SelectionDAGBuilder.cpp revision 59d3ae6cdc4316ad338cd848251f33a236ccb36c
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/StackMaps.h"
37#include "llvm/DebugInfo.h"
38#include "llvm/IR/CallingConv.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/InlineAsm.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Intrinsics.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/Module.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include "llvm/Target/TargetSelectionDAGInfo.h"
62#include <algorithm>
63using namespace llvm;
64
65/// LimitFloatPrecision - Generate low-precision inline sequences for
66/// some float libcalls (6, 8 or 12 bits).
67static unsigned LimitFloatPrecision;
68
69static cl::opt<unsigned, true>
70LimitFPPrecision("limit-float-precision",
71                 cl::desc("Generate low-precision inline sequences "
72                          "for some float libcalls"),
73                 cl::location(LimitFloatPrecision),
74                 cl::init(0));
75
76// Limit the width of DAG chains. This is important in general to prevent
77// prevent DAG-based analysis from blowing up. For example, alias analysis and
78// load clustering may not complete in reasonable time. It is difficult to
79// recognize and avoid this situation within each individual analysis, and
80// future analyses are likely to have the same behavior. Limiting DAG width is
81// the safe approach, and will be especially important with global DAGs.
82//
83// MaxParallelChains default is arbitrarily high to avoid affecting
84// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
85// sequence over this should have been converted to llvm.memcpy by the
86// frontend. It easy to induce this behavior with .ll code such as:
87// %buffer = alloca [4096 x i8]
88// %data = load [4096 x i8]* %argPtr
89// store [4096 x i8] %data, [4096 x i8]* %buffer
90static const unsigned MaxParallelChains = 64;
91
92static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
93                                      const SDValue *Parts, unsigned NumParts,
94                                      MVT PartVT, EVT ValueVT, const Value *V);
95
96/// getCopyFromParts - Create a value that contains the specified legal parts
97/// combined into the value they represent.  If the parts combine to a type
98/// larger then ValueVT then AssertOp can be used to specify whether the extra
99/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
100/// (ISD::AssertSext).
101static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
102                                const SDValue *Parts,
103                                unsigned NumParts, MVT PartVT, EVT ValueVT,
104                                const Value *V,
105                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
106  if (ValueVT.isVector())
107    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
108                                  PartVT, ValueVT, V);
109
110  assert(NumParts > 0 && "No parts to assemble!");
111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
112  SDValue Val = Parts[0];
113
114  if (NumParts > 1) {
115    // Assemble the value from multiple parts.
116    if (ValueVT.isInteger()) {
117      unsigned PartBits = PartVT.getSizeInBits();
118      unsigned ValueBits = ValueVT.getSizeInBits();
119
120      // Assemble the power of 2 part.
121      unsigned RoundParts = NumParts & (NumParts - 1) ?
122        1 << Log2_32(NumParts) : NumParts;
123      unsigned RoundBits = PartBits * RoundParts;
124      EVT RoundVT = RoundBits == ValueBits ?
125        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
126      SDValue Lo, Hi;
127
128      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
129
130      if (RoundParts > 2) {
131        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
132                              PartVT, HalfVT, V);
133        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
134                              RoundParts / 2, PartVT, HalfVT, V);
135      } else {
136        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
137        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
138      }
139
140      if (TLI.isBigEndian())
141        std::swap(Lo, Hi);
142
143      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
144
145      if (RoundParts < NumParts) {
146        // Assemble the trailing non-power-of-2 part.
147        unsigned OddParts = NumParts - RoundParts;
148        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
149        Hi = getCopyFromParts(DAG, DL,
150                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
151
152        // Combine the round and odd parts.
153        Lo = Val;
154        if (TLI.isBigEndian())
155          std::swap(Lo, Hi);
156        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
157        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
158        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
159                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
160                                         TLI.getPointerTy()));
161        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
162        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
163      }
164    } else if (PartVT.isFloatingPoint()) {
165      // FP split into multiple FP parts (for ppcf128)
166      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
167             "Unexpected split");
168      SDValue Lo, Hi;
169      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
170      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
171      if (TLI.isBigEndian())
172        std::swap(Lo, Hi);
173      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
174    } else {
175      // FP split into integer parts (soft fp)
176      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
177             !PartVT.isVector() && "Unexpected split");
178      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
179      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
180    }
181  }
182
183  // There is now one part, held in Val.  Correct it to match ValueVT.
184  EVT PartEVT = Val.getValueType();
185
186  if (PartEVT == ValueVT)
187    return Val;
188
189  if (PartEVT.isInteger() && ValueVT.isInteger()) {
190    if (ValueVT.bitsLT(PartEVT)) {
191      // For a truncate, see if we have any information to
192      // indicate whether the truncated bits will always be
193      // zero or sign-extension.
194      if (AssertOp != ISD::DELETED_NODE)
195        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
196                          DAG.getValueType(ValueVT));
197      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
198    }
199    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
200  }
201
202  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
203    // FP_ROUND's are always exact here.
204    if (ValueVT.bitsLT(Val.getValueType()))
205      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
206                         DAG.getTargetConstant(1, TLI.getPointerTy()));
207
208    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
209  }
210
211  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
212    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
213
214  llvm_unreachable("Unknown mismatch!");
215}
216
217/// getCopyFromPartsVector - Create a value that contains the specified legal
218/// parts combined into the value they represent.  If the parts combine to a
219/// type larger then ValueVT then AssertOp can be used to specify whether the
220/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
221/// ValueVT (ISD::AssertSext).
222static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
223                                      const SDValue *Parts, unsigned NumParts,
224                                      MVT PartVT, EVT ValueVT, const Value *V) {
225  assert(ValueVT.isVector() && "Not a vector value");
226  assert(NumParts > 0 && "No parts to assemble!");
227  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
228  SDValue Val = Parts[0];
229
230  // Handle a multi-element vector.
231  if (NumParts > 1) {
232    EVT IntermediateVT;
233    MVT RegisterVT;
234    unsigned NumIntermediates;
235    unsigned NumRegs =
236    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
237                               NumIntermediates, RegisterVT);
238    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
239    NumParts = NumRegs; // Silence a compiler warning.
240    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
241    assert(RegisterVT == Parts[0].getSimpleValueType() &&
242           "Part type doesn't match part!");
243
244    // Assemble the parts into intermediate operands.
245    SmallVector<SDValue, 8> Ops(NumIntermediates);
246    if (NumIntermediates == NumParts) {
247      // If the register was not expanded, truncate or copy the value,
248      // as appropriate.
249      for (unsigned i = 0; i != NumParts; ++i)
250        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
251                                  PartVT, IntermediateVT, V);
252    } else if (NumParts > 0) {
253      // If the intermediate type was expanded, build the intermediate
254      // operands from the parts.
255      assert(NumParts % NumIntermediates == 0 &&
256             "Must expand into a divisible number of parts!");
257      unsigned Factor = NumParts / NumIntermediates;
258      for (unsigned i = 0; i != NumIntermediates; ++i)
259        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
260                                  PartVT, IntermediateVT, V);
261    }
262
263    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
264    // intermediate operands.
265    Val = DAG.getNode(IntermediateVT.isVector() ?
266                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
267                      ValueVT, &Ops[0], NumIntermediates);
268  }
269
270  // There is now one part, held in Val.  Correct it to match ValueVT.
271  EVT PartEVT = Val.getValueType();
272
273  if (PartEVT == ValueVT)
274    return Val;
275
276  if (PartEVT.isVector()) {
277    // If the element type of the source/dest vectors are the same, but the
278    // parts vector has more elements than the value vector, then we have a
279    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
280    // elements we want.
281    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
282      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
283             "Cannot narrow, it would be a lossy transformation");
284      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
285                         DAG.getConstant(0, TLI.getVectorIdxTy()));
286    }
287
288    // Vector/Vector bitcast.
289    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
290      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
291
292    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
293      "Cannot handle this kind of promotion");
294    // Promoted vector extract
295    bool Smaller = ValueVT.bitsLE(PartEVT);
296    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
297                       DL, ValueVT, Val);
298
299  }
300
301  // Trivial bitcast if the types are the same size and the destination
302  // vector type is legal.
303  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
304      TLI.isTypeLegal(ValueVT))
305    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307  // Handle cases such as i8 -> <1 x i1>
308  if (ValueVT.getVectorNumElements() != 1) {
309    LLVMContext &Ctx = *DAG.getContext();
310    Twine ErrMsg("non-trivial scalar-to-vector conversion");
311    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
312      if (const CallInst *CI = dyn_cast<CallInst>(I))
313        if (isa<InlineAsm>(CI->getCalledValue()))
314          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
315      Ctx.emitError(I, ErrMsg);
316    } else {
317      Ctx.emitError(ErrMsg);
318    }
319    return DAG.getUNDEF(ValueVT);
320  }
321
322  if (ValueVT.getVectorNumElements() == 1 &&
323      ValueVT.getVectorElementType() != PartEVT) {
324    bool Smaller = ValueVT.bitsLE(PartEVT);
325    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
326                       DL, ValueVT.getScalarType(), Val);
327  }
328
329  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
330}
331
332static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
333                                 SDValue Val, SDValue *Parts, unsigned NumParts,
334                                 MVT PartVT, const Value *V);
335
336/// getCopyToParts - Create a series of nodes that contain the specified value
337/// split into legal parts.  If the parts contain more bits than Val, then, for
338/// integers, ExtendKind can be used to specify how to generate the extra bits.
339static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
340                           SDValue Val, SDValue *Parts, unsigned NumParts,
341                           MVT PartVT, const Value *V,
342                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
343  EVT ValueVT = Val.getValueType();
344
345  // Handle the vector case separately.
346  if (ValueVT.isVector())
347    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
348
349  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350  unsigned PartBits = PartVT.getSizeInBits();
351  unsigned OrigNumParts = NumParts;
352  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
353
354  if (NumParts == 0)
355    return;
356
357  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
358  EVT PartEVT = PartVT;
359  if (PartEVT == ValueVT) {
360    assert(NumParts == 1 && "No-op copy with multiple parts!");
361    Parts[0] = Val;
362    return;
363  }
364
365  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
366    // If the parts cover more bits than the value has, promote the value.
367    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
368      assert(NumParts == 1 && "Do not know what to promote to!");
369      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
370    } else {
371      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
372             ValueVT.isInteger() &&
373             "Unknown mismatch!");
374      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
375      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
376      if (PartVT == MVT::x86mmx)
377        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
378    }
379  } else if (PartBits == ValueVT.getSizeInBits()) {
380    // Different types of the same size.
381    assert(NumParts == 1 && PartEVT != ValueVT);
382    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
383  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
384    // If the parts cover less bits than value has, truncate the value.
385    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
386           ValueVT.isInteger() &&
387           "Unknown mismatch!");
388    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
389    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
390    if (PartVT == MVT::x86mmx)
391      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
392  }
393
394  // The value may have changed - recompute ValueVT.
395  ValueVT = Val.getValueType();
396  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
397         "Failed to tile the value with PartVT!");
398
399  if (NumParts == 1) {
400    if (PartEVT != ValueVT) {
401      LLVMContext &Ctx = *DAG.getContext();
402      Twine ErrMsg("scalar-to-vector conversion failed");
403      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
404        if (const CallInst *CI = dyn_cast<CallInst>(I))
405          if (isa<InlineAsm>(CI->getCalledValue()))
406            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
407        Ctx.emitError(I, ErrMsg);
408      } else {
409        Ctx.emitError(ErrMsg);
410      }
411    }
412
413    Parts[0] = Val;
414    return;
415  }
416
417  // Expand the value into multiple parts.
418  if (NumParts & (NumParts - 1)) {
419    // The number of parts is not a power of 2.  Split off and copy the tail.
420    assert(PartVT.isInteger() && ValueVT.isInteger() &&
421           "Do not know what to expand to!");
422    unsigned RoundParts = 1 << Log2_32(NumParts);
423    unsigned RoundBits = RoundParts * PartBits;
424    unsigned OddParts = NumParts - RoundParts;
425    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
426                                 DAG.getIntPtrConstant(RoundBits));
427    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
428
429    if (TLI.isBigEndian())
430      // The odd parts were reversed by getCopyToParts - unreverse them.
431      std::reverse(Parts + RoundParts, Parts + NumParts);
432
433    NumParts = RoundParts;
434    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
435    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
436  }
437
438  // The number of parts is a power of 2.  Repeatedly bisect the value using
439  // EXTRACT_ELEMENT.
440  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
441                         EVT::getIntegerVT(*DAG.getContext(),
442                                           ValueVT.getSizeInBits()),
443                         Val);
444
445  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
446    for (unsigned i = 0; i < NumParts; i += StepSize) {
447      unsigned ThisBits = StepSize * PartBits / 2;
448      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
449      SDValue &Part0 = Parts[i];
450      SDValue &Part1 = Parts[i+StepSize/2];
451
452      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(1));
454      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455                          ThisVT, Part0, DAG.getIntPtrConstant(0));
456
457      if (ThisBits == PartBits && ThisVT != PartVT) {
458        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
459        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
460      }
461    }
462  }
463
464  if (TLI.isBigEndian())
465    std::reverse(Parts, Parts + OrigNumParts);
466}
467
468
469/// getCopyToPartsVector - Create a series of nodes that contain the specified
470/// value split into legal parts.
471static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
472                                 SDValue Val, SDValue *Parts, unsigned NumParts,
473                                 MVT PartVT, const Value *V) {
474  EVT ValueVT = Val.getValueType();
475  assert(ValueVT.isVector() && "Not a vector");
476  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
477
478  if (NumParts == 1) {
479    EVT PartEVT = PartVT;
480    if (PartEVT == ValueVT) {
481      // Nothing to do.
482    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
483      // Bitconvert vector->vector case.
484      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
485    } else if (PartVT.isVector() &&
486               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
487               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
488      EVT ElementVT = PartVT.getVectorElementType();
489      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
490      // undef elements.
491      SmallVector<SDValue, 16> Ops;
492      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
493        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
494                                  ElementVT, Val, DAG.getConstant(i,
495                                                  TLI.getVectorIdxTy())));
496
497      for (unsigned i = ValueVT.getVectorNumElements(),
498           e = PartVT.getVectorNumElements(); i != e; ++i)
499        Ops.push_back(DAG.getUNDEF(ElementVT));
500
501      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
502
503      // FIXME: Use CONCAT for 2x -> 4x.
504
505      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
506      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
507    } else if (PartVT.isVector() &&
508               PartEVT.getVectorElementType().bitsGE(
509                 ValueVT.getVectorElementType()) &&
510               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
511
512      // Promoted vector extract
513      bool Smaller = PartEVT.bitsLE(ValueVT);
514      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
515                        DL, PartVT, Val);
516    } else{
517      // Vector -> scalar conversion.
518      assert(ValueVT.getVectorNumElements() == 1 &&
519             "Only trivial vector-to-scalar conversions should get here!");
520      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
521                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
522
523      bool Smaller = ValueVT.bitsLE(PartVT);
524      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
525                         DL, PartVT, Val);
526    }
527
528    Parts[0] = Val;
529    return;
530  }
531
532  // Handle a multi-element vector.
533  EVT IntermediateVT;
534  MVT RegisterVT;
535  unsigned NumIntermediates;
536  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
537                                                IntermediateVT,
538                                                NumIntermediates, RegisterVT);
539  unsigned NumElements = ValueVT.getVectorNumElements();
540
541  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
542  NumParts = NumRegs; // Silence a compiler warning.
543  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
544
545  // Split the vector into intermediate operands.
546  SmallVector<SDValue, 8> Ops(NumIntermediates);
547  for (unsigned i = 0; i != NumIntermediates; ++i) {
548    if (IntermediateVT.isVector())
549      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
550                           IntermediateVT, Val,
551                   DAG.getConstant(i * (NumElements / NumIntermediates),
552                                   TLI.getVectorIdxTy()));
553    else
554      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
555                           IntermediateVT, Val,
556                           DAG.getConstant(i, TLI.getVectorIdxTy()));
557  }
558
559  // Split the intermediate operands into legal parts.
560  if (NumParts == NumIntermediates) {
561    // If the register was not expanded, promote or copy the value,
562    // as appropriate.
563    for (unsigned i = 0; i != NumParts; ++i)
564      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
565  } else if (NumParts > 0) {
566    // If the intermediate type was expanded, split each the value into
567    // legal parts.
568    assert(NumParts % NumIntermediates == 0 &&
569           "Must expand into a divisible number of parts!");
570    unsigned Factor = NumParts / NumIntermediates;
571    for (unsigned i = 0; i != NumIntermediates; ++i)
572      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
573  }
574}
575
576namespace {
577  /// RegsForValue - This struct represents the registers (physical or virtual)
578  /// that a particular set of values is assigned, and the type information
579  /// about the value. The most common situation is to represent one value at a
580  /// time, but struct or array values are handled element-wise as multiple
581  /// values.  The splitting of aggregates is performed recursively, so that we
582  /// never have aggregate-typed registers. The values at this point do not
583  /// necessarily have legal types, so each value may require one or more
584  /// registers of some legal type.
585  ///
586  struct RegsForValue {
587    /// ValueVTs - The value types of the values, which may not be legal, and
588    /// may need be promoted or synthesized from one or more registers.
589    ///
590    SmallVector<EVT, 4> ValueVTs;
591
592    /// RegVTs - The value types of the registers. This is the same size as
593    /// ValueVTs and it records, for each value, what the type of the assigned
594    /// register or registers are. (Individual values are never synthesized
595    /// from more than one type of register.)
596    ///
597    /// With virtual registers, the contents of RegVTs is redundant with TLI's
598    /// getRegisterType member function, however when with physical registers
599    /// it is necessary to have a separate record of the types.
600    ///
601    SmallVector<MVT, 4> RegVTs;
602
603    /// Regs - This list holds the registers assigned to the values.
604    /// Each legal or promoted value requires one register, and each
605    /// expanded value requires multiple registers.
606    ///
607    SmallVector<unsigned, 4> Regs;
608
609    RegsForValue() {}
610
611    RegsForValue(const SmallVector<unsigned, 4> &regs,
612                 MVT regvt, EVT valuevt)
613      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
614
615    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
616                 unsigned Reg, Type *Ty) {
617      ComputeValueVTs(tli, Ty, ValueVTs);
618
619      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
620        EVT ValueVT = ValueVTs[Value];
621        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
622        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
623        for (unsigned i = 0; i != NumRegs; ++i)
624          Regs.push_back(Reg + i);
625        RegVTs.push_back(RegisterVT);
626        Reg += NumRegs;
627      }
628    }
629
630    /// areValueTypesLegal - Return true if types of all the values are legal.
631    bool areValueTypesLegal(const TargetLowering &TLI) {
632      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
633        MVT RegisterVT = RegVTs[Value];
634        if (!TLI.isTypeLegal(RegisterVT))
635          return false;
636      }
637      return true;
638    }
639
640    /// append - Add the specified values to this one.
641    void append(const RegsForValue &RHS) {
642      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
643      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
644      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
645    }
646
647    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
648    /// this value and returns the result as a ValueVTs value.  This uses
649    /// Chain/Flag as the input and updates them for the output Chain/Flag.
650    /// If the Flag pointer is NULL, no flag is used.
651    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
652                            SDLoc dl,
653                            SDValue &Chain, SDValue *Flag,
654                            const Value *V = 0) const;
655
656    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
657    /// specified value into the registers specified by this object.  This uses
658    /// Chain/Flag as the input and updates them for the output Chain/Flag.
659    /// If the Flag pointer is NULL, no flag is used.
660    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
661                       SDValue &Chain, SDValue *Flag, const Value *V) const;
662
663    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
664    /// operand list.  This adds the code marker, matching input operand index
665    /// (if applicable), and includes the number of values added into it.
666    void AddInlineAsmOperands(unsigned Kind,
667                              bool HasMatching, unsigned MatchingIdx,
668                              SelectionDAG &DAG,
669                              std::vector<SDValue> &Ops) const;
670  };
671}
672
673/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
674/// this value and returns the result as a ValueVT value.  This uses
675/// Chain/Flag as the input and updates them for the output Chain/Flag.
676/// If the Flag pointer is NULL, no flag is used.
677SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
678                                      FunctionLoweringInfo &FuncInfo,
679                                      SDLoc dl,
680                                      SDValue &Chain, SDValue *Flag,
681                                      const Value *V) const {
682  // A Value with type {} or [0 x %t] needs no registers.
683  if (ValueVTs.empty())
684    return SDValue();
685
686  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
687
688  // Assemble the legal parts into the final values.
689  SmallVector<SDValue, 4> Values(ValueVTs.size());
690  SmallVector<SDValue, 8> Parts;
691  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
692    // Copy the legal parts from the registers.
693    EVT ValueVT = ValueVTs[Value];
694    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
695    MVT RegisterVT = RegVTs[Value];
696
697    Parts.resize(NumRegs);
698    for (unsigned i = 0; i != NumRegs; ++i) {
699      SDValue P;
700      if (Flag == 0) {
701        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
702      } else {
703        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
704        *Flag = P.getValue(2);
705      }
706
707      Chain = P.getValue(1);
708      Parts[i] = P;
709
710      // If the source register was virtual and if we know something about it,
711      // add an assert node.
712      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
713          !RegisterVT.isInteger() || RegisterVT.isVector())
714        continue;
715
716      const FunctionLoweringInfo::LiveOutInfo *LOI =
717        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
718      if (!LOI)
719        continue;
720
721      unsigned RegSize = RegisterVT.getSizeInBits();
722      unsigned NumSignBits = LOI->NumSignBits;
723      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
724
725      if (NumZeroBits == RegSize) {
726        // The current value is a zero.
727        // Explicitly express that as it would be easier for
728        // optimizations to kick in.
729        Parts[i] = DAG.getConstant(0, RegisterVT);
730        continue;
731      }
732
733      // FIXME: We capture more information than the dag can represent.  For
734      // now, just use the tightest assertzext/assertsext possible.
735      bool isSExt = true;
736      EVT FromVT(MVT::Other);
737      if (NumSignBits == RegSize)
738        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
739      else if (NumZeroBits >= RegSize-1)
740        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
741      else if (NumSignBits > RegSize-8)
742        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
743      else if (NumZeroBits >= RegSize-8)
744        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
745      else if (NumSignBits > RegSize-16)
746        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
747      else if (NumZeroBits >= RegSize-16)
748        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
749      else if (NumSignBits > RegSize-32)
750        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
751      else if (NumZeroBits >= RegSize-32)
752        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
753      else
754        continue;
755
756      // Add an assertion node.
757      assert(FromVT != MVT::Other);
758      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
759                             RegisterVT, P, DAG.getValueType(FromVT));
760    }
761
762    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
763                                     NumRegs, RegisterVT, ValueVT, V);
764    Part += NumRegs;
765    Parts.clear();
766  }
767
768  return DAG.getNode(ISD::MERGE_VALUES, dl,
769                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
770                     &Values[0], ValueVTs.size());
771}
772
773/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
774/// specified value into the registers specified by this object.  This uses
775/// Chain/Flag as the input and updates them for the output Chain/Flag.
776/// If the Flag pointer is NULL, no flag is used.
777void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
778                                 SDValue &Chain, SDValue *Flag,
779                                 const Value *V) const {
780  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
781
782  // Get the list of the values's legal parts.
783  unsigned NumRegs = Regs.size();
784  SmallVector<SDValue, 8> Parts(NumRegs);
785  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
786    EVT ValueVT = ValueVTs[Value];
787    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
788    MVT RegisterVT = RegVTs[Value];
789    ISD::NodeType ExtendKind =
790      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
791
792    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
793                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
794    Part += NumParts;
795  }
796
797  // Copy the parts into the registers.
798  SmallVector<SDValue, 8> Chains(NumRegs);
799  for (unsigned i = 0; i != NumRegs; ++i) {
800    SDValue Part;
801    if (Flag == 0) {
802      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
803    } else {
804      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
805      *Flag = Part.getValue(1);
806    }
807
808    Chains[i] = Part.getValue(0);
809  }
810
811  if (NumRegs == 1 || Flag)
812    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
813    // flagged to it. That is the CopyToReg nodes and the user are considered
814    // a single scheduling unit. If we create a TokenFactor and return it as
815    // chain, then the TokenFactor is both a predecessor (operand) of the
816    // user as well as a successor (the TF operands are flagged to the user).
817    // c1, f1 = CopyToReg
818    // c2, f2 = CopyToReg
819    // c3     = TokenFactor c1, c2
820    // ...
821    //        = op c3, ..., f2
822    Chain = Chains[NumRegs-1];
823  else
824    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
825}
826
827/// AddInlineAsmOperands - Add this value to the specified inlineasm node
828/// operand list.  This adds the code marker and includes the number of
829/// values added into it.
830void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
831                                        unsigned MatchingIdx,
832                                        SelectionDAG &DAG,
833                                        std::vector<SDValue> &Ops) const {
834  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
835
836  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
837  if (HasMatching)
838    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
839  else if (!Regs.empty() &&
840           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
841    // Put the register class of the virtual registers in the flag word.  That
842    // way, later passes can recompute register class constraints for inline
843    // assembly as well as normal instructions.
844    // Don't do this for tied operands that can use the regclass information
845    // from the def.
846    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
847    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
848    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
849  }
850
851  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
852  Ops.push_back(Res);
853
854  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
855    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
856    MVT RegisterVT = RegVTs[Value];
857    for (unsigned i = 0; i != NumRegs; ++i) {
858      assert(Reg < Regs.size() && "Mismatch in # registers expected");
859      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
860    }
861  }
862}
863
864void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
865                               const TargetLibraryInfo *li) {
866  AA = &aa;
867  GFI = gfi;
868  LibInfo = li;
869  TD = DAG.getTarget().getDataLayout();
870  Context = DAG.getContext();
871  LPadToCallSiteMap.clear();
872}
873
874/// clear - Clear out the current SelectionDAG and the associated
875/// state and prepare this SelectionDAGBuilder object to be used
876/// for a new block. This doesn't clear out information about
877/// additional blocks that are needed to complete switch lowering
878/// or PHI node updating; that information is cleared out as it is
879/// consumed.
880void SelectionDAGBuilder::clear() {
881  NodeMap.clear();
882  UnusedArgNodeMap.clear();
883  PendingLoads.clear();
884  PendingExports.clear();
885  CurInst = NULL;
886  HasTailCall = false;
887}
888
889/// clearDanglingDebugInfo - Clear the dangling debug information
890/// map. This function is separated from the clear so that debug
891/// information that is dangling in a basic block can be properly
892/// resolved in a different basic block. This allows the
893/// SelectionDAG to resolve dangling debug information attached
894/// to PHI nodes.
895void SelectionDAGBuilder::clearDanglingDebugInfo() {
896  DanglingDebugInfoMap.clear();
897}
898
899/// getRoot - Return the current virtual root of the Selection DAG,
900/// flushing any PendingLoad items. This must be done before emitting
901/// a store or any other node that may need to be ordered after any
902/// prior load instructions.
903///
904SDValue SelectionDAGBuilder::getRoot() {
905  if (PendingLoads.empty())
906    return DAG.getRoot();
907
908  if (PendingLoads.size() == 1) {
909    SDValue Root = PendingLoads[0];
910    DAG.setRoot(Root);
911    PendingLoads.clear();
912    return Root;
913  }
914
915  // Otherwise, we have to make a token factor node.
916  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
917                               &PendingLoads[0], PendingLoads.size());
918  PendingLoads.clear();
919  DAG.setRoot(Root);
920  return Root;
921}
922
923/// getControlRoot - Similar to getRoot, but instead of flushing all the
924/// PendingLoad items, flush all the PendingExports items. It is necessary
925/// to do this before emitting a terminator instruction.
926///
927SDValue SelectionDAGBuilder::getControlRoot() {
928  SDValue Root = DAG.getRoot();
929
930  if (PendingExports.empty())
931    return Root;
932
933  // Turn all of the CopyToReg chains into one factored node.
934  if (Root.getOpcode() != ISD::EntryToken) {
935    unsigned i = 0, e = PendingExports.size();
936    for (; i != e; ++i) {
937      assert(PendingExports[i].getNode()->getNumOperands() > 1);
938      if (PendingExports[i].getNode()->getOperand(0) == Root)
939        break;  // Don't add the root if we already indirectly depend on it.
940    }
941
942    if (i == e)
943      PendingExports.push_back(Root);
944  }
945
946  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
947                     &PendingExports[0],
948                     PendingExports.size());
949  PendingExports.clear();
950  DAG.setRoot(Root);
951  return Root;
952}
953
954void SelectionDAGBuilder::visit(const Instruction &I) {
955  // Set up outgoing PHI node register values before emitting the terminator.
