI == FuncInfo.StaticAllocaMap.end())
4831      return 0; // VLAs.
4832    int FI = SI->second;
4833
4834    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4835    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4836      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4837    return 0;
4838  }
4839
4840  case Intrinsic::eh_typeid_for: {
4841    // Find the type id for the given typeinfo.
4842    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4843    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4844    Res = DAG.getConstant(TypeID, MVT::i32);
4845    setValue(&I, Res);
4846    return 0;
4847  }
4848
4849  case Intrinsic::eh_return_i32:
4850  case Intrinsic::eh_return_i64:
4851    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4852    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4853                            MVT::Other,
4854                            getControlRoot(),
4855                            getValue(I.getArgOperand(0)),
4856                            getValue(I.getArgOperand(1))));
4857    return 0;
4858  case Intrinsic::eh_unwind_init:
4859    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4860    return 0;
4861  case Intrinsic::eh_dwarf_cfa: {
4862    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4863                                        TLI->getPointerTy());
4864    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4865                                 CfaArg.getValueType(),
4866                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4867                                             CfaArg.getValueType()),
4868                                 CfaArg);
4869    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4870                             TLI->getPointerTy(),
4871                             DAG.getConstant(0, TLI->getPointerTy()));
4872    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4873                             FA, Offset));
4874    return 0;
4875  }
4876  case Intrinsic::eh_sjlj_callsite: {
4877    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4878    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4879    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4880    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4881
4882    MMI.setCurrentCallSite(CI->getZExtValue());
4883    return 0;
4884  }
4885  case Intrinsic::eh_sjlj_functioncontext: {
4886    // Get and store the index of the function context.
4887    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4888    AllocaInst *FnCtx =
4889      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4890    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4891    MFI->setFunctionContextIndex(FI);
4892    return 0;
4893  }
4894  case Intrinsic::eh_sjlj_setjmp: {
4895    SDValue Ops[2];
4896    Ops[0] = getRoot();
4897    Ops[1] = getValue(I.getArgOperand(0));
4898    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4899                             DAG.getVTList(MVT::i32, MVT::Other),
4900                             Ops, 2);
4901    setValue(&I, Op.getValue(0));
4902    DAG.setRoot(Op.getValue(1));
4903    return 0;
4904  }
4905  case Intrinsic::eh_sjlj_longjmp: {
4906    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4907                            getRoot(), getValue(I.getArgOperand(0))));
4908    return 0;
4909  }
4910
4911  case Intrinsic::x86_mmx_pslli_w:
4912  case Intrinsic::x86_mmx_pslli_d:
4913  case Intrinsic::x86_mmx_pslli_q:
4914  case Intrinsic::x86_mmx_psrli_w:
4915  case Intrinsic::x86_mmx_psrli_d:
4916  case Intrinsic::x86_mmx_psrli_q:
4917  case Intrinsic::x86_mmx_psrai_w:
4918  case Intrinsic::x86_mmx_psrai_d: {
4919    SDValue ShAmt = getValue(I.getArgOperand(1));
4920    if (isa<ConstantSDNode>(ShAmt)) {
4921      visitTargetIntrinsic(I, Intrinsic);
4922      return 0;
4923    }
4924    unsigned NewIntrinsic = 0;
4925    EVT ShAmtVT = MVT::v2i32;
4926    switch (Intrinsic) {
4927    case Intrinsic::x86_mmx_pslli_w:
4928      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4929      break;
4930    case Intrinsic::x86_mmx_pslli_d:
4931      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4932      break;
4933    case Intrinsic::x86_mmx_pslli_q:
4934      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4935      break;
4936    case Intrinsic::x86_mmx_psrli_w:
4937      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4938      break;
4939    case Intrinsic::x86_mmx_psrli_d:
4940      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4941      break;
4942    case Intrinsic::x86_mmx_psrli_q:
4943      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4944      break;
4945    case Intrinsic::x86_mmx_psrai_w:
4946      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4947      break;
4948    case Intrinsic::x86_mmx_psrai_d:
4949      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4950      break;
4951    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4952    }
4953
4954    // The vector shift intrinsics with scalars uses 32b shift amounts but
4955    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4956    // to be zero.
4957    // We must do this early because v2i32 is not a legal type.
4958    SDValue ShOps[2];
4959    ShOps[0] = ShAmt;
4960    ShOps[1] = DAG.getConstant(0, MVT::i32);
4961    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4962    EVT DestVT = TLI->getValueType(I.getType());
4963    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4964    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4965                       DAG.getConstant(NewIntrinsic, MVT::i32),
4966                       getValue(I.getArgOperand(0)), ShAmt);
4967    setValue(&I, Res);
4968    return 0;
4969  }
4970  case Intrinsic::x86_avx_vinsertf128_pd_256:
4971  case Intrinsic::x86_avx_vinsertf128_ps_256:
4972  case Intrinsic::x86_avx_vinsertf128_si_256:
4973  case Intrinsic::x86_avx2_vinserti128: {
4974    EVT DestVT = TLI->getValueType(I.getType());
4975    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4976    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4977                   ElVT.getVectorNumElements();
4978    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4979                      getValue(I.getArgOperand(0)),
4980                      getValue(I.getArgOperand(1)),
4981                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4982    setValue(&I, Res);
4983    return 0;
4984  }
4985  case Intrinsic::x86_avx_vextractf128_pd_256:
4986  case Intrinsic::x86_avx_vextractf128_ps_256:
4987  case Intrinsic::x86_avx_vextractf128_si_256:
4988  case Intrinsic::x86_avx2_vextracti128: {
4989    EVT DestVT = TLI->getValueType(I.getType());
4990    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4991                   DestVT.getVectorNumElements();
4992    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4993                      getValue(I.getArgOperand(0)),
4994                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4995    setValue(&I, Res);
4996    return 0;
4997  }
4998  case Intrinsic::convertff:
4999  case Intrinsic::convertfsi:
5000  case Intrinsic::convertfui:
5001  case Intrinsic::convertsif:
5002  case Intrinsic::convertuif:
5003  case Intrinsic::convertss:
5004  case Intrinsic::convertsu:
5005  case Intrinsic::convertus:
5006  case Intrinsic::convertuu: {
5007    ISD::CvtCode Code = ISD::CVT_INVALID;
5008    switch (Intrinsic) {
5009    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5010    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5011    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5012    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5013    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5014    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5015    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5016    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5017    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5018    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5019    }
5020    EVT DestVT = TLI->getValueType(I.getType());
5021    const Value *Op1 = I.getArgOperand(0);
5022    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5023                               DAG.getValueType(DestVT),
5024                               DAG.getValueType(getValue(Op1).getValueType()),
5025                               getValue(I.getArgOperand(1)),
5026                               getValue(I.getArgOperand(2)),
5027                               Code);
5028    setValue(&I, Res);
5029    return 0;
5030  }
5031  case Intrinsic::powi:
5032    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5033                            getValue(I.getArgOperand(1)), DAG));
5034    return 0;
5035  case Intrinsic::log:
5036    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5037    return 0;
5038  case Intrinsic::log2:
5039    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5040    return 0;
5041  case Intrinsic::log10:
5042    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5043    return 0;
5044  case Intrinsic::exp:
5045    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5046    return 0;
5047  case Intrinsic::exp2:
5048    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5049    return 0;
5050  case Intrinsic::pow:
5051    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5052                           getValue(I.getArgOperand(1)), DAG, *TLI));
5053    return 0;
5054  case Intrinsic::sqrt:
5055  case Intrinsic::fabs:
5056  case Intrinsic::sin:
5057  case Intrinsic::cos:
5058  case Intrinsic::floor:
5059  case Intrinsic::ceil:
5060  case Intrinsic::trunc:
5061  case Intrinsic::rint:
5062  case Intrinsic::nearbyint:
5063  case Intrinsic::round: {
5064    unsigned Opcode;
5065    switch (Intrinsic) {
5066    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5067    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5068    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5069    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5070    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5071    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5072    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5073    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5074    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5075    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5076    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5077    }
5078
5079    setValue(&I, DAG.getNode(Opcode, sdl,
5080                             getValue(I.getArgOperand(0)).getValueType(),
5081                             getValue(I.getArgOperand(0))));
5082    return 0;
5083  }
5084  case Intrinsic::copysign:
5085    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5086                             getValue(I.getArgOperand(0)).getValueType(),
5087                             getValue(I.getArgOperand(0)),
5088                             getValue(I.getArgOperand(1))));
5089    return 0;
5090  case Intrinsic::fma:
5091    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5092                             getValue(I.getArgOperand(0)).getValueType(),
5093                             getValue(I.getArgOperand(0)),
5094                             getValue(I.getArgOperand(1)),
5095                             getValue(I.getArgOperand(2))));
5096    return 0;
5097  case Intrinsic::fmuladd: {
5098    EVT VT = TLI->getValueType(I.getType());
5099    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5100        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5101      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5102                               getValue(I.getArgOperand(0)).getValueType(),
5103                               getValue(I.getArgOperand(0)),
5104                               getValue(I.getArgOperand(1)),
5105                               getValue(I.getArgOperand(2))));
5106    } else {
5107      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5108                                getValue(I.getArgOperand(0)).getValueType(),
5109                                getValue(I.getArgOperand(0)),
5110                                getValue(I.getArgOperand(1)));
5111      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5112                                getValue(I.getArgOperand(0)).getValueType(),
5113                                Mul,
5114                                getValue(I.getArgOperand(2)));
5115      setValue(&I, Add);
5116    }
5117    return 0;
5118  }
5119  case Intrinsic::convert_to_fp16:
5120    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5121                             MVT::i16, getValue(I.getArgOperand(0))));
5122    return 0;
5123  case Intrinsic::convert_from_fp16:
5124    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5125                             MVT::f32, getValue(I.getArgOperand(0))));
5126    return 0;
5127  case Intrinsic::pcmarker: {
5128    SDValue Tmp = getValue(I.getArgOperand(0));
5129    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5130    return 0;
5131  }
5132  case Intrinsic::readcyclecounter: {
5133    SDValue Op = getRoot();
5134    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5135                      DAG.getVTList(MVT::i64, MVT::Other),
5136                      &Op, 1);
5137    setValue(&I, Res);
5138    DAG.setRoot(Res.getValue(1));
5139    return 0;
5140  }
5141  case Intrinsic::bswap:
5142    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5143                             getValue(I.getArgOperand(0)).getValueType(),
5144                             getValue(I.getArgOperand(0))));
5145    return 0;
5146  case Intrinsic::cttz: {
5147    SDValue Arg = getValue(I.getArgOperand(0));
5148    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5149    EVT Ty = Arg.getValueType();
5150    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5151                             sdl, Ty, Arg));
5152    return 0;
5153  }
5154  case Intrinsic::ctlz: {
5155    SDValue Arg = getValue(I.getArgOperand(0));
5156    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5157    EVT Ty = Arg.getValueType();
5158    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5159                             sdl, Ty, Arg));
5160    return 0;
5161  }
5162  case Intrinsic::ctpop: {
5163    SDValue Arg = getValue(I.getArgOperand(0));
5164    EVT Ty = Arg.getValueType();
5165    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5166    return 0;
5167  }
5168  case Intrinsic::stacksave: {
5169    SDValue Op = getRoot();
5170    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5171                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5172    setValue(&I, Res);
5173    DAG.setRoot(Res.getValue(1));
5174    return 0;
5175  }
5176  case Intrinsic::stackrestore: {
5177    Res = getValue(I.getArgOperand(0));
5178    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5179    return 0;
5180  }
5181  case Intrinsic::stackprotector: {
5182    // Emit code into the DAG to store the stack guard onto the stack.