956  if (isa<TerminatorInst>(&I))
957    HandlePHINodesInSuccessorBlocks(I.getParent());
958
959  ++SDNodeOrder;
960
961  CurInst = &I;
962
963  visit(I.getOpcode(), I);
964
965  if (!isa<TerminatorInst>(&I) && !HasTailCall)
966    CopyToExportRegsIfNeeded(&I);
967
968  CurInst = NULL;
969}
970
971void SelectionDAGBuilder::visitPHI(const PHINode &) {
972  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
973}
974
975void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
976  // Note: this doesn't use InstVisitor, because it has to work with
977  // ConstantExpr's in addition to instructions.
978  switch (Opcode) {
979  default: llvm_unreachable("Unknown instruction type encountered!");
980    // Build the switch statement using the Instruction.def file.
981#define HANDLE_INST(NUM, OPCODE, CLASS) \
982    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
983#include "llvm/IR/Instruction.def"
984  }
985}
986
987// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
988// generate the debug data structures now that we've seen its definition.
989void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
990                                                   SDValue Val) {
991  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
992  if (DDI.getDI()) {
993    const DbgValueInst *DI = DDI.getDI();
994    DebugLoc dl = DDI.getdl();
995    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
996    MDNode *Variable = DI->getVariable();
997    uint64_t Offset = DI->getOffset();
998    SDDbgValue *SDV;
999    if (Val.getNode()) {
1000      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1001        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1002                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1003        DAG.AddDbgValue(SDV, Val.getNode(), false);
1004      }
1005    } else
1006      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1007    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1008  }
1009}
1010
1011/// getValue - Return an SDValue for the given Value.
1012SDValue SelectionDAGBuilder::getValue(const Value *V) {
1013  // If we already have an SDValue for this value, use it. It's important
1014  // to do this first, so that we don't create a CopyFromReg if we already
1015  // have a regular SDValue.
1016  SDValue &N = NodeMap[V];
1017  if (N.getNode()) return N;
1018
1019  // If there's a virtual register allocated and initialized for this
1020  // value, use it.
1021  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1022  if (It != FuncInfo.ValueMap.end()) {
1023    unsigned InReg = It->second;
1024    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1025                     InReg, V->getType());
1026    SDValue Chain = DAG.getEntryNode();
1027    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1028    resolveDanglingDebugInfo(V, N);
1029    return N;
1030  }
1031
1032  // Otherwise create a new SDValue and remember it.
1033  SDValue Val = getValueImpl(V);
1034  NodeMap[V] = Val;
1035  resolveDanglingDebugInfo(V, Val);
1036  return Val;
1037}
1038
1039/// getNonRegisterValue - Return an SDValue for the given Value, but
1040/// don't look in FuncInfo.ValueMap for a virtual register.
1041SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042  // If we already have an SDValue for this value, use it.
1043  SDValue &N = NodeMap[V];
1044  if (N.getNode()) return N;
1045
1046  // Otherwise create a new SDValue and remember it.
1047  SDValue Val = getValueImpl(V);
1048  NodeMap[V] = Val;
1049  resolveDanglingDebugInfo(V, Val);
1050  return Val;
1051}
1052
1053/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1054/// Create an SDValue for the given value.
1055SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1056  const TargetLowering *TLI = TM.getTargetLowering();
1057
1058  if (const Constant *C = dyn_cast<Constant>(V)) {
1059    EVT VT = TLI->getValueType(V->getType(), true);
1060
1061    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1062      return DAG.getConstant(*CI, VT);
1063
1064    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1065      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1066
1067    if (isa<ConstantPointerNull>(C))
1068      return DAG.getConstant(0, TLI->getPointerTy());
1069
1070    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1071      return DAG.getConstantFP(*CFP, VT);
1072
1073    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1074      return DAG.getUNDEF(VT);
1075
1076    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1077      visit(CE->getOpcode(), *CE);
1078      SDValue N1 = NodeMap[V];
1079      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1080      return N1;
1081    }
1082
1083    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1084      SmallVector<SDValue, 4> Constants;
1085      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1086           OI != OE; ++OI) {
1087        SDNode *Val = getValue(*OI).getNode();
1088        // If the operand is an empty aggregate, there are no values.
1089        if (!Val) continue;
1090        // Add each leaf value from the operand to the Constants list
1091        // to form a flattened list of all the values.
1092        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1093          Constants.push_back(SDValue(Val, i));
1094      }
1095
1096      return DAG.getMergeValues(&Constants[0], Constants.size(),
1097                                getCurSDLoc());
1098    }
1099
1100    if (const ConstantDataSequential *CDS =
1101          dyn_cast<ConstantDataSequential>(C)) {
1102      SmallVector<SDValue, 4> Ops;
1103      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1104        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1105        // Add each leaf value from the operand to the Constants list
1106        // to form a flattened list of all the values.
1107        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1108          Ops.push_back(SDValue(Val, i));
1109      }
1110
1111      if (isa<ArrayType>(CDS->getType()))
1112        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1113      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1114                                      VT, &Ops[0], Ops.size());
1115    }
1116
1117    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1118      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1119             "Unknown struct or array constant!");
1120
1121      SmallVector<EVT, 4> ValueVTs;
1122      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1123      unsigned NumElts = ValueVTs.size();
1124      if (NumElts == 0)
1125        return SDValue(); // empty struct
1126      SmallVector<SDValue, 4> Constants(NumElts);
1127      for (unsigned i = 0; i != NumElts; ++i) {
1128        EVT EltVT = ValueVTs[i];
1129        if (isa<UndefValue>(C))
1130          Constants[i] = DAG.getUNDEF(EltVT);
1131        else if (EltVT.isFloatingPoint())
1132          Constants[i] = DAG.getConstantFP(0, EltVT);
1133        else
1134          Constants[i] = DAG.getConstant(0, EltVT);
1135      }
1136
1137      return DAG.getMergeValues(&Constants[0], NumElts,
1138                                getCurSDLoc());
1139    }
1140
1141    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1142      return DAG.getBlockAddress(BA, VT);
1143
1144    VectorType *VecTy = cast<VectorType>(V->getType());
1145    unsigned NumElements = VecTy->getNumElements();
1146
1147    // Now that we know the number and type of the elements, get that number of
1148    // elements into the Ops array based on what kind of constant it is.
1149    SmallVector<SDValue, 16> Ops;
1150    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1151      for (unsigned i = 0; i != NumElements; ++i)
1152        Ops.push_back(getValue(CV->getOperand(i)));
1153    } else {
1154      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1155      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1156
1157      SDValue Op;
1158      if (EltVT.isFloatingPoint())
1159        Op = DAG.getConstantFP(0, EltVT);
1160      else
1161        Op = DAG.getConstant(0, EltVT);
1162      Ops.assign(NumElements, Op);
1163    }
1164
1165    // Create a BUILD_VECTOR node.
1166    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1167                                    VT, &Ops[0], Ops.size());
1168  }
1169
1170  // If this is a static alloca, generate it as the frameindex instead of
1171  // computation.
1172  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1173    DenseMap<const AllocaInst*, int>::iterator SI =
1174      FuncInfo.StaticAllocaMap.find(AI);
1175    if (SI != FuncInfo.StaticAllocaMap.end())
1176      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1177  }
1178
1179  // If this is an instruction which fast-isel has deferred, select it now.
1180  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1181    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1182    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1183    SDValue Chain = DAG.getEntryNode();
1184    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1185  }
1186
1187  llvm_unreachable("Can't get register for value!");
1188}
1189
1190void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1191  const TargetLowering *TLI = TM.getTargetLowering();
1192  SDValue Chain = getControlRoot();
1193  SmallVector<ISD::OutputArg, 8> Outs;
1194  SmallVector<SDValue, 8> OutVals;
1195
1196  if (!FuncInfo.CanLowerReturn) {
1197    unsigned DemoteReg = FuncInfo.DemoteRegister;
1198    const Function *F = I.getParent()->getParent();
1199
1200    // Emit a store of the return value through the virtual register.
1201    // Leave Outs empty so that LowerReturn won't try to load return
1202    // registers the usual way.
1203    SmallVector<EVT, 1> PtrValueVTs;
1204    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1205                    PtrValueVTs);
1206
1207    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1208    SDValue RetOp = getValue(I.getOperand(0));
1209
1210    SmallVector<EVT, 4> ValueVTs;
1211    SmallVector<uint64_t, 4> Offsets;
1212    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1213    unsigned NumValues = ValueVTs.size();
1214
1215    SmallVector<SDValue, 4> Chains(NumValues);
1216    for (unsigned i = 0; i != NumValues; ++i) {
1217      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1218                                RetPtr.getValueType(), RetPtr,
1219                                DAG.getIntPtrConstant(Offsets[i]));
1220      Chains[i] =
1221        DAG.getStore(Chain, getCurSDLoc(),
1222                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1223                     // FIXME: better loc info would be nice.
1224                     Add, MachinePointerInfo(), false, false, 0);
1225    }
1226
1227    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1228                        MVT::Other, &Chains[0], NumValues);
1229  } else if (I.getNumOperands() != 0) {
1230    SmallVector<EVT, 4> ValueVTs;
1231    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1232    unsigned NumValues = ValueVTs.size();
1233    if (NumValues) {
1234      SDValue RetOp = getValue(I.getOperand(0));
1235      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1236        EVT VT = ValueVTs[j];
1237
1238        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1239
1240        const Function *F = I.getParent()->getParent();
1241        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1242                                            Attribute::SExt))
1243          ExtendKind = ISD::SIGN_EXTEND;
1244        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1245                                                 Attribute::ZExt))
1246          ExtendKind = ISD::ZERO_EXTEND;
1247
1248        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1249          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1250
1251        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1252        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1253        SmallVector<SDValue, 4> Parts(NumParts);
1254        getCopyToParts(DAG, getCurSDLoc(),
1255                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1256                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1257
1258        // 'inreg' on function refers to return value
1259        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1260        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1261                                            Attribute::InReg))
1262          Flags.setInReg();
1263
1264        // Propagate extension type if any
1265        if (ExtendKind == ISD::SIGN_EXTEND)
1266          Flags.setSExt();
1267        else if (ExtendKind == ISD::ZERO_EXTEND)
1268          Flags.setZExt();
1269
1270        for (unsigned i = 0; i < NumParts; ++i) {
1271          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1272                                        VT, /*isfixed=*/true, 0, 0));
1273          OutVals.push_back(Parts[i]);
1274        }
1275      }
1276    }
1277  }
1278
1279  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1280  CallingConv::ID CallConv =
1281    DAG.getMachineFunction().getFunction()->getCallingConv();
1282  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1283                                              Outs, OutVals, getCurSDLoc(),
1284                                              DAG);
1285
1286  // Verify that the target's LowerReturn behaved as expected.
1287  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1288         "LowerReturn didn't return a valid chain!");
1289
1290  // Update the DAG with the new chain value resulting from return lowering.
1291  DAG.setRoot(Chain);
1292}
1293
1294/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1295/// created for it, emit nodes to copy the value into the virtual
1296/// registers.
1297void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1298  // Skip empty types
1299  if (V->getType()->isEmptyTy())
1300    return;
1301
1302  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1303  if (VMI != FuncInfo.ValueMap.end()) {
1304    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1305    CopyValueToVirtualRegister(V, VMI->second);
1306  }
1307}
1308
1309/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1310/// the current basic block, add it to ValueMap now so that we'll get a
1311/// CopyTo/FromReg.
1312void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1313  // No need to export constants.
1314  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1315
1316  // Already exported?
1317  if (FuncInfo.isExportedInst(V)) return;
1318
1319  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1320  CopyValueToVirtualRegister(V, Reg);
1321}
1322
1323bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1324                                                     const BasicBlock *FromBB) {
1325  // The operands of the setcc have to be in this block.  We don't know
1326  // how to export them from some other block.
1327  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1328    // Can export from current BB.
1329    if (VI->getParent() == FromBB)
1330      return true;
1331
1332    // Is already exported, noop.
1333    return FuncInfo.isExportedInst(V);
1334  }
1335
1336  // If this is an argument, we can export it if the BB is the entry block or
1337  // if it is already exported.
1338  if (isa<Argument>(V)) {
1339    if (FromBB == &FromBB->getParent()->getEntryBlock())
1340      return true;
1341
1342    // Otherwise, can only export this if it is already exported.
1343    return FuncInfo.isExportedInst(V);
1344  }
1345
1346  // Otherwise, constants can always be exported.
1347  return true;
1348}
1349
1350/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1351uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1352                                            const MachineBasicBlock *Dst) const {
1353  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1354  if (!BPI)
1355    return 0;
1356  const BasicBlock *SrcBB = Src->getBasicBlock();
1357  const BasicBlock *DstBB = Dst->getBasicBlock();
1358  return BPI->getEdgeWeight(SrcBB, DstBB);
1359}
1360
1361void SelectionDAGBuilder::
1362addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1363                       uint32_t Weight /* = 0 */) {
1364  if (!Weight)
1365    Weight = getEdgeWeight(Src, Dst);
1366  Src->addSuccessor(Dst, Weight);
1367}
1368
1369
1370static bool InBlock(const Value *V, const BasicBlock *BB) {
1371  if (const Instruction *I = dyn_cast<Instruction>(V))
1372    return I->getParent() == BB;
1373  return true;
1374}
1375
1376/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1377/// This function emits a branch and is used at the leaves of an OR or an
1378/// AND operator tree.
1379///
1380void
1381SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1382                                                  MachineBasicBlock *TBB,
1383                                                  MachineBasicBlock *FBB,
1384                                                  MachineBasicBlock *CurBB,
1385                                                  MachineBasicBlock *SwitchBB) {
1386  const BasicBlock *BB = CurBB->getBasicBlock();
1387
1388  // If the leaf of the tree is a comparison, merge the condition into
1389  // the caseblock.
1390  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1391    // The operands of the cmp have to be in this block.  We don't know
1392    // how to export them from some other block.  If this is the first block
1393    // of the sequence, no exporting is needed.
1394    if (CurBB == SwitchBB ||
1395        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1396         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1397      ISD::CondCode Condition;
1398      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1399        Condition = getICmpCondCode(IC->getPredicate());
1400      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1401        Condition = getFCmpCondCode(FC->getPredicate());
1402        if (TM.Options.NoNaNsFPMath)
1403          Condition = getFCmpCodeWithoutNaN(Condition);
1404      } else {
1405        Condition = ISD::SETEQ; // silence warning.
1406        llvm_unreachable("Unknown compare instruction");
1407      }
1408
1409      CaseBlock CB(Condition, BOp->getOperand(0),
1410                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1411      SwitchCases.push_back(CB);
1412      return;
1413    }
1414  }
1415
1416  // Create a CaseBlock record representing this branch.
1417  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1418               NULL, TBB, FBB, CurBB);
1419  SwitchCases.push_back(CB);
1420}
1421
1422/// FindMergedConditions - If Cond is an expression like
1423void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1424                                               MachineBasicBlock *TBB,
1425                                               MachineBasicBlock *FBB,
1426                                               MachineBasicBlock *CurBB,
1427                                               MachineBasicBlock *SwitchBB,
1428                                               unsigned Opc) {
1429  // If this node is not part of the or/and tree, emit it as a branch.
1430  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1431  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1432      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1433      BOp->getParent() != CurBB->getBasicBlock() ||
1434      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1435      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1436    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1437    return;
1438  }
1439
1440  //  Create TmpBB after CurBB.
1441  MachineFunction::iterator BBI = CurBB;
1442  MachineFunction &MF = DAG.getMachineFunction();
1443  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1444  CurBB->getParent()->insert(++BBI, TmpBB);
1445
1446  if (Opc == Instruction::Or) {
1447    // Codegen X | Y as:
1448    //   jmp_if_X TBB
1449    //   jmp TmpBB
1450    // TmpBB:
1451    //   jmp_if_Y TBB
1452    //   jmp FBB
1453    //
1454
1455    // Emit the LHS condition.
1456    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1457
1458    // Emit the RHS condition into TmpBB.
1459    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1460  } else {
1461    assert(Opc == Instruction::And && "Unknown merge op!");
1462    // Codegen X & Y as:
1463    //   jmp_if_X TmpBB
1464    //   jmp FBB
1465    // TmpBB:
1466    //   jmp_if_Y TBB
1467    //   jmp FBB
1468    //
1469    //  This requires creation of TmpBB after CurBB.
1470
1471    // Emit the LHS condition.
1472    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1473
1474    // Emit the RHS condition into TmpBB.
1475    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1476  }
1477}
1478
1479/// If the set of cases should be emitted as a series of branches, return true.
1480/// If we should emit this as a bunch of and/or'd together conditions, return
1481/// false.
1482bool
1483SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1484  if (Cases.size() != 2) return true;
1485
1486  // If this is two comparisons of the same values or'd or and'd together, they
1487  // will get folded into a single comparison, so don't emit two blocks.
1488  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1489       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1490      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1491       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1492    return false;
1493  }
1494
1495  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1496  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1497  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1498      Cases[0].CC == Cases[1].CC &&
1499      isa<Constant>(Cases[0].CmpRHS) &&
1500      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1501    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1502      return false;
1503    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1504      return false;
1505  }
1506
1507  return true;
1508}
1509
1510void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1511  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1512
1513  // Update machine-CFG edges.
1514  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1515
1516  // Figure out which block is immediately after the current one.
1517  MachineBasicBlock *NextBlock = 0;
1518  MachineFunction::iterator BBI = BrMBB;
1519  if (++BBI != FuncInfo.MF->end())
1520    NextBlock = BBI;
1521
1522  if (I.isUnconditional()) {
1523    // Update machine-CFG edges.
1524    BrMBB->addSuccessor(Succ0MBB);
1525
1526    // If this is not a fall-through branch, emit the branch.
1527    if (Succ0MBB != NextBlock)
1528      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1529                              MVT::Other, getControlRoot(),
1530                              DAG.getBasicBlock(Succ0MBB)));
1531
1532    return;
1533  }
1534
1535  // If this condition is one of the special cases we handle, do special stuff
1536  // now.
1537  const Value *CondVal = I.getCondition();
1538  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1539
1540  // If this is a series of conditions that are or'd or and'd together, emit
1541  // this as a sequence of branches instead of setcc's with and/or operations.
1542  // As long as jumps are not expensive, this should improve performance.
1543  // For example, instead of something like:
1544  //     cmp A, B
1545  //     C = seteq
1546  //     cmp D, E
1547  //     F = setle
1548  //     or C, F
1549  //     jnz foo
1550  // Emit:
1551  //     cmp A, B
1552  //     je foo
1553  //     cmp D, E
1554  //     jle foo
1555  //
1556  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1557    if (!TM.getTargetLowering()->isJumpExpensive() &&
1558        BOp->hasOneUse() &&
1559        (BOp->getOpcode() == Instruction::And ||
1560         BOp->getOpcode() == Instruction::Or)) {
1561      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1562                           BOp->getOpcode());
1563      // If the compares in later blocks need to use values not currently
1564      // exported from this block, export them now.  This block should always
1565      // be the first entry.
1566      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1567
1568      // Allow some cases to be rejected.
1569      if (ShouldEmitAsBranches(SwitchCases)) {
1570        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1571          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1572          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1573        }
1574
1575        // Emit the branch for this block.
1576        visitSwitchCase(SwitchCases[0], BrMBB);
1577        SwitchCases.erase(SwitchCases.begin());
1578        return;
1579      }
1580
1581      // Okay, we decided not to do this, remove any inserted MBB's and clear
1582      // SwitchCases.
1583      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1584        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1585
1586      SwitchCases.clear();
1587    }
1588  }
1589
1590  // Create a CaseBlock record representing this branch.
1591  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1592               NULL, Succ0MBB, Succ1MBB, BrMBB);
1593
1594  // Use visitSwitchCase to actually insert the fast branch sequence for this
1595  // cond branch.
1596  visitSwitchCase(CB, BrMBB);
1597}
1598
1599/// visitSwitchCase - Emits the necessary code to represent a single node in
1600/// the binary search tree resulting from lowering a switch instruction.
1601void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1602                                          MachineBasicBlock *SwitchBB) {
1603  SDValue Cond;
1604  SDValue CondLHS = getValue(CB.CmpLHS);
1605  SDLoc dl = getCurSDLoc();
1606
1607  // Build the setcc now.
1608  if (CB.CmpMHS == NULL) {
1609    // Fold "(X == true)" to X and "(X == false)" to !X to
1610    // handle common cases produced by branch lowering.
1611    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1612        CB.CC == ISD::SETEQ)
1613      Cond = CondLHS;
1614    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1615             CB.CC == ISD::SETEQ) {
1616      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1617      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1618    } else
1619      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1620  } else {
1621    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1622
1623    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1624    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1625
1626    SDValue CmpOp = getValue(CB.CmpMHS);
1627    EVT VT = CmpOp.getValueType();
1628
1629    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1630      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1631                          ISD::SETLE);
1632    } else {
1633      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1634                                VT, CmpOp, DAG.getConstant(Low, VT));
1635      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1636                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1637    }
1638  }
1639
1640  // Update successor info
1641  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1642  // TrueBB and FalseBB are always different unless the incoming IR is
1643  // degenerate. This only happens when running llc on weird IR.
1644  if (CB.TrueBB != CB.FalseBB)
1645    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1646
1647  // Set NextBlock to be the MBB immediately after the current one, if any.
1648  // This is used to avoid emitting unnecessary branches to the next block.
1649  MachineBasicBlock *NextBlock = 0;
1650  MachineFunction::iterator BBI = SwitchBB;
1651  if (++BBI != FuncInfo.MF->end())
1652    NextBlock = BBI;
1653
1654  // If the lhs block is the next block, invert the condition so that we can
1655  // fall through to the lhs instead of the rhs block.
1656  if (CB.TrueBB == NextBlock) {
1657    std::swap(CB.TrueBB, CB.FalseBB);
1658    SDValue True = DAG.getConstant(1, Cond.getValueType());
1659    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1660  }
1661
1662  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1663                               MVT::Other, getControlRoot(), Cond,
1664                               DAG.getBasicBlock(CB.TrueBB));
1665
1666  // Insert the false branch. Do this even if it's a fall through branch,
1667  // this makes it easier to do DAG optimizations which require inverting
1668  // the branch condition.
1669  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1670                       DAG.getBasicBlock(CB.FalseBB));
1671
1672  DAG.setRoot(BrCond);
1673}
1674
1675/// visitJumpTable - Emit JumpTable node in the current MBB
1676void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1677  // Emit the code for the jump table
1678  assert(JT.Reg != -1U && "Should lower JT Header first!");
1679  EVT PTy = TM.getTargetLowering()->getPointerTy();
1680  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1681                                     JT.Reg, PTy);
1682  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1683  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1684                                    MVT::Other, Index.getValue(1),
1685                                    Table, Index);
1686  DAG.setRoot(BrJumpTable);
1687}
1688
1689/// visitJumpTableHeader - This function emits necessary code to produce index
1690/// in the JumpTable from switch case.
1691void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1692                                               JumpTableHeader &JTH,
1693                                               MachineBasicBlock *SwitchBB) {
1694  // Subtract the lowest switch case value from the value being switched on and
1695  // conditional branch to default mbb if the result is greater than the
1696  // difference between smallest and largest cases.
1697  SDValue SwitchOp = getValue(JTH.SValue);
1698  EVT VT = SwitchOp.getValueType();
1699  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1700                            DAG.getConstant(JTH.First, VT));
1701
1702  // The SDNode we just created, which holds the value being switched on minus
1703  // the smallest case value, needs to be copied to a virtual register so it
1704  // can be used as an index into the jump table in a subsequent basic block.
1705  // This value may be smaller or larger than the target's pointer type, and
1706  // therefore require extension or truncating.
1707  const TargetLowering *TLI = TM.getTargetLowering();
1708  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1709
1710  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1711  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1712                                    JumpTableReg, SwitchOp);
1713  JT.Reg = JumpTableReg;
1714
1715  // Emit the range check for the jump table, and branch to the default block
1716  // for the switch statement if the value being switched on exceeds the largest
1717  // case in the switch.
1718  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1719                             TLI->getSetCCResultType(*DAG.getContext(),
1720                                                     Sub.getValueType()),
1721                             Sub,
1722                             DAG.getConstant(JTH.Last - JTH.First,VT),
1723                             ISD::SETUGT);
1724
1725  // Set NextBlock to be the MBB immediately after the current one, if any.
1726  // This is used to avoid emitting unnecessary branches to the next block.
1727  MachineBasicBlock *NextBlock = 0;
1728  MachineFunction::iterator BBI = SwitchBB;
1729
1730  if (++BBI != FuncInfo.MF->end())
1731    NextBlock = BBI;
1732
1733  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1734                               MVT::Other, CopyTo, CMP,
1735                               DAG.getBasicBlock(JT.Default));
1736
1737  if (JT.MBB != NextBlock)
1738    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1739                         DAG.getBasicBlock(JT.MBB));
1740
1741  DAG.setRoot(BrCond);
1742}
1743
1744/// Codegen a new tail for a stack protector check ParentMBB which has had its
1745/// tail spliced into a stack protector check success bb.
1746///
1747/// For a high level explanation of how this fits into the stack protector
1748/// generation see the comment on the declaration of class
1749/// StackProtectorDescriptor.
1750void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1751                                                  MachineBasicBlock *ParentBB) {
1752
1753  // First create the loads to the guard/stack slot for the comparison.
1754  const TargetLowering *TLI = TM.getTargetLowering();
1755  EVT PtrTy = TLI->getPointerTy();
1756
1757  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1758  int FI = MFI->getStackProtectorIndex();
1759
1760  const Value *IRGuard = SPD.getGuard();
1761  SDValue GuardPtr = getValue(IRGuard);
1762  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1763
1764  unsigned Align =
1765    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1766  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1767                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1768                              true, false, false, Align);
1769
1770  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1771                                  StackSlotPtr,
1772                                  MachinePointerInfo::getFixedStack(FI),
1773                                  true, false, false, Align);
1774
1775  // Perform the comparison via a subtract/getsetcc.
1776  EVT VT = Guard.getValueType();
1777  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1778
1779  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1780                             TLI->getSetCCResultType(*DAG.getContext(),
1781                                                     Sub.getValueType()),
1782                             Sub, DAG.getConstant(0, VT),
1783                             ISD::SETNE);
1784
1785  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1786  // branch to failure MBB.
1787  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1788                               MVT::Other, StackSlot.getOperand(0),
1789                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1790  // Otherwise branch to success MBB.
1791  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1792                           MVT::Other, BrCond,
1793                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1794
1795  DAG.setRoot(Br);
1796}
1797
1798/// Codegen the failure basic block for a stack protector check.
1799///
1800/// A failure stack protector machine basic block consists simply of a call to
1801/// __stack_chk_fail().
1802///
1803/// For a high level explanation of how this fits into the stack protector
1804/// generation see the comment on the declaration of class
1805/// StackProtectorDescriptor.
1806void
1807SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1808  const TargetLowering *TLI = TM.getTargetLowering();
1809  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1810                                   MVT::isVoid, 0, 0, false, getCurSDLoc(),
1811                                   false, false).second;
1812  DAG.setRoot(Chain);
1813}
1814
1815/// visitBitTestHeader - This function emits necessary code to produce value
1816/// suitable for "bit tests"
1817void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1818                                             MachineBasicBlock *SwitchBB) {
1819  // Subtract the minimum value
1820  SDValue SwitchOp = getValue(B.SValue);
1821  EVT VT = SwitchOp.getValueType();
1822  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1823                            DAG.getConstant(B.First, VT));
1824
1825  // Check range
1826  const TargetLowering *TLI = TM.getTargetLowering();
1827  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1828                                  TLI->getSetCCResultType(*DAG.getContext(),
1829                                                         Sub.getValueType()),
1830                                  Sub, DAG.getConstant(B.Range, VT),
1831                                  ISD::SETUGT);
1832
1833  // Determine the type of the test operands.
1834  bool UsePtrType = false;
1835  if (!TLI->isTypeLegal(VT))
1836    UsePtrType = true;
1837  else {
1838    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1839      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1840        // Switch table case range are encoded into series of masks.
1841        // Just use pointer type, it's guaranteed to fit.
1842        UsePtrType = true;
1843        break;
1844      }
1845  }
1846  if (UsePtrType) {
1847    VT = TLI->getPointerTy();
1848    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1849  }
1850
1851  B.RegVT = VT.getSimpleVT();
1852  B.Reg = FuncInfo.CreateReg(B.RegVT);
1853  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1854                                    B.Reg, Sub);
1855
1856  // Set NextBlock to be the MBB immediately after the current one, if any.