5183    MachineFunction &MF = DAG.getMachineFunction();
5184    MachineFrameInfo *MFI = MF.getFrameInfo();
5185    EVT PtrTy = TLI->getPointerTy();
5186
5187    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5188    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5189
5190    int FI = FuncInfo.StaticAllocaMap[Slot];
5191    MFI->setStackProtectorIndex(FI);
5192
5193    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5194
5195    // Store the stack protector onto the stack.
5196    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5197                       MachinePointerInfo::getFixedStack(FI),
5198                       true, false, 0);
5199    setValue(&I, Res);
5200    DAG.setRoot(Res);
5201    return 0;
5202  }
5203  case Intrinsic::objectsize: {
5204    // If we don't know by now, we're never going to know.
5205    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5206
5207    assert(CI && "Non-constant type in __builtin_object_size?");
5208
5209    SDValue Arg = getValue(I.getCalledValue());
5210    EVT Ty = Arg.getValueType();
5211
5212    if (CI->isZero())
5213      Res = DAG.getConstant(-1ULL, Ty);
5214    else
5215      Res = DAG.getConstant(0, Ty);
5216
5217    setValue(&I, Res);
5218    return 0;
5219  }
5220  case Intrinsic::annotation:
5221  case Intrinsic::ptr_annotation:
5222    // Drop the intrinsic, but forward the value
5223    setValue(&I, getValue(I.getOperand(0)));
5224    return 0;
5225  case Intrinsic::var_annotation:
5226    // Discard annotate attributes
5227    return 0;
5228
5229  case Intrinsic::init_trampoline: {
5230    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5231
5232    SDValue Ops[6];
5233    Ops[0] = getRoot();
5234    Ops[1] = getValue(I.getArgOperand(0));
5235    Ops[2] = getValue(I.getArgOperand(1));
5236    Ops[3] = getValue(I.getArgOperand(2));
5237    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5238    Ops[5] = DAG.getSrcValue(F);
5239
5240    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5241
5242    DAG.setRoot(Res);
5243    return 0;
5244  }
5245  case Intrinsic::adjust_trampoline: {
5246    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5247                             TLI->getPointerTy(),
5248                             getValue(I.getArgOperand(0))));
5249    return 0;
5250  }
5251  case Intrinsic::gcroot:
5252    if (GFI) {
5253      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5254      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5255
5256      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5257      GFI->addStackRoot(FI->getIndex(), TypeMap);
5258    }
5259    return 0;
5260  case Intrinsic::gcread:
5261  case Intrinsic::gcwrite:
5262    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5263  case Intrinsic::flt_rounds:
5264    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5265    return 0;
5266
5267  case Intrinsic::expect: {
5268    // Just replace __builtin_expect(exp, c) with EXP.
5269    setValue(&I, getValue(I.getArgOperand(0)));
5270    return 0;
5271  }
5272
5273  case Intrinsic::debugtrap:
5274  case Intrinsic::trap: {
5275    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5276    if (TrapFuncName.empty()) {
5277      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5278        ISD::TRAP : ISD::DEBUGTRAP;
5279      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5280      return 0;
5281    }
5282    TargetLowering::ArgListTy Args;
5283    TargetLowering::
5284    CallLoweringInfo CLI(getRoot(), I.getType(),
5285                 false, false, false, false, 0, CallingConv::C,
5286                 /*isTailCall=*/false,
5287                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5288                 DAG.getExternalSymbol(TrapFuncName.data(),
5289                                       TLI->getPointerTy()),
5290                 Args, DAG, sdl);
5291    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5292    DAG.setRoot(Result.second);
5293    return 0;
5294  }
5295
5296  case Intrinsic::uadd_with_overflow:
5297  case Intrinsic::sadd_with_overflow:
5298  case Intrinsic::usub_with_overflow:
5299  case Intrinsic::ssub_with_overflow:
5300  case Intrinsic::umul_with_overflow:
5301  case Intrinsic::smul_with_overflow: {
5302    ISD::NodeType Op;
5303    switch (Intrinsic) {
5304    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5305    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5306    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5307    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5308    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5309    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5310    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5311    }
5312    SDValue Op1 = getValue(I.getArgOperand(0));
5313    SDValue Op2 = getValue(I.getArgOperand(1));
5314
5315    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5316    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5317    return 0;
5318  }
5319  case Intrinsic::prefetch: {
5320    SDValue Ops[5];
5321    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5322    Ops[0] = getRoot();
5323    Ops[1] = getValue(I.getArgOperand(0));
5324    Ops[2] = getValue(I.getArgOperand(1));
5325    Ops[3] = getValue(I.getArgOperand(2));
5326    Ops[4] = getValue(I.getArgOperand(3));
5327    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5328                                        DAG.getVTList(MVT::Other),
5329                                        &Ops[0], 5,
5330                                        EVT::getIntegerVT(*Context, 8),
5331                                        MachinePointerInfo(I.getArgOperand(0)),
5332                                        0, /* align */
5333                                        false, /* volatile */
5334                                        rw==0, /* read */
5335                                        rw==1)); /* write */
5336    return 0;
5337  }
5338  case Intrinsic::lifetime_start:
5339  case Intrinsic::lifetime_end: {
5340    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5341    // Stack coloring is not enabled in O0, discard region information.
5342    if (TM.getOptLevel() == CodeGenOpt::None)
5343      return 0;
5344
5345    SmallVector<Value *, 4> Allocas;
5346    GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5347
5348    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5349           E = Allocas.end(); Object != E; ++Object) {
5350      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5351
5352      // Could not find an Alloca.
5353      if (!LifetimeObject)
5354        continue;
5355
5356      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5357
5358      SDValue Ops[2];
5359      Ops[0] = getRoot();
5360      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5361      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5362
5363      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5364      DAG.setRoot(Res);
5365    }
5366    return 0;
5367  }
5368  case Intrinsic::invariant_start:
5369    // Discard region information.
5370    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5371    return 0;
5372  case Intrinsic::invariant_end:
5373    // Discard region information.
5374    return 0;
5375  case Intrinsic::stackprotectorcheck: {
5376    // Do not actually emit anything for this basic block. Instead we initialize
5377    // the stack protector descriptor and export the guard variable so we can
5378    // access it in FinishBasicBlock.
5379    const BasicBlock *BB = I.getParent();
5380    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5381    ExportFromCurrentBlock(SPDescriptor.getGuard());
5382
5383    // Flush our exports since we are going to process a terminator.
5384    (void)getControlRoot();
5385    return 0;
5386  }
5387  case Intrinsic::clear_cache:
5388    return TLI->getClearCacheBuiltinName();
5389  case Intrinsic::donothing:
5390    // ignore
5391    return 0;
5392  case Intrinsic::experimental_stackmap: {
5393    visitStackmap(I);
5394    return 0;
5395  }
5396  case Intrinsic::experimental_patchpoint_void:
5397  case Intrinsic::experimental_patchpoint_i64: {
5398    visitPatchpoint(I);
5399    return 0;
5400  }
5401  }
5402}
5403
5404void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5405                                      bool isTailCall,
5406                                      MachineBasicBlock *LandingPad) {
5407  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5408  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5409  Type *RetTy = FTy->getReturnType();
5410  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5411  MCSymbol *BeginLabel = 0;
5412
5413  TargetLowering::ArgListTy Args;
5414  TargetLowering::ArgListEntry Entry;
5415  Args.reserve(CS.arg_size());
5416
5417  // Check whether the function can return without sret-demotion.
5418  SmallVector<ISD::OutputArg, 4> Outs;
5419  const TargetLowering *TLI = TM.getTargetLowering();
5420  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5421
5422  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5423                                            DAG.getMachineFunction(),
5424                                            FTy->isVarArg(), Outs,
5425                                            FTy->getContext());
5426
5427  SDValue DemoteStackSlot;
5428  int DemoteStackIdx = -100;
5429
5430  if (!CanLowerReturn) {
5431    assert(!CS.hasInAllocaArgument() &&
5432           "sret demotion is incompatible with inalloca");
5433    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5434                      FTy->getReturnType());
5435    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5436                      FTy->getReturnType());
5437    MachineFunction &MF = DAG.getMachineFunction();
5438    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5439    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5440
5441    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5442    Entry.Node = DemoteStackSlot;
5443    Entry.Ty = StackSlotPtrType;
5444    Entry.isSExt = false;
5445    Entry.isZExt = false;
5446    Entry.isInReg = false;
5447    Entry.isSRet = true;
5448    Entry.isNest = false;
5449    Entry.isByVal = false;
5450    Entry.isReturned = false;
5451    Entry.Alignment = Align;
5452    Args.push_back(Entry);
5453    RetTy = Type::getVoidTy(FTy->getContext());
5454  }
5455
5456  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5457       i != e; ++i) {
5458    const Value *V = *i;
5459
5460    // Skip empty types
5461    if (V->getType()->isEmptyTy())
5462      continue;
5463
5464    SDValue ArgNode = getValue(V);
5465    Entry.Node = ArgNode; Entry.Ty = V->getType();
5466
5467    // Skip the first return-type Attribute to get to params.
5468    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5469    Args.push_back(Entry);
5470  }
5471
5472  if (LandingPad) {
5473    // Insert a label before the invoke call to mark the try range.  This can be
5474    // used to detect deletion of the invoke via the MachineModuleInfo.
5475    BeginLabel = MMI.getContext().CreateTempSymbol();
5476
5477    // For SjLj, keep track of which landing pads go with which invokes
5478    // so as to maintain the ordering of pads in the LSDA.
5479    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5480    if (CallSiteIndex) {
5481      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5482      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5483
5484      // Now that the call site is handled, stop tracking it.
5485      MMI.setCurrentCallSite(0);
5486    }
5487
5488    // Both PendingLoads and PendingExports must be flushed here;
5489    // this call might not return.
5490    (void)getRoot();
5491    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5492  }
5493
5494  // Check if target-independent constraints permit a tail call here.
5495  // Target-dependent constraints are checked within TLI->LowerCallTo.
5496  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5497    isTailCall = false;
5498
5499  TargetLowering::
5500  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5501                       getCurSDLoc(), CS);
5502  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5503  assert((isTailCall || Result.second.getNode()) &&
5504         "Non-null chain expected with non-tail call!");
5505  assert((Result.second.getNode() || !Result.first.getNode()) &&
5506         "Null value expected with tail call!");
5507  if (Result.first.getNode()) {
5508    setValue(CS.getInstruction(), Result.first);
5509  } else if (!CanLowerReturn && Result.second.getNode()) {
5510    // The instruction result is the result of loading from the
5511    // hidden sret parameter.
5512    SmallVector<EVT, 1> PVTs;
5513    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5514
5515    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5516    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5517    EVT PtrVT = PVTs[0];
5518
5519    SmallVector<EVT, 4> RetTys;
5520    SmallVector<uint64_t, 4> Offsets;
5521    RetTy = FTy->getReturnType();
5522    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5523
5524    unsigned NumValues = RetTys.size();
5525    SmallVector<SDValue, 4> Values(NumValues);
5526    SmallVector<SDValue, 4> Chains(NumValues);
5527
5528    for (unsigned i = 0; i < NumValues; ++i) {
5529      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5530                                DemoteStackSlot,
5531                                DAG.getConstant(Offsets[i], PtrVT));
5532      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5533                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5534                              false, false, false, 1);
5535      Values[i] = L;
5536      Chains[i] = L.getValue(1);
5537    }
5538
5539    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5540                                MVT::Other, &Chains[0], NumValues);
5541    PendingLoads.push_back(Chain);
5542
5543    setValue(CS.getInstruction(),
5544             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5545                         DAG.getVTList(&RetTys[0], RetTys.size()),
5546                         &Values[0], Values.size()));
5547  }
5548
5549  if (!Result.second.getNode()) {
5550    // As a special case, a null chain means that a tail call has been emitted
5551    // and the DAG root is already updated.
5552    HasTailCall = true;
5553
5554    // Since there's no actual continuation from this block, nothing can be
5555    // relying on us setting vregs for them.
5556    PendingExports.clear();
5557  } else {
5558    DAG.setRoot(Result.second);
5559  }
5560
5561  if (LandingPad) {
5562    // Insert a label at the end of the invoke call to mark the try range.  This
5563    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5564    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5565    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5566
5567    // Inform MachineModuleInfo of range.
5568    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5569  }
5570}
5571
5572/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5573/// value is equal or not-equal to zero.
5574static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5575  for (const User *U : V->users()) {
5576    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5577      if (IC->isEquality())
5578        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5579          if (C->isNullValue())
5580            continue;
5581    // Unknown instruction.
5582    return false;
5583  }
5584  return true;
5585}
5586
5587static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5588                             Type *LoadTy,
5589                             SelectionDAGBuilder &Builder) {
5590
5591  // Check to see if this load can be trivially constant folded, e.g. if the
5592  // input is from a string literal.
5593  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5594    // Cast pointer to the type we really want to load.
5595    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5596                                         PointerType::getUnqual(LoadTy));
5597
5598    if (const Constant *LoadCst =
5599          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5600                                       Builder.DL))
5601      return Builder.getValue(LoadCst);
5602  }
5603
5604  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5605  // still constant memory, the input chain can be the entry node.
5606  SDValue Root;
5607  bool ConstantMemory = false;
5608
5609  // Do not serialize (non-volatile) loads of constant memory with anything.
5610  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5611    Root = Builder.DAG.getEntryNode();
5612    ConstantMemory = true;
5613  } else {
5614    // Do not serialize non-volatile loads against each other.
5615    Root = Builder.DAG.getRoot();
5616  }
5617
5618  SDValue Ptr = Builder.getValue(PtrVal);
5619  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5620                                        Ptr, MachinePointerInfo(PtrVal),
5621                                        false /*volatile*/,
5622                                        false /*nontemporal*/,
5623                                        false /*isinvariant*/, 1 /* align=1 */);
5624
5625  if (!ConstantMemory)
5626    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5627  return LoadVal;
5628}
5629
5630/// processIntegerCallValue - Record the value for an instruction that
5631/// produces an integer result, converting the type where necessary.
5632void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5633                                                  SDValue Value,
5634                                                  bool IsSigned) {
5635  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5636  if (IsSigned)
5637    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5638  else
5639    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5640  setValue(&I, Value);
5641}
5642
5643/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5644/// If so, return true and lower it, otherwise return false and it will be
5645/// lowered like a normal call.
5646bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5647  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5648  if (I.getNumArgOperands() != 3)
5649    return false;
5650
5651  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5652  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5653      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5654      !I.getType()->isIntegerTy())
5655    return false;
5656
5657  const Value *Size = I.getArgOperand(2);
5658  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5659  if (CSize && CSize->getZExtValue() == 0) {
5660    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5661    setValue(&I, DAG.getConstant(0, CallVT));
5662    return true;
5663  }
5664
5665  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5666  std::pair<SDValue, SDValue> Res =
5667    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5668                                getValue(LHS), getValue(RHS), getValue(Size),
5669                                MachinePointerInfo(LHS),
5670                                MachinePointerInfo(RHS));
5671  if (Res.first.getNode()) {
5672    processIntegerCallValue(I, Res.first, true);
5673    PendingLoads.push_back(Res.second);
5674    return true;
5675  }
5676
5677  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5678  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5679  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5680    bool ActuallyDoIt = true;
5681    MVT LoadVT;
5682    Type *LoadTy;
5683    switch (CSize->getZExtValue()) {
5684    default:
5685      LoadVT = MVT::Other;
5686      LoadTy = 0;
5687      ActuallyDoIt = false;
5688      break;
5689    case 2:
5690      LoadVT = MVT::i16;
5691      LoadTy = Type::getInt16Ty(CSize->getContext());
5692      break;
5693    case 4:
5694      LoadVT = MVT::i32;
5695      LoadTy = Type::getInt32Ty(CSize->getContext());
5696      break;
5697    case 8:
5698      LoadVT = MVT::i64;
5699      LoadTy = Type::getInt64Ty(CSize->getContext());
5700      break;
5701        /*
5702    case 16:
5703      LoadVT = MVT::v4i32;
5704      LoadTy = Type::getInt32Ty(CSize->getContext());
5705      LoadTy = VectorType::get(LoadTy, 4);
5706      break;
5707         */
5708    }
5709
5710    // This turns into unaligned loads.  We only do this if the target natively
5711    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5712    // we'll only produce a small number of byte loads.
5713
5714    // Require that we can find a legal MVT, and only do this if the target
5715    // supports unaligned loads of that type.  Expanding into byte loads would
5716    // bloat the code.
5717    const TargetLowering *TLI = TM.getTargetLowering();
5718    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5719      unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5720      unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5721      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5722      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5723      if (!TLI->isTypeLegal(LoadVT) ||
5724          !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
5725          !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
5726        ActuallyDoIt = false;
5727    }
5728
5729    if (ActuallyDoIt) {
5730      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5731      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5732
5733      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5734                                 ISD::SETNE);
5735      processIntegerCallValue(I, Res, false);
5736      return true;
5737    }
5738  }
5739
5740
5741  return false;
5742}
5743
5744/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5745/// form.  If so, return true and lower it, otherwise return false and it
5746/// will be lowered like a normal call.
5747bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5748  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5749  if (I.getNumArgOperands() != 3)
5750    return false;
5751
5752  const Value *Src = I.getArgOperand(0);
5753  const Value *Char = I.getArgOperand(1);
5754  const Value *Length = I.getArgOperand(2);
5755  if (!Src->getType()->isPointerTy() ||
5756      !Char->getType()->isIntegerTy() ||
5757      !Length->getType()->isIntegerTy() ||
5758      !I.getType()->isPointerTy())
5759    return false;
5760
5761  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5762  std::pair<SDValue, SDValue> Res =
5763    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5764                                getValue(Src), getValue(Char), getValue(Length),
5765                                MachinePointerInfo(Src));
5766  if (Res.first.getNode()) {
5767    setValue(&I, Res.first);
5768    PendingLoads.push_back(Res.second);
5769    return true;
5770  }
5771
5772  return false;
5773}
5774
5775/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5776/// optimized form.  If so, return true and lower it, otherwise return false
5777/// and it will be lowered like a normal call.
5778bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5779  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5780  if (I.getNumArgOperands() != 2)
5781    return false;
5782
5783  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5784  if (!Arg0->getType()->isPointerTy() ||
5785      !Arg1->getType()->isPointerTy() ||
5786      !I.getType()->isPointerTy())
5787    return false;
5788
5789  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5790  std::pair<SDValue, SDValue> Res =
5791    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5792                                getValue(Arg0), getValue(Arg1),
5793                                MachinePointerInfo(Arg0),
5794                                MachinePointerInfo(Arg1), isStpcpy);
5795  if (Res.first.getNode()) {
5796    setValue(&I, Res.first);
5797    DAG.setRoot(Res.second);
5798    return true;
5799  }
5800
5801  return false;
5802}
5803
5804/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5805/// If so, return true and lower it, otherwise return false and it will be
5806/// lowered like a normal call.
5807bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5808  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5809  if (I.getNumArgOperands() != 2)
5810    return false;
5811
5812  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5813  if (!Arg0->getType()->isPointerTy() ||
5814      !Arg1->getType()->isPointerTy() ||
5815      !I.getType()->isIntegerTy())
5816    return false;
5817
5818  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5819  std::pair<SDValue, SDValue> Res =
5820    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5821                                getValue(Arg0), getValue(Arg1),
5822                                MachinePointerInfo(Arg0),
5823                                MachinePointerInfo(Arg1));
5824  if (Res.first.getNode()) {
5825    processIntegerCallValue(I, Res.first, true);
5826    PendingLoads.push_back(Res.second);
5827    return true;
5828  }
5829
5830  return false;
5831}
5832
5833/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5834/// form.  If so, return true and lower it, otherwise return false and it
5835/// will be lowered like a normal call.
5836bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5837  // Verify that the prototype makes sense.  size_t strlen(char *)
5838  if (I.getNumArgOperands() != 1)
5839    return false;
5840
5841  const Value *Arg0 = I.getArgOperand(0);
5842  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5843    return false;
5844
5845  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5846  std::pair<SDValue, SDValue> Res =
5847    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5848                                getValue(Arg0), MachinePointerInfo(Arg0));
5849  if (Res.first.getNode()) {
5850    processIntegerCallValue(I, Res.first, false);
5851    PendingLoads.push_back(Res.second);
5852    return true;
5853  }
5854
5855  return false;
5856}
5857
5858/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5859/// form.  If so, return true and lower it, otherwise return false and it
5860/// will be lowered like a normal call.
5861bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5862  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5863  if (I.getNumArgOperands() != 2)
5864    return false;
5865
5866  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5867  if (!Arg0->getType()->isPointerTy() ||
5868      !Arg1->getType()->isIntegerTy() ||
5869      !I.getType()->isIntegerTy())
5870    return false;
5871
5872  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5873  std::pair<SDValue, SDValue> Res =
5874    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5875                                 getValue(Arg0), getValue(Arg1),
5876                                 MachinePointerInfo(Arg0));
5877  if (Res.first.getNode()) {
5878    processIntegerCallValue(I, Res.first, false);
5879    PendingLoads.push_back(Res.second);
5880    return true;
5881  }
5882
5883  return false;
5884}
5885
5886/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5887/// operation (as expected), translate it to an SDNode with the specified opcode
5888/// and return true.
5889bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5890                                              unsigned Opcode) {
5891  // Sanity check that it really is a unary floating-point call.
5892  if (I.getNumArgOperands() != 1 ||
5893      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5894      I.getType() != I.getArgOperand(0)->getType() ||
5895      !I.onlyReadsMemory())
5896    return false;
5897
5898  SDValue Tmp = getValue(I.getArgOperand(0));
5899  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5900  return true;
5901}
5902
5903void SelectionDAGBuilder::visitCall(const CallInst &I) {
5904  // Handle inline assembly differently.
5905  if (isa<InlineAsm>(I.getCalledValue())) {
5906    visitInlineAsm(&I);
5907    return;
5908  }
5909
5910  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5911  ComputeUsesVAFloatArgument(I, &MMI);
5912
5913  const char *RenameFn = 0;
5914  if (Function *F = I.getCalledFunction()) {
5915    if (F->isDeclaration()) {
5916      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5917        if (unsigned IID = II->getIntrinsicID(F)) {
5918          RenameFn = visitIntrinsicCall(I, IID);
5919          if (!RenameFn)
5920            return;
5921        }
5922      }
5923      if (unsigned IID = F->getIntrinsicID()) {
5924        RenameFn = visitIntrinsicCall(I, IID);
5925        if (!RenameFn)
5926          return;
5927      }
5928    }
5929
5930    // Check for well-known libc/libm calls.  If the function is internal, it
5931    // can't be a library call.