1857  // This is used to avoid emitting unnecessary branches to the next block.
1858  MachineBasicBlock *NextBlock = 0;
1859  MachineFunction::iterator BBI = SwitchBB;
1860  if (++BBI != FuncInfo.MF->end())
1861    NextBlock = BBI;
1862
1863  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1864
1865  addSuccessorWithWeight(SwitchBB, B.Default);
1866  addSuccessorWithWeight(SwitchBB, MBB);
1867
1868  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1869                                MVT::Other, CopyTo, RangeCmp,
1870                                DAG.getBasicBlock(B.Default));
1871
1872  if (MBB != NextBlock)
1873    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1874                          DAG.getBasicBlock(MBB));
1875
1876  DAG.setRoot(BrRange);
1877}
1878
1879/// visitBitTestCase - this function produces one "bit test"
1880void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1881                                           MachineBasicBlock* NextMBB,
1882                                           uint32_t BranchWeightToNext,
1883                                           unsigned Reg,
1884                                           BitTestCase &B,
1885                                           MachineBasicBlock *SwitchBB) {
1886  MVT VT = BB.RegVT;
1887  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1888                                       Reg, VT);
1889  SDValue Cmp;
1890  unsigned PopCount = CountPopulation_64(B.Mask);
1891  const TargetLowering *TLI = TM.getTargetLowering();
1892  if (PopCount == 1) {
1893    // Testing for a single bit; just compare the shift count with what it
1894    // would need to be to shift a 1 bit in that position.
1895    Cmp = DAG.getSetCC(getCurSDLoc(),
1896                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1897                       ShiftOp,
1898                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1899                       ISD::SETEQ);
1900  } else if (PopCount == BB.Range) {
1901    // There is only one zero bit in the range, test for it directly.
1902    Cmp = DAG.getSetCC(getCurSDLoc(),
1903                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1904                       ShiftOp,
1905                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1906                       ISD::SETNE);
1907  } else {
1908    // Make desired shift
1909    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1910                                    DAG.getConstant(1, VT), ShiftOp);
1911
1912    // Emit bit tests and jumps
1913    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1914                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1915    Cmp = DAG.getSetCC(getCurSDLoc(),
1916                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1917                       AndOp, DAG.getConstant(0, VT),
1918                       ISD::SETNE);
1919  }
1920
1921  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1922  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1923  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1924  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1925
1926  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1927                              MVT::Other, getControlRoot(),
1928                              Cmp, DAG.getBasicBlock(B.TargetBB));
1929
1930  // Set NextBlock to be the MBB immediately after the current one, if any.
1931  // This is used to avoid emitting unnecessary branches to the next block.
1932  MachineBasicBlock *NextBlock = 0;
1933  MachineFunction::iterator BBI = SwitchBB;
1934  if (++BBI != FuncInfo.MF->end())
1935    NextBlock = BBI;
1936
1937  if (NextMBB != NextBlock)
1938    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1939                        DAG.getBasicBlock(NextMBB));
1940
1941  DAG.setRoot(BrAnd);
1942}
1943
1944void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1945  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1946
1947  // Retrieve successors.
1948  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1949  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1950
1951  const Value *Callee(I.getCalledValue());
1952  const Function *Fn = dyn_cast<Function>(Callee);
1953  if (isa<InlineAsm>(Callee))
1954    visitInlineAsm(&I);
1955  else if (Fn && Fn->isIntrinsic()) {
1956    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1957    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1958  } else
1959    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1960
1961  // If the value of the invoke is used outside of its defining block, make it
1962  // available as a virtual register.
1963  CopyToExportRegsIfNeeded(&I);
1964
1965  // Update successor info
1966  addSuccessorWithWeight(InvokeMBB, Return);
1967  addSuccessorWithWeight(InvokeMBB, LandingPad);
1968
1969  // Drop into normal successor.
1970  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1971                          MVT::Other, getControlRoot(),
1972                          DAG.getBasicBlock(Return)));
1973}
1974
1975void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1976  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1977}
1978
1979void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1980  assert(FuncInfo.MBB->isLandingPad() &&
1981         "Call to landingpad not in landing pad!");
1982
1983  MachineBasicBlock *MBB = FuncInfo.MBB;
1984  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1985  AddLandingPadInfo(LP, MMI, MBB);
1986
1987  // If there aren't registers to copy the values into (e.g., during SjLj
1988  // exceptions), then don't bother to create these DAG nodes.
1989  const TargetLowering *TLI = TM.getTargetLowering();
1990  if (TLI->getExceptionPointerRegister() == 0 &&
1991      TLI->getExceptionSelectorRegister() == 0)
1992    return;
1993
1994  SmallVector<EVT, 2> ValueVTs;
1995  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1996  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1997
1998  // Get the two live-in registers as SDValues. The physregs have already been
1999  // copied into virtual registers.
2000  SDValue Ops[2];
2001  Ops[0] = DAG.getZExtOrTrunc(
2002    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2003                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2004    getCurSDLoc(), ValueVTs[0]);
2005  Ops[1] = DAG.getZExtOrTrunc(
2006    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2007                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2008    getCurSDLoc(), ValueVTs[1]);
2009
2010  // Merge into one.
2011  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2012                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
2013                            &Ops[0], 2);
2014  setValue(&LP, Res);
2015}
2016
2017/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2018/// small case ranges).
2019bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2020                                                 CaseRecVector& WorkList,
2021                                                 const Value* SV,
2022                                                 MachineBasicBlock *Default,
2023                                                 MachineBasicBlock *SwitchBB) {
2024  // Size is the number of Cases represented by this range.
2025  size_t Size = CR.Range.second - CR.Range.first;
2026  if (Size > 3)
2027    return false;
2028
2029  // Get the MachineFunction which holds the current MBB.  This is used when
2030  // inserting any additional MBBs necessary to represent the switch.
2031  MachineFunction *CurMF = FuncInfo.MF;
2032
2033  // Figure out which block is immediately after the current one.
2034  MachineBasicBlock *NextBlock = 0;
2035  MachineFunction::iterator BBI = CR.CaseBB;
2036
2037  if (++BBI != FuncInfo.MF->end())
2038    NextBlock = BBI;
2039
2040  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2041  // If any two of the cases has the same destination, and if one value
2042  // is the same as the other, but has one bit unset that the other has set,
2043  // use bit manipulation to do two compares at once.  For example:
2044  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2045  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2046  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2047  if (Size == 2 && CR.CaseBB == SwitchBB) {
2048    Case &Small = *CR.Range.first;
2049    Case &Big = *(CR.Range.second-1);
2050
2051    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2052      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2053      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2054
2055      // Check that there is only one bit different.
2056      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2057          (SmallValue | BigValue) == BigValue) {
2058        // Isolate the common bit.
2059        APInt CommonBit = BigValue & ~SmallValue;
2060        assert((SmallValue | CommonBit) == BigValue &&
2061               CommonBit.countPopulation() == 1 && "Not a common bit?");
2062
2063        SDValue CondLHS = getValue(SV);
2064        EVT VT = CondLHS.getValueType();
2065        SDLoc DL = getCurSDLoc();
2066
2067        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2068                                 DAG.getConstant(CommonBit, VT));
2069        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2070                                    Or, DAG.getConstant(BigValue, VT),
2071                                    ISD::SETEQ);
2072
2073        // Update successor info.
2074        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2075        addSuccessorWithWeight(SwitchBB, Small.BB,
2076                               Small.ExtraWeight + Big.ExtraWeight);
2077        addSuccessorWithWeight(SwitchBB, Default,
2078          // The default destination is the first successor in IR.
2079          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2080
2081        // Insert the true branch.
2082        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2083                                     getControlRoot(), Cond,
2084                                     DAG.getBasicBlock(Small.BB));
2085
2086        // Insert the false branch.
2087        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2088                             DAG.getBasicBlock(Default));
2089
2090        DAG.setRoot(BrCond);
2091        return true;
2092      }
2093    }
2094  }
2095
2096  // Order cases by weight so the most likely case will be checked first.
2097  uint32_t UnhandledWeights = 0;
2098  if (BPI) {
2099    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2100      uint32_t IWeight = I->ExtraWeight;
2101      UnhandledWeights += IWeight;
2102      for (CaseItr J = CR.Range.first; J < I; ++J) {
2103        uint32_t JWeight = J->ExtraWeight;
2104        if (IWeight > JWeight)
2105          std::swap(*I, *J);
2106      }
2107    }
2108  }
2109  // Rearrange the case blocks so that the last one falls through if possible.
2110  Case &BackCase = *(CR.Range.second-1);
2111  if (Size > 1 &&
2112      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2113    // The last case block won't fall through into 'NextBlock' if we emit the
2114    // branches in this order.  See if rearranging a case value would help.
2115    // We start at the bottom as it's the case with the least weight.
2116    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2117      if (I->BB == NextBlock) {
2118        std::swap(*I, BackCase);
2119        break;
2120      }
2121  }
2122
2123  // Create a CaseBlock record representing a conditional branch to
2124  // the Case's target mbb if the value being switched on SV is equal
2125  // to C.
2126  MachineBasicBlock *CurBlock = CR.CaseBB;
2127  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2128    MachineBasicBlock *FallThrough;
2129    if (I != E-1) {
2130      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2131      CurMF->insert(BBI, FallThrough);
2132
2133      // Put SV in a virtual register to make it available from the new blocks.
2134      ExportFromCurrentBlock(SV);
2135    } else {
2136      // If the last case doesn't match, go to the default block.
2137      FallThrough = Default;
2138    }
2139
2140    const Value *RHS, *LHS, *MHS;
2141    ISD::CondCode CC;
2142    if (I->High == I->Low) {
2143      // This is just small small case range :) containing exactly 1 case
2144      CC = ISD::SETEQ;
2145      LHS = SV; RHS = I->High; MHS = NULL;
2146    } else {
2147      CC = ISD::SETLE;
2148      LHS = I->Low; MHS = SV; RHS = I->High;
2149    }
2150
2151    // The false weight should be sum of all un-handled cases.
2152    UnhandledWeights -= I->ExtraWeight;
2153    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2154                 /* me */ CurBlock,
2155                 /* trueweight */ I->ExtraWeight,
2156                 /* falseweight */ UnhandledWeights);
2157
2158    // If emitting the first comparison, just call visitSwitchCase to emit the
2159    // code into the current block.  Otherwise, push the CaseBlock onto the
2160    // vector to be later processed by SDISel, and insert the node's MBB
2161    // before the next MBB.
2162    if (CurBlock == SwitchBB)
2163      visitSwitchCase(CB, SwitchBB);
2164    else
2165      SwitchCases.push_back(CB);
2166
2167    CurBlock = FallThrough;
2168  }
2169
2170  return true;
2171}
2172
2173static inline bool areJTsAllowed(const TargetLowering &TLI) {
2174  return TLI.supportJumpTables() &&
2175          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2176           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2177}
2178
2179static APInt ComputeRange(const APInt &First, const APInt &Last) {
2180  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2181  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2182  return (LastExt - FirstExt + 1ULL);
2183}
2184
2185/// handleJTSwitchCase - Emit jumptable for current switch case range
2186bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2187                                             CaseRecVector &WorkList,
2188                                             const Value *SV,
2189                                             MachineBasicBlock *Default,
2190                                             MachineBasicBlock *SwitchBB) {
2191  Case& FrontCase = *CR.Range.first;
2192  Case& BackCase  = *(CR.Range.second-1);
2193
2194  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2195  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2196
2197  APInt TSize(First.getBitWidth(), 0);
2198  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2199    TSize += I->size();
2200
2201  const TargetLowering *TLI = TM.getTargetLowering();
2202  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2203    return false;
2204
2205  APInt Range = ComputeRange(First, Last);
2206  // The density is TSize / Range. Require at least 40%.
2207  // It should not be possible for IntTSize to saturate for sane code, but make
2208  // sure we handle Range saturation correctly.
2209  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2210  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2211  if (IntTSize * 10 < IntRange * 4)
2212    return false;
2213
2214  DEBUG(dbgs() << "Lowering jump table\n"
2215               << "First entry: " << First << ". Last entry: " << Last << '\n'
2216               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2217
2218  // Get the MachineFunction which holds the current MBB.  This is used when
2219  // inserting any additional MBBs necessary to represent the switch.
2220  MachineFunction *CurMF = FuncInfo.MF;
2221
2222  // Figure out which block is immediately after the current one.
2223  MachineFunction::iterator BBI = CR.CaseBB;
2224  ++BBI;
2225
2226  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2227
2228  // Create a new basic block to hold the code for loading the address
2229  // of the jump table, and jumping to it.  Update successor information;
2230  // we will either branch to the default case for the switch, or the jump
2231  // table.
2232  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2233  CurMF->insert(BBI, JumpTableBB);
2234
2235  addSuccessorWithWeight(CR.CaseBB, Default);
2236  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2237
2238  // Build a vector of destination BBs, corresponding to each target
2239  // of the jump table. If the value of the jump table slot corresponds to
2240  // a case statement, push the case's BB onto the vector, otherwise, push
2241  // the default BB.
2242  std::vector<MachineBasicBlock*> DestBBs;
2243  APInt TEI = First;
2244  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2245    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2246    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2247
2248    if (Low.sle(TEI) && TEI.sle(High)) {
2249      DestBBs.push_back(I->BB);
2250      if (TEI==High)
2251        ++I;
2252    } else {
2253      DestBBs.push_back(Default);
2254    }
2255  }
2256
2257  // Calculate weight for each unique destination in CR.
2258  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2259  if (FuncInfo.BPI)
2260    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2261      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2262          DestWeights.find(I->BB);
2263      if (Itr != DestWeights.end())
2264        Itr->second += I->ExtraWeight;
2265      else
2266        DestWeights[I->BB] = I->ExtraWeight;
2267    }
2268
2269  // Update successor info. Add one edge to each unique successor.
2270  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2271  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2272         E = DestBBs.end(); I != E; ++I) {
2273    if (!SuccsHandled[(*I)->getNumber()]) {
2274      SuccsHandled[(*I)->getNumber()] = true;
2275      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2276          DestWeights.find(*I);
2277      addSuccessorWithWeight(JumpTableBB, *I,
2278                             Itr != DestWeights.end() ? Itr->second : 0);
2279    }
2280  }
2281
2282  // Create a jump table index for this jump table.
2283  unsigned JTEncoding = TLI->getJumpTableEncoding();
2284  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2285                       ->createJumpTableIndex(DestBBs);
2286
2287  // Set the jump table information so that we can codegen it as a second
2288  // MachineBasicBlock
2289  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2290  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2291  if (CR.CaseBB == SwitchBB)
2292    visitJumpTableHeader(JT, JTH, SwitchBB);
2293
2294  JTCases.push_back(JumpTableBlock(JTH, JT));
2295  return true;
2296}
2297
2298/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2299/// 2 subtrees.
2300bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2301                                                  CaseRecVector& WorkList,
2302                                                  const Value* SV,
2303                                                  MachineBasicBlock* Default,
2304                                                  MachineBasicBlock* SwitchBB) {
2305  // Get the MachineFunction which holds the current MBB.  This is used when
2306  // inserting any additional MBBs necessary to represent the switch.
2307  MachineFunction *CurMF = FuncInfo.MF;
2308
2309  // Figure out which block is immediately after the current one.
2310  MachineFunction::iterator BBI = CR.CaseBB;
2311  ++BBI;
2312
2313  Case& FrontCase = *CR.Range.first;
2314  Case& BackCase  = *(CR.Range.second-1);
2315  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2316
2317  // Size is the number of Cases represented by this range.
2318  unsigned Size = CR.Range.second - CR.Range.first;
2319
2320  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2321  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2322  double FMetric = 0;
2323  CaseItr Pivot = CR.Range.first + Size/2;
2324
2325  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2326  // (heuristically) allow us to emit JumpTable's later.
2327  APInt TSize(First.getBitWidth(), 0);
2328  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2329       I!=E; ++I)
2330    TSize += I->size();
2331
2332  APInt LSize = FrontCase.size();
2333  APInt RSize = TSize-LSize;
2334  DEBUG(dbgs() << "Selecting best pivot: \n"
2335               << "First: " << First << ", Last: " << Last <<'\n'
2336               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2337  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2338       J!=E; ++I, ++J) {
2339    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2340    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2341    APInt Range = ComputeRange(LEnd, RBegin);
2342    assert((Range - 2ULL).isNonNegative() &&
2343           "Invalid case distance");
2344    // Use volatile double here to avoid excess precision issues on some hosts,
2345    // e.g. that use 80-bit X87 registers.
2346    volatile double LDensity =
2347       (double)LSize.roundToDouble() /
2348                           (LEnd - First + 1ULL).roundToDouble();
2349    volatile double RDensity =
2350      (double)RSize.roundToDouble() /
2351                           (Last - RBegin + 1ULL).roundToDouble();
2352    double Metric = Range.logBase2()*(LDensity+RDensity);
2353    // Should always split in some non-trivial place
2354    DEBUG(dbgs() <<"=>Step\n"
2355                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2356                 << "LDensity: " << LDensity
2357                 << ", RDensity: " << RDensity << '\n'
2358                 << "Metric: " << Metric << '\n');
2359    if (FMetric < Metric) {
2360      Pivot = J;
2361      FMetric = Metric;
2362      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2363    }
2364
2365    LSize += J->size();
2366    RSize -= J->size();
2367  }
2368
2369  const TargetLowering *TLI = TM.getTargetLowering();
2370  if (areJTsAllowed(*TLI)) {
2371    // If our case is dense we *really* should handle it earlier!
2372    assert((FMetric > 0) && "Should handle dense range earlier!");
2373  } else {
2374    Pivot = CR.Range.first + Size/2;
2375  }
2376
2377  CaseRange LHSR(CR.Range.first, Pivot);
2378  CaseRange RHSR(Pivot, CR.Range.second);
2379  const Constant *C = Pivot->Low;
2380  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2381
2382  // We know that we branch to the LHS if the Value being switched on is
2383  // less than the Pivot value, C.  We use this to optimize our binary
2384  // tree a bit, by recognizing that if SV is greater than or equal to the
2385  // LHS's Case Value, and that Case Value is exactly one less than the
2386  // Pivot's Value, then we can branch directly to the LHS's Target,
2387  // rather than creating a leaf node for it.
2388  if ((LHSR.second - LHSR.first) == 1 &&
2389      LHSR.first->High == CR.GE &&
2390      cast<ConstantInt>(C)->getValue() ==
2391      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2392    TrueBB = LHSR.first->BB;
2393  } else {
2394    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2395    CurMF->insert(BBI, TrueBB);
2396    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2397
2398    // Put SV in a virtual register to make it available from the new blocks.
2399    ExportFromCurrentBlock(SV);
2400  }
2401
2402  // Similar to the optimization above, if the Value being switched on is
2403  // known to be less than the Constant CR.LT, and the current Case Value
2404  // is CR.LT - 1, then we can branch directly to the target block for
2405  // the current Case Value, rather than emitting a RHS leaf node for it.
2406  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2407      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2408      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2409    FalseBB = RHSR.first->BB;
2410  } else {
2411    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2412    CurMF->insert(BBI, FalseBB);
2413    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2414
2415    // Put SV in a virtual register to make it available from the new blocks.
2416    ExportFromCurrentBlock(SV);
2417  }
2418
2419  // Create a CaseBlock record representing a conditional branch to
2420  // the LHS node if the value being switched on SV is less than C.
2421  // Otherwise, branch to LHS.
2422  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2423
2424  if (CR.CaseBB == SwitchBB)
2425    visitSwitchCase(CB, SwitchBB);
2426  else
2427    SwitchCases.push_back(CB);
2428
2429  return true;
2430}
2431
2432/// handleBitTestsSwitchCase - if current case range has few destination and
2433/// range span less, than machine word bitwidth, encode case range into series
2434/// of masks and emit bit tests with these masks.
2435bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2436                                                   CaseRecVector& WorkList,
2437                                                   const Value* SV,
2438                                                   MachineBasicBlock* Default,
2439                                                   MachineBasicBlock* SwitchBB) {
2440  const TargetLowering *TLI = TM.getTargetLowering();
2441  EVT PTy = TLI->getPointerTy();
2442  unsigned IntPtrBits = PTy.getSizeInBits();
2443
2444  Case& FrontCase = *CR.Range.first;
2445  Case& BackCase  = *(CR.Range.second-1);
2446
2447  // Get the MachineFunction which holds the current MBB.  This is used when
2448  // inserting any additional MBBs necessary to represent the switch.
2449  MachineFunction *CurMF = FuncInfo.MF;
2450
2451  // If target does not have legal shift left, do not emit bit tests at all.
2452  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2453    return false;
2454
2455  size_t numCmps = 0;
2456  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2457       I!=E; ++I) {
2458    // Single case counts one, case range - two.
2459    numCmps += (I->Low == I->High ? 1 : 2);
2460  }
2461
2462  // Count unique destinations
2463  SmallSet<MachineBasicBlock*, 4> Dests;
2464  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2465    Dests.insert(I->BB);
2466    if (Dests.size() > 3)
2467      // Don't bother the code below, if there are too much unique destinations
2468      return false;
2469  }
2470  DEBUG(dbgs() << "Total number of unique destinations: "
2471        << Dests.size() << '\n'
2472        << "Total number of comparisons: " << numCmps << '\n');
2473
2474  // Compute span of values.
2475  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2476  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2477  APInt cmpRange = maxValue - minValue;
2478
2479  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2480               << "Low bound: " << minValue << '\n'
2481               << "High bound: " << maxValue << '\n');
2482
2483  if (cmpRange.uge(IntPtrBits) ||
2484      (!(Dests.size() == 1 && numCmps >= 3) &&
2485       !(Dests.size() == 2 && numCmps >= 5) &&
2486       !(Dests.size() >= 3 && numCmps >= 6)))
2487    return false;
2488
2489  DEBUG(dbgs() << "Emitting bit tests\n");
2490  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2491
2492  // Optimize the case where all the case values fit in a
2493  // word without having to subtract minValue. In this case,
2494  // we can optimize away the subtraction.
2495  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2496    cmpRange = maxValue;
2497  } else {
2498    lowBound = minValue;
2499  }
2500
2501  CaseBitsVector CasesBits;
2502  unsigned i, count = 0;
2503
2504  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2505    MachineBasicBlock* Dest = I->BB;
2506    for (i = 0; i < count; ++i)
2507      if (Dest == CasesBits[i].BB)
2508        break;
2509
2510    if (i == count) {
2511      assert((count < 3) && "Too much destinations to test!");
2512      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2513      count++;
2514    }
2515
2516    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2517    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2518
2519    uint64_t lo = (lowValue - lowBound).getZExtValue();
2520    uint64_t hi = (highValue - lowBound).getZExtValue();
2521    CasesBits[i].ExtraWeight += I->ExtraWeight;
2522
2523    for (uint64_t j = lo; j <= hi; j++) {
2524      CasesBits[i].Mask |=  1ULL << j;
2525      CasesBits[i].Bits++;
2526    }
2527
2528  }
2529  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2530
2531  BitTestInfo BTC;
2532
2533  // Figure out which block is immediately after the current one.
2534  MachineFunction::iterator BBI = CR.CaseBB;
2535  ++BBI;
2536
2537  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2538
2539  DEBUG(dbgs() << "Cases:\n");
2540  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2541    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2542                 << ", Bits: " << CasesBits[i].Bits
2543                 << ", BB: " << CasesBits[i].BB << '\n');
2544
2545    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2546    CurMF->insert(BBI, CaseBB);
2547    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2548                              CaseBB,
2549                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2550
2551    // Put SV in a virtual register to make it available from the new blocks.
2552    ExportFromCurrentBlock(SV);
2553  }
2554
2555  BitTestBlock BTB(lowBound, cmpRange, SV,
2556                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2557                   CR.CaseBB, Default, BTC);
2558
2559  if (CR.CaseBB == SwitchBB)
2560    visitBitTestHeader(BTB, SwitchBB);
2561
2562  BitTestCases.push_back(BTB);
2563
2564  return true;
2565}
2566
2567/// Clusterify - Transform simple list of Cases into list of CaseRange's
2568size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2569                                       const SwitchInst& SI) {
2570  size_t numCmps = 0;
2571
2572  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2573  // Start with "simple" cases
2574  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2575       i != e; ++i) {
2576    const BasicBlock *SuccBB = i.getCaseSuccessor();
2577    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2578
2579    uint32_t ExtraWeight =
2580      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2581
2582    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2583                         SMBB, ExtraWeight));
2584  }
2585  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2586
2587  // Merge case into clusters
2588  if (Cases.size() >= 2)
2589    // Must recompute end() each iteration because it may be
2590    // invalidated by erase if we hold on to it
2591    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2592         J != Cases.end(); ) {
2593      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2594      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2595      MachineBasicBlock* nextBB = J->BB;
2596      MachineBasicBlock* currentBB = I->BB;
2597
2598      // If the two neighboring cases go to the same destination, merge them
2599      // into a single case.
2600      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2601        I->High = J->High;
2602        I->ExtraWeight += J->ExtraWeight;
2603        J = Cases.erase(J);
2604      } else {
2605        I = J++;
2606      }
2607    }
2608
2609  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2610    if (I->Low != I->High)
2611      // A range counts double, since it requires two compares.
2612      ++numCmps;
2613  }
2614
2615  return numCmps;
2616}
2617
2618void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2619                                           MachineBasicBlock *Last) {
2620  // Update JTCases.
2621  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2622    if (JTCases[i].first.HeaderBB == First)
2623      JTCases[i].first.HeaderBB = Last;
2624
2625  // Update BitTestCases.
2626  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2627    if (BitTestCases[i].Parent == First)
2628      BitTestCases[i].Parent = Last;
2629}
2630
2631void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2632  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2633
2634  // Figure out which block is immediately after the current one.
2635  MachineBasicBlock *NextBlock = 0;
2636  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2637
2638  // If there is only the default destination, branch to it if it is not the
2639  // next basic block.  Otherwise, just fall through.
2640  if (!SI.getNumCases()) {
2641    // Update machine-CFG edges.
2642
2643    // If this is not a fall-through branch, emit the branch.
2644    SwitchMBB->addSuccessor(Default);
2645    if (Default != NextBlock)
2646      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2647                              MVT::Other, getControlRoot(),
2648                              DAG.getBasicBlock(Default)));
2649
2650    return;
2651  }
2652
2653  // If there are any non-default case statements, create a vector of Cases
2654  // representing each one, and sort the vector so that we can efficiently
2655  // create a binary search tree from them.
2656  CaseVector Cases;
2657  size_t numCmps = Clusterify(Cases, SI);
2658  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2659               << ". Total compares: " << numCmps << '\n');
2660  (void)numCmps;
2661
2662  // Get the Value to be switched on and default basic blocks, which will be
2663  // inserted into CaseBlock records, representing basic blocks in the binary
2664  // search tree.
2665  const Value *SV = SI.getCondition();
2666
2667  // Push the initial CaseRec onto the worklist
2668  CaseRecVector WorkList;
2669  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2670                             CaseRange(Cases.begin(),Cases.end())));
2671
2672  while (!WorkList.empty()) {
2673    // Grab a record representing a case range to process off the worklist
2674    CaseRec CR = WorkList.back();
2675    WorkList.pop_back();
2676
2677    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2678      continue;
2679
2680    // If the range has few cases (two or less) emit a series of specific
2681    // tests.
2682    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2683      continue;
2684
2685    // If the switch has more than N blocks, and is at least 40% dense, and the
2686    // target supports indirect branches, then emit a jump table rather than
2687    // lowering the switch to a binary tree of conditional branches.
2688    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2689    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2690      continue;
2691
2692    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2693    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2694    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2695  }
2696}
2697
2698void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2699  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2700
2701  // Update machine-CFG edges with unique successors.
2702  SmallSet<BasicBlock*, 32> Done;
2703  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2704    BasicBlock *BB = I.getSuccessor(i);
2705    bool Inserted = Done.insert(BB);
2706    if (!Inserted)
2707        continue;
2708
2709    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2710    addSuccessorWithWeight(IndirectBrMBB, Succ);
2711  }
2712
2713  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2714                          MVT::Other, getControlRoot(),
2715                          getValue(I.getAddress())));
2716}
2717
2718void SelectionDAGBuilder::visitFSub(const User &I) {
2719  // -0.0 - X --> fneg
2720  Type *Ty = I.getType();
2721  if (isa<Constant>(I.getOperand(0)) &&
2722      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2723    SDValue Op2 = getValue(I.getOperand(1));
2724    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2725                             Op2.getValueType(), Op2));
2726    return;
2727  }
2728
2729  visitBinary(I, ISD::FSUB);
2730}
2731
2732void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2733  SDValue Op1 = getValue(I.getOperand(0));
2734  SDValue Op2 = getValue(I.getOperand(1));
2735  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2736                           Op1.getValueType(), Op1, Op2));
2737}
2738
2739void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2740  SDValue Op1 = getValue(I.getOperand(0));
2741  SDValue Op2 = getValue(I.getOperand(1));
2742
2743  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2744
2745  // Coerce the shift amount to the right type if we can.