5932    LibFunc::Func Func;
5933    if (!F->hasLocalLinkage() && F->hasName() &&
5934        LibInfo->getLibFunc(F->getName(), Func) &&
5935        LibInfo->hasOptimizedCodeGen(Func)) {
5936      switch (Func) {
5937      default: break;
5938      case LibFunc::copysign:
5939      case LibFunc::copysignf:
5940      case LibFunc::copysignl:
5941        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5942            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5943            I.getType() == I.getArgOperand(0)->getType() &&
5944            I.getType() == I.getArgOperand(1)->getType() &&
5945            I.onlyReadsMemory()) {
5946          SDValue LHS = getValue(I.getArgOperand(0));
5947          SDValue RHS = getValue(I.getArgOperand(1));
5948          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5949                                   LHS.getValueType(), LHS, RHS));
5950          return;
5951        }
5952        break;
5953      case LibFunc::fabs:
5954      case LibFunc::fabsf:
5955      case LibFunc::fabsl:
5956        if (visitUnaryFloatCall(I, ISD::FABS))
5957          return;
5958        break;
5959      case LibFunc::sin:
5960      case LibFunc::sinf:
5961      case LibFunc::sinl:
5962        if (visitUnaryFloatCall(I, ISD::FSIN))
5963          return;
5964        break;
5965      case LibFunc::cos:
5966      case LibFunc::cosf:
5967      case LibFunc::cosl:
5968        if (visitUnaryFloatCall(I, ISD::FCOS))
5969          return;
5970        break;
5971      case LibFunc::sqrt:
5972      case LibFunc::sqrtf:
5973      case LibFunc::sqrtl:
5974      case LibFunc::sqrt_finite:
5975      case LibFunc::sqrtf_finite:
5976      case LibFunc::sqrtl_finite:
5977        if (visitUnaryFloatCall(I, ISD::FSQRT))
5978          return;
5979        break;
5980      case LibFunc::floor:
5981      case LibFunc::floorf:
5982      case LibFunc::floorl:
5983        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5984          return;
5985        break;
5986      case LibFunc::nearbyint:
5987      case LibFunc::nearbyintf:
5988      case LibFunc::nearbyintl:
5989        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5990          return;
5991        break;
5992      case LibFunc::ceil:
5993      case LibFunc::ceilf:
5994      case LibFunc::ceill:
5995        if (visitUnaryFloatCall(I, ISD::FCEIL))
5996          return;
5997        break;
5998      case LibFunc::rint:
5999      case LibFunc::rintf:
6000      case LibFunc::rintl:
6001        if (visitUnaryFloatCall(I, ISD::FRINT))
6002          return;
6003        break;
6004      case LibFunc::round:
6005      case LibFunc::roundf:
6006      case LibFunc::roundl:
6007        if (visitUnaryFloatCall(I, ISD::FROUND))
6008          return;
6009        break;
6010      case LibFunc::trunc:
6011      case LibFunc::truncf:
6012      case LibFunc::truncl:
6013        if (visitUnaryFloatCall(I, ISD::FTRUNC))
6014          return;
6015        break;
6016      case LibFunc::log2:
6017      case LibFunc::log2f:
6018      case LibFunc::log2l:
6019        if (visitUnaryFloatCall(I, ISD::FLOG2))
6020          return;
6021        break;
6022      case LibFunc::exp2:
6023      case LibFunc::exp2f:
6024      case LibFunc::exp2l:
6025        if (visitUnaryFloatCall(I, ISD::FEXP2))
6026          return;
6027        break;
6028      case LibFunc::memcmp:
6029        if (visitMemCmpCall(I))
6030          return;
6031        break;
6032      case LibFunc::memchr:
6033        if (visitMemChrCall(I))
6034          return;
6035        break;
6036      case LibFunc::strcpy:
6037        if (visitStrCpyCall(I, false))
6038          return;
6039        break;
6040      case LibFunc::stpcpy:
6041        if (visitStrCpyCall(I, true))
6042          return;
6043        break;
6044      case LibFunc::strcmp:
6045        if (visitStrCmpCall(I))
6046          return;
6047        break;
6048      case LibFunc::strlen:
6049        if (visitStrLenCall(I))
6050          return;
6051        break;
6052      case LibFunc::strnlen:
6053        if (visitStrNLenCall(I))
6054          return;
6055        break;
6056      }
6057    }
6058  }
6059
6060  SDValue Callee;
6061  if (!RenameFn)
6062    Callee = getValue(I.getCalledValue());
6063  else
6064    Callee = DAG.getExternalSymbol(RenameFn,
6065                                   TM.getTargetLowering()->getPointerTy());
6066
6067  // Check if we can potentially perform a tail call. More detailed checking is
6068  // be done within LowerCallTo, after more information about the call is known.
6069  LowerCallTo(&I, Callee, I.isTailCall());
6070}
6071
6072namespace {
6073
6074/// AsmOperandInfo - This contains information for each constraint that we are
6075/// lowering.
6076class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6077public:
6078  /// CallOperand - If this is the result output operand or a clobber
6079  /// this is null, otherwise it is the incoming operand to the CallInst.
6080  /// This gets modified as the asm is processed.
6081  SDValue CallOperand;
6082
6083  /// AssignedRegs - If this is a register or register class operand, this
6084  /// contains the set of register corresponding to the operand.
6085  RegsForValue AssignedRegs;
6086
6087  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6088    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
6089  }
6090
6091  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6092  /// corresponds to.  If there is no Value* for this operand, it returns
6093  /// MVT::Other.
6094  EVT getCallOperandValEVT(LLVMContext &Context,
6095                           const TargetLowering &TLI,
6096                           const DataLayout *DL) const {
6097    if (CallOperandVal == 0) return MVT::Other;
6098
6099    if (isa<BasicBlock>(CallOperandVal))
6100      return TLI.getPointerTy();
6101
6102    llvm::Type *OpTy = CallOperandVal->getType();
6103
6104    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6105    // If this is an indirect operand, the operand is a pointer to the
6106    // accessed type.
6107    if (isIndirect) {
6108      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6109      if (!PtrTy)
6110        report_fatal_error("Indirect operand for inline asm not a pointer!");
6111      OpTy = PtrTy->getElementType();
6112    }
6113
6114    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6115    if (StructType *STy = dyn_cast<StructType>(OpTy))
6116      if (STy->getNumElements() == 1)
6117        OpTy = STy->getElementType(0);
6118
6119    // If OpTy is not a single value, it may be a struct/union that we
6120    // can tile with integers.
6121    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6122      unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6123      switch (BitSize) {
6124      default: break;
6125      case 1:
6126      case 8:
6127      case 16:
6128      case 32:
6129      case 64:
6130      case 128:
6131        OpTy = IntegerType::get(Context, BitSize);
6132        break;
6133      }
6134    }
6135
6136    return TLI.getValueType(OpTy, true);
6137  }
6138};
6139
6140typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6141
6142} // end anonymous namespace
6143
6144/// GetRegistersForValue - Assign registers (virtual or physical) for the
6145/// specified operand.  We prefer to assign virtual registers, to allow the
6146/// register allocator to handle the assignment process.  However, if the asm
6147/// uses features that we can't model on machineinstrs, we have SDISel do the
6148/// allocation.  This produces generally horrible, but correct, code.
6149///
6150///   OpInfo describes the operand.
6151///
6152static void GetRegistersForValue(SelectionDAG &DAG,
6153                                 const TargetLowering &TLI,
6154                                 SDLoc DL,
6155                                 SDISelAsmOperandInfo &OpInfo) {
6156  LLVMContext &Context = *DAG.getContext();
6157
6158  MachineFunction &MF = DAG.getMachineFunction();
6159  SmallVector<unsigned, 4> Regs;
6160
6161  // If this is a constraint for a single physreg, or a constraint for a
6162  // register class, find it.
6163  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6164    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6165                                     OpInfo.ConstraintVT);
6166
6167  unsigned NumRegs = 1;
6168  if (OpInfo.ConstraintVT != MVT::Other) {
6169    // If this is a FP input in an integer register (or visa versa) insert a bit
6170    // cast of the input value.  More generally, handle any case where the input
6171    // value disagrees with the register class we plan to stick this in.
6172    if (OpInfo.Type == InlineAsm::isInput &&
6173        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6174      // Try to convert to the first EVT that the reg class contains.  If the
6175      // types are identical size, use a bitcast to convert (e.g. two differing
6176      // vector types).
6177      MVT RegVT = *PhysReg.second->vt_begin();
6178      if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6179        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6180                                         RegVT, OpInfo.CallOperand);
6181        OpInfo.ConstraintVT = RegVT;
6182      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6183        // If the input is a FP value and we want it in FP registers, do a
6184        // bitcast to the corresponding integer type.  This turns an f64 value
6185        // into i64, which can be passed with two i32 values on a 32-bit
6186        // machine.
6187        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6188        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6189                                         RegVT, OpInfo.CallOperand);
6190        OpInfo.ConstraintVT = RegVT;
6191      }
6192    }
6193
6194    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6195  }
6196
6197  MVT RegVT;
6198  EVT ValueVT = OpInfo.ConstraintVT;
6199
6200  // If this is a constraint for a specific physical register, like {r17},
6201  // assign it now.
6202  if (unsigned AssignedReg = PhysReg.first) {
6203    const TargetRegisterClass *RC = PhysReg.second;
6204    if (OpInfo.ConstraintVT == MVT::Other)
6205      ValueVT = *RC->vt_begin();
6206
6207    // Get the actual register value type.  This is important, because the user
6208    // may have asked for (e.g.) the AX register in i32 type.  We need to
6209    // remember that AX is actually i16 to get the right extension.
6210    RegVT = *RC->vt_begin();
6211
6212    // This is a explicit reference to a physical register.
6213    Regs.push_back(AssignedReg);
6214
6215    // If this is an expanded reference, add the rest of the regs to Regs.
6216    if (NumRegs != 1) {
6217      TargetRegisterClass::iterator I = RC->begin();
6218      for (; *I != AssignedReg; ++I)
6219        assert(I != RC->end() && "Didn't find reg!");
6220
6221      // Already added the first reg.
6222      --NumRegs; ++I;
6223      for (; NumRegs; --NumRegs, ++I) {
6224        assert(I != RC->end() && "Ran out of registers to allocate!");
6225        Regs.push_back(*I);
6226      }
6227    }
6228
6229    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6230    return;
6231  }
6232
6233  // Otherwise, if this was a reference to an LLVM register class, create vregs
6234  // for this reference.
6235  if (const TargetRegisterClass *RC = PhysReg.second) {
6236    RegVT = *RC->vt_begin();
6237    if (OpInfo.ConstraintVT == MVT::Other)
6238      ValueVT = RegVT;
6239
6240    // Create the appropriate number of virtual registers.
6241    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6242    for (; NumRegs; --NumRegs)
6243      Regs.push_back(RegInfo.createVirtualRegister(RC));
6244
6245    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6246    return;
6247  }
6248
6249  // Otherwise, we couldn't allocate enough registers for this.