2746  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2747    unsigned ShiftSize = ShiftTy.getSizeInBits();
2748    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2749    SDLoc DL = getCurSDLoc();
2750
2751    // If the operand is smaller than the shift count type, promote it.
2752    if (ShiftSize > Op2Size)
2753      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2754
2755    // If the operand is larger than the shift count type but the shift
2756    // count type has enough bits to represent any shift value, truncate
2757    // it now. This is a common case and it exposes the truncate to
2758    // optimization early.
2759    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2760      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2761    // Otherwise we'll need to temporarily settle for some other convenient
2762    // type.  Type legalization will make adjustments once the shiftee is split.
2763    else
2764      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2765  }
2766
2767  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2768                           Op1.getValueType(), Op1, Op2));
2769}
2770
2771void SelectionDAGBuilder::visitSDiv(const User &I) {
2772  SDValue Op1 = getValue(I.getOperand(0));
2773  SDValue Op2 = getValue(I.getOperand(1));
2774
2775  // Turn exact SDivs into multiplications.
2776  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2777  // exact bit.
2778  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2779      !isa<ConstantSDNode>(Op1) &&
2780      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2781    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2782                                                        getCurSDLoc(), DAG));
2783  else
2784    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2785                             Op1, Op2));
2786}
2787
2788void SelectionDAGBuilder::visitICmp(const User &I) {
2789  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2790  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2791    predicate = IC->getPredicate();
2792  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2793    predicate = ICmpInst::Predicate(IC->getPredicate());
2794  SDValue Op1 = getValue(I.getOperand(0));
2795  SDValue Op2 = getValue(I.getOperand(1));
2796  ISD::CondCode Opcode = getICmpCondCode(predicate);
2797
2798  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2799  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2800}
2801
2802void SelectionDAGBuilder::visitFCmp(const User &I) {
2803  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2804  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2805    predicate = FC->getPredicate();
2806  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2807    predicate = FCmpInst::Predicate(FC->getPredicate());
2808  SDValue Op1 = getValue(I.getOperand(0));
2809  SDValue Op2 = getValue(I.getOperand(1));
2810  ISD::CondCode Condition = getFCmpCondCode(predicate);
2811  if (TM.Options.NoNaNsFPMath)
2812    Condition = getFCmpCodeWithoutNaN(Condition);
2813  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2814  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2815}
2816
2817void SelectionDAGBuilder::visitSelect(const User &I) {
2818  SmallVector<EVT, 4> ValueVTs;
2819  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2820  unsigned NumValues = ValueVTs.size();
2821  if (NumValues == 0) return;
2822
2823  SmallVector<SDValue, 4> Values(NumValues);
2824  SDValue Cond     = getValue(I.getOperand(0));
2825  SDValue TrueVal  = getValue(I.getOperand(1));
2826  SDValue FalseVal = getValue(I.getOperand(2));
2827  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2828    ISD::VSELECT : ISD::SELECT;
2829
2830  for (unsigned i = 0; i != NumValues; ++i)
2831    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2832                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2833                            Cond,
2834                            SDValue(TrueVal.getNode(),
2835                                    TrueVal.getResNo() + i),
2836                            SDValue(FalseVal.getNode(),
2837                                    FalseVal.getResNo() + i));
2838
2839  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2840                           DAG.getVTList(&ValueVTs[0], NumValues),
2841                           &Values[0], NumValues));
2842}
2843
2844void SelectionDAGBuilder::visitTrunc(const User &I) {
2845  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2846  SDValue N = getValue(I.getOperand(0));
2847  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2848  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2849}
2850
2851void SelectionDAGBuilder::visitZExt(const User &I) {
2852  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2853  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2854  SDValue N = getValue(I.getOperand(0));
2855  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2856  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2857}
2858
2859void SelectionDAGBuilder::visitSExt(const User &I) {
2860  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2861  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2862  SDValue N = getValue(I.getOperand(0));
2863  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2864  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2865}
2866
2867void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2868  // FPTrunc is never a no-op cast, no need to check
2869  SDValue N = getValue(I.getOperand(0));
2870  const TargetLowering *TLI = TM.getTargetLowering();
2871  EVT DestVT = TLI->getValueType(I.getType());
2872  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2873                           DestVT, N,
2874                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2875}
2876
2877void SelectionDAGBuilder::visitFPExt(const User &I) {
2878  // FPExt is never a no-op cast, no need to check
2879  SDValue N = getValue(I.getOperand(0));
2880  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2881  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2882}
2883
2884void SelectionDAGBuilder::visitFPToUI(const User &I) {
2885  // FPToUI is never a no-op cast, no need to check
2886  SDValue N = getValue(I.getOperand(0));
2887  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2888  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2889}
2890
2891void SelectionDAGBuilder::visitFPToSI(const User &I) {
2892  // FPToSI is never a no-op cast, no need to check
2893  SDValue N = getValue(I.getOperand(0));
2894  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2895  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2896}
2897
2898void SelectionDAGBuilder::visitUIToFP(const User &I) {
2899  // UIToFP is never a no-op cast, no need to check
2900  SDValue N = getValue(I.getOperand(0));
2901  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2902  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2903}
2904
2905void SelectionDAGBuilder::visitSIToFP(const User &I) {
2906  // SIToFP is never a no-op cast, no need to check
2907  SDValue N = getValue(I.getOperand(0));
2908  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2909  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2910}
2911
2912void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2913  // What to do depends on the size of the integer and the size of the pointer.
2914  // We can either truncate, zero extend, or no-op, accordingly.
2915  SDValue N = getValue(I.getOperand(0));
2916  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2917  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2918}
2919
2920void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2921  // What to do depends on the size of the integer and the size of the pointer.
2922  // We can either truncate, zero extend, or no-op, accordingly.
2923  SDValue N = getValue(I.getOperand(0));
2924  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2925  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2926}
2927
2928void SelectionDAGBuilder::visitBitCast(const User &I) {
2929  SDValue N = getValue(I.getOperand(0));
2930  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2931
2932  // BitCast assures us that source and destination are the same size so this is
2933  // either a BITCAST or a no-op.
2934  if (DestVT != N.getValueType())
2935    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2936                             DestVT, N)); // convert types.
2937  else
2938    setValue(&I, N);            // noop cast.
2939}
2940
2941void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2942  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2943  const Value *SV = I.getOperand(0);
2944  SDValue N = getValue(SV);
2945  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2946
2947  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2948  unsigned DestAS = I.getType()->getPointerAddressSpace();
2949
2950  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2951    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2952
2953  setValue(&I, N);
2954}
2955
2956void SelectionDAGBuilder::visitInsertElement(const User &I) {
2957  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2958  SDValue InVec = getValue(I.getOperand(0));
2959  SDValue InVal = getValue(I.getOperand(1));
2960  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2961                                     getCurSDLoc(), TLI.getVectorIdxTy());
2962  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2963                           TM.getTargetLowering()->getValueType(I.getType()),
2964                           InVec, InVal, InIdx));
2965}
2966
2967void SelectionDAGBuilder::visitExtractElement(const User &I) {
2968  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2969  SDValue InVec = getValue(I.getOperand(0));
2970  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2971                                     getCurSDLoc(), TLI.getVectorIdxTy());
2972  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2973                           TM.getTargetLowering()->getValueType(I.getType()),
2974                           InVec, InIdx));
2975}
2976
2977// Utility for visitShuffleVector - Return true if every element in Mask,
2978// beginning from position Pos and ending in Pos+Size, falls within the
2979// specified sequential range [L, L+Pos). or is undef.
2980static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2981                                unsigned Pos, unsigned Size, int Low) {
2982  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2983    if (Mask[i] >= 0 && Mask[i] != Low)
2984      return false;
2985  return true;
2986}
2987
2988void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2989  SDValue Src1 = getValue(I.getOperand(0));
2990  SDValue Src2 = getValue(I.getOperand(1));
2991
2992  SmallVector<int, 8> Mask;
2993  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2994  unsigned MaskNumElts = Mask.size();
2995
2996  const TargetLowering *TLI = TM.getTargetLowering();
2997  EVT VT = TLI->getValueType(I.getType());
2998  EVT SrcVT = Src1.getValueType();
2999  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3000
3001  if (SrcNumElts == MaskNumElts) {
3002    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3003                                      &Mask[0]));
3004    return;
3005  }
3006
3007  // Normalize the shuffle vector since mask and vector length don't match.
3008  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3009    // Mask is longer than the source vectors and is a multiple of the source
3010    // vectors.  We can use concatenate vector to make the mask and vectors
3011    // lengths match.
3012    if (SrcNumElts*2 == MaskNumElts) {
3013      // First check for Src1 in low and Src2 in high
3014      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3015          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3016        // The shuffle is concatenating two vectors together.
3017        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3018                                 VT, Src1, Src2));
3019        return;
3020      }
3021      // Then check for Src2 in low and Src1 in high
3022      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3023          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3024        // The shuffle is concatenating two vectors together.
3025        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3026                                 VT, Src2, Src1));
3027        return;
3028      }
3029    }
3030
3031    // Pad both vectors with undefs to make them the same length as the mask.
3032    unsigned NumConcat = MaskNumElts / SrcNumElts;
3033    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3034    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3035    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3036
3037    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3038    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3039    MOps1[0] = Src1;
3040    MOps2[0] = Src2;
3041
3042    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3043                                                  getCurSDLoc(), VT,
3044                                                  &MOps1[0], NumConcat);
3045    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3046                                                  getCurSDLoc(), VT,
3047                                                  &MOps2[0], NumConcat);
3048
3049    // Readjust mask for new input vector length.
3050    SmallVector<int, 8> MappedOps;
3051    for (unsigned i = 0; i != MaskNumElts; ++i) {
3052      int Idx = Mask[i];
3053      if (Idx >= (int)SrcNumElts)
3054        Idx -= SrcNumElts - MaskNumElts;
3055      MappedOps.push_back(Idx);
3056    }
3057
3058    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3059                                      &MappedOps[0]));
3060    return;
3061  }
3062
3063  if (SrcNumElts > MaskNumElts) {
3064    // Analyze the access pattern of the vector to see if we can extract
3065    // two subvectors and do the shuffle. The analysis is done by calculating
3066    // the range of elements the mask access on both vectors.
3067    int MinRange[2] = { static_cast<int>(SrcNumElts),
3068                        static_cast<int>(SrcNumElts)};
3069    int MaxRange[2] = {-1, -1};
3070
3071    for (unsigned i = 0; i != MaskNumElts; ++i) {
3072      int Idx = Mask[i];
3073      unsigned Input = 0;
3074      if (Idx < 0)
3075        continue;
3076
3077      if (Idx >= (int)SrcNumElts) {
3078        Input = 1;
3079        Idx -= SrcNumElts;
3080      }
3081      if (Idx > MaxRange[Input])
3082        MaxRange[Input] = Idx;
3083      if (Idx < MinRange[Input])
3084        MinRange[Input] = Idx;
3085    }
3086
3087    // Check if the access is smaller than the vector size and can we find
3088    // a reasonable extract index.
3089    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3090                                   // Extract.
3091    int StartIdx[2];  // StartIdx to extract from
3092    for (unsigned Input = 0; Input < 2; ++Input) {
3093      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3094        RangeUse[Input] = 0; // Unused
3095        StartIdx[Input] = 0;
3096        continue;
3097      }
3098
3099      // Find a good start index that is a multiple of the mask length. Then
3100      // see if the rest of the elements are in range.
3101      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3102      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3103          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3104        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3105    }
3106
3107    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3108      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3109      return;
3110    }
3111    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3112      // Extract appropriate subvector and generate a vector shuffle
3113      for (unsigned Input = 0; Input < 2; ++Input) {
3114        SDValue &Src = Input == 0 ? Src1 : Src2;
3115        if (RangeUse[Input] == 0)
3116          Src = DAG.getUNDEF(VT);
3117        else
3118          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3119                            Src, DAG.getConstant(StartIdx[Input],
3120                                                 TLI->getVectorIdxTy()));
3121      }
3122
3123      // Calculate new mask.
3124      SmallVector<int, 8> MappedOps;
3125      for (unsigned i = 0; i != MaskNumElts; ++i) {
3126        int Idx = Mask[i];
3127        if (Idx >= 0) {
3128          if (Idx < (int)SrcNumElts)
3129            Idx -= StartIdx[0];
3130          else
3131            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3132        }
3133        MappedOps.push_back(Idx);
3134      }
3135
3136      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3137                                        &MappedOps[0]));
3138      return;
3139    }
3140  }
3141
3142  // We can't use either concat vectors or extract subvectors so fall back to
3143  // replacing the shuffle with extract and build vector.
3144  // to insert and build vector.
3145  EVT EltVT = VT.getVectorElementType();
3146  EVT IdxVT = TLI->getVectorIdxTy();
3147  SmallVector<SDValue,8> Ops;
3148  for (unsigned i = 0; i != MaskNumElts; ++i) {
3149    int Idx = Mask[i];
3150    SDValue Res;
3151
3152    if (Idx < 0) {
3153      Res = DAG.getUNDEF(EltVT);
3154    } else {
3155      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3156      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3157
3158      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3159                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3160    }
3161
3162    Ops.push_back(Res);
3163  }
3164
3165  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3166                           VT, &Ops[0], Ops.size()));
3167}
3168
3169void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3170  const Value *Op0 = I.getOperand(0);
3171  const Value *Op1 = I.getOperand(1);
3172  Type *AggTy = I.getType();
3173  Type *ValTy = Op1->getType();
3174  bool IntoUndef = isa<UndefValue>(Op0);
3175  bool FromUndef = isa<UndefValue>(Op1);
3176
3177  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3178
3179  const TargetLowering *TLI = TM.getTargetLowering();
3180  SmallVector<EVT, 4> AggValueVTs;
3181  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3182  SmallVector<EVT, 4> ValValueVTs;
3183  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3184
3185  unsigned NumAggValues = AggValueVTs.size();
3186  unsigned NumValValues = ValValueVTs.size();
3187  SmallVector<SDValue, 4> Values(NumAggValues);
3188
3189  SDValue Agg = getValue(Op0);
3190  unsigned i = 0;
3191  // Copy the beginning value(s) from the original aggregate.
3192  for (; i != LinearIndex; ++i)
3193    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3194                SDValue(Agg.getNode(), Agg.getResNo() + i);
3195  // Copy values from the inserted value(s).
3196  if (NumValValues) {
3197    SDValue Val = getValue(Op1);
3198    for (; i != LinearIndex + NumValValues; ++i)
3199      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3200                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3201  }
3202  // Copy remaining value(s) from the original aggregate.
3203  for (; i != NumAggValues; ++i)
3204    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3205                SDValue(Agg.getNode(), Agg.getResNo() + i);
3206
3207  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3208                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3209                           &Values[0], NumAggValues));
3210}
3211
3212void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3213  const Value *Op0 = I.getOperand(0);
3214  Type *AggTy = Op0->getType();
3215  Type *ValTy = I.getType();
3216  bool OutOfUndef = isa<UndefValue>(Op0);
3217
3218  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3219
3220  const TargetLowering *TLI = TM.getTargetLowering();
3221  SmallVector<EVT, 4> ValValueVTs;
3222  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3223
3224  unsigned NumValValues = ValValueVTs.size();
3225
3226  // Ignore a extractvalue that produces an empty object
3227  if (!NumValValues) {
3228    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3229    return;
3230  }
3231
3232  SmallVector<SDValue, 4> Values(NumValValues);
3233
3234  SDValue Agg = getValue(Op0);
3235  // Copy out the selected value(s).
3236  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3237    Values[i - LinearIndex] =
3238      OutOfUndef ?
3239        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3240        SDValue(Agg.getNode(), Agg.getResNo() + i);
3241
3242  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3243                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3244                           &Values[0], NumValValues));
3245}
3246
3247void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3248  Value *Op0 = I.getOperand(0);
3249  // Note that the pointer operand may be a vector of pointers. Take the scalar
3250  // element which holds a pointer.
3251  Type *Ty = Op0->getType()->getScalarType();
3252  unsigned AS = Ty->getPointerAddressSpace();
3253  SDValue N = getValue(Op0);
3254
3255  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3256       OI != E; ++OI) {
3257    const Value *Idx = *OI;
3258    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3259      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3260      if (Field) {
3261        // N = N + Offset
3262        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3263        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3264                        DAG.getConstant(Offset, N.getValueType()));
3265      }
3266
3267      Ty = StTy->getElementType(Field);
3268    } else {
3269      Ty = cast<SequentialType>(Ty)->getElementType();
3270
3271      // If this is a constant subscript, handle it quickly.
3272      const TargetLowering *TLI = TM.getTargetLowering();
3273      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3274        if (CI->isZero()) continue;
3275        uint64_t Offs =
3276            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3277        SDValue OffsVal;
3278        EVT PTy = TLI->getPointerTy(AS);
3279        unsigned PtrBits = PTy.getSizeInBits();
3280        if (PtrBits < 64)
3281          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3282                                DAG.getConstant(Offs, MVT::i64));
3283        else
3284          OffsVal = DAG.getConstant(Offs, PTy);
3285
3286        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3287                        OffsVal);
3288        continue;
3289      }
3290
3291      // N = N + Idx * ElementSize;
3292      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3293                                TD->getTypeAllocSize(Ty));
3294      SDValue IdxN = getValue(Idx);
3295
3296      // If the index is smaller or larger than intptr_t, truncate or extend
3297      // it.
3298      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3299
3300      // If this is a multiply by a power of two, turn it into a shl
3301      // immediately.  This is a very common case.
3302      if (ElementSize != 1) {
3303        if (ElementSize.isPowerOf2()) {
3304          unsigned Amt = ElementSize.logBase2();
3305          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3306                             N.getValueType(), IdxN,
3307                             DAG.getConstant(Amt, IdxN.getValueType()));
3308        } else {
3309          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3310          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3311                             N.getValueType(), IdxN, Scale);
3312        }
3313      }
3314
3315      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3316                      N.getValueType(), N, IdxN);
3317    }
3318  }
3319
3320  setValue(&I, N);
3321}
3322
3323void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3324  // If this is a fixed sized alloca in the entry block of the function,
3325  // allocate it statically on the stack.
3326  if (FuncInfo.StaticAllocaMap.count(&I))
3327    return;   // getValue will auto-populate this.
3328
3329  Type *Ty = I.getAllocatedType();
3330  const TargetLowering *TLI = TM.getTargetLowering();
3331  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3332  unsigned Align =
3333    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3334             I.getAlignment());
3335
3336  SDValue AllocSize = getValue(I.getArraySize());
3337
3338  EVT IntPtr = TLI->getPointerTy();
3339  if (AllocSize.getValueType() != IntPtr)
3340    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3341
3342  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3343                          AllocSize,
3344                          DAG.getConstant(TySize, IntPtr));
3345
3346  // Handle alignment.  If the requested alignment is less than or equal to
3347  // the stack alignment, ignore it.  If the size is greater than or equal to
3348  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3349  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3350  if (Align <= StackAlign)
3351    Align = 0;
3352
3353  // Round the size of the allocation up to the stack alignment size
3354  // by add SA-1 to the size.
3355  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3356                          AllocSize.getValueType(), AllocSize,
3357                          DAG.getIntPtrConstant(StackAlign-1));
3358
3359  // Mask out the low bits for alignment purposes.
3360  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3361                          AllocSize.getValueType(), AllocSize,
3362                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3363
3364  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3365  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3366  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3367                            VTs, Ops, 3);
3368  setValue(&I, DSA);
3369  DAG.setRoot(DSA.getValue(1));
3370
3371  // Inform the Frame Information that we have just allocated a variable-sized
3372  // object.
3373  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3374}
3375
3376void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3377  if (I.isAtomic())
3378    return visitAtomicLoad(I);
3379
3380  const Value *SV = I.getOperand(0);
3381  SDValue Ptr = getValue(SV);
3382
3383  Type *Ty = I.getType();
3384
3385  bool isVolatile = I.isVolatile();
3386  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3387  bool isInvariant = I.getMetadata("invariant.load") != 0;
3388  unsigned Alignment = I.getAlignment();
3389  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3390  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3391
3392  SmallVector<EVT, 4> ValueVTs;
3393  SmallVector<uint64_t, 4> Offsets;
3394  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3395  unsigned NumValues = ValueVTs.size();
3396  if (NumValues == 0)
3397    return;
3398
3399  SDValue Root;
3400  bool ConstantMemory = false;
3401  if (I.isVolatile() || NumValues > MaxParallelChains)
3402    // Serialize volatile loads with other side effects.
3403    Root = getRoot();
3404  else if (AA->pointsToConstantMemory(
3405             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3406    // Do not serialize (non-volatile) loads of constant memory with anything.
3407    Root = DAG.getEntryNode();
3408    ConstantMemory = true;
3409  } else {
3410    // Do not serialize non-volatile loads against each other.
3411    Root = DAG.getRoot();
3412  }
3413
3414  SmallVector<SDValue, 4> Values(NumValues);
3415  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3416                                          NumValues));
3417  EVT PtrVT = Ptr.getValueType();
3418  unsigned ChainI = 0;
3419  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3420    // Serializing loads here may result in excessive register pressure, and
3421    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3422    // could recover a bit by hoisting nodes upward in the chain by recognizing
3423    // they are side-effect free or do not alias. The optimizer should really
3424    // avoid this case by converting large object/array copies to llvm.memcpy
3425    // (MaxParallelChains should always remain as failsafe).
3426    if (ChainI == MaxParallelChains) {
3427      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3428      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3429                                  MVT::Other, &Chains[0], ChainI);
3430      Root = Chain;
3431      ChainI = 0;
3432    }
3433    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3434                            PtrVT, Ptr,
3435                            DAG.getConstant(Offsets[i], PtrVT));
3436    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3437                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3438                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3439                            Ranges);
3440
3441    Values[i] = L;
3442    Chains[ChainI] = L.getValue(1);
3443  }
3444
3445  if (!ConstantMemory) {
3446    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3447                                MVT::Other, &Chains[0], ChainI);
3448    if (isVolatile)
3449      DAG.setRoot(Chain);
3450    else
3451      PendingLoads.push_back(Chain);
3452  }
3453
3454  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3455                           DAG.getVTList(&ValueVTs[0], NumValues),
3456                           &Values[0], NumValues));
3457}
3458
3459void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3460  if (I.isAtomic())
3461    return visitAtomicStore(I);
3462
3463  const Value *SrcV = I.getOperand(0);
3464  const Value *PtrV = I.getOperand(1);
3465
3466  SmallVector<EVT, 4> ValueVTs;
3467  SmallVector<uint64_t, 4> Offsets;
3468  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3469  unsigned NumValues = ValueVTs.size();
3470  if (NumValues == 0)
3471    return;
3472
3473  // Get the lowered operands. Note that we do this after
3474  // checking if NumResults is zero, because with zero results
3475  // the operands won't have values in the map.
3476  SDValue Src = getValue(SrcV);
3477  SDValue Ptr = getValue(PtrV);
3478
3479  SDValue Root = getRoot();
3480  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3481                                          NumValues));
3482  EVT PtrVT = Ptr.getValueType();
3483  bool isVolatile = I.isVolatile();
3484  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3485  unsigned Alignment = I.getAlignment();
3486  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3487
3488  unsigned ChainI = 0;
3489  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3490    // See visitLoad comments.
3491    if (ChainI == MaxParallelChains) {
3492      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3493                                  MVT::Other, &Chains[0], ChainI);
3494      Root = Chain;
3495      ChainI = 0;
3496    }
3497    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3498                              DAG.getConstant(Offsets[i], PtrVT));
3499    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3500                              SDValue(Src.getNode(), Src.getResNo() + i),
3501                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3502                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3503    Chains[ChainI] = St;
3504  }
3505
3506  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3507                                  MVT::Other, &Chains[0], ChainI);
3508  DAG.setRoot(StoreNode);
3509}
3510
3511static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3512                                    SynchronizationScope Scope,
3513                                    bool Before, SDLoc dl,
3514                                    SelectionDAG &DAG,
3515                                    const TargetLowering &TLI) {
3516  // Fence, if necessary
3517  if (Before) {
3518    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3519      Order = Release;
3520    else if (Order == Acquire || Order == Monotonic)
3521      return Chain;
3522  } else {
3523    if (Order == AcquireRelease)
3524      Order = Acquire;
3525    else if (Order == Release || Order == Monotonic)
3526      return Chain;
3527  }
3528  SDValue Ops[3];
3529  Ops[0] = Chain;
3530  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3531  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3532  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3533}
3534
3535void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3536  SDLoc dl = getCurSDLoc();
3537  AtomicOrdering Order = I.getOrdering();
3538  SynchronizationScope Scope = I.getSynchScope();
3539
3540  SDValue InChain = getRoot();
3541
3542  const TargetLowering *TLI = TM.getTargetLowering();
3543  if (TLI->getInsertFencesForAtomic())
3544    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3545                                   DAG, *TLI);
3546
3547  SDValue L =
3548    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3549                  getValue(I.getCompareOperand()).getSimpleValueType(),
3550                  InChain,
3551                  getValue(I.getPointerOperand()),
3552                  getValue(I.getCompareOperand()),
3553                  getValue(I.getNewValOperand()),
3554                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3555                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3556                  Scope);
3557
3558  SDValue OutChain = L.getValue(1);
3559
3560  if (TLI->getInsertFencesForAtomic())
3561    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3562                                    DAG, *TLI);
3563
3564  setValue(&I, L);
3565  DAG.setRoot(OutChain);
3566}
3567
3568void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3569  SDLoc dl = getCurSDLoc();
3570  ISD::NodeType NT;
3571  switch (I.getOperation()) {
3572  default: llvm_unreachable("Unknown atomicrmw operation");
3573  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3574  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3575  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3576  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3577  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3578  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3579  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3580  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3581  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3582  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3583  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3584  }
3585  AtomicOrdering Order = I.getOrdering();
3586  SynchronizationScope Scope = I.getSynchScope();
3587
3588  SDValue InChain = getRoot();
3589
3590  const TargetLowering *TLI = TM.getTargetLowering();
3591  if (TLI->getInsertFencesForAtomic())
3592    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3593                                   DAG, *TLI);
3594
3595  SDValue L =
3596    DAG.getAtomic(NT, dl,
3597                  getValue(I.getValOperand()).getSimpleValueType(),
3598                  InChain,
3599                  getValue(I.getPointerOperand()),
3600                  getValue(I.getValOperand()),
3601                  I.getPointerOperand(), 0 /* Alignment */,
3602                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3603                  Scope);
3604
3605  SDValue OutChain = L.getValue(1);
3606
3607  if (TLI->getInsertFencesForAtomic())
3608    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3609                                    DAG, *TLI);
3610
3611  setValue(&I, L);
3612  DAG.setRoot(OutChain);
3613}
3614
3615void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3616  SDLoc dl = getCurSDLoc();
3617  const TargetLowering *TLI = TM.getTargetLowering();
3618  SDValue Ops[3];
3619  Ops[0] = getRoot();
3620  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3621  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3622  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3623}
3624
3625void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3626  SDLoc dl = getCurSDLoc();
3627  AtomicOrdering Order = I.getOrdering();
3628  SynchronizationScope Scope = I.getSynchScope();
3629
3630  SDValue InChain = getRoot();
3631
3632  const TargetLowering *TLI = TM.getTargetLowering();
3633  EVT VT = TLI->getValueType(I.getType());
3634
3635  if (I.getAlignment() < VT.getSizeInBits() / 8)
3636    report_fatal_error("Cannot generate unaligned atomic load");
3637
3638  SDValue L =
3639    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3640                  getValue(I.getPointerOperand()),
3641                  I.getPointerOperand(), I.getAlignment(),
3642                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3643                  Scope);
3644
3645  SDValue OutChain = L.getValue(1);
3646
3647  if (TLI->getInsertFencesForAtomic())
3648    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3649                                    DAG, *TLI);
3650
3651  setValue(&I, L);
3652  DAG.setRoot(OutChain);
3653}
3654
3655void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3656  SDLoc dl = getCurSDLoc();
3657
3658  AtomicOrdering Order = I.getOrdering();
3659  SynchronizationScope Scope = I.getSynchScope();
3660
3661  SDValue InChain = getRoot();
3662
3663  const TargetLowering *TLI = TM.getTargetLowering();
3664  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3665
3666  if (I.getAlignment() < VT.getSizeInBits() / 8)
3667    report_fatal_error("Cannot generate unaligned atomic store");
3668
3669  if (TLI->getInsertFencesForAtomic())
3670    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3671                                   DAG, *TLI);
3672
3673  SDValue OutChain =
3674    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3675                  InChain,
3676                  getValue(I.getPointerOperand()),
3677                  getValue(I.getValueOperand()),
3678                  I.getPointerOperand(), I.getAlignment(),
3679                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3680                  Scope);
3681
3682  if (TLI->getInsertFencesForAtomic())
3683    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3684                                    DAG, *TLI);
3685
3686  DAG.setRoot(OutChain);
3687}
3688
3689/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3690/// node.