6250}
6251
6252/// visitInlineAsm - Handle a call to an InlineAsm object.
6253///
6254void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6255  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6256
6257  /// ConstraintOperands - Information about all of the constraints.
6258  SDISelAsmOperandInfoVector ConstraintOperands;
6259
6260  const TargetLowering *TLI = TM.getTargetLowering();
6261  TargetLowering::AsmOperandInfoVector
6262    TargetConstraints = TLI->ParseConstraints(CS);
6263
6264  bool hasMemory = false;
6265
6266  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6267  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6268  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6269    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6270    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6271
6272    MVT OpVT = MVT::Other;
6273
6274    // Compute the value type for each operand.
6275    switch (OpInfo.Type) {
6276    case InlineAsm::isOutput:
6277      // Indirect outputs just consume an argument.
6278      if (OpInfo.isIndirect) {
6279        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6280        break;
6281      }
6282
6283      // The return value of the call is this value.  As such, there is no
6284      // corresponding argument.
6285      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6286      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6287        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6288      } else {
6289        assert(ResNo == 0 && "Asm only has one result!");
6290        OpVT = TLI->getSimpleValueType(CS.getType());
6291      }
6292      ++ResNo;
6293      break;
6294    case InlineAsm::isInput:
6295      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6296      break;
6297    case InlineAsm::isClobber:
6298      // Nothing to do.
6299      break;
6300    }
6301
6302    // If this is an input or an indirect output, process the call argument.
6303    // BasicBlocks are labels, currently appearing only in asm's.
6304    if (OpInfo.CallOperandVal) {
6305      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6306        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6307      } else {
6308        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6309      }
6310
6311      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
6312        getSimpleVT();
6313    }
6314
6315    OpInfo.ConstraintVT = OpVT;
6316
6317    // Indirect operand accesses access memory.
6318    if (OpInfo.isIndirect)
6319      hasMemory = true;
6320    else {
6321      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6322        TargetLowering::ConstraintType
6323          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6324        if (CType == TargetLowering::C_Memory) {
6325          hasMemory = true;
6326          break;
6327        }
6328      }
6329    }
6330  }
6331
6332  SDValue Chain, Flag;
6333
6334  // We won't need to flush pending loads if this asm doesn't touch
6335  // memory and is nonvolatile.
6336  if (hasMemory || IA->hasSideEffects())
6337    Chain = getRoot();
6338  else
6339    Chain = DAG.getRoot();
6340
6341  // Second pass over the constraints: compute which constraint option to use
6342  // and assign registers to constraints that want a specific physreg.
6343  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6344    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6345
6346    // If this is an output operand with a matching input operand, look up the
6347    // matching input. If their types mismatch, e.g. one is an integer, the
6348    // other is floating point, or their sizes are different, flag it as an
6349    // error.
6350    if (OpInfo.hasMatchingInput()) {
6351      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6352
6353      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6354        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6355          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6356                                            OpInfo.ConstraintVT);
6357        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6358          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6359                                            Input.ConstraintVT);
6360        if ((OpInfo.ConstraintVT.isInteger() !=
6361             Input.ConstraintVT.isInteger()) ||
6362            (MatchRC.second != InputRC.second)) {
6363          report_fatal_error("Unsupported asm: input constraint"
6364                             " with a matching output constraint of"
6365                             " incompatible type!");
6366        }
6367        Input.ConstraintVT = OpInfo.ConstraintVT;
6368      }
6369    }
6370
6371    // Compute the constraint code and ConstraintType to use.
6372    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6373
6374    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6375        OpInfo.Type == InlineAsm::isClobber)
6376      continue;
6377
6378    // If this is a memory input, and if the operand is not indirect, do what we
6379    // need to to provide an address for the memory input.
6380    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6381        !OpInfo.isIndirect) {
6382      assert((OpInfo.isMultipleAlternative ||
6383              (OpInfo.Type == InlineAsm::isInput)) &&
6384             "Can only indirectify direct input operands!");
6385
6386      // Memory operands really want the address of the value.  If we don't have
6387      // an indirect input, put it in the constpool if we can, otherwise spill
6388      // it to a stack slot.
6389      // TODO: This isn't quite right. We need to handle these according to
6390      // the addressing mode that the constraint wants. Also, this may take
6391      // an additional register for the computation and we don't want that
6392      // either.
6393
6394      // If the operand is a float, integer, or vector constant, spill to a
6395      // constant pool entry to get its address.
6396      const Value *OpVal = OpInfo.CallOperandVal;
6397      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6398          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6399        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6400                                                 TLI->getPointerTy());
6401      } else {
6402        // Otherwise, create a stack slot and emit a store to it before the
6403        // asm.
6404        Type *Ty = OpVal->getType();
6405        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6406        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6407        MachineFunction &MF = DAG.getMachineFunction();
6408        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6409        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6410        Chain = DAG.getStore(Chain, getCurSDLoc(),
6411                             OpInfo.CallOperand, StackSlot,
6412                             MachinePointerInfo::getFixedStack(SSFI),
6413                             false, false, 0);
6414        OpInfo.CallOperand = StackSlot;
6415      }
6416
6417      // There is no longer a Value* corresponding to this operand.
6418      OpInfo.CallOperandVal = 0;
6419
6420      // It is now an indirect operand.
6421      OpInfo.isIndirect = true;
6422    }
6423
6424    // If this constraint is for a specific register, allocate it before
6425    // anything else.
6426    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6427      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6428  }
6429
6430  // Second pass - Loop over all of the operands, assigning virtual or physregs
6431  // to register class operands.
6432  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6433    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6434
6435    // C_Register operands have already been allocated, Other/Memory don't need
6436    // to be.
6437    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6438      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6439  }
6440
6441  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6442  std::vector<SDValue> AsmNodeOperands;
6443  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6444  AsmNodeOperands.push_back(
6445          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6446                                      TLI->getPointerTy()));
6447
6448  // If we have a !srcloc metadata node associated with it, we want to attach
6449  // this to the ultimately generated inline asm machineinstr.  To do this, we
6450  // pass in the third operand as this (potentially null) inline asm MDNode.
6451  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6452  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6453
6454  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6455  // bits as operand 3.
6456  unsigned ExtraInfo = 0;
6457  if (IA->hasSideEffects())
6458    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6459  if (IA->isAlignStack())
6460    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6461  // Set the asm dialect.
6462  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6463
6464  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6465  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6466    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6467
6468    // Compute the constraint code and ConstraintType to use.
6469    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6470
6471    // Ideally, we would only check against memory constraints.  However, the
6472    // meaning of an other constraint can be target-specific and we can't easily
6473    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6474    // for other constriants as well.
6475    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6476        OpInfo.ConstraintType == TargetLowering::C_Other) {
6477      if (OpInfo.Type == InlineAsm::isInput)
6478        ExtraInfo |= InlineAsm::Extra_MayLoad;
6479      else if (OpInfo.Type == InlineAsm::isOutput)
6480        ExtraInfo |= InlineAsm::Extra_MayStore;
6481      else if (OpInfo.Type == InlineAsm::isClobber)
6482        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6483    }
6484  }
6485
6486  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6487                                                  TLI->getPointerTy()));
6488
6489  // Loop over all of the inputs, copying the operand values into the
6490  // appropriate registers and processing the output regs.
6491  RegsForValue RetValRegs;
6492
6493  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6494  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6495
6496  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6497    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6498
6499    switch (OpInfo.Type) {
6500    case InlineAsm::isOutput: {
6501      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6502          OpInfo.ConstraintType != TargetLowering::C_Register) {
6503        // Memory output, or 'other' output (e.g. 'X' constraint).
6504        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6505
6506        // Add information to the INLINEASM node to know about this output.
6507        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6508        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6509                                                        TLI->getPointerTy()));
6510        AsmNodeOperands.push_back(OpInfo.CallOperand);
6511        break;
6512      }
6513
6514      // Otherwise, this is a register or register class output.
6515
6516      // Copy the output from the appropriate register.  Find a register that
6517      // we can use.
6518      if (OpInfo.AssignedRegs.Regs.empty()) {
6519        LLVMContext &Ctx = *DAG.getContext();
6520        Ctx.emitError(CS.getInstruction(),
6521                      "couldn't allocate output register for constraint '" +
6522                          Twine(OpInfo.ConstraintCode) + "'");
6523        return;
6524      }
6525
6526      // If this is an indirect operand, store through the pointer after the
6527      // asm.
6528      if (OpInfo.isIndirect) {
6529        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6530                                                      OpInfo.CallOperandVal));
6531      } else {
6532        // This is the result value of the call.
6533        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6534        // Concatenate this output onto the outputs list.
6535        RetValRegs.append(OpInfo.AssignedRegs);
6536      }
6537
6538      // Add information to the INLINEASM node to know that this register is
6539      // set.
6540      OpInfo.AssignedRegs
6541          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6542                                    ? InlineAsm::Kind_RegDefEarlyClobber
6543                                    : InlineAsm::Kind_RegDef,
6544                                false, 0, DAG, AsmNodeOperands);
6545      break;
6546    }
6547    case InlineAsm::isInput: {
6548      SDValue InOperandVal = OpInfo.CallOperand;
6549
6550      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6551        // If this is required to match an output register we have already set,
6552        // just use its register.
6553        unsigned OperandNo = OpInfo.getMatchedOperand();
6554
6555        // Scan until we find the definition we already emitted of this operand.
6556        // When we find it, create a RegsForValue operand.
6557        unsigned CurOp = InlineAsm::Op_FirstOperand;
6558        for (; OperandNo; --OperandNo) {
6559          // Advance to the next operand.
6560          unsigned OpFlag =
6561            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6562          assert((InlineAsm::isRegDefKind(OpFlag) ||
6563                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6564                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6565          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6566        }
6567
6568        unsigned OpFlag =
6569          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6570        if (InlineAsm::isRegDefKind(OpFlag) ||
6571            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6572          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6573          if (OpInfo.isIndirect) {
6574            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6575            LLVMContext &Ctx = *DAG.getContext();
6576            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6577                                               " don't know how to handle tied "
6578                                               "indirect register inputs");
6579            return;
6580          }
6581
6582          RegsForValue MatchedRegs;
6583          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6584          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6585          MatchedRegs.RegVTs.push_back(RegVT);
6586          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6587          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6588               i != e; ++i) {
6589            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6590              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6591            else {
6592              LLVMContext &Ctx = *DAG.getContext();
6593              Ctx.emitError(CS.getInstruction(),
6594                            "inline asm error: This value"
6595                            " type register class is not natively supported!");
6596              return;
6597            }
6598          }
6599          // Use the produced MatchedRegs object to
6600          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6601                                    Chain, &Flag, CS.getInstruction());
6602          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6603                                           true, OpInfo.getMatchedOperand(),
6604                                           DAG, AsmNodeOperands);
6605          break;
6606        }
6607
6608        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6609        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6610               "Unexpected number of operands");
6611        // Add information to the INLINEASM node to know about this input.
6612        // See InlineAsm.h isUseOperandTiedToDef.
6613        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6614                                                    OpInfo.getMatchedOperand());
6615        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6616                                                        TLI->getPointerTy()));
6617        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6618        break;
6619      }
6620
6621      // Treat indirect 'X' constraint as memory.