3691void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3692                                               unsigned Intrinsic) {
3693  bool HasChain = !I.doesNotAccessMemory();
3694  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3695
3696  // Build the operand list.
3697  SmallVector<SDValue, 8> Ops;
3698  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3699    if (OnlyLoad) {
3700      // We don't need to serialize loads against other loads.
3701      Ops.push_back(DAG.getRoot());
3702    } else {
3703      Ops.push_back(getRoot());
3704    }
3705  }
3706
3707  // Info is set by getTgtMemInstrinsic
3708  TargetLowering::IntrinsicInfo Info;
3709  const TargetLowering *TLI = TM.getTargetLowering();
3710  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3711
3712  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3713  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3714      Info.opc == ISD::INTRINSIC_W_CHAIN)
3715    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3716
3717  // Add all operands of the call to the operand list.
3718  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3719    SDValue Op = getValue(I.getArgOperand(i));
3720    Ops.push_back(Op);
3721  }
3722
3723  SmallVector<EVT, 4> ValueVTs;
3724  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3725
3726  if (HasChain)
3727    ValueVTs.push_back(MVT::Other);
3728
3729  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3730
3731  // Create the node.
3732  SDValue Result;
3733  if (IsTgtIntrinsic) {
3734    // This is target intrinsic that touches memory
3735    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3736                                     VTs, &Ops[0], Ops.size(),
3737                                     Info.memVT,
3738                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3739                                     Info.align, Info.vol,
3740                                     Info.readMem, Info.writeMem);
3741  } else if (!HasChain) {
3742    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3743                         VTs, &Ops[0], Ops.size());
3744  } else if (!I.getType()->isVoidTy()) {
3745    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3746                         VTs, &Ops[0], Ops.size());
3747  } else {
3748    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3749                         VTs, &Ops[0], Ops.size());
3750  }
3751
3752  if (HasChain) {
3753    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3754    if (OnlyLoad)
3755      PendingLoads.push_back(Chain);
3756    else
3757      DAG.setRoot(Chain);
3758  }
3759
3760  if (!I.getType()->isVoidTy()) {
3761    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3762      EVT VT = TLI->getValueType(PTy);
3763      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3764    }
3765
3766    setValue(&I, Result);
3767  }
3768}
3769
3770/// GetSignificand - Get the significand and build it into a floating-point
3771/// number with exponent of 1:
3772///
3773///   Op = (Op & 0x007fffff) | 0x3f800000;
3774///
3775/// where Op is the hexadecimal representation of floating point value.
3776static SDValue
3777GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3778  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3779                           DAG.getConstant(0x007fffff, MVT::i32));
3780  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3781                           DAG.getConstant(0x3f800000, MVT::i32));
3782  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3783}
3784
3785/// GetExponent - Get the exponent:
3786///
3787///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3788///
3789/// where Op is the hexadecimal representation of floating point value.
3790static SDValue
3791GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3792            SDLoc dl) {
3793  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3794                           DAG.getConstant(0x7f800000, MVT::i32));
3795  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3796                           DAG.getConstant(23, TLI.getPointerTy()));
3797  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3798                           DAG.getConstant(127, MVT::i32));
3799  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3800}
3801
3802/// getF32Constant - Get 32-bit floating point constant.
3803static SDValue
3804getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3805  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3806                           MVT::f32);
3807}
3808
3809/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3810/// limited-precision mode.
3811static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3812                         const TargetLowering &TLI) {
3813  if (Op.getValueType() == MVT::f32 &&
3814      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3815
3816    // Put the exponent in the right bit position for later addition to the
3817    // final result:
3818    //
3819    //   #define LOG2OFe 1.4426950f
3820    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3821    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3822                             getF32Constant(DAG, 0x3fb8aa3b));
3823    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3824
3825    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3826    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3827    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3828
3829    //   IntegerPartOfX <<= 23;
3830    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3831                                 DAG.getConstant(23, TLI.getPointerTy()));
3832
3833    SDValue TwoToFracPartOfX;
3834    if (LimitFloatPrecision <= 6) {
3835      // For floating-point precision of 6:
3836      //
3837      //   TwoToFractionalPartOfX =
3838      //     0.997535578f +
3839      //       (0.735607626f + 0.252464424f * x) * x;
3840      //
3841      // error 0.0144103317, which is 6 bits
3842      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3843                               getF32Constant(DAG, 0x3e814304));
3844      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3845                               getF32Constant(DAG, 0x3f3c50c8));
3846      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3847      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3848                                     getF32Constant(DAG, 0x3f7f5e7e));
3849    } else if (LimitFloatPrecision <= 12) {
3850      // For floating-point precision of 12:
3851      //
3852      //   TwoToFractionalPartOfX =
3853      //     0.999892986f +
3854      //       (0.696457318f +
3855      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3856      //
3857      // 0.000107046256 error, which is 13 to 14 bits
3858      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3859                               getF32Constant(DAG, 0x3da235e3));
3860      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3861                               getF32Constant(DAG, 0x3e65b8f3));
3862      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3863      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3864                               getF32Constant(DAG, 0x3f324b07));
3865      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3866      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3867                                     getF32Constant(DAG, 0x3f7ff8fd));
3868    } else { // LimitFloatPrecision <= 18
3869      // For floating-point precision of 18:
3870      //
3871      //   TwoToFractionalPartOfX =
3872      //     0.999999982f +
3873      //       (0.693148872f +
3874      //         (0.240227044f +
3875      //           (0.554906021e-1f +
3876      //             (0.961591928e-2f +
3877      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3878      //
3879      // error 2.47208000*10^(-7), which is better than 18 bits
3880      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3881                               getF32Constant(DAG, 0x3924b03e));
3882      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3883                               getF32Constant(DAG, 0x3ab24b87));
3884      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3885      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3886                               getF32Constant(DAG, 0x3c1d8c17));
3887      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3888      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3889                               getF32Constant(DAG, 0x3d634a1d));
3890      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3891      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3892                               getF32Constant(DAG, 0x3e75fe14));
3893      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3894      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3895                                getF32Constant(DAG, 0x3f317234));
3896      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3897      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3898                                     getF32Constant(DAG, 0x3f800000));
3899    }
3900
3901    // Add the exponent into the result in integer domain.
3902    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3903    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3904                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3905                                   t13, IntegerPartOfX));
3906  }
3907
3908  // No special expansion.
3909  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3910}
3911
3912/// expandLog - Lower a log intrinsic. Handles the special sequences for
3913/// limited-precision mode.
3914static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3915                         const TargetLowering &TLI) {
3916  if (Op.getValueType() == MVT::f32 &&
3917      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3918    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3919
3920    // Scale the exponent by log(2) [0.69314718f].
3921    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3922    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3923                                        getF32Constant(DAG, 0x3f317218));
3924
3925    // Get the significand and build it into a floating-point number with
3926    // exponent of 1.
3927    SDValue X = GetSignificand(DAG, Op1, dl);
3928
3929    SDValue LogOfMantissa;
3930    if (LimitFloatPrecision <= 6) {
3931      // For floating-point precision of 6:
3932      //
3933      //   LogofMantissa =
3934      //     -1.1609546f +
3935      //       (1.4034025f - 0.23903021f * x) * x;
3936      //
3937      // error 0.0034276066, which is better than 8 bits
3938      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3939                               getF32Constant(DAG, 0xbe74c456));
3940      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3941                               getF32Constant(DAG, 0x3fb3a2b1));
3942      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3943      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3944                                  getF32Constant(DAG, 0x3f949a29));
3945    } else if (LimitFloatPrecision <= 12) {
3946      // For floating-point precision of 12:
3947      //
3948      //   LogOfMantissa =
3949      //     -1.7417939f +
3950      //       (2.8212026f +
3951      //         (-1.4699568f +
3952      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3953      //
3954      // error 0.000061011436, which is 14 bits
3955      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3956                               getF32Constant(DAG, 0xbd67b6d6));
3957      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3958                               getF32Constant(DAG, 0x3ee4f4b8));
3959      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3960      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3961                               getF32Constant(DAG, 0x3fbc278b));
3962      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3963      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3964                               getF32Constant(DAG, 0x40348e95));
3965      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3966      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3967                                  getF32Constant(DAG, 0x3fdef31a));
3968    } else { // LimitFloatPrecision <= 18
3969      // For floating-point precision of 18:
3970      //
3971      //   LogOfMantissa =
3972      //     -2.1072184f +
3973      //       (4.2372794f +
3974      //         (-3.7029485f +
3975      //           (2.2781945f +
3976      //             (-0.87823314f +
3977      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3978      //
3979      // error 0.0000023660568, which is better than 18 bits
3980      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3981                               getF32Constant(DAG, 0xbc91e5ac));
3982      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3983                               getF32Constant(DAG, 0x3e4350aa));
3984      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3985      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3986                               getF32Constant(DAG, 0x3f60d3e3));
3987      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3988      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3989                               getF32Constant(DAG, 0x4011cdf0));
3990      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3991      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3992                               getF32Constant(DAG, 0x406cfd1c));
3993      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3994      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3995                               getF32Constant(DAG, 0x408797cb));
3996      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3997      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3998                                  getF32Constant(DAG, 0x4006dcab));
3999    }
4000
4001    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4002  }
4003
4004  // No special expansion.
4005  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4006}
4007
4008/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4009/// limited-precision mode.
4010static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4011                          const TargetLowering &TLI) {
4012  if (Op.getValueType() == MVT::f32 &&
4013      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4014    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4015
4016    // Get the exponent.
4017    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4018
4019    // Get the significand and build it into a floating-point number with
4020    // exponent of 1.
4021    SDValue X = GetSignificand(DAG, Op1, dl);
4022
4023    // Different possible minimax approximations of significand in
4024    // floating-point for various degrees of accuracy over [1,2].
4025    SDValue Log2ofMantissa;
4026    if (LimitFloatPrecision <= 6) {
4027      // For floating-point precision of 6:
4028      //
4029      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4030      //
4031      // error 0.0049451742, which is more than 7 bits
4032      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4033                               getF32Constant(DAG, 0xbeb08fe0));
4034      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4035                               getF32Constant(DAG, 0x40019463));
4036      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4037      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4038                                   getF32Constant(DAG, 0x3fd6633d));
4039    } else if (LimitFloatPrecision <= 12) {
4040      // For floating-point precision of 12:
4041      //
4042      //   Log2ofMantissa =
4043      //     -2.51285454f +
4044      //       (4.07009056f +
4045      //         (-2.12067489f +
4046      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4047      //
4048      // error 0.0000876136000, which is better than 13 bits
4049      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4050                               getF32Constant(DAG, 0xbda7262e));
4051      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4052                               getF32Constant(DAG, 0x3f25280b));
4053      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4054      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4055                               getF32Constant(DAG, 0x4007b923));
4056      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4057      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4058                               getF32Constant(DAG, 0x40823e2f));
4059      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4060      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4061                                   getF32Constant(DAG, 0x4020d29c));
4062    } else { // LimitFloatPrecision <= 18
4063      // For floating-point precision of 18:
4064      //
4065      //   Log2ofMantissa =
4066      //     -3.0400495f +
4067      //       (6.1129976f +
4068      //         (-5.3420409f +
4069      //           (3.2865683f +
4070      //             (-1.2669343f +
4071      //               (0.27515199f -
4072      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4073      //
4074      // error 0.0000018516, which is better than 18 bits
4075      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4076                               getF32Constant(DAG, 0xbcd2769e));
4077      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4078                               getF32Constant(DAG, 0x3e8ce0b9));
4079      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4080      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4081                               getF32Constant(DAG, 0x3fa22ae7));
4082      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4083      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4084                               getF32Constant(DAG, 0x40525723));
4085      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4086      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4087                               getF32Constant(DAG, 0x40aaf200));
4088      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4089      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4090                               getF32Constant(DAG, 0x40c39dad));
4091      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4092      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4093                                   getF32Constant(DAG, 0x4042902c));
4094    }
4095
4096    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4097  }
4098
4099  // No special expansion.
4100  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4101}
4102
4103/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4104/// limited-precision mode.
4105static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4106                           const TargetLowering &TLI) {
4107  if (Op.getValueType() == MVT::f32 &&
4108      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4109    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4110
4111    // Scale the exponent by log10(2) [0.30102999f].
4112    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4113    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4114                                        getF32Constant(DAG, 0x3e9a209a));
4115
4116    // Get the significand and build it into a floating-point number with
4117    // exponent of 1.
4118    SDValue X = GetSignificand(DAG, Op1, dl);
4119
4120    SDValue Log10ofMantissa;
4121    if (LimitFloatPrecision <= 6) {
4122      // For floating-point precision of 6:
4123      //
4124      //   Log10ofMantissa =
4125      //     -0.50419619f +
4126      //       (0.60948995f - 0.10380950f * x) * x;
4127      //
4128      // error 0.0014886165, which is 6 bits
4129      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4130                               getF32Constant(DAG, 0xbdd49a13));
4131      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4132                               getF32Constant(DAG, 0x3f1c0789));
4133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4134      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4135                                    getF32Constant(DAG, 0x3f011300));
4136    } else if (LimitFloatPrecision <= 12) {
4137      // For floating-point precision of 12:
4138      //
4139      //   Log10ofMantissa =
4140      //     -0.64831180f +
4141      //       (0.91751397f +
4142      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4143      //
4144      // error 0.00019228036, which is better than 12 bits
4145      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4146                               getF32Constant(DAG, 0x3d431f31));
4147      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4148                               getF32Constant(DAG, 0x3ea21fb2));
4149      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4150      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4151                               getF32Constant(DAG, 0x3f6ae232));
4152      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4153      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4154                                    getF32Constant(DAG, 0x3f25f7c3));
4155    } else { // LimitFloatPrecision <= 18
4156      // For floating-point precision of 18:
4157      //
4158      //   Log10ofMantissa =
4159      //     -0.84299375f +
4160      //       (1.5327582f +
4161      //         (-1.0688956f +
4162      //           (0.49102474f +
4163      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4164      //
4165      // error 0.0000037995730, which is better than 18 bits
4166      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4167                               getF32Constant(DAG, 0x3c5d51ce));
4168      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4169                               getF32Constant(DAG, 0x3e00685a));
4170      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4171      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4172                               getF32Constant(DAG, 0x3efb6798));
4173      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4174      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4175                               getF32Constant(DAG, 0x3f88d192));
4176      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4177      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4178                               getF32Constant(DAG, 0x3fc4316c));
4179      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4180      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4181                                    getF32Constant(DAG, 0x3f57ce70));
4182    }
4183
4184    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4185  }
4186
4187  // No special expansion.
4188  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4189}
4190
4191/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4192/// limited-precision mode.
4193static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4194                          const TargetLowering &TLI) {
4195  if (Op.getValueType() == MVT::f32 &&
4196      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4197    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4198
4199    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4200    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4201    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4202
4203    //   IntegerPartOfX <<= 23;
4204    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4205                                 DAG.getConstant(23, TLI.getPointerTy()));
4206
4207    SDValue TwoToFractionalPartOfX;
4208    if (LimitFloatPrecision <= 6) {
4209      // For floating-point precision of 6:
4210      //
4211      //   TwoToFractionalPartOfX =
4212      //     0.997535578f +
4213      //       (0.735607626f + 0.252464424f * x) * x;
4214      //
4215      // error 0.0144103317, which is 6 bits
4216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4217                               getF32Constant(DAG, 0x3e814304));
4218      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4219                               getF32Constant(DAG, 0x3f3c50c8));
4220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4221      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4222                                           getF32Constant(DAG, 0x3f7f5e7e));
4223    } else if (LimitFloatPrecision <= 12) {
4224      // For floating-point precision of 12:
4225      //
4226      //   TwoToFractionalPartOfX =
4227      //     0.999892986f +
4228      //       (0.696457318f +
4229      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4230      //
4231      // error 0.000107046256, which is 13 to 14 bits
4232      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4233                               getF32Constant(DAG, 0x3da235e3));
4234      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4235                               getF32Constant(DAG, 0x3e65b8f3));
4236      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4237      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4238                               getF32Constant(DAG, 0x3f324b07));
4239      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4240      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4241                                           getF32Constant(DAG, 0x3f7ff8fd));
4242    } else { // LimitFloatPrecision <= 18
4243      // For floating-point precision of 18:
4244      //
4245      //   TwoToFractionalPartOfX =
4246      //     0.999999982f +
4247      //       (0.693148872f +
4248      //         (0.240227044f +
4249      //           (0.554906021e-1f +
4250      //             (0.961591928e-2f +
4251      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4252      // error 2.47208000*10^(-7), which is better than 18 bits
4253      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4254                               getF32Constant(DAG, 0x3924b03e));
4255      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4256                               getF32Constant(DAG, 0x3ab24b87));
4257      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4258      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4259                               getF32Constant(DAG, 0x3c1d8c17));
4260      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4261      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4262                               getF32Constant(DAG, 0x3d634a1d));
4263      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4264      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4265                               getF32Constant(DAG, 0x3e75fe14));
4266      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4267      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4268                                getF32Constant(DAG, 0x3f317234));
4269      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4270      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4271                                           getF32Constant(DAG, 0x3f800000));
4272    }
4273
4274    // Add the exponent into the result in integer domain.
4275    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4276                              TwoToFractionalPartOfX);
4277    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4278                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4279                                   t13, IntegerPartOfX));
4280  }
4281
4282  // No special expansion.
4283  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4284}
4285
4286/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4287/// limited-precision mode with x == 10.0f.
4288static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4289                         SelectionDAG &DAG, const TargetLowering &TLI) {
4290  bool IsExp10 = false;
4291  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4292      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4293    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4294      APFloat Ten(10.0f);
4295      IsExp10 = LHSC->isExactlyValue(Ten);
4296    }
4297  }
4298
4299  if (IsExp10) {
4300    // Put the exponent in the right bit position for later addition to the
4301    // final result:
4302    //
4303    //   #define LOG2OF10 3.3219281f
4304    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4305    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4306                             getF32Constant(DAG, 0x40549a78));
4307    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4308
4309    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4310    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4311    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4312
4313    //   IntegerPartOfX <<= 23;
4314    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4315                                 DAG.getConstant(23, TLI.getPointerTy()));
4316
4317    SDValue TwoToFractionalPartOfX;
4318    if (LimitFloatPrecision <= 6) {
4319      // For floating-point precision of 6:
4320      //
4321      //   twoToFractionalPartOfX =
4322      //     0.997535578f +
4323      //       (0.735607626f + 0.252464424f * x) * x;
4324      //
4325      // error 0.0144103317, which is 6 bits
4326      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4327                               getF32Constant(DAG, 0x3e814304));
4328      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4329                               getF32Constant(DAG, 0x3f3c50c8));
4330      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4331      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4332                                           getF32Constant(DAG, 0x3f7f5e7e));
4333    } else if (LimitFloatPrecision <= 12) {
4334      // For floating-point precision of 12:
4335      //
4336      //   TwoToFractionalPartOfX =
4337      //     0.999892986f +
4338      //       (0.696457318f +
4339      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4340      //
4341      // error 0.000107046256, which is 13 to 14 bits
4342      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4343                               getF32Constant(DAG, 0x3da235e3));
4344      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4345                               getF32Constant(DAG, 0x3e65b8f3));
4346      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4347      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4348                               getF32Constant(DAG, 0x3f324b07));
4349      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4350      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4351                                           getF32Constant(DAG, 0x3f7ff8fd));
4352    } else { // LimitFloatPrecision <= 18
4353      // For floating-point precision of 18:
4354      //
4355      //   TwoToFractionalPartOfX =
4356      //     0.999999982f +
4357      //       (0.693148872f +
4358      //         (0.240227044f +
4359      //           (0.554906021e-1f +
4360      //             (0.961591928e-2f +
4361      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4362      // error 2.47208000*10^(-7), which is better than 18 bits
4363      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4364                               getF32Constant(DAG, 0x3924b03e));
4365      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4366                               getF32Constant(DAG, 0x3ab24b87));
4367      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4368      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4369                               getF32Constant(DAG, 0x3c1d8c17));
4370      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4371      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4372                               getF32Constant(DAG, 0x3d634a1d));
4373      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4374      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4375                               getF32Constant(DAG, 0x3e75fe14));
4376      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4377      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4378                                getF32Constant(DAG, 0x3f317234));
4379      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4380      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4381                                           getF32Constant(DAG, 0x3f800000));
4382    }
4383
4384    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4385    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4386                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4387                                   t13, IntegerPartOfX));
4388  }
4389
4390  // No special expansion.
4391  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4392}
4393
4394
4395/// ExpandPowI - Expand a llvm.powi intrinsic.
4396static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4397                          SelectionDAG &DAG) {
4398  // If RHS is a constant, we can expand this out to a multiplication tree,
4399  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4400  // optimizing for size, we only want to do this if the expansion would produce
4401  // a small number of multiplies, otherwise we do the full expansion.
4402  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4403    // Get the exponent as a positive value.
4404    unsigned Val = RHSC->getSExtValue();
4405    if ((int)Val < 0) Val = -Val;
4406
4407    // powi(x, 0) -> 1.0
4408    if (Val == 0)
4409      return DAG.getConstantFP(1.0, LHS.getValueType());
4410
4411    const Function *F = DAG.getMachineFunction().getFunction();
4412    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4413                                         Attribute::OptimizeForSize) ||
4414        // If optimizing for size, don't insert too many multiplies.  This
4415        // inserts up to 5 multiplies.
4416        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4417      // We use the simple binary decomposition method to generate the multiply
4418      // sequence.  There are more optimal ways to do this (for example,
4419      // powi(x,15) generates one more multiply than it should), but this has
4420      // the benefit of being both really simple and much better than a libcall.
4421      SDValue Res;  // Logically starts equal to 1.0
4422      SDValue CurSquare = LHS;
4423      while (Val) {
4424        if (Val & 1) {
4425          if (Res.getNode())
4426            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4427          else
4428            Res = CurSquare;  // 1.0*CurSquare.
4429        }
4430
4431        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4432                                CurSquare, CurSquare);
4433        Val >>= 1;
4434      }
4435
4436      // If the original was negative, invert the result, producing 1/(x*x*x).
4437      if (RHSC->getSExtValue() < 0)
4438        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4439                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4440      return Res;
4441    }
4442  }
4443
4444  // Otherwise, expand to a libcall.
4445  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4446}
4447
4448// getTruncatedArgReg - Find underlying register used for an truncated
4449// argument.
4450static unsigned getTruncatedArgReg(const SDValue &N) {
4451  if (N.getOpcode() != ISD::TRUNCATE)
4452    return 0;
4453
4454  const SDValue &Ext = N.getOperand(0);
4455  if (Ext.getOpcode() == ISD::AssertZext ||
4456      Ext.getOpcode() == ISD::AssertSext) {
4457    const SDValue &CFR = Ext.getOperand(0);
4458    if (CFR.getOpcode() == ISD::CopyFromReg)
4459      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4460    if (CFR.getOpcode() == ISD::TRUNCATE)
4461      return getTruncatedArgReg(CFR);
4462  }
4463  return 0;
4464}
4465
4466/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4467/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4468/// At the end of instruction selection, they will be inserted to the entry BB.
4469bool
4470SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4471                                              int64_t Offset,
4472                                              const SDValue &N) {
4473  const Argument *Arg = dyn_cast<Argument>(V);
4474  if (!Arg)
4475    return false;
4476
4477  MachineFunction &MF = DAG.getMachineFunction();
4478  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4479
4480  // Ignore inlined function arguments here.
4481  DIVariable DV(Variable);
4482  if (DV.isInlinedFnArgument(MF.getFunction()))
4483    return false;
4484
4485  Optional<MachineOperand> Op;
4486  // Some arguments' frame index is recorded during argument lowering.
4487  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4488    Op = MachineOperand::CreateFI(FI);
4489
4490  if (!Op && N.getNode()) {
4491    unsigned Reg;
4492    if (N.getOpcode() == ISD::CopyFromReg)
4493      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4494    else
4495      Reg = getTruncatedArgReg(N);
4496    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4497      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4498      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4499      if (PR)
4500        Reg = PR;
4501    }
4502    if (Reg)
4503      Op = MachineOperand::CreateReg(Reg, false);
4504  }
4505
4506  if (!Op) {
4507    // Check if ValueMap has reg number.
4508    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4509    if (VMI != FuncInfo.ValueMap.end())
4510      Op = MachineOperand::CreateReg(VMI->second, false);
4511  }
4512
4513  if (!Op && N.getNode())
4514    // Check if frame index is available.
4515    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4516      if (FrameIndexSDNode *FINode =
4517          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4518        Op = MachineOperand::CreateFI(FINode->getIndex());
4519
4520  if (!Op)
4521    return false;
4522
4523  // FIXME: This does not handle register-indirect values at offset 0.
4524  bool IsIndirect = Offset != 0;
4525  if (Op->isReg())
4526    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4527                                            TII->get(TargetOpcode::DBG_VALUE),
4528                                            IsIndirect,
4529                                            Op->getReg(), Offset, Variable));
4530  else
4531    FuncInfo.ArgDbgValues.push_back(
4532      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4533          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4534
4535  return true;
4536}
4537
4538// VisualStudio defines setjmp as _setjmp
4539#if defined(_MSC_VER) && defined(setjmp) && \
4540                         !defined(setjmp_undefined_for_msvc)
4541#  pragma push_macro("setjmp")
4542#  undef setjmp
4543#  define setjmp_undefined_for_msvc
4544#endif
4545
4546/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4547/// we want to emit this as a call to a named external function, return the name
4548/// otherwise lower it and return null.
4549const char *
4550SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4551  const TargetLowering *TLI = TM.getTargetLowering();
4552  SDLoc sdl = getCurSDLoc();
4553  DebugLoc dl = getCurDebugLoc();
4554  SDValue Res;
4555
4556  switch (Intrinsic) {
4557  default:
4558    // By default, turn this into a target intrinsic node.
4559    visitTargetIntrinsic(I, Intrinsic);
4560    return 0;
4561  case Intrinsic::vastart:  visitVAStart(I); return 0;
4562  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4563  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4564  case Intrinsic::returnaddress:
4565    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4566                             getValue(I.getArgOperand(0))));
4567    return 0;
4568  case Intrinsic::frameaddress:
4569    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4570                             getValue(I.getArgOperand(0))));
4571    return 0;
4572  case Intrinsic::setjmp:
4573    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4574  case Intrinsic::longjmp:
4575    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4576  case Intrinsic::memcpy: {
4577    // Assert for address < 256 since we support only user defined address
4578    // spaces.
4579    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4580           < 256 &&
4581           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4582           < 256 &&
4583           "Unknown address space");
4584    SDValue Op1 = getValue(I.getArgOperand(0));
4585    SDValue Op2 = getValue(I.getArgOperand(1));
4586    SDValue Op3 = getValue(I.getArgOperand(2));
4587    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4588    if (!Align)
4589      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4590    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4591    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4592                              MachinePointerInfo(I.getArgOperand(0)),
4593                              MachinePointerInfo(I.getArgOperand(1))));
4594    return 0;
4595  }
4596  case Intrinsic::memset: {
4597    // Assert for address < 256 since we support only user defined address
4598    // spaces.
4599    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4600           < 256 &&
4601           "Unknown address space");
4602    SDValue Op1 = getValue(I.getArgOperand(0));
4603    SDValue Op2 = getValue(I.getArgOperand(1));
4604    SDValue Op3 = getValue(I.getArgOperand(2));
4605    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4606    if (!Align)
4607      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4608    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4609    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4610                              MachinePointerInfo(I.getArgOperand(0))));
4611    return 0;
4612  }
4613  case Intrinsic::memmove: {
4614    // Assert for address < 256 since we support only user defined address
4615    // spaces.