6622      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6623          OpInfo.isIndirect)
6624        OpInfo.ConstraintType = TargetLowering::C_Memory;
6625
6626      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6627        std::vector<SDValue> Ops;
6628        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6629                                          Ops, DAG);
6630        if (Ops.empty()) {
6631          LLVMContext &Ctx = *DAG.getContext();
6632          Ctx.emitError(CS.getInstruction(),
6633                        "invalid operand for inline asm constraint '" +
6634                            Twine(OpInfo.ConstraintCode) + "'");
6635          return;
6636        }
6637
6638        // Add information to the INLINEASM node to know about this input.
6639        unsigned ResOpType =
6640          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6641        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6642                                                        TLI->getPointerTy()));
6643        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6644        break;
6645      }
6646
6647      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6648        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6649        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6650               "Memory operands expect pointer values");
6651
6652        // Add information to the INLINEASM node to know about this input.
6653        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6654        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6655                                                        TLI->getPointerTy()));
6656        AsmNodeOperands.push_back(InOperandVal);
6657        break;
6658      }
6659
6660      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6661              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6662             "Unknown constraint type!");
6663
6664      // TODO: Support this.
6665      if (OpInfo.isIndirect) {
6666        LLVMContext &Ctx = *DAG.getContext();
6667        Ctx.emitError(CS.getInstruction(),
6668                      "Don't know how to handle indirect register inputs yet "
6669                      "for constraint '" +
6670                          Twine(OpInfo.ConstraintCode) + "'");
6671        return;
6672      }
6673
6674      // Copy the input into the appropriate registers.
6675      if (OpInfo.AssignedRegs.Regs.empty()) {
6676        LLVMContext &Ctx = *DAG.getContext();
6677        Ctx.emitError(CS.getInstruction(),
6678                      "couldn't allocate input reg for constraint '" +
6679                          Twine(OpInfo.ConstraintCode) + "'");
6680        return;
6681      }
6682
6683      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6684                                        Chain, &Flag, CS.getInstruction());
6685
6686      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6687                                               DAG, AsmNodeOperands);
6688      break;
6689    }
6690    case InlineAsm::isClobber: {
6691      // Add the clobbered value to the operand list, so that the register
6692      // allocator is aware that the physreg got clobbered.
6693      if (!OpInfo.AssignedRegs.Regs.empty())
6694        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6695                                                 false, 0, DAG,
6696                                                 AsmNodeOperands);
6697      break;
6698    }
6699    }
6700  }
6701
6702  // Finish up input operands.  Set the input chain and add the flag last.
6703  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6704  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6705
6706  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6707                      DAG.getVTList(MVT::Other, MVT::Glue),
6708                      &AsmNodeOperands[0], AsmNodeOperands.size());
6709  Flag = Chain.getValue(1);
6710
6711  // If this asm returns a register value, copy the result from that register
6712  // and set it as the value of the call.
6713  if (!RetValRegs.Regs.empty()) {
6714    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6715                                             Chain, &Flag, CS.getInstruction());
6716
6717    // FIXME: Why don't we do this for inline asms with MRVs?
6718    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6719      EVT ResultType = TLI->getValueType(CS.getType());
6720
6721      // If any of the results of the inline asm is a vector, it may have the
6722      // wrong width/num elts.  This can happen for register classes that can
6723      // contain multiple different value types.  The preg or vreg allocated may
6724      // not have the same VT as was expected.  Convert it to the right type
6725      // with bit_convert.
6726      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6727        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6728                          ResultType, Val);
6729
6730      } else if (ResultType != Val.getValueType() &&
6731                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6732        // If a result value was tied to an input value, the computed result may
6733        // have a wider width than the expected result.  Extract the relevant
6734        // portion.
6735        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6736      }
6737
6738      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6739    }
6740
6741    setValue(CS.getInstruction(), Val);
6742    // Don't need to use this as a chain in this case.
6743    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6744      return;
6745  }
6746
6747  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6748
6749  // Process indirect outputs, first output all of the flagged copies out of
6750  // physregs.
6751  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6752    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6753    const Value *Ptr = IndirectStoresToEmit[i].second;
6754    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6755                                             Chain, &Flag, IA);
6756    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6757  }
6758
6759  // Emit the non-flagged stores from the physregs.
6760  SmallVector<SDValue, 8> OutChains;
6761  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6762    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6763                               StoresToEmit[i].first,
6764                               getValue(StoresToEmit[i].second),
6765                               MachinePointerInfo(StoresToEmit[i].second),
6766                               false, false, 0);
6767    OutChains.push_back(Val);
6768  }
6769
6770  if (!OutChains.empty())
6771    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6772                        &OutChains[0], OutChains.size());
6773
6774  DAG.setRoot(Chain);
6775}
6776
6777void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6778  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6779                          MVT::Other, getRoot(),
6780                          getValue(I.getArgOperand(0)),
6781                          DAG.getSrcValue(I.getArgOperand(0))));
6782}
6783
6784void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6785  const TargetLowering *TLI = TM.getTargetLowering();
6786  const DataLayout &DL = *TLI->getDataLayout();
6787  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6788                           getRoot(), getValue(I.getOperand(0)),
6789                           DAG.getSrcValue(I.getOperand(0)),
6790                           DL.getABITypeAlignment(I.getType()));
6791  setValue(&I, V);
6792  DAG.setRoot(V.getValue(1));
6793}
6794
6795void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6796  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6797                          MVT::Other, getRoot(),
6798                          getValue(I.getArgOperand(0)),
6799                          DAG.getSrcValue(I.getArgOperand(0))));
6800}
6801
6802void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6803  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6804                          MVT::Other, getRoot(),
6805                          getValue(I.getArgOperand(0)),
6806                          getValue(I.getArgOperand(1)),
6807                          DAG.getSrcValue(I.getArgOperand(0)),
6808                          DAG.getSrcValue(I.getArgOperand(1))));
6809}
6810
6811/// \brief Lower an argument list according to the target calling convention.
6812///
6813/// \return A tuple of <return-value, token-chain>
6814///
6815/// This is a helper for lowering intrinsics that follow a target calling
6816/// convention or require stack pointer adjustment. Only a subset of the
6817/// intrinsic's operands need to participate in the calling convention.
6818std::pair<SDValue, SDValue>
6819SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6820                                       unsigned NumArgs, SDValue Callee,
6821                                       bool useVoidTy) {
6822  TargetLowering::ArgListTy Args;
6823  Args.reserve(NumArgs);
6824
6825  // Populate the argument list.
6826  // Attributes for args start at offset 1, after the return attribute.
6827  ImmutableCallSite CS(&CI);
6828  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6829       ArgI != ArgE; ++ArgI) {
6830    const Value *V = CI.getOperand(ArgI);
6831
6832    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6833
6834    TargetLowering::ArgListEntry Entry;
6835    Entry.Node = getValue(V);
6836    Entry.Ty = V->getType();
6837    Entry.setAttributes(&CS, AttrI);
6838    Args.push_back(Entry);
6839  }
6840
6841  Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6842  TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
6843    /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
6844    CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
6845    /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
6846
6847  const TargetLowering *TLI = TM.getTargetLowering();
6848  return TLI->LowerCallTo(CLI);
6849}
6850
6851/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6852/// or patchpoint target node's operand list.
6853///
6854/// Constants are converted to TargetConstants purely as an optimization to
6855/// avoid constant materialization and register allocation.
6856///
6857/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6858/// generate addess computation nodes, and so ExpandISelPseudo can convert the
6859/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6860/// address materialization and register allocation, but may also be required
6861/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6862/// alloca in the entry block, then the runtime may assume that the alloca's
6863/// StackMap location can be read immediately after compilation and that the
6864/// location is valid at any point during execution (this is similar to the
6865/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6866/// only available in a register, then the runtime would need to trap when
6867/// execution reaches the StackMap in order to read the alloca's location.
6868static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
6869                                SmallVectorImpl<SDValue> &Ops,
6870                                SelectionDAGBuilder &Builder) {
6871  for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
6872    SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
6873    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6874      Ops.push_back(
6875        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6876      Ops.push_back(
6877        Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6878    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6879      const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6880      Ops.push_back(
6881        Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6882    } else
6883      Ops.push_back(OpVal);
6884  }
6885}
6886
6887/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6888void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6889  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6890  //                                  [live variables...])
6891
6892  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6893
6894  SDValue Chain, InFlag, Callee, NullPtr;
6895  SmallVector<SDValue, 32> Ops;
6896
6897  SDLoc DL = getCurSDLoc();
6898  Callee = getValue(CI.getCalledValue());
6899  NullPtr = DAG.getIntPtrConstant(0, true);
6900
6901  // The stackmap intrinsic only records the live variables (the arguemnts
6902  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6903  // intrinsic, this won't be lowered to a function call. This means we don't
6904  // have to worry about calling conventions and target specific lowering code.
6905  // Instead we perform the call lowering right here.
6906  //
6907  // chain, flag = CALLSEQ_START(chain, 0)
6908  // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6909  // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6910  //
6911  Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6912  InFlag = Chain.getValue(1);
6913
6914  // Add the <id> and <numBytes> constants.
6915  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6916  Ops.push_back(DAG.getTargetConstant(
6917                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6918  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6919  Ops.push_back(DAG.getTargetConstant(
6920                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6921
6922  // Push live variables for the stack map.
6923  addStackMapLiveVars(CI, 2, Ops, *this);
6924
6925  // We are not pushing any register mask info here on the operands list,
6926  // because the stackmap doesn't clobber anything.
6927
6928  // Push the chain and the glue flag.
6929  Ops.push_back(Chain);
6930  Ops.push_back(InFlag);
6931
6932  // Create the STACKMAP node.
6933  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6934  SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6935  Chain = SDValue(SM, 0);
6936  InFlag = Chain.getValue(1);
6937
6938  Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6939
6940  // Stackmaps don't generate values, so nothing goes into the NodeMap.
6941
6942  // Set the root to the target-lowered call chain.
6943  DAG.setRoot(Chain);
6944
6945  // Inform the Frame Information that we have a stackmap in this function.
6946  FuncInfo.MF->getFrameInfo()->setHasStackMap();
6947}
6948
6949/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6950void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6951  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6952  //                                                 i32 <numBytes>,
6953  //                                                 i8* <target>,
6954  //                                                 i32 <numArgs>,
6955  //                                                 [Args...],
6956  //                                                 [live variables...])
6957
6958  CallingConv::ID CC = CI.getCallingConv();
6959  bool isAnyRegCC = CC == CallingConv::AnyReg;
6960  bool hasDef = !CI.getType()->isVoidTy();
6961  SDValue Callee = getValue(CI.getOperand(2)); // <target>
6962
6963  // Get the real number of arguments participating in the call <numArgs>
6964  SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
6965  unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6966
6967  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6968  // Intrinsics include all meta-operands up to but not including CC.
6969  unsigned NumMetaOpers = PatchPointOpers::CCPos;
6970  assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
6971         "Not enough arguments provided to the patchpoint intrinsic");
6972
6973  // For AnyRegCC the arguments are lowered later on manually.
6974  unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6975  std::pair<SDValue, SDValue> Result =
6976    LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
6977
6978  // Set the root to the target-lowered call chain.
6979  SDValue Chain = Result.second;
6980  DAG.setRoot(Chain);
6981
6982  SDNode *CallEnd = Chain.getNode();
6983  if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6984    CallEnd = CallEnd->getOperand(0).getNode();
6985
6986  /// Get a call instruction from the call sequence chain.
6987  /// Tail calls are not allowed.
6988  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6989         "Expected a callseq node.");
6990  SDNode *Call = CallEnd->getOperand(0).getNode();
6991  bool hasGlue = Call->getGluedNode();
6992
6993  // Replace the target specific call node with the patchable intrinsic.
6994  SmallVector<SDValue, 8> Ops;
6995
6996  // Add the <id> and <numBytes> constants.
6997  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6998  Ops.push_back(DAG.getTargetConstant(
6999                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7000  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7001  Ops.push_back(DAG.getTargetConstant(
7002                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7003
7004  // Assume that the Callee is a constant address.
7005  // FIXME: handle function symbols in the future.
7006  Ops.push_back(
7007    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7008                          /*isTarget=*/true));
7009
7010  // Adjust <numArgs> to account for any arguments that have been passed on the
7011  // stack instead.
7012  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7013  unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
7014  NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
7015  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7016
7017  // Add the calling convention
7018  Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7019
7020  // Add the arguments we omitted previously. The register allocator should
7021  // place these in any free register.
7022  if (isAnyRegCC)
7023    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7024      Ops.push_back(getValue(CI.getArgOperand(i)));
7025
7026  // Push the arguments from the call instruction up to the register mask.
7027  SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
7028  for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
7029    Ops.push_back(*i);
7030
7031  // Push live variables for the stack map.
7032  addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
7033
7034  // Push the register mask info.
7035  if (hasGlue)
7036    Ops.push_back(*(Call->op_end()-2));
7037  else
7038    Ops.push_back(*(Call->op_end()-1));
7039
7040  // Push the chain (this is originally the first operand of the call, but
7041  // becomes now the last or second to last operand).
7042  Ops.push_back(*(Call->op_begin()));
7043
7044  // Push the glue flag (last operand).
7045  if (hasGlue)
7046    Ops.push_back(*(Call->op_end()-1));
7047
7048  SDVTList NodeTys;
7049  if (isAnyRegCC && hasDef) {
7050    // Create the return types based on the intrinsic definition
7051    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7052    SmallVector<EVT, 3> ValueVTs;
7053    ComputeValueVTs(TLI, CI.getType(), ValueVTs);
7054    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7055
7056    // There is always a chain and a glue type at the end
7057    ValueVTs.push_back(MVT::Other);
7058    ValueVTs.push_back(MVT::Glue);
7059    NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
7060  } else
7061    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7062
7063  // Replace the target specific call node with a PATCHPOINT node.
7064  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7065                                         getCurSDLoc(), NodeTys, Ops);
7066
7067  // Update the NodeMap.
7068  if (hasDef) {
7069    if (isAnyRegCC)
7070      setValue(&CI, SDValue(MN, 0));
7071    else
7072      setValue(&CI, Result.first);
7073  }
7074
7075  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7076  // call sequence. Furthermore the location of the chain and glue can change
7077  // when the AnyReg calling convention is used and the intrinsic returns a
7078  // value.
7079  if (isAnyRegCC && hasDef) {
7080    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7081    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7082    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7083  } else
7084    DAG.ReplaceAllUsesWith(Call, MN);
7085  DAG.DeleteNode(Call);
7086
7087  // Inform the Frame Information that we have a patchpoint in this function.
7088  FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7089}
7090
7091/// TargetLowering::LowerCallTo - This is the default LowerCallTo
7092/// implementation, which just calls LowerCall.
7093/// FIXME: When all targets are
7094/// migrated to using LowerCall, this hook should be integrated into SDISel.
7095std::pair<SDValue, SDValue>
7096TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7097  // Handle the incoming return values from the call.
7098  CLI.Ins.clear();
7099  SmallVector<EVT, 4> RetTys;
7100  ComputeValueVTs(*this, CLI.RetTy, RetTys);
7101  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7102    EVT VT = RetTys[I];
7103    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7104    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7105    for (unsigned i = 0; i != NumRegs; ++i) {
7106      ISD::InputArg MyFlags;
7107      MyFlags.VT = RegisterVT;
7108      MyFlags.ArgVT = VT;
7109      MyFlags.Used = CLI.IsReturnValueUsed;
7110      if (CLI.RetSExt)
7111        MyFlags.Flags.setSExt();
7112      if (CLI.RetZExt)
7113        MyFlags.Flags.setZExt();
7114      if (CLI.IsInReg)
7115        MyFlags.Flags.setInReg();
7116      CLI.Ins.push_back(MyFlags);
7117    }
7118  }
7119
7120  // Handle all of the outgoing arguments.
7121  CLI.Outs.clear();
7122  CLI.OutVals.clear();
7123  ArgListTy &Args = CLI.Args;
7124  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7125    SmallVector<EVT, 4> ValueVTs;
7126    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7127    for (unsigned Value = 0, NumValues = ValueVTs.size();
7128         Value != NumValues; ++Value) {
7129      EVT VT = ValueVTs[Value];
7130      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7131      SDValue Op = SDValue(Args[i].Node.getNode(),
7132                           Args[i].Node.getResNo() + Value);
7133      ISD::ArgFlagsTy Flags;
7134      unsigned OriginalAlignment =
7135        getDataLayout()->getABITypeAlignment(ArgTy);
7136
7137      if (Args[i].isZExt)
7138        Flags.setZExt();
7139      if (Args[i].isSExt)
7140        Flags.setSExt();
7141      if (Args[i].isInReg)
7142        Flags.setInReg();
7143      if (Args[i].isSRet)
7144        Flags.setSRet();
7145      if (Args[i].isByVal)
7146        Flags.setByVal();
7147      if (Args[i].isInAlloca) {
7148        Flags.setInAlloca();
7149        // Set the byval flag for CCAssignFn callbacks that don't know about
7150        // inalloca.  This way we can know how many bytes we should've allocated
7151        // and how many bytes a callee cleanup function will pop.  If we port
7152        // inalloca to more targets, we'll have to add custom inalloca handling
7153        // in the various CC lowering callbacks.
7154        Flags.setByVal();
7155      }
7156      if (Args[i].isByVal || Args[i].isInAlloca) {
7157        PointerType *Ty = cast<PointerType>(Args[i].Ty);
7158        Type *ElementTy = Ty->getElementType();
7159        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7160        // For ByVal, alignment should come from FE.  BE will guess if this
7161        // info is not there but there are cases it cannot get right.
7162        unsigned FrameAlign;
7163        if (Args[i].Alignment)
7164          FrameAlign = Args[i].Alignment;
7165        else
7166          FrameAlign = getByValTypeAlignment(ElementTy);
7167        Flags.setByValAlign(FrameAlign);
7168      }
7169      if (Args[i].isNest)
7170        Flags.setNest();
7171      Flags.setOrigAlign(OriginalAlignment);
7172
7173      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7174      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7175      SmallVector<SDValue, 4> Parts(NumParts);
7176      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7177
7178      if (Args[i].isSExt)
7179        ExtendKind = ISD::SIGN_EXTEND;
7180      else if (Args[i].isZExt)
7181        ExtendKind = ISD::ZERO_EXTEND;
7182
7183      // Conservatively only handle 'returned' on non-vectors for now
7184      if (Args[i].isReturned && !Op.getValueType().isVector()) {
7185        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7186               "unexpected use of 'returned'");
7187        // Before passing 'returned' to the target lowering code, ensure that
7188        // either the register MVT and the actual EVT are the same size or that
7189        // the return value and argument are extended in the same way; in these
7190        // cases it's safe to pass the argument register value unchanged as the
7191        // return register value (although it's at the target's option whether
7192        // to do so)
7193        // TODO: allow code generation to take advantage of partially preserved
7194        // registers rather than clobbering the entire register when the
7195        // parameter extension method is not compatible with the return
7196        // extension method
7197        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7198            (ExtendKind != ISD::ANY_EXTEND &&
7199             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7200        Flags.setReturned();
7201      }
7202
7203      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
7204                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
7205
7206      for (unsigned j = 0; j != NumParts; ++j) {
7207        // if it isn't first piece, alignment must be 1
7208        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7209                               i < CLI.NumFixedArgs,
7210                               i, j*Parts[j].getValueType().getStoreSize());
7211        if (NumParts > 1 && j == 0)
7212          MyFlags.Flags.setSplit();
7213        else if (j != 0)
7214          MyFlags.Flags.setOrigAlign(1);
7215
7216        CLI.Outs.push_back(MyFlags);
7217        CLI.OutVals.push_back(Parts[j]);
7218      }
7219    }
7220  }
7221
7222  SmallVector<SDValue, 4> InVals;
7223  CLI.Chain = LowerCall(CLI, InVals);
7224
7225  // Verify that the target's LowerCall behaved as expected.
7226  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7227         "LowerCall didn't return a valid chain!");
7228  assert((!CLI.IsTailCall || InVals.empty()) &&
7229         "LowerCall emitted a return value for a tail call!");
7230  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7231         "LowerCall didn't emit the correct number of values!");
7232
7233  // For a tail call, the return value is merely live-out and there aren't
7234  // any nodes in the DAG representing it. Return a special value to
7235  // indicate that a tail call has been emitted and no more Instructions
7236  // should be processed in the current block.
7237  if (CLI.IsTailCall) {
7238    CLI.DAG.setRoot(CLI.Chain);
7239    return std::make_pair(SDValue(), SDValue());
7240  }
7241
7242  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7243          assert(InVals[i].getNode() &&
7244                 "LowerCall emitted a null value!");
7245          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7246                 "LowerCall emitted a value with the wrong type!");
7247        });
7248
7249  // Collect the legal value parts into potentially illegal values
7250  // that correspond to the original function's return values.
7251  ISD::NodeType AssertOp = ISD::DELETED_NODE;
7252  if (CLI.RetSExt)
7253    AssertOp = ISD::AssertSext;
7254  else if (CLI.RetZExt)
7255    AssertOp = ISD::AssertZext;
7256  SmallVector<SDValue, 4> ReturnValues;
7257  unsigned CurReg = 0;
7258  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7259    EVT VT = RetTys[I];
7260    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7261    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7262
7263    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7264                                            NumRegs, RegisterVT, VT, NULL,
7265                                            AssertOp));
7266    CurReg += NumRegs;
7267  }
7268
7269  // For a function returning void, there is no return value. We can't create
7270  // such a node, so we just return a null return value in that case. In
7271  // that case, nothing will actually look at the value.
7272  if (ReturnValues.empty())
7273    return std::make_pair(SDValue(), CLI.Chain);
7274
7275  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7276                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
7277                            &ReturnValues[0], ReturnValues.size());
7278  return std::make_pair(Res, CLI.Chain);
7279}
7280
7281void TargetLowering::LowerOperationWrapper(SDNode *N,
7282                                           SmallVectorImpl<SDValue> &Results,
7283                                           SelectionDAG &DAG) const {
7284  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7285  if (Res.getNode())
7286    Results.push_back(Res);
7287}
7288
7289SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7290  llvm_unreachable("LowerOperation not implemented for this target!");
7291}
7292
7293void
7294SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7295  SDValue Op = getNonRegisterValue(V);
7296  assert((Op.getOpcode() != ISD::CopyFromReg ||
7297          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7298         "Copy from a reg to the same reg!");
7299  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7300
7301  const TargetLowering *TLI = TM.getTargetLowering();
7302  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7303  SDValue Chain = DAG.getEntryNode();
7304  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
7305  PendingExports.push_back(Chain);
7306}
7307
7308#include "llvm/CodeGen/SelectionDAGISel.h"
7309
7310/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7311/// entry block, return true.  This includes arguments used by switches, since
7312/// the switch may expand into multiple basic blocks.