4616    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4617           < 256 &&
4618           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4619           < 256 &&
4620           "Unknown address space");
4621    SDValue Op1 = getValue(I.getArgOperand(0));
4622    SDValue Op2 = getValue(I.getArgOperand(1));
4623    SDValue Op3 = getValue(I.getArgOperand(2));
4624    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4625    if (!Align)
4626      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4627    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4628    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4629                               MachinePointerInfo(I.getArgOperand(0)),
4630                               MachinePointerInfo(I.getArgOperand(1))));
4631    return 0;
4632  }
4633  case Intrinsic::dbg_declare: {
4634    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4635    MDNode *Variable = DI.getVariable();
4636    const Value *Address = DI.getAddress();
4637    DIVariable DIVar(Variable);
4638    assert((!DIVar || DIVar.isVariable()) &&
4639      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4640    if (!Address || !DIVar) {
4641      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4642      return 0;
4643    }
4644
4645    // Check if address has undef value.
4646    if (isa<UndefValue>(Address) ||
4647        (Address->use_empty() && !isa<Argument>(Address))) {
4648      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4649      return 0;
4650    }
4651
4652    SDValue &N = NodeMap[Address];
4653    if (!N.getNode() && isa<Argument>(Address))
4654      // Check unused arguments map.
4655      N = UnusedArgNodeMap[Address];
4656    SDDbgValue *SDV;
4657    if (N.getNode()) {
4658      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4659        Address = BCI->getOperand(0);
4660      // Parameters are handled specially.
4661      bool isParameter =
4662        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4663         isa<Argument>(Address));
4664
4665      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4666
4667      if (isParameter && !AI) {
4668        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4669        if (FINode)
4670          // Byval parameter.  We have a frame index at this point.
4671          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4672                                0, dl, SDNodeOrder);
4673        else {
4674          // Address is an argument, so try to emit its dbg value using
4675          // virtual register info from the FuncInfo.ValueMap.
4676          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4677          return 0;
4678        }
4679      } else if (AI)
4680        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4681                              0, dl, SDNodeOrder);
4682      else {
4683        // Can't do anything with other non-AI cases yet.
4684        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4685        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4686        DEBUG(Address->dump());
4687        return 0;
4688      }
4689      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4690    } else {
4691      // If Address is an argument then try to emit its dbg value using
4692      // virtual register info from the FuncInfo.ValueMap.
4693      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4694        // If variable is pinned by a alloca in dominating bb then
4695        // use StaticAllocaMap.
4696        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4697          if (AI->getParent() != DI.getParent()) {
4698            DenseMap<const AllocaInst*, int>::iterator SI =
4699              FuncInfo.StaticAllocaMap.find(AI);
4700            if (SI != FuncInfo.StaticAllocaMap.end()) {
4701              SDV = DAG.getDbgValue(Variable, SI->second,
4702                                    0, dl, SDNodeOrder);
4703              DAG.AddDbgValue(SDV, 0, false);
4704              return 0;
4705            }
4706          }
4707        }
4708        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4709      }
4710    }
4711    return 0;
4712  }
4713  case Intrinsic::dbg_value: {
4714    const DbgValueInst &DI = cast<DbgValueInst>(I);
4715    DIVariable DIVar(DI.getVariable());
4716    assert((!DIVar || DIVar.isVariable()) &&
4717      "Variable in DbgValueInst should be either null or a DIVariable.");
4718    if (!DIVar)
4719      return 0;
4720
4721    MDNode *Variable = DI.getVariable();
4722    uint64_t Offset = DI.getOffset();
4723    const Value *V = DI.getValue();
4724    if (!V)
4725      return 0;
4726
4727    SDDbgValue *SDV;
4728    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4729      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4730      DAG.AddDbgValue(SDV, 0, false);
4731    } else {
4732      // Do not use getValue() in here; we don't want to generate code at
4733      // this point if it hasn't been done yet.
4734      SDValue N = NodeMap[V];
4735      if (!N.getNode() && isa<Argument>(V))
4736        // Check unused arguments map.
4737        N = UnusedArgNodeMap[V];
4738      if (N.getNode()) {
4739        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4740          SDV = DAG.getDbgValue(Variable, N.getNode(),
4741                                N.getResNo(), Offset, dl, SDNodeOrder);
4742          DAG.AddDbgValue(SDV, N.getNode(), false);
4743        }
4744      } else if (!V->use_empty() ) {
4745        // Do not call getValue(V) yet, as we don't want to generate code.
4746        // Remember it for later.
4747        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4748        DanglingDebugInfoMap[V] = DDI;
4749      } else {
4750        // We may expand this to cover more cases.  One case where we have no
4751        // data available is an unreferenced parameter.
4752        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4753      }
4754    }
4755
4756    // Build a debug info table entry.
4757    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4758      V = BCI->getOperand(0);
4759    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4760    // Don't handle byval struct arguments or VLAs, for example.
4761    if (!AI) {
4762      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4763      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4764      return 0;
4765    }
4766    DenseMap<const AllocaInst*, int>::iterator SI =
4767      FuncInfo.StaticAllocaMap.find(AI);
4768    if (SI == FuncInfo.StaticAllocaMap.end())
4769      return 0; // VLAs.
4770    int FI = SI->second;
4771
4772    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4773    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4774      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4775    return 0;
4776  }
4777
4778  case Intrinsic::eh_typeid_for: {
4779    // Find the type id for the given typeinfo.
4780    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4781    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4782    Res = DAG.getConstant(TypeID, MVT::i32);
4783    setValue(&I, Res);
4784    return 0;
4785  }
4786
4787  case Intrinsic::eh_return_i32:
4788  case Intrinsic::eh_return_i64:
4789    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4790    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4791                            MVT::Other,
4792                            getControlRoot(),
4793                            getValue(I.getArgOperand(0)),
4794                            getValue(I.getArgOperand(1))));
4795    return 0;
4796  case Intrinsic::eh_unwind_init:
4797    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4798    return 0;
4799  case Intrinsic::eh_dwarf_cfa: {
4800    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4801                                        TLI->getPointerTy());
4802    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4803                                 CfaArg.getValueType(),
4804                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4805                                             CfaArg.getValueType()),
4806                                 CfaArg);
4807    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4808                             TLI->getPointerTy(),
4809                             DAG.getConstant(0, TLI->getPointerTy()));
4810    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4811                             FA, Offset));
4812    return 0;
4813  }
4814  case Intrinsic::eh_sjlj_callsite: {
4815    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4816    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4817    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4818    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4819
4820    MMI.setCurrentCallSite(CI->getZExtValue());
4821    return 0;
4822  }
4823  case Intrinsic::eh_sjlj_functioncontext: {
4824    // Get and store the index of the function context.
4825    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4826    AllocaInst *FnCtx =
4827      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4828    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4829    MFI->setFunctionContextIndex(FI);
4830    return 0;
4831  }
4832  case Intrinsic::eh_sjlj_setjmp: {
4833    SDValue Ops[2];
4834    Ops[0] = getRoot();
4835    Ops[1] = getValue(I.getArgOperand(0));
4836    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4837                             DAG.getVTList(MVT::i32, MVT::Other),
4838                             Ops, 2);
4839    setValue(&I, Op.getValue(0));
4840    DAG.setRoot(Op.getValue(1));
4841    return 0;
4842  }
4843  case Intrinsic::eh_sjlj_longjmp: {
4844    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4845                            getRoot(), getValue(I.getArgOperand(0))));
4846    return 0;
4847  }
4848
4849  case Intrinsic::x86_mmx_pslli_w:
4850  case Intrinsic::x86_mmx_pslli_d:
4851  case Intrinsic::x86_mmx_pslli_q:
4852  case Intrinsic::x86_mmx_psrli_w:
4853  case Intrinsic::x86_mmx_psrli_d:
4854  case Intrinsic::x86_mmx_psrli_q:
4855  case Intrinsic::x86_mmx_psrai_w:
4856  case Intrinsic::x86_mmx_psrai_d: {
4857    SDValue ShAmt = getValue(I.getArgOperand(1));
4858    if (isa<ConstantSDNode>(ShAmt)) {
4859      visitTargetIntrinsic(I, Intrinsic);
4860      return 0;
4861    }
4862    unsigned NewIntrinsic = 0;
4863    EVT ShAmtVT = MVT::v2i32;
4864    switch (Intrinsic) {
4865    case Intrinsic::x86_mmx_pslli_w:
4866      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4867      break;
4868    case Intrinsic::x86_mmx_pslli_d:
4869      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4870      break;
4871    case Intrinsic::x86_mmx_pslli_q:
4872      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4873      break;
4874    case Intrinsic::x86_mmx_psrli_w:
4875      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4876      break;
4877    case Intrinsic::x86_mmx_psrli_d:
4878      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4879      break;
4880    case Intrinsic::x86_mmx_psrli_q:
4881      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4882      break;
4883    case Intrinsic::x86_mmx_psrai_w:
4884      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4885      break;
4886    case Intrinsic::x86_mmx_psrai_d:
4887      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4888      break;
4889    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4890    }
4891
4892    // The vector shift intrinsics with scalars uses 32b shift amounts but
4893    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4894    // to be zero.
4895    // We must do this early because v2i32 is not a legal type.
4896    SDValue ShOps[2];
4897    ShOps[0] = ShAmt;
4898    ShOps[1] = DAG.getConstant(0, MVT::i32);
4899    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4900    EVT DestVT = TLI->getValueType(I.getType());
4901    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4902    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4903                       DAG.getConstant(NewIntrinsic, MVT::i32),
4904                       getValue(I.getArgOperand(0)), ShAmt);
4905    setValue(&I, Res);
4906    return 0;
4907  }
4908  case Intrinsic::x86_avx_vinsertf128_pd_256:
4909  case Intrinsic::x86_avx_vinsertf128_ps_256:
4910  case Intrinsic::x86_avx_vinsertf128_si_256:
4911  case Intrinsic::x86_avx2_vinserti128: {
4912    EVT DestVT = TLI->getValueType(I.getType());
4913    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4914    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4915                   ElVT.getVectorNumElements();
4916    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4917                      getValue(I.getArgOperand(0)),
4918                      getValue(I.getArgOperand(1)),
4919                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4920    setValue(&I, Res);
4921    return 0;
4922  }
4923  case Intrinsic::x86_avx_vextractf128_pd_256:
4924  case Intrinsic::x86_avx_vextractf128_ps_256:
4925  case Intrinsic::x86_avx_vextractf128_si_256:
4926  case Intrinsic::x86_avx2_vextracti128: {
4927    EVT DestVT = TLI->getValueType(I.getType());
4928    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4929                   DestVT.getVectorNumElements();
4930    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4931                      getValue(I.getArgOperand(0)),
4932                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4933    setValue(&I, Res);
4934    return 0;
4935  }
4936  case Intrinsic::convertff:
4937  case Intrinsic::convertfsi:
4938  case Intrinsic::convertfui:
4939  case Intrinsic::convertsif:
4940  case Intrinsic::convertuif:
4941  case Intrinsic::convertss:
4942  case Intrinsic::convertsu:
4943  case Intrinsic::convertus:
4944  case Intrinsic::convertuu: {
4945    ISD::CvtCode Code = ISD::CVT_INVALID;
4946    switch (Intrinsic) {
4947    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4948    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4949    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4950    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4951    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4952    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4953    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4954    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4955    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4956    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4957    }
4958    EVT DestVT = TLI->getValueType(I.getType());
4959    const Value *Op1 = I.getArgOperand(0);
4960    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4961                               DAG.getValueType(DestVT),
4962                               DAG.getValueType(getValue(Op1).getValueType()),
4963                               getValue(I.getArgOperand(1)),
4964                               getValue(I.getArgOperand(2)),
4965                               Code);
4966    setValue(&I, Res);
4967    return 0;
4968  }
4969  case Intrinsic::powi:
4970    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4971                            getValue(I.getArgOperand(1)), DAG));
4972    return 0;
4973  case Intrinsic::log:
4974    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4975    return 0;
4976  case Intrinsic::log2:
4977    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4978    return 0;
4979  case Intrinsic::log10:
4980    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4981    return 0;
4982  case Intrinsic::exp:
4983    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4984    return 0;
4985  case Intrinsic::exp2:
4986    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4987    return 0;
4988  case Intrinsic::pow:
4989    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4990                           getValue(I.getArgOperand(1)), DAG, *TLI));
4991    return 0;
4992  case Intrinsic::sqrt:
4993  case Intrinsic::fabs:
4994  case Intrinsic::sin:
4995  case Intrinsic::cos:
4996  case Intrinsic::floor:
4997  case Intrinsic::ceil:
4998  case Intrinsic::trunc:
4999  case Intrinsic::rint:
5000  case Intrinsic::nearbyint:
5001  case Intrinsic::round: {
5002    unsigned Opcode;
5003    switch (Intrinsic) {
5004    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5005    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5006    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5007    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5008    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5009    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5010    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5011    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5012    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5013    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5014    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5015    }
5016
5017    setValue(&I, DAG.getNode(Opcode, sdl,
5018                             getValue(I.getArgOperand(0)).getValueType(),
5019                             getValue(I.getArgOperand(0))));
5020    return 0;
5021  }
5022  case Intrinsic::copysign:
5023    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5024                             getValue(I.getArgOperand(0)).getValueType(),
5025                             getValue(I.getArgOperand(0)),
5026                             getValue(I.getArgOperand(1))));
5027    return 0;
5028  case Intrinsic::fma:
5029    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5030                             getValue(I.getArgOperand(0)).getValueType(),
5031                             getValue(I.getArgOperand(0)),
5032                             getValue(I.getArgOperand(1)),
5033                             getValue(I.getArgOperand(2))));
5034    return 0;
5035  case Intrinsic::fmuladd: {
5036    EVT VT = TLI->getValueType(I.getType());
5037    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5038        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5039      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5040                               getValue(I.getArgOperand(0)).getValueType(),
5041                               getValue(I.getArgOperand(0)),
5042                               getValue(I.getArgOperand(1)),
5043                               getValue(I.getArgOperand(2))));
5044    } else {
5045      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5046                                getValue(I.getArgOperand(0)).getValueType(),
5047                                getValue(I.getArgOperand(0)),
5048                                getValue(I.getArgOperand(1)));
5049      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5050                                getValue(I.getArgOperand(0)).getValueType(),
5051                                Mul,
5052                                getValue(I.getArgOperand(2)));
5053      setValue(&I, Add);
5054    }
5055    return 0;
5056  }
5057  case Intrinsic::convert_to_fp16:
5058    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5059                             MVT::i16, getValue(I.getArgOperand(0))));
5060    return 0;
5061  case Intrinsic::convert_from_fp16:
5062    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5063                             MVT::f32, getValue(I.getArgOperand(0))));
5064    return 0;
5065  case Intrinsic::pcmarker: {
5066    SDValue Tmp = getValue(I.getArgOperand(0));
5067    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5068    return 0;
5069  }
5070  case Intrinsic::readcyclecounter: {
5071    SDValue Op = getRoot();
5072    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5073                      DAG.getVTList(MVT::i64, MVT::Other),
5074                      &Op, 1);
5075    setValue(&I, Res);
5076    DAG.setRoot(Res.getValue(1));
5077    return 0;
5078  }
5079  case Intrinsic::bswap:
5080    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5081                             getValue(I.getArgOperand(0)).getValueType(),
5082                             getValue(I.getArgOperand(0))));
5083    return 0;
5084  case Intrinsic::cttz: {
5085    SDValue Arg = getValue(I.getArgOperand(0));
5086    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5087    EVT Ty = Arg.getValueType();
5088    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5089                             sdl, Ty, Arg));
5090    return 0;
5091  }
5092  case Intrinsic::ctlz: {
5093    SDValue Arg = getValue(I.getArgOperand(0));
5094    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5095    EVT Ty = Arg.getValueType();
5096    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5097                             sdl, Ty, Arg));
5098    return 0;
5099  }
5100  case Intrinsic::ctpop: {
5101    SDValue Arg = getValue(I.getArgOperand(0));
5102    EVT Ty = Arg.getValueType();
5103    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5104    return 0;
5105  }
5106  case Intrinsic::stacksave: {
5107    SDValue Op = getRoot();
5108    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5109                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5110    setValue(&I, Res);
5111    DAG.setRoot(Res.getValue(1));
5112    return 0;
5113  }
5114  case Intrinsic::stackrestore: {
5115    Res = getValue(I.getArgOperand(0));
5116    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5117    return 0;
5118  }
5119  case Intrinsic::stackprotector: {
5120    // Emit code into the DAG to store the stack guard onto the stack.
5121    MachineFunction &MF = DAG.getMachineFunction();
5122    MachineFrameInfo *MFI = MF.getFrameInfo();
5123    EVT PtrTy = TLI->getPointerTy();
5124
5125    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5126    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5127
5128    int FI = FuncInfo.StaticAllocaMap[Slot];
5129    MFI->setStackProtectorIndex(FI);
5130
5131    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5132
5133    // Store the stack protector onto the stack.
5134    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5135                       MachinePointerInfo::getFixedStack(FI),
5136                       true, false, 0);
5137    setValue(&I, Res);
5138    DAG.setRoot(Res);
5139    return 0;
5140  }
5141  case Intrinsic::objectsize: {
5142    // If we don't know by now, we're never going to know.
5143    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5144
5145    assert(CI && "Non-constant type in __builtin_object_size?");
5146
5147    SDValue Arg = getValue(I.getCalledValue());
5148    EVT Ty = Arg.getValueType();
5149
5150    if (CI->isZero())
5151      Res = DAG.getConstant(-1ULL, Ty);
5152    else
5153      Res = DAG.getConstant(0, Ty);
5154
5155    setValue(&I, Res);
5156    return 0;
5157  }
5158  case Intrinsic::annotation:
5159  case Intrinsic::ptr_annotation:
5160    // Drop the intrinsic, but forward the value
5161    setValue(&I, getValue(I.getOperand(0)));
5162    return 0;
5163  case Intrinsic::var_annotation:
5164    // Discard annotate attributes
5165    return 0;
5166
5167  case Intrinsic::init_trampoline: {
5168    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5169
5170    SDValue Ops[6];
5171    Ops[0] = getRoot();
5172    Ops[1] = getValue(I.getArgOperand(0));
5173    Ops[2] = getValue(I.getArgOperand(1));
5174    Ops[3] = getValue(I.getArgOperand(2));
5175    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5176    Ops[5] = DAG.getSrcValue(F);
5177
5178    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5179
5180    DAG.setRoot(Res);
5181    return 0;
5182  }
5183  case Intrinsic::adjust_trampoline: {
5184    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5185                             TLI->getPointerTy(),
5186                             getValue(I.getArgOperand(0))));
5187    return 0;
5188  }
5189  case Intrinsic::gcroot:
5190    if (GFI) {
5191      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5192      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5193
5194      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5195      GFI->addStackRoot(FI->getIndex(), TypeMap);
5196    }
5197    return 0;
5198  case Intrinsic::gcread:
5199  case Intrinsic::gcwrite:
5200    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5201  case Intrinsic::flt_rounds:
5202    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5203    return 0;
5204
5205  case Intrinsic::expect: {
5206    // Just replace __builtin_expect(exp, c) with EXP.
5207    setValue(&I, getValue(I.getArgOperand(0)));
5208    return 0;
5209  }
5210
5211  case Intrinsic::debugtrap:
5212  case Intrinsic::trap: {
5213    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5214    if (TrapFuncName.empty()) {
5215      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5216        ISD::TRAP : ISD::DEBUGTRAP;
5217      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5218      return 0;
5219    }
5220    TargetLowering::ArgListTy Args;
5221    TargetLowering::
5222    CallLoweringInfo CLI(getRoot(), I.getType(),
5223                 false, false, false, false, 0, CallingConv::C,
5224                 /*isTailCall=*/false,
5225                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5226                 DAG.getExternalSymbol(TrapFuncName.data(),
5227                                       TLI->getPointerTy()),
5228                 Args, DAG, sdl);
5229    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5230    DAG.setRoot(Result.second);
5231    return 0;
5232  }
5233
5234  case Intrinsic::uadd_with_overflow:
5235  case Intrinsic::sadd_with_overflow:
5236  case Intrinsic::usub_with_overflow:
5237  case Intrinsic::ssub_with_overflow:
5238  case Intrinsic::umul_with_overflow:
5239  case Intrinsic::smul_with_overflow: {
5240    ISD::NodeType Op;
5241    switch (Intrinsic) {
5242    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5243    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5244    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5245    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5246    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5247    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5248    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5249    }
5250    SDValue Op1 = getValue(I.getArgOperand(0));
5251    SDValue Op2 = getValue(I.getArgOperand(1));
5252
5253    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5254    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5255    return 0;
5256  }
5257  case Intrinsic::prefetch: {
5258    SDValue Ops[5];
5259    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5260    Ops[0] = getRoot();
5261    Ops[1] = getValue(I.getArgOperand(0));
5262    Ops[2] = getValue(I.getArgOperand(1));
5263    Ops[3] = getValue(I.getArgOperand(2));
5264    Ops[4] = getValue(I.getArgOperand(3));
5265    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5266                                        DAG.getVTList(MVT::Other),
5267                                        &Ops[0], 5,
5268                                        EVT::getIntegerVT(*Context, 8),
5269                                        MachinePointerInfo(I.getArgOperand(0)),
5270                                        0, /* align */
5271                                        false, /* volatile */
5272                                        rw==0, /* read */
5273                                        rw==1)); /* write */
5274    return 0;
5275  }
5276  case Intrinsic::lifetime_start:
5277  case Intrinsic::lifetime_end: {
5278    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5279    // Stack coloring is not enabled in O0, discard region information.
5280    if (TM.getOptLevel() == CodeGenOpt::None)
5281      return 0;
5282
5283    SmallVector<Value *, 4> Allocas;
5284    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5285
5286    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5287           E = Allocas.end(); Object != E; ++Object) {
5288      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5289
5290      // Could not find an Alloca.
5291      if (!LifetimeObject)
5292        continue;
5293
5294      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5295
5296      SDValue Ops[2];
5297      Ops[0] = getRoot();
5298      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5299      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5300
5301      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5302      DAG.setRoot(Res);
5303    }
5304    return 0;
5305  }
5306  case Intrinsic::invariant_start:
5307    // Discard region information.
5308    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5309    return 0;
5310  case Intrinsic::invariant_end:
5311    // Discard region information.
5312    return 0;
5313  case Intrinsic::stackprotectorcheck: {
5314    // Do not actually emit anything for this basic block. Instead we initialize
5315    // the stack protector descriptor and export the guard variable so we can
5316    // access it in FinishBasicBlock.
5317    const BasicBlock *BB = I.getParent();
5318    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5319    ExportFromCurrentBlock(SPDescriptor.getGuard());
5320
5321    // Flush our exports since we are going to process a terminator.
5322    (void)getControlRoot();
5323    return 0;
5324  }
5325  case Intrinsic::donothing:
5326    // ignore
5327    return 0;
5328  case Intrinsic::experimental_stackmap: {
5329    visitStackmap(I);
5330    return 0;
5331  }
5332  case Intrinsic::experimental_patchpoint_void:
5333  case Intrinsic::experimental_patchpoint_i64: {
5334    visitPatchpoint(I);
5335    return 0;
5336  }
5337  }
5338}
5339
5340void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5341                                      bool isTailCall,
5342                                      MachineBasicBlock *LandingPad) {
5343  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5344  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5345  Type *RetTy = FTy->getReturnType();
5346  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5347  MCSymbol *BeginLabel = 0;
5348
5349  TargetLowering::ArgListTy Args;
5350  TargetLowering::ArgListEntry Entry;
5351  Args.reserve(CS.arg_size());
5352
5353  // Check whether the function can return without sret-demotion.
5354  SmallVector<ISD::OutputArg, 4> Outs;
5355  const TargetLowering *TLI = TM.getTargetLowering();
5356  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5357
5358  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5359                                            DAG.getMachineFunction(),
5360                                            FTy->isVarArg(), Outs,
5361                                            FTy->getContext());
5362
5363  SDValue DemoteStackSlot;
5364  int DemoteStackIdx = -100;
5365
5366  if (!CanLowerReturn) {
5367    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5368                      FTy->getReturnType());
5369    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5370                      FTy->getReturnType());
5371    MachineFunction &MF = DAG.getMachineFunction();
5372    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5373    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5374
5375    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5376    Entry.Node = DemoteStackSlot;
5377    Entry.Ty = StackSlotPtrType;
5378    Entry.isSExt = false;
5379    Entry.isZExt = false;
5380    Entry.isInReg = false;
5381    Entry.isSRet = true;
5382    Entry.isNest = false;
5383    Entry.isByVal = false;
5384    Entry.isReturned = false;
5385    Entry.Alignment = Align;
5386    Args.push_back(Entry);
5387    RetTy = Type::getVoidTy(FTy->getContext());
5388  }
5389
5390  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5391       i != e; ++i) {
5392    const Value *V = *i;
5393
5394    // Skip empty types
5395    if (V->getType()->isEmptyTy())
5396      continue;
5397
5398    SDValue ArgNode = getValue(V);
5399    Entry.Node = ArgNode; Entry.Ty = V->getType();
5400
5401    // Skip the first return-type Attribute to get to params.
5402    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5403    Args.push_back(Entry);
5404  }
5405
5406  if (LandingPad) {
5407    // Insert a label before the invoke call to mark the try range.  This can be
5408    // used to detect deletion of the invoke via the MachineModuleInfo.
5409    BeginLabel = MMI.getContext().CreateTempSymbol();
5410
5411    // For SjLj, keep track of which landing pads go with which invokes
5412    // so as to maintain the ordering of pads in the LSDA.
5413    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5414    if (CallSiteIndex) {
5415      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5416      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5417
5418      // Now that the call site is handled, stop tracking it.
5419      MMI.setCurrentCallSite(0);
5420    }
5421
5422    // Both PendingLoads and PendingExports must be flushed here;
5423    // this call might not return.
5424    (void)getRoot();
5425    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5426  }
5427
5428  // Check if target-independent constraints permit a tail call here.
5429  // Target-dependent constraints are checked within TLI->LowerCallTo.
5430  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5431    isTailCall = false;
5432
5433  TargetLowering::
5434  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5435                       getCurSDLoc(), CS);
5436  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5437  assert((isTailCall || Result.second.getNode()) &&
5438         "Non-null chain expected with non-tail call!");
5439  assert((Result.second.getNode() || !Result.first.getNode()) &&
5440         "Null value expected with tail call!");
5441  if (Result.first.getNode()) {
5442    setValue(CS.getInstruction(), Result.first);
5443  } else if (!CanLowerReturn && Result.second.getNode()) {
5444    // The instruction result is the result of loading from the
5445    // hidden sret parameter.
5446    SmallVector<EVT, 1> PVTs;
5447    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5448
5449    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5450    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5451    EVT PtrVT = PVTs[0];
5452
5453    SmallVector<EVT, 4> RetTys;
5454    SmallVector<uint64_t, 4> Offsets;
5455    RetTy = FTy->getReturnType();
5456    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5457
5458    unsigned NumValues = RetTys.size();
5459    SmallVector<SDValue, 4> Values(NumValues);
5460    SmallVector<SDValue, 4> Chains(NumValues);
5461
5462    for (unsigned i = 0; i < NumValues; ++i) {
5463      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5464                                DemoteStackSlot,
5465                                DAG.getConstant(Offsets[i], PtrVT));
5466      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5467                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5468                              false, false, false, 1);
5469      Values[i] = L;
5470      Chains[i] = L.getValue(1);
5471    }
5472
5473    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5474                                MVT::Other, &Chains[0], NumValues);
5475    PendingLoads.push_back(Chain);
5476
5477    setValue(CS.getInstruction(),
5478             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5479                         DAG.getVTList(&RetTys[0], RetTys.size()),
5480                         &Values[0], Values.size()));
5481  }
5482
5483  if (!Result.second.getNode()) {
5484    // As a special case, a null chain means that a tail call has been emitted
5485    // and the DAG root is already updated.
5486    HasTailCall = true;
5487
5488    // Since there's no actual continuation from this block, nothing can be
5489    // relying on us setting vregs for them.
5490    PendingExports.clear();
5491  } else {
5492    DAG.setRoot(Result.second);
5493  }
5494
5495  if (LandingPad) {
5496    // Insert a label at the end of the invoke call to mark the try range.  This
5497    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5498    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5499    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5500
5501    // Inform MachineModuleInfo of range.
5502    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5503  }
5504}
5505
5506/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5507/// value is equal or not-equal to zero.
5508static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5509  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5510       UI != E; ++UI) {
5511    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5512      if (IC->isEquality())
5513        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5514          if (C->isNullValue())
5515            continue;
5516    // Unknown instruction.
5517    return false;
5518  }
5519  return true;
5520}
5521
5522static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5523                             Type *LoadTy,
5524                             SelectionDAGBuilder &Builder) {
5525
5526  // Check to see if this load can be trivially constant folded, e.g. if the
5527  // input is from a string literal.
5528  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5529    // Cast pointer to the type we really want to load.
5530    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5531                                         PointerType::getUnqual(LoadTy));
5532
5533    if (const Constant *LoadCst =
5534          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5535                                       Builder.TD))
5536      return Builder.getValue(LoadCst);
5537  }
5538
5539  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5540  // still constant memory, the input chain can be the entry node.
5541  SDValue Root;
5542  bool ConstantMemory = false;
5543
5544  // Do not serialize (non-volatile) loads of constant memory with anything.
5545  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5546    Root = Builder.DAG.getEntryNode();
5547    ConstantMemory = true;
5548  } else {
5549    // Do not serialize non-volatile loads against each other.
5550    Root = Builder.DAG.getRoot();
5551  }
5552
5553  SDValue Ptr = Builder.getValue(PtrVal);
5554  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5555                                        Ptr, MachinePointerInfo(PtrVal),
5556                                        false /*volatile*/,
5557                                        false /*nontemporal*/,
5558                                        false /*isinvariant*/, 1 /* align=1 */);
5559
5560  if (!ConstantMemory)
5561    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5562  return LoadVal;
5563}
5564
5565/// processIntegerCallValue - Record the value for an instruction that
5566/// produces an integer result, converting the type where necessary.
5567void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5568                                                  SDValue Value,
5569                                                  bool IsSigned) {
5570  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5571  if (IsSigned)
5572    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5573  else
5574    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5575  setValue(&I, Value);
5576}
5577
5578/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5579/// If so, return true and lower it, otherwise return false and it will be
5580/// lowered like a normal call.
5581bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5582  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5583  if (I.getNumArgOperands() != 3)
5584    return false;
5585
5586  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5587  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5588      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5589      !I.getType()->isIntegerTy())
5590    return false;
5591
5592  const Value *Size = I.getArgOperand(2);
5593  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5594  if (CSize && CSize->getZExtValue() == 0) {
5595    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5596    setValue(&I, DAG.getConstant(0, CallVT));
5597    return true;
5598  }
5599
5600  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5601  std::pair<SDValue, SDValue> Res =
5602    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5603                                getValue(LHS), getValue(RHS), getValue(Size),
5604                                MachinePointerInfo(LHS),
5605                                MachinePointerInfo(RHS));
5606  if (Res.first.getNode()) {
5607    processIntegerCallValue(I, Res.first, true);
5608    PendingLoads.push_back(Res.second);
5609    return true;
5610  }
5611
5612  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5613  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5614  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5615    bool ActuallyDoIt = true;
5616    MVT LoadVT;
5617    Type *LoadTy;
5618    switch (CSize->getZExtValue()) {
5619    default:
5620      LoadVT = MVT::Other;
5621      LoadTy = 0;
5622      ActuallyDoIt = false;
5623      break;
5624    case 2:
5625      LoadVT = MVT::i16;
5626      LoadTy = Type::getInt16Ty(CSize->getContext());
5627      break;
5628    case 4:
5629      LoadVT = MVT::i32;
5630      LoadTy = Type::getInt32Ty(CSize->getContext());
5631      break;
5632    case 8:
5633      LoadVT = MVT::i64;
5634      LoadTy = Type::getInt64Ty(CSize->getContext());
5635      break;
5636        /*
5637    case 16:
5638      LoadVT = MVT::v4i32;
5639      LoadTy = Type::getInt32Ty(CSize->getContext());
5640      LoadTy = VectorType::get(LoadTy, 4);
5641      break;
5642         */
5643    }
5644
5645    // This turns into unaligned loads.  We only do this if the target natively
5646    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5647    // we'll only produce a small number of byte loads.
5648
5649    // Require that we can find a legal MVT, and only do this if the target
5650    // supports unaligned loads of that type.  Expanding into byte loads would
5651    // bloat the code.
5652    const TargetLowering *TLI = TM.getTargetLowering();
5653    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5654      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5655      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5656      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5657        ActuallyDoIt = false;
5658    }
5659
5660    if (ActuallyDoIt) {
5661      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5662      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5663
5664      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5665                                 ISD::SETNE);
5666      processIntegerCallValue(I, Res, false);
5667      return true;
5668    }
5669  }
5670
5671
5672  return false;
5673}
5674
5675/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5676/// form.  If so, return true and lower it, otherwise return false and it
5677/// will be lowered like a normal call.
5678bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5679  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5680  if (I.getNumArgOperands() != 3)
5681    return false;
5682
5683  const Value *Src = I.getArgOperand(0);
5684  const Value *Char = I.getArgOperand(1);
5685  const Value *Length = I.getArgOperand(2);
5686  if (!Src->getType()->isPointerTy() ||
5687      !Char->getType()->isIntegerTy() ||
5688      !Length->getType()->isIntegerTy() ||
5689      !I.getType()->isPointerTy())
5690    return false;
5691
5692  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5693  std::pair<SDValue, SDValue> Res =
5694    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5695                                getValue(Src), getValue(Char), getValue(Length),
5696                                MachinePointerInfo(Src));
5697  if (Res.first.getNode()) {
5698    setValue(&I, Res.first);
5699    PendingLoads.push_back(Res.second);
5700    return true;
5701  }
5702
5703  return false;
5704}
5705
5706/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5707/// optimized form.  If so, return true and lower it, otherwise return false
5708/// and it will be lowered like a normal call.
5709bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5710  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5711  if (I.getNumArgOperands() != 2)
5712    return false;
5713
5714  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5715  if (!Arg0->getType()->isPointerTy() ||
5716      !Arg1->getType()->isPointerTy() ||
5717      !I.getType()->isPointerTy())
5718    return false;
5719
5720  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5721  std::pair<SDValue, SDValue> Res =
5722    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5723                                getValue(Arg0), getValue(Arg1),
5724                                MachinePointerInfo(Arg0),
5725                                MachinePointerInfo(Arg1), isStpcpy);
5726  if (Res.first.getNode()) {
5727    setValue(&I, Res.first);
5728    DAG.setRoot(Res.second);
5729    return true;
5730  }
5731
5732  return false;
5733}
5734
5735/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5736/// If so, return true and lower it, otherwise return false and it will be
5737/// lowered like a normal call.
5738bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5739  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5740  if (I.getNumArgOperands() != 2)
5741    return false;
5742
5743  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5744  if (!Arg0->getType()->isPointerTy() ||
5745      !Arg1->getType()->isPointerTy() ||
5746      !I.getType()->isIntegerTy())
5747    return false;
5748
5749  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5750  std::pair<SDValue, SDValue> Res =
5751    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5752                                getValue(Arg0), getValue(Arg1),
5753                                MachinePointerInfo(Arg0),
5754                                MachinePointerInfo(Arg1));
5755  if (Res.first.getNode()) {
5756    processIntegerCallValue(I, Res.first, true);
5757    PendingLoads.push_back(Res.second);
5758    return true;
5759  }
5760
5761  return false;
5762}
5763
5764/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5765/// form.  If so, return true and lower it, otherwise return false and it
5766/// will be lowered like a normal call.
5767bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5768  // Verify that the prototype makes sense.  size_t strlen(char *)
5769  if (I.getNumArgOperands() != 1)
5770    return false;
5771
5772  const Value *Arg0 = I.getArgOperand(0);
5773  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5774    return false;
5775
5776  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5777  std::pair<SDValue, SDValue> Res =
5778    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5779                                getValue(Arg0), MachinePointerInfo(Arg0));
5780  if (Res.first.getNode()) {
5781    processIntegerCallValue(I, Res.first, false);
5782    PendingLoads.push_back(Res.second);
5783    return true;
5784  }
5785
5786  return false;
5787}
5788
5789/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5790/// form.  If so, return true and lower it, otherwise return false and it
5791/// will be lowered like a normal call.
5792bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5793  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5794  if (I.getNumArgOperands() != 2)
5795    return false;
5796
5797  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5798  if (!Arg0->getType()->isPointerTy() ||
5799      !Arg1->getType()->isIntegerTy() ||
5800      !I.getType()->isIntegerTy())
5801    return false;
5802
5803  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5804  std::pair<SDValue, SDValue> Res =
5805    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5806                                 getValue(Arg0), getValue(Arg1),
5807                                 MachinePointerInfo(Arg0));
5808  if (Res.first.getNode()) {
5809    processIntegerCallValue(I, Res.first, false);
5810    PendingLoads.push_back(Res.second);
5811    return true;
5812  }
5813
5814  return false;
5815}
5816
5817/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5818/// operation (as expected), translate it to an SDNode with the specified opcode
5819/// and return true.
5820bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5821                                              unsigned Opcode) {
5822  // Sanity check that it really is a unary floating-point call.
5823  if (I.getNumArgOperands() != 1 ||
5824      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5825      I.getType() != I.getArgOperand(0)->getType() ||
5826      !I.onlyReadsMemory())
5827    return false;
5828
5829  SDValue Tmp = getValue(I.getArgOperand(0));
5830  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5831  return true;
5832}
5833
5834void SelectionDAGBuilder::visitCall(const CallInst &I) {
5835  // Handle inline assembly differently.
5836  if (isa<InlineAsm>(I.getCalledValue())) {
5837    visitInlineAsm(&I);
5838    return;
5839  }
5840
5841  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5842  ComputeUsesVAFloatArgument(I, &MMI);
5843
5844  const char *RenameFn = 0;
5845  if (Function *F = I.getCalledFunction()) {
5846    if (F->isDeclaration()) {
5847      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5848        if (unsigned IID = II->getIntrinsicID(F)) {
5849          RenameFn = visitIntrinsicCall(I, IID);
5850          if (!RenameFn)
5851            return;
5852        }
5853      }
5854      if (unsigned IID = F->getIntrinsicID()) {
5855        RenameFn = visitIntrinsicCall(I, IID);
5856        if (!RenameFn)
5857          return;
5858      }
5859    }
5860
5861    // Check for well-known libc/libm calls.  If the function is internal, it
5862    // can't be a library call.
5863    LibFunc::Func Func;
5864    if (!F->hasLocalLinkage() && F->hasName() &&
5865        LibInfo->getLibFunc(F->getName(), Func) &&
5866        LibInfo->hasOptimizedCodeGen(Func)) {
5867      switch (Func) {
5868      default: break;
5869      case LibFunc::copysign:
5870      case LibFunc::copysignf:
5871      case LibFunc::copysignl:
5872        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5873            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5874            I.getType() == I.getArgOperand(0)->getType() &&
5875            I.getType() == I.getArgOperand(1)->getType() &&
5876            I.onlyReadsMemory()) {
5877          SDValue LHS = getValue(I.getArgOperand(0));
5878          SDValue RHS = getValue(I.getArgOperand(1));
5879          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5880                                   LHS.getValueType(), LHS, RHS));
5881          return;
5882        }
5883        break;
5884      case LibFunc::fabs:
5885      case LibFunc::fabsf:
5886      case LibFunc::fabsl:
5887        if (visitUnaryFloatCall(I, ISD::FABS))
5888          return;
5889        break;
5890      case LibFunc::sin:
5891      case LibFunc::sinf:
5892      case LibFunc::sinl:
5893        if (visitUnaryFloatCall(I, ISD::FSIN))
5894          return;
5895        break;
5896      case LibFunc::cos:
5897      case LibFunc::cosf:
5898      case LibFunc::cosl:
5899        if (visitUnaryFloatCall(I, ISD::FCOS))
5900          return;
5901        break;
5902      case LibFunc::sqrt:
5903      case LibFunc::sqrtf:
5904      case LibFunc::sqrtl:
5905      case LibFunc::sqrt_finite:
5906      case LibFunc::sqrtf_finite:
5907      case LibFunc::sqrtl_finite:
5908        if (visitUnaryFloatCall(I, ISD::FSQRT))
5909          return;
5910        break;
5911      case LibFunc::floor:
5912      case LibFunc::floorf:
5913      case LibFunc::floorl:
5914        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5915          return;
5916        break;
5917      case LibFunc::nearbyint:
5918      case LibFunc::nearbyintf:
5919      case LibFunc::nearbyintl:
5920        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5921          return;
5922        break;
5923      case LibFunc::ceil:
5924      case LibFunc::ceilf:
5925      case LibFunc::ceill:
5926        if (visitUnaryFloatCall(I, ISD::FCEIL))
5927          return;
5928        break;
5929      case LibFunc::rint:
5930      case LibFunc::rintf:
5931      case LibFunc::rintl:
5932        if (visitUnaryFloatCall(I, ISD::FRINT))
5933          return;
5934        break;
5935      case LibFunc::round:
5936      case LibFunc::roundf:
5937      case LibFunc::roundl:
5938        if (visitUnaryFloatCall(I, ISD::FROUND))
5939          return;
5940        break;
5941      case LibFunc::trunc:
5942      case LibFunc::truncf:
5943      case LibFunc::truncl:
5944        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5945          return;
5946        break;
5947      case LibFunc::log2:
5948      case LibFunc::log2f:
5949      case LibFunc::log2l:
5950        if (visitUnaryFloatCall(I, ISD::FLOG2))
5951          return;
5952        break;
5953      case LibFunc::exp2:
5954      case LibFunc::exp2f:
5955      case LibFunc::exp2l:
5956        if (visitUnaryFloatCall(I, ISD::FEXP2))
5957          return;
5958        break;
5959      case LibFunc::memcmp:
5960        if (visitMemCmpCall(I))
5961          return;
5962        break;
5963      case LibFunc::memchr:
5964        if (visitMemChrCall(I))
5965          return;
5966        break;
5967      case LibFunc::strcpy:
5968        if (visitStrCpyCall(I, false))
5969          return;
5970        break;
5971      case LibFunc::stpcpy:
5972        if (visitStrCpyCall(I, true))
5973          return;
5974        break;
5975      case LibFunc::strcmp:
5976        if (visitStrCmpCall(I))
5977          return;
5978        break;
5979      case LibFunc::strlen:
5980        if (visitStrLenCall(I))
5981          return;
5982        break;
5983      case LibFunc::strnlen:
5984        if (visitStrNLenCall(I))
5985          return;
5986        break;
5987      }
5988    }
5989  }
5990
5991  SDValue Callee;
5992  if (!RenameFn)
5993    Callee = getValue(I.getCalledValue());
5994  else
5995    Callee = DAG.getExternalSymbol(RenameFn,
5996                                   TM.getTargetLowering()->getPointerTy());
5997
5998  // Check if we can potentially perform a tail call. More detailed checking is
5999  // be done within LowerCallTo, after more information about the call is known.
6000  LowerCallTo(&I, Callee, I.isTailCall());
6001}
6002
6003namespace {
6004
6005/// AsmOperandInfo - This contains information for each constraint that we are
6006/// lowering.
6007class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6008public:
6009  /// CallOperand - If this is the result output operand or a clobber
6010  /// this is null, otherwise it is the incoming operand to the CallInst.
6011  /// This gets modified as the asm is processed.
6012  SDValue CallOperand;
6013
6014  /// AssignedRegs - If this is a register or register class operand, this
6015  /// contains the set of register corresponding to the operand.
6016  RegsForValue AssignedRegs;
6017
6018  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6019    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
6020  }
6021
6022  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6023  /// corresponds to.  If there is no Value* for this operand, it returns
6024  /// MVT::Other.
6025  EVT getCallOperandValEVT(LLVMContext &Context,
6026                           const TargetLowering &TLI,
6027                           const DataLayout *TD) const {
6028    if (CallOperandVal == 0) return MVT::Other;
6029
6030    if (isa<BasicBlock>(CallOperandVal))
6031      return TLI.getPointerTy();
6032
6033    llvm::Type *OpTy = CallOperandVal->getType();
6034
6035    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6036    // If this is an indirect operand, the operand is a pointer to the
6037    // accessed type.
6038    if (isIndirect) {
6039      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6040      if (!PtrTy)
6041        report_fatal_error("Indirect operand for inline asm not a pointer!");
6042      OpTy = PtrTy->getElementType();
6043    }
6044
6045    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6046    if (StructType *STy = dyn_cast<StructType>(OpTy))
6047      if (STy->getNumElements() == 1)
6048        OpTy = STy->getElementType(0);
6049
6050    // If OpTy is not a single value, it may be a struct/union that we
6051    // can tile with integers.
6052    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6053      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
6054      switch (BitSize) {
6055      default: break;
6056      case 1:
6057      case 8:
6058      case 16:
6059      case 32:
6060      case 64:
6061      case 128:
6062        OpTy = IntegerType::get(Context, BitSize);
6063        break;
6064      }
6065    }
6066
6067    return TLI.getValueType(OpTy, true);
6068  }
6069};
6070
6071typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6072
6073} // end anonymous namespace
6074
6075/// GetRegistersForValue - Assign registers (virtual or physical) for the
6076/// specified operand.  We prefer to assign virtual registers, to allow the
6077/// register allocator to handle the assignment process.  However, if the asm
6078/// uses features that we can't model on machineinstrs, we have SDISel do the
6079/// allocation.  This produces generally horrible, but correct, code.
6080///
6081///   OpInfo describes the operand.
6082///
6083static void GetRegistersForValue(SelectionDAG &DAG,
6084                                 const TargetLowering &TLI,
6085                                 SDLoc DL,
6086                                 SDISelAsmOperandInfo &OpInfo) {
6087  LLVMContext &Context = *DAG.getContext();
6088
6089  MachineFunction &MF = DAG.getMachineFunction();
6090  SmallVector<unsigned, 4> Regs;
6091
6092  // If this is a constraint for a single physreg, or a constraint for a
6093  // register class, find it.
6094  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6095    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6096                                     OpInfo.ConstraintVT);
6097
6098  unsigned NumRegs = 1;
6099  if (OpInfo.ConstraintVT != MVT::Other) {
6100    // If this is a FP input in an integer register (or visa versa) insert a bit
6101    // cast of the input value.  More generally, handle any case where the input
6102    // value disagrees with the register class we plan to stick this in.
6103    if (OpInfo.Type == InlineAsm::isInput &&
6104        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6105      // Try to convert to the first EVT that the reg class contains.  If the
6106      // types are identical size, use a bitcast to convert (e.g. two differing
6107      // vector types).
6108      MVT RegVT = *PhysReg.second->vt_begin();
6109      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
6110        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6111                                         RegVT, OpInfo.CallOperand);
6112        OpInfo.ConstraintVT = RegVT;
6113      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6114        // If the input is a FP value and we want it in FP registers, do a
6115        // bitcast to the corresponding integer type.  This turns an f64 value
6116        // into i64, which can be passed with two i32 values on a 32-bit
6117        // machine.
6118        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6119        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6120                                         RegVT, OpInfo.CallOperand);
6121        OpInfo.ConstraintVT = RegVT;
6122      }
6123    }
6124
6125    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6126  }
6127
6128  MVT RegVT;
6129  EVT ValueVT = OpInfo.ConstraintVT;
6130
6131  // If this is a constraint for a specific physical register, like {r17},
6132  // assign it now.
6133  if (unsigned AssignedReg = PhysReg.first) {
6134    const TargetRegisterClass *RC = PhysReg.second;
6135    if (OpInfo.ConstraintVT == MVT::Other)
6136      ValueVT = *RC->vt_begin();
6137
6138    // Get the actual register value type.  This is important, because the user
6139    // may have asked for (e.g.) the AX register in i32 type.  We need to
6140    // remember that AX is actually i16 to get the right extension.
6141    RegVT = *RC->vt_begin();
6142
6143    // This is a explicit reference to a physical register.
6144    Regs.push_back(AssignedReg);
6145
6146    // If this is an expanded reference, add the rest of the regs to Regs.
6147    if (NumRegs != 1) {
6148      TargetRegisterClass::iterator I = RC->begin();
6149      for (; *I != AssignedReg; ++I)
6150        assert(I != RC->end() && "Didn't find reg!");
6151
6152      // Already added the first reg.
6153      --NumRegs; ++I;
6154      for (; NumRegs; --NumRegs, ++I) {
6155        assert(I != RC->end() && "Ran out of registers to allocate!");
6156        Regs.push_back(*I);
6157      }
6158    }
6159
6160    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6161    return;
6162  }
6163
6164  // Otherwise, if this was a reference to an LLVM register class, create vregs
6165  // for this reference.
6166  if (const TargetRegisterClass *RC = PhysReg.second) {
6167    RegVT = *RC->vt_begin();
6168    if (OpInfo.ConstraintVT == MVT::Other)
6169      ValueVT = RegVT;
6170
6171    // Create the appropriate number of virtual registers.
6172    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6173    for (; NumRegs; --NumRegs)
6174      Regs.push_back(RegInfo.createVirtualRegister(RC));
6175
6176    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6177    return;
6178  }
6179
6180  // Otherwise, we couldn't allocate enough registers for this.
6181}
6182
6183/// visitInlineAsm - Handle a call to an InlineAsm object.
6184///
6185void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6186  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6187
6188  /// ConstraintOperands - Information about all of the constraints.
6189  SDISelAsmOperandInfoVector ConstraintOperands;
6190
6191  const TargetLowering *TLI = TM.getTargetLowering();
6192  TargetLowering::AsmOperandInfoVector
6193    TargetConstraints = TLI->ParseConstraints(CS);
6194
6195  bool hasMemory = false;
6196
6197  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6198  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6199  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6200    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6201    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6202
6203    MVT OpVT = MVT::Other;
6204
6205    // Compute the value type for each operand.
6206    switch (OpInfo.Type) {
6207    case InlineAsm::isOutput:
6208      // Indirect outputs just consume an argument.
6209      if (OpInfo.isIndirect) {
6210        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6211        break;
6212      }
6213
6214      // The return value of the call is this value.  As such, there is no
6215      // corresponding argument.
6216      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6217      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6218        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6219      } else {
6220        assert(ResNo == 0 && "Asm only has one result!");
6221        OpVT = TLI->getSimpleValueType(CS.getType());
6222      }
6223      ++ResNo;
6224      break;
6225    case InlineAsm::isInput:
6226      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6227      break;
6228    case InlineAsm::isClobber:
6229      // Nothing to do.
6230      break;
6231    }
6232
6233    // If this is an input or an indirect output, process the call argument.
6234    // BasicBlocks are labels, currently appearing only in asm's.
6235    if (OpInfo.CallOperandVal) {
6236      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6237        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6238      } else {
6239        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6240      }
6241
6242      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
6243        getSimpleVT();
6244    }
6245
6246    OpInfo.ConstraintVT = OpVT;
6247
6248    // Indirect operand accesses access memory.
6249    if (OpInfo.isIndirect)
6250      hasMemory = true;
6251    else {
6252      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6253        TargetLowering::ConstraintType
6254          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6255        if (CType == TargetLowering::C_Memory) {
6256          hasMemory = true;
6257          break;
6258        }
6259      }
6260    }
6261  }
6262
6263  SDValue Chain, Flag;
6264
6265  // We won't need to flush pending loads if this asm doesn't touch
6266  // memory and is nonvolatile.
6267  if (hasMemory || IA->hasSideEffects())
6268    Chain = getRoot();
6269  else
6270    Chain = DAG.getRoot();
6271
6272  // Second pass over the constraints: compute which constraint option to use
6273  // and assign registers to constraints that want a specific physreg.
6274  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6275    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6276
6277    // If this is an output operand with a matching input operand, look up the
6278    // matching input. If their types mismatch, e.g. one is an integer, the
6279    // other is floating point, or their sizes are different, flag it as an
6280    // error.
6281    if (OpInfo.hasMatchingInput()) {
6282      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6283
6284      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6285        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6286          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6287                                            OpInfo.ConstraintVT);
6288        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6289          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6290                                            Input.ConstraintVT);
6291        if ((OpInfo.ConstraintVT.isInteger() !=
6292             Input.ConstraintVT.isInteger()) ||
6293            (MatchRC.second != InputRC.second)) {
6294          report_fatal_error("Unsupported asm: input constraint"
6295                             " with a matching output constraint of"
6296                             " incompatible type!");
6297        }
6298        Input.ConstraintVT = OpInfo.ConstraintVT;
6299      }
6300    }
6301
6302    // Compute the constraint code and ConstraintType to use.
6303    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6304
6305    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6306        OpInfo.Type == InlineAsm::isClobber)
6307      continue;
6308
6309    // If this is a memory input, and if the operand is not indirect, do what we
6310    // need to to provide an address for the memory input.
6311    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6312        !OpInfo.isIndirect) {
6313      assert((OpInfo.isMultipleAlternative ||
6314              (OpInfo.Type == InlineAsm::isInput)) &&
6315             "Can only indirectify direct input operands!");
6316
6317      // Memory operands really want the address of the value.  If we don't have
6318      // an indirect input, put it in the constpool if we can, otherwise spill
6319      // it to a stack slot.
6320      // TODO: This isn't quite right. We need to handle these according to
6321      // the addressing mode that the constraint wants. Also, this may take
6322      // an additional register for the computation and we don't want that
6323      // either.
6324
6325      // If the operand is a float, integer, or vector constant, spill to a
6326      // constant pool entry to get its address.
6327      const Value *OpVal = OpInfo.CallOperandVal;
6328      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6329          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6330        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6331                                                 TLI->getPointerTy());
6332      } else {
6333        // Otherwise, create a stack slot and emit a store to it before the
6334        // asm.
6335        Type *Ty = OpVal->getType();
6336        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6337        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6338        MachineFunction &MF = DAG.getMachineFunction();
6339        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6340        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6341        Chain = DAG.getStore(Chain, getCurSDLoc(),
6342                             OpInfo.CallOperand, StackSlot,
6343                             MachinePointerInfo::getFixedStack(SSFI),
6344                             false, false, 0);
6345        OpInfo.CallOperand = StackSlot;
6346      }
6347
6348      // There is no longer a Value* corresponding to this operand.
6349      OpInfo.CallOperandVal = 0;
6350
6351      // It is now an indirect operand.
6352      OpInfo.isIndirect = true;
6353    }
6354
6355    // If this constraint is for a specific register, allocate it before
6356    // anything else.
6357    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6358      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6359  }
6360
6361  // Second pass - Loop over all of the operands, assigning virtual or physregs
6362  // to register class operands.
6363  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6364    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6365
6366    // C_Register operands have already been allocated, Other/Memory don't need
6367    // to be.
6368    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6369      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6370  }
6371
6372  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6373  std::vector<SDValue> AsmNodeOperands;
6374  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6375  AsmNodeOperands.push_back(
6376          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6377                                      TLI->getPointerTy()));
6378
6379  // If we have a !srcloc metadata node associated with it, we want to attach
6380  // this to the ultimately generated inline asm machineinstr.  To do this, we
6381  // pass in the third operand as this (potentially null) inline asm MDNode.
6382  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6383  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6384
6385  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6386  // bits as operand 3.
6387  unsigned ExtraInfo = 0;
6388  if (IA->hasSideEffects())
6389    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6390  if (IA->isAlignStack())
6391    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6392  // Set the asm dialect.
6393  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6394
6395  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6396  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6397    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6398
6399    // Compute the constraint code and ConstraintType to use.
6400    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6401
6402    // Ideally, we would only check against memory constraints.  However, the
6403    // meaning of an other constraint can be target-specific and we can't easily
6404    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6405    // for other constriants as well.
6406    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6407        OpInfo.ConstraintType == TargetLowering::C_Other) {
6408      if (OpInfo.Type == InlineAsm::isInput)
6409        ExtraInfo |= InlineAsm::Extra_MayLoad;
6410      else if (OpInfo.Type == InlineAsm::isOutput)
6411        ExtraInfo |= InlineAsm::Extra_MayStore;
6412      else if (OpInfo.Type == InlineAsm::isClobber)
6413        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6414    }
6415  }
6416
6417  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6418                                                  TLI->getPointerTy()));
6419
6420  // Loop over all of the inputs, copying the operand values into the
6421  // appropriate registers and processing the output regs.
6422  RegsForValue RetValRegs;
6423
6424  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6425  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6426
6427  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6428    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6429
6430    switch (OpInfo.Type) {
6431    case InlineAsm::isOutput: {
6432      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6433          OpInfo.ConstraintType != TargetLowering::C_Register) {
6434        // Memory output, or 'other' output (e.g. 'X' constraint).
6435        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6436
6437        // Add information to the INLINEASM node to know about this output.
6438        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6439        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6440                                                        TLI->getPointerTy()));
6441        AsmNodeOperands.push_back(OpInfo.CallOperand);
6442        break;
6443      }
6444
6445      // Otherwise, this is a register or register class output.
6446
6447      // Copy the output from the appropriate register.  Find a register that
6448      // we can use.