7313static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7314  // With FastISel active, we may be splitting blocks, so force creation
7315  // of virtual registers for all non-dead arguments.
7316  if (FastISel)
7317    return A->use_empty();
7318
7319  const BasicBlock *Entry = A->getParent()->begin();
7320  for (const User *U : A->users())
7321    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7322      return false;  // Use not in entry block.
7323
7324  return true;
7325}
7326
7327void SelectionDAGISel::LowerArguments(const Function &F) {
7328  SelectionDAG &DAG = SDB->DAG;
7329  SDLoc dl = SDB->getCurSDLoc();
7330  const TargetLowering *TLI = getTargetLowering();
7331  const DataLayout *DL = TLI->getDataLayout();
7332  SmallVector<ISD::InputArg, 16> Ins;
7333
7334  if (!FuncInfo->CanLowerReturn) {
7335    // Put in an sret pointer parameter before all the other parameters.
7336    SmallVector<EVT, 1> ValueVTs;
7337    ComputeValueVTs(*getTargetLowering(),
7338                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
7339
7340    // NOTE: Assuming that a pointer will never break down to more than one VT
7341    // or one register.
7342    ISD::ArgFlagsTy Flags;
7343    Flags.setSRet();
7344    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7345    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7346    Ins.push_back(RetArg);
7347  }
7348
7349  // Set up the incoming argument description vector.
7350  unsigned Idx = 1;
7351  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7352       I != E; ++I, ++Idx) {
7353    SmallVector<EVT, 4> ValueVTs;
7354    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7355    bool isArgValueUsed = !I->use_empty();
7356    unsigned PartBase = 0;
7357    for (unsigned Value = 0, NumValues = ValueVTs.size();
7358         Value != NumValues; ++Value) {
7359      EVT VT = ValueVTs[Value];
7360      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7361      ISD::ArgFlagsTy Flags;
7362      unsigned OriginalAlignment =
7363        DL->getABITypeAlignment(ArgTy);
7364
7365      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7366        Flags.setZExt();
7367      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7368        Flags.setSExt();
7369      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7370        Flags.setInReg();
7371      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7372        Flags.setSRet();
7373      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7374        Flags.setByVal();
7375      if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7376        Flags.setInAlloca();
7377        // Set the byval flag for CCAssignFn callbacks that don't know about
7378        // inalloca.  This way we can know how many bytes we should've allocated
7379        // and how many bytes a callee cleanup function will pop.  If we port
7380        // inalloca to more targets, we'll have to add custom inalloca handling
7381        // in the various CC lowering callbacks.
7382        Flags.setByVal();
7383      }
7384      if (Flags.isByVal() || Flags.isInAlloca()) {
7385        PointerType *Ty = cast<PointerType>(I->getType());
7386        Type *ElementTy = Ty->getElementType();
7387        Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7388        // For ByVal, alignment should be passed from FE.  BE will guess if
7389        // this info is not there but there are cases it cannot get right.
7390        unsigned FrameAlign;
7391        if (F.getParamAlignment(Idx))
7392          FrameAlign = F.getParamAlignment(Idx);
7393        else
7394          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7395        Flags.setByValAlign(FrameAlign);
7396      }
7397      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7398        Flags.setNest();
7399      Flags.setOrigAlign(OriginalAlignment);
7400
7401      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7402      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7403      for (unsigned i = 0; i != NumRegs; ++i) {
7404        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7405                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7406        if (NumRegs > 1 && i == 0)
7407          MyFlags.Flags.setSplit();
7408        // if it isn't first piece, alignment must be 1
7409        else if (i > 0)
7410          MyFlags.Flags.setOrigAlign(1);
7411        Ins.push_back(MyFlags);
7412      }
7413      PartBase += VT.getStoreSize();
7414    }
7415  }
7416
7417  // Call the target to set up the argument values.
7418  SmallVector<SDValue, 8> InVals;
7419  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7420                                              F.isVarArg(), Ins,
7421                                              dl, DAG, InVals);
7422
7423  // Verify that the target's LowerFormalArguments behaved as expected.
7424  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7425         "LowerFormalArguments didn't return a valid chain!");
7426  assert(InVals.size() == Ins.size() &&
7427         "LowerFormalArguments didn't emit the correct number of values!");
7428  DEBUG({
7429      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7430        assert(InVals[i].getNode() &&
7431               "LowerFormalArguments emitted a null value!");
7432        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7433               "LowerFormalArguments emitted a value with the wrong type!");
7434      }
7435    });
7436
7437  // Update the DAG with the new chain value resulting from argument lowering.
7438  DAG.setRoot(NewRoot);
7439
7440  // Set up the argument values.
7441  unsigned i = 0;
7442  Idx = 1;
7443  if (!FuncInfo->CanLowerReturn) {
7444    // Create a virtual register for the sret pointer, and put in a copy
7445    // from the sret argument into it.
7446    SmallVector<EVT, 1> ValueVTs;
7447    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7448    MVT VT = ValueVTs[0].getSimpleVT();
7449    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7450    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7451    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7452                                        RegVT, VT, NULL, AssertOp);
7453
7454    MachineFunction& MF = SDB->DAG.getMachineFunction();
7455    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7456    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7457    FuncInfo->DemoteRegister = SRetReg;
7458    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7459                                    SRetReg, ArgValue);
7460    DAG.setRoot(NewRoot);
7461
7462    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7463    // Idx indexes LLVM arguments.  Don't touch it.
7464    ++i;
7465  }
7466
7467  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7468      ++I, ++Idx) {
7469    SmallVector<SDValue, 4> ArgValues;
7470    SmallVector<EVT, 4> ValueVTs;
7471    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7472    unsigned NumValues = ValueVTs.size();
7473
7474    // If this argument is unused then remember its value. It is used to generate
7475    // debugging information.
7476    if (I->use_empty() && NumValues) {
7477      SDB->setUnusedArgValue(I, InVals[i]);
7478
7479      // Also remember any frame index for use in FastISel.
7480      if (FrameIndexSDNode *FI =
7481          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7482        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7483    }
7484
7485    for (unsigned Val = 0; Val != NumValues; ++Val) {
7486      EVT VT = ValueVTs[Val];
7487      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7488      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7489
7490      if (!I->use_empty()) {
7491        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7492        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7493          AssertOp = ISD::AssertSext;
7494        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7495          AssertOp = ISD::AssertZext;
7496
7497        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7498                                             NumParts, PartVT, VT,
7499                                             NULL, AssertOp));
7500      }
7501
7502      i += NumParts;
7503    }
7504
7505    // We don't need to do anything else for unused arguments.
7506    if (ArgValues.empty())
7507      continue;
7508
7509    // Note down frame index.
7510    if (FrameIndexSDNode *FI =
7511        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7512      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7513
7514    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7515                                     SDB->getCurSDLoc());
7516
7517    SDB->setValue(I, Res);
7518    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7519      if (LoadSDNode *LNode =
7520          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7521        if (FrameIndexSDNode *FI =
7522            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7523        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7524    }
7525
7526    // If this argument is live outside of the entry block, insert a copy from
7527    // wherever we got it to the vreg that other BB's will reference it as.
7528    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7529      // If we can, though, try to skip creating an unnecessary vreg.
7530      // FIXME: This isn't very clean... it would be nice to make this more
7531      // general.  It's also subtly incompatible with the hacks FastISel
7532      // uses with vregs.
7533      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7534      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7535        FuncInfo->ValueMap[I] = Reg;
7536        continue;
7537      }
7538    }
7539    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7540      FuncInfo->InitializeRegForValue(I);
7541      SDB->CopyToExportRegsIfNeeded(I);
7542    }
7543  }
7544
7545  assert(i == InVals.size() && "Argument register count mismatch!");
7546
7547  // Finally, if the target has anything special to do, allow it to do so.
7548  // FIXME: this should insert code into the DAG!
7549  EmitFunctionEntryCode();
7550}
7551
7552/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7553/// ensure constants are generated when needed.  Remember the virtual registers
7554/// that need to be added to the Machine PHI nodes as input.  We cannot just
7555/// directly add them, because expansion might result in multiple MBB's for one
7556/// BB.  As such, the start of the BB might correspond to a different MBB than
7557/// the end.
7558///
7559void
7560SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7561  const TerminatorInst *TI = LLVMBB->getTerminator();
7562
7563  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7564
7565  // Check successor nodes' PHI nodes that expect a constant to be available
7566  // from this block.
7567  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7568    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7569    if (!isa<PHINode>(SuccBB->begin())) continue;
7570    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7571
7572    // If this terminator has multiple identical successors (common for
7573    // switches), only handle each succ once.
7574    if (!SuccsHandled.insert(SuccMBB)) continue;
7575
7576    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7577
7578    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7579    // nodes and Machine PHI nodes, but the incoming operands have not been
7580    // emitted yet.
7581    for (BasicBlock::const_iterator I = SuccBB->begin();
7582         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7583      // Ignore dead phi's.
7584      if (PN->use_empty()) continue;
7585
7586      // Skip empty types
7587      if (PN->getType()->isEmptyTy())
7588        continue;
7589
7590      unsigned Reg;
7591      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7592
7593      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7594        unsigned &RegOut = ConstantsOut[C];
7595        if (RegOut == 0) {
7596          RegOut = FuncInfo.CreateRegs(C->getType());
7597          CopyValueToVirtualRegister(C, RegOut);
7598        }
7599        Reg = RegOut;
7600      } else {
7601        DenseMap<const Value *, unsigned>::iterator I =
7602          FuncInfo.ValueMap.find(PHIOp);
7603        if (I != FuncInfo.ValueMap.end())
7604          Reg = I->second;
7605        else {
7606          assert(isa<AllocaInst>(PHIOp) &&
7607                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7608                 "Didn't codegen value into a register!??");
7609          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7610          CopyValueToVirtualRegister(PHIOp, Reg);
7611        }
7612      }
7613
7614      // Remember that this register needs to added to the machine PHI node as
7615      // the input for this MBB.
7616      SmallVector<EVT, 4> ValueVTs;
7617      const TargetLowering *TLI = TM.getTargetLowering();
7618      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7619      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7620        EVT VT = ValueVTs[vti];
7621        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7622        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7623          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7624        Reg += NumRegisters;
7625      }
7626    }
7627  }
7628
7629  ConstantsOut.clear();
7630}
7631
7632/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7633/// is 0.
7634MachineBasicBlock *
7635SelectionDAGBuilder::StackProtectorDescriptor::
7636AddSuccessorMBB(const BasicBlock *BB,
7637                MachineBasicBlock *ParentMBB,
7638                MachineBasicBlock *SuccMBB) {
7639  // If SuccBB has not been created yet, create it.
7640  if (!SuccMBB) {
7641    MachineFunction *MF = ParentMBB->getParent();
7642    MachineFunction::iterator BBI = ParentMBB;
7643    SuccMBB = MF->CreateMachineBasicBlock(BB);
7644    MF->insert(++BBI, SuccMBB);
7645  }
7646  // Add it as a successor of ParentMBB.
7647  ParentMBB->addSuccessor(SuccMBB);
7648  return SuccMBB;
7649}
7650