6449      if (OpInfo.AssignedRegs.Regs.empty()) {
6450        LLVMContext &Ctx = *DAG.getContext();
6451        Ctx.emitError(CS.getInstruction(),
6452                      "couldn't allocate output register for constraint '" +
6453                          Twine(OpInfo.ConstraintCode) + "'");
6454        return;
6455      }
6456
6457      // If this is an indirect operand, store through the pointer after the
6458      // asm.
6459      if (OpInfo.isIndirect) {
6460        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6461                                                      OpInfo.CallOperandVal));
6462      } else {
6463        // This is the result value of the call.
6464        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6465        // Concatenate this output onto the outputs list.
6466        RetValRegs.append(OpInfo.AssignedRegs);
6467      }
6468
6469      // Add information to the INLINEASM node to know that this register is
6470      // set.
6471      OpInfo.AssignedRegs
6472          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6473                                    ? InlineAsm::Kind_RegDefEarlyClobber
6474                                    : InlineAsm::Kind_RegDef,
6475                                false, 0, DAG, AsmNodeOperands);
6476      break;
6477    }
6478    case InlineAsm::isInput: {
6479      SDValue InOperandVal = OpInfo.CallOperand;
6480
6481      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6482        // If this is required to match an output register we have already set,
6483        // just use its register.
6484        unsigned OperandNo = OpInfo.getMatchedOperand();
6485
6486        // Scan until we find the definition we already emitted of this operand.
6487        // When we find it, create a RegsForValue operand.
6488        unsigned CurOp = InlineAsm::Op_FirstOperand;
6489        for (; OperandNo; --OperandNo) {
6490          // Advance to the next operand.
6491          unsigned OpFlag =
6492            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6493          assert((InlineAsm::isRegDefKind(OpFlag) ||
6494                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6495                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6496          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6497        }
6498
6499        unsigned OpFlag =
6500          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6501        if (InlineAsm::isRegDefKind(OpFlag) ||
6502            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6503          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6504          if (OpInfo.isIndirect) {
6505            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6506            LLVMContext &Ctx = *DAG.getContext();
6507            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6508                                               " don't know how to handle tied "
6509                                               "indirect register inputs");
6510            return;
6511          }
6512
6513          RegsForValue MatchedRegs;
6514          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6515          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6516          MatchedRegs.RegVTs.push_back(RegVT);
6517          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6518          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6519               i != e; ++i) {
6520            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6521              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6522            else {
6523              LLVMContext &Ctx = *DAG.getContext();
6524              Ctx.emitError(CS.getInstruction(),
6525                            "inline asm error: This value"
6526                            " type register class is not natively supported!");
6527              return;
6528            }
6529          }
6530          // Use the produced MatchedRegs object to
6531          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6532                                    Chain, &Flag, CS.getInstruction());
6533          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6534                                           true, OpInfo.getMatchedOperand(),
6535                                           DAG, AsmNodeOperands);
6536          break;
6537        }
6538
6539        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6540        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6541               "Unexpected number of operands");
6542        // Add information to the INLINEASM node to know about this input.
6543        // See InlineAsm.h isUseOperandTiedToDef.
6544        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6545                                                    OpInfo.getMatchedOperand());
6546        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6547                                                        TLI->getPointerTy()));
6548        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6549        break;
6550      }
6551
6552      // Treat indirect 'X' constraint as memory.
6553      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6554          OpInfo.isIndirect)
6555        OpInfo.ConstraintType = TargetLowering::C_Memory;
6556
6557      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6558        std::vector<SDValue> Ops;
6559        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6560                                          Ops, DAG);
6561        if (Ops.empty()) {
6562          LLVMContext &Ctx = *DAG.getContext();
6563          Ctx.emitError(CS.getInstruction(),
6564                        "invalid operand for inline asm constraint '" +
6565                            Twine(OpInfo.ConstraintCode) + "'");
6566          return;
6567        }
6568
6569        // Add information to the INLINEASM node to know about this input.
6570        unsigned ResOpType =
6571          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6572        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6573                                                        TLI->getPointerTy()));
6574        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6575        break;
6576      }
6577
6578      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6579        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6580        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6581               "Memory operands expect pointer values");
6582
6583        // Add information to the INLINEASM node to know about this input.
6584        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6585        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6586                                                        TLI->getPointerTy()));
6587        AsmNodeOperands.push_back(InOperandVal);
6588        break;
6589      }
6590
6591      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6592              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6593             "Unknown constraint type!");
6594
6595      // TODO: Support this.
6596      if (OpInfo.isIndirect) {
6597        LLVMContext &Ctx = *DAG.getContext();
6598        Ctx.emitError(CS.getInstruction(),
6599                      "Don't know how to handle indirect register inputs yet "
6600                      "for constraint '" +
6601                          Twine(OpInfo.ConstraintCode) + "'");
6602        return;
6603      }
6604
6605      // Copy the input into the appropriate registers.
6606      if (OpInfo.AssignedRegs.Regs.empty()) {
6607        LLVMContext &Ctx = *DAG.getContext();
6608        Ctx.emitError(CS.getInstruction(),
6609                      "couldn't allocate input reg for constraint '" +
6610                          Twine(OpInfo.ConstraintCode) + "'");
6611        return;
6612      }
6613
6614      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6615                                        Chain, &Flag, CS.getInstruction());
6616
6617      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6618                                               DAG, AsmNodeOperands);
6619      break;
6620    }
6621    case InlineAsm::isClobber: {
6622      // Add the clobbered value to the operand list, so that the register
6623      // allocator is aware that the physreg got clobbered.
6624      if (!OpInfo.AssignedRegs.Regs.empty())
6625        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6626                                                 false, 0, DAG,
6627                                                 AsmNodeOperands);
6628      break;
6629    }
6630    }
6631  }
6632
6633  // Finish up input operands.  Set the input chain and add the flag last.
6634  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6635  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6636
6637  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6638                      DAG.getVTList(MVT::Other, MVT::Glue),
6639                      &AsmNodeOperands[0], AsmNodeOperands.size());
6640  Flag = Chain.getValue(1);
6641
6642  // If this asm returns a register value, copy the result from that register
6643  // and set it as the value of the call.
6644  if (!RetValRegs.Regs.empty()) {
6645    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6646                                             Chain, &Flag, CS.getInstruction());
6647
6648    // FIXME: Why don't we do this for inline asms with MRVs?
6649    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6650      EVT ResultType = TLI->getValueType(CS.getType());
6651
6652      // If any of the results of the inline asm is a vector, it may have the
6653      // wrong width/num elts.  This can happen for register classes that can
6654      // contain multiple different value types.  The preg or vreg allocated may
6655      // not have the same VT as was expected.  Convert it to the right type
6656      // with bit_convert.
6657      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6658        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6659                          ResultType, Val);
6660
6661      } else if (ResultType != Val.getValueType() &&
6662                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6663        // If a result value was tied to an input value, the computed result may
6664        // have a wider width than the expected result.  Extract the relevant
6665        // portion.
6666        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6667      }
6668
6669      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6670    }
6671
6672    setValue(CS.getInstruction(), Val);
6673    // Don't need to use this as a chain in this case.
6674    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6675      return;
6676  }
6677
6678  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6679
6680  // Process indirect outputs, first output all of the flagged copies out of
6681  // physregs.
6682  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6683    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6684    const Value *Ptr = IndirectStoresToEmit[i].second;
6685    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6686                                             Chain, &Flag, IA);
6687    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6688  }
6689
6690  // Emit the non-flagged stores from the physregs.
6691  SmallVector<SDValue, 8> OutChains;
6692  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6693    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6694                               StoresToEmit[i].first,
6695                               getValue(StoresToEmit[i].second),
6696                               MachinePointerInfo(StoresToEmit[i].second),
6697                               false, false, 0);
6698    OutChains.push_back(Val);
6699  }
6700
6701  if (!OutChains.empty())
6702    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6703                        &OutChains[0], OutChains.size());
6704
6705  DAG.setRoot(Chain);
6706}
6707
6708void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6709  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6710                          MVT::Other, getRoot(),
6711                          getValue(I.getArgOperand(0)),
6712                          DAG.getSrcValue(I.getArgOperand(0))));
6713}
6714
6715void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6716  const TargetLowering *TLI = TM.getTargetLowering();
6717  const DataLayout &TD = *TLI->getDataLayout();
6718  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6719                           getRoot(), getValue(I.getOperand(0)),
6720                           DAG.getSrcValue(I.getOperand(0)),
6721                           TD.getABITypeAlignment(I.getType()));
6722  setValue(&I, V);
6723  DAG.setRoot(V.getValue(1));
6724}
6725
6726void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6727  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6728                          MVT::Other, getRoot(),
6729                          getValue(I.getArgOperand(0)),
6730                          DAG.getSrcValue(I.getArgOperand(0))));
6731}
6732
6733void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6734  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6735                          MVT::Other, getRoot(),
6736                          getValue(I.getArgOperand(0)),
6737                          getValue(I.getArgOperand(1)),
6738                          DAG.getSrcValue(I.getArgOperand(0)),
6739                          DAG.getSrcValue(I.getArgOperand(1))));
6740}
6741
6742/// \brief Lower an argument list according to the target calling convention.
6743///
6744/// \return A tuple of <return-value, token-chain>
6745///
6746/// This is a helper for lowering intrinsics that follow a target calling
6747/// convention or require stack pointer adjustment. Only a subset of the
6748/// intrinsic's operands need to participate in the calling convention.
6749std::pair<SDValue, SDValue>
6750SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6751                                       unsigned NumArgs, SDValue Callee,
6752                                       bool useVoidTy) {
6753  TargetLowering::ArgListTy Args;
6754  Args.reserve(NumArgs);
6755
6756  // Populate the argument list.
6757  // Attributes for args start at offset 1, after the return attribute.
6758  ImmutableCallSite CS(&CI);
6759  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6760       ArgI != ArgE; ++ArgI) {
6761    const Value *V = CI.getOperand(ArgI);
6762
6763    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6764
6765    TargetLowering::ArgListEntry Entry;
6766    Entry.Node = getValue(V);
6767    Entry.Ty = V->getType();
6768    Entry.setAttributes(&CS, AttrI);
6769    Args.push_back(Entry);
6770  }
6771
6772  Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6773  TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
6774    /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
6775    CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
6776    /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
6777
6778  const TargetLowering *TLI = TM.getTargetLowering();
6779  return TLI->LowerCallTo(CLI);
6780}
6781
6782/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6783void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6784  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6785  //                                  [live variables...])
6786
6787  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6788
6789  SDValue Callee = getValue(CI.getCalledValue());
6790
6791  // Lower into a call sequence with no args and no return value.
6792  std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee);
6793  // Set the root to the target-lowered call chain.
6794  SDValue Chain = Result.second;
6795  DAG.setRoot(Chain);
6796
6797  /// Get a call instruction from the call sequence chain.
6798  /// Tail calls are not allowed.
6799  SDNode *CallEnd = Chain.getNode();
6800  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6801         "Expected a callseq node.");
6802  SDNode *Call = CallEnd->getOperand(0).getNode();
6803  bool hasGlue = Call->getGluedNode();
6804
6805  // Replace the target specific call node with the stackmap intrinsic.
6806  SmallVector<SDValue, 8> Ops;
6807
6808  // Add the <id> and <numShadowBytes> constants.
6809  for (unsigned i = 0; i < 2; ++i) {
6810    SDValue tmp = getValue(CI.getOperand(i));
6811    Ops.push_back(DAG.getTargetConstant(
6812        cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
6813  }
6814  // Push live variables for the stack map.
6815  for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i)
6816    Ops.push_back(getValue(CI.getArgOperand(i)));
6817
6818  // Push the chain (this is originally the first operand of the call, but
6819  // becomes now the last or second to last operand).
6820  Ops.push_back(*(Call->op_begin()));
6821
6822    // Push the glue flag (last operand).
6823  if (hasGlue)
6824    Ops.push_back(*(Call->op_end()-1));
6825
6826  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6827
6828  // Replace the target specific call node with a STACKMAP node.
6829  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(),
6830                                         NodeTys, Ops);
6831
6832  // StackMap generates no value, so nothing goes in the NodeMap.
6833
6834  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6835  // call sequence.
6836  DAG.ReplaceAllUsesWith(Call, MN);
6837
6838  DAG.DeleteNode(Call);
6839}
6840
6841/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6842void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6843  // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>,
6844  //                                                 i32 <numBytes>,
6845  //                                                 i8* <target>,
6846  //                                                 i32 <numArgs>,
6847  //                                                 [Args...],
6848  //                                                 [live variables...])
6849
6850  CallingConv::ID CC = CI.getCallingConv();
6851  bool isAnyRegCC = CC == CallingConv::AnyReg;
6852  bool hasDef = !CI.getType()->isVoidTy();
6853  SDValue Callee = getValue(CI.getOperand(2)); // <target>
6854
6855  // Get the real number of arguments participating in the call <numArgs>
6856  unsigned NumArgs =
6857    cast<ConstantSDNode>(getValue(CI.getArgOperand(3)))->getZExtValue();
6858
6859  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6860  assert(CI.getNumArgOperands() >= NumArgs + 4 &&
6861         "Not enough arguments provided to the patchpoint intrinsic");
6862
6863  // For AnyRegCC the arguments are lowered later on manually.
6864  unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6865  std::pair<SDValue, SDValue> Result =
6866    LowerCallOperands(CI, 4, NumCallArgs, Callee, isAnyRegCC);
6867
6868  // Set the root to the target-lowered call chain.
6869  SDValue Chain = Result.second;
6870  DAG.setRoot(Chain);
6871
6872  SDNode *CallEnd = Chain.getNode();
6873  if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6874    CallEnd = CallEnd->getOperand(0).getNode();
6875
6876  /// Get a call instruction from the call sequence chain.
6877  /// Tail calls are not allowed.
6878  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6879         "Expected a callseq node.");
6880  SDNode *Call = CallEnd->getOperand(0).getNode();
6881  bool hasGlue = Call->getGluedNode();
6882
6883  // Replace the target specific call node with the patchable intrinsic.
6884  SmallVector<SDValue, 8> Ops;
6885
6886  // Add the <id> and <numNopBytes> constants.
6887  for (unsigned i = 0; i < 2; ++i) {
6888    SDValue tmp = getValue(CI.getOperand(i));
6889    Ops.push_back(DAG.getTargetConstant(
6890        cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
6891  }
6892  // Assume that the Callee is a constant address.
6893  Ops.push_back(
6894    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
6895                          /*isTarget=*/true));
6896
6897  // Adjust <numArgs> to account for any arguments that have been passed on the
6898  // stack instead.
6899  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6900  unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
6901  NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
6902  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
6903
6904  // Add the calling convention
6905  Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
6906
6907  // Add the arguments we omitted previously. The register allocator should
6908  // place these in any free register.
6909  if (isAnyRegCC)
6910    for (unsigned i = 4, e = NumArgs + 4; i != e; ++i)
6911      Ops.push_back(getValue(CI.getArgOperand(i)));
6912
6913  // Push the arguments from the call instruction.
6914  SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
6915  for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
6916    Ops.push_back(*i);
6917
6918  // Push live variables for the stack map.
6919  for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) {
6920    SDValue OpVal = getValue(CI.getArgOperand(i));
6921    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6922      Ops.push_back(
6923        DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6924      Ops.push_back(
6925        DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6926    } else
6927      Ops.push_back(OpVal);
6928  }
6929
6930  // Push the register mask info.
6931  if (hasGlue)
6932    Ops.push_back(*(Call->op_end()-2));
6933  else
6934    Ops.push_back(*(Call->op_end()-1));
6935
6936  // Push the chain (this is originally the first operand of the call, but
6937  // becomes now the last or second to last operand).
6938  Ops.push_back(*(Call->op_begin()));
6939
6940  // Push the glue flag (last operand).
6941  if (hasGlue)
6942    Ops.push_back(*(Call->op_end()-1));
6943
6944  SDVTList NodeTys;
6945  if (isAnyRegCC && hasDef) {
6946    // Create the return types based on the intrinsic definition
6947    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6948    SmallVector<EVT, 3> ValueVTs;
6949    ComputeValueVTs(TLI, CI.getType(), ValueVTs);
6950    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6951
6952    // There is always a chain and a glue type at the end
6953    ValueVTs.push_back(MVT::Other);
6954    ValueVTs.push_back(MVT::Glue);
6955    NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
6956  } else
6957    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6958
6959  // Replace the target specific call node with a PATCHPOINT node.
6960  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6961                                         getCurSDLoc(), NodeTys, Ops);
6962
6963  // Update the NodeMap.
6964  if (hasDef) {
6965    if (isAnyRegCC)
6966      setValue(&CI, SDValue(MN, 0));
6967    else
6968      setValue(&CI, Result.first);
6969  }
6970
6971  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6972  // call sequence. Furthermore the location of the chain and glue can change
6973  // when the AnyReg calling convention is used and the intrinsic returns a
6974  // value.
6975  if (isAnyRegCC && hasDef) {
6976    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6977    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6978    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6979  } else
6980    DAG.ReplaceAllUsesWith(Call, MN);
6981  DAG.DeleteNode(Call);
6982}
6983
6984/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6985/// implementation, which just calls LowerCall.
6986/// FIXME: When all targets are
6987/// migrated to using LowerCall, this hook should be integrated into SDISel.
6988std::pair<SDValue, SDValue>
6989TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6990  // Handle the incoming return values from the call.
6991  CLI.Ins.clear();
6992  SmallVector<EVT, 4> RetTys;
6993  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6994  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6995    EVT VT = RetTys[I];
6996    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6997    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6998    for (unsigned i = 0; i != NumRegs; ++i) {
6999      ISD::InputArg MyFlags;
7000      MyFlags.VT = RegisterVT;
7001      MyFlags.ArgVT = VT;
7002      MyFlags.Used = CLI.IsReturnValueUsed;
7003      if (CLI.RetSExt)
7004        MyFlags.Flags.setSExt();
7005      if (CLI.RetZExt)
7006        MyFlags.Flags.setZExt();
7007      if (CLI.IsInReg)
7008        MyFlags.Flags.setInReg();
7009      CLI.Ins.push_back(MyFlags);
7010    }
7011  }
7012
7013  // Handle all of the outgoing arguments.
7014  CLI.Outs.clear();
7015  CLI.OutVals.clear();
7016  ArgListTy &Args = CLI.Args;
7017  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7018    SmallVector<EVT, 4> ValueVTs;
7019    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7020    for (unsigned Value = 0, NumValues = ValueVTs.size();
7021         Value != NumValues; ++Value) {
7022      EVT VT = ValueVTs[Value];
7023      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7024      SDValue Op = SDValue(Args[i].Node.getNode(),
7025                           Args[i].Node.getResNo() + Value);
7026      ISD::ArgFlagsTy Flags;
7027      unsigned OriginalAlignment =
7028        getDataLayout()->getABITypeAlignment(ArgTy);
7029
7030      if (Args[i].isZExt)
7031        Flags.setZExt();
7032      if (Args[i].isSExt)
7033        Flags.setSExt();
7034      if (Args[i].isInReg)
7035        Flags.setInReg();
7036      if (Args[i].isSRet)
7037        Flags.setSRet();
7038      if (Args[i].isByVal) {
7039        Flags.setByVal();
7040        PointerType *Ty = cast<PointerType>(Args[i].Ty);
7041        Type *ElementTy = Ty->getElementType();
7042        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7043        // For ByVal, alignment should come from FE.  BE will guess if this
7044        // info is not there but there are cases it cannot get right.
7045        unsigned FrameAlign;
7046        if (Args[i].Alignment)
7047          FrameAlign = Args[i].Alignment;
7048        else
7049          FrameAlign = getByValTypeAlignment(ElementTy);
7050        Flags.setByValAlign(FrameAlign);
7051      }
7052      if (Args[i].isNest)
7053        Flags.setNest();
7054      Flags.setOrigAlign(OriginalAlignment);
7055
7056      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7057      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7058      SmallVector<SDValue, 4> Parts(NumParts);
7059      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7060
7061      if (Args[i].isSExt)
7062        ExtendKind = ISD::SIGN_EXTEND;
7063      else if (Args[i].isZExt)
7064        ExtendKind = ISD::ZERO_EXTEND;
7065
7066      // Conservatively only handle 'returned' on non-vectors for now
7067      if (Args[i].isReturned && !Op.getValueType().isVector()) {
7068        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7069               "unexpected use of 'returned'");
7070        // Before passing 'returned' to the target lowering code, ensure that
7071        // either the register MVT and the actual EVT are the same size or that
7072        // the return value and argument are extended in the same way; in these
7073        // cases it's safe to pass the argument register value unchanged as the
7074        // return register value (although it's at the target's option whether
7075        // to do so)
7076        // TODO: allow code generation to take advantage of partially preserved
7077        // registers rather than clobbering the entire register when the
7078        // parameter extension method is not compatible with the return
7079        // extension method
7080        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7081            (ExtendKind != ISD::ANY_EXTEND &&
7082             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7083        Flags.setReturned();
7084      }
7085
7086      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
7087                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
7088
7089      for (unsigned j = 0; j != NumParts; ++j) {
7090        // if it isn't first piece, alignment must be 1
7091        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7092                               i < CLI.NumFixedArgs,
7093                               i, j*Parts[j].getValueType().getStoreSize());
7094        if (NumParts > 1 && j == 0)
7095          MyFlags.Flags.setSplit();
7096        else if (j != 0)
7097          MyFlags.Flags.setOrigAlign(1);
7098
7099        CLI.Outs.push_back(MyFlags);
7100        CLI.OutVals.push_back(Parts[j]);
7101      }
7102    }
7103  }
7104
7105  SmallVector<SDValue, 4> InVals;
7106  CLI.Chain = LowerCall(CLI, InVals);
7107
7108  // Verify that the target's LowerCall behaved as expected.
7109  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7110         "LowerCall didn't return a valid chain!");
7111  assert((!CLI.IsTailCall || InVals.empty()) &&
7112         "LowerCall emitted a return value for a tail call!");
7113  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7114         "LowerCall didn't emit the correct number of values!");
7115
7116  // For a tail call, the return value is merely live-out and there aren't
7117  // any nodes in the DAG representing it. Return a special value to
7118  // indicate that a tail call has been emitted and no more Instructions
7119  // should be processed in the current block.
7120  if (CLI.IsTailCall) {
7121    CLI.DAG.setRoot(CLI.Chain);
7122    return std::make_pair(SDValue(), SDValue());
7123  }
7124
7125  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7126          assert(InVals[i].getNode() &&
7127                 "LowerCall emitted a null value!");
7128          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7129                 "LowerCall emitted a value with the wrong type!");
7130        });
7131
7132  // Collect the legal value parts into potentially illegal values
7133  // that correspond to the original function's return values.
7134  ISD::NodeType AssertOp = ISD::DELETED_NODE;
7135  if (CLI.RetSExt)
7136    AssertOp = ISD::AssertSext;
7137  else if (CLI.RetZExt)
7138    AssertOp = ISD::AssertZext;
7139  SmallVector<SDValue, 4> ReturnValues;
7140  unsigned CurReg = 0;
7141  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7142    EVT VT = RetTys[I];
7143    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7144    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7145
7146    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7147                                            NumRegs, RegisterVT, VT, NULL,
7148                                            AssertOp));
7149    CurReg += NumRegs;
7150  }
7151
7152  // For a function returning void, there is no return value. We can't create
7153  // such a node, so we just return a null return value in that case. In
7154  // that case, nothing will actually look at the value.
7155  if (ReturnValues.empty())
7156    return std::make_pair(SDValue(), CLI.Chain);
7157
7158  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7159                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
7160                            &ReturnValues[0], ReturnValues.size());
7161  return std::make_pair(Res, CLI.Chain);
7162}
7163
7164void TargetLowering::LowerOperationWrapper(SDNode *N,
7165                                           SmallVectorImpl<SDValue> &Results,
7166                                           SelectionDAG &DAG) const {
7167  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7168  if (Res.getNode())
7169    Results.push_back(Res);
7170}
7171
7172SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7173  llvm_unreachable("LowerOperation not implemented for this target!");
7174}
7175
7176void
7177SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7178  SDValue Op = getNonRegisterValue(V);
7179  assert((Op.getOpcode() != ISD::CopyFromReg ||
7180          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7181         "Copy from a reg to the same reg!");
7182  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7183
7184  const TargetLowering *TLI = TM.getTargetLowering();
7185  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7186  SDValue Chain = DAG.getEntryNode();
7187  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
7188  PendingExports.push_back(Chain);
7189}
7190
7191#include "llvm/CodeGen/SelectionDAGISel.h"
7192
7193/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7194/// entry block, return true.  This includes arguments used by switches, since
7195/// the switch may expand into multiple basic blocks.
7196static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7197  // With FastISel active, we may be splitting blocks, so force creation
7198  // of virtual registers for all non-dead arguments.
7199  if (FastISel)
7200    return A->use_empty();
7201
7202  const BasicBlock *Entry = A->getParent()->begin();
7203  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
7204       UI != E; ++UI) {
7205    const User *U = *UI;
7206    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7207      return false;  // Use not in entry block.
7208  }
7209  return true;
7210}
7211
7212void SelectionDAGISel::LowerArguments(const Function &F) {
7213  SelectionDAG &DAG = SDB->DAG;
7214  SDLoc dl = SDB->getCurSDLoc();
7215  const TargetLowering *TLI = getTargetLowering();
7216  const DataLayout *TD = TLI->getDataLayout();
7217  SmallVector<ISD::InputArg, 16> Ins;
7218
7219  if (!FuncInfo->CanLowerReturn) {
7220    // Put in an sret pointer parameter before all the other parameters.
7221    SmallVector<EVT, 1> ValueVTs;
7222    ComputeValueVTs(*getTargetLowering(),
7223                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
7224
7225    // NOTE: Assuming that a pointer will never break down to more than one VT
7226    // or one register.
7227    ISD::ArgFlagsTy Flags;
7228    Flags.setSRet();
7229    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7230    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7231    Ins.push_back(RetArg);
7232  }
7233
7234  // Set up the incoming argument description vector.
7235  unsigned Idx = 1;
7236  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7237       I != E; ++I, ++Idx) {
7238    SmallVector<EVT, 4> ValueVTs;
7239    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7240    bool isArgValueUsed = !I->use_empty();
7241    unsigned PartBase = 0;
7242    for (unsigned Value = 0, NumValues = ValueVTs.size();
7243         Value != NumValues; ++Value) {
7244      EVT VT = ValueVTs[Value];
7245      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7246      ISD::ArgFlagsTy Flags;
7247      unsigned OriginalAlignment =
7248        TD->getABITypeAlignment(ArgTy);
7249
7250      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7251        Flags.setZExt();
7252      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7253        Flags.setSExt();
7254      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7255        Flags.setInReg();
7256      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7257        Flags.setSRet();
7258      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
7259        Flags.setByVal();
7260        PointerType *Ty = cast<PointerType>(I->getType());
7261        Type *ElementTy = Ty->getElementType();
7262        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
7263        // For ByVal, alignment should be passed from FE.  BE will guess if
7264        // this info is not there but there are cases it cannot get right.
7265        unsigned FrameAlign;
7266        if (F.getParamAlignment(Idx))
7267          FrameAlign = F.getParamAlignment(Idx);
7268        else
7269          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7270        Flags.setByValAlign(FrameAlign);
7271      }
7272      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7273        Flags.setNest();
7274      Flags.setOrigAlign(OriginalAlignment);
7275
7276      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7277      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7278      for (unsigned i = 0; i != NumRegs; ++i) {
7279        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7280                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7281        if (NumRegs > 1 && i == 0)
7282          MyFlags.Flags.setSplit();
7283        // if it isn't first piece, alignment must be 1
7284        else if (i > 0)
7285          MyFlags.Flags.setOrigAlign(1);
7286        Ins.push_back(MyFlags);
7287      }
7288      PartBase += VT.getStoreSize();
7289    }
7290  }
7291
7292  // Call the target to set up the argument values.
7293  SmallVector<SDValue, 8> InVals;
7294  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7295                                              F.isVarArg(), Ins,
7296                                              dl, DAG, InVals);
7297
7298  // Verify that the target's LowerFormalArguments behaved as expected.
7299  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7300         "LowerFormalArguments didn't return a valid chain!");
7301  assert(InVals.size() == Ins.size() &&
7302         "LowerFormalArguments didn't emit the correct number of values!");
7303  DEBUG({
7304      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7305        assert(InVals[i].getNode() &&
7306               "LowerFormalArguments emitted a null value!");
7307        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7308               "LowerFormalArguments emitted a value with the wrong type!");
7309      }
7310    });
7311
7312  // Update the DAG with the new chain value resulting from argument lowering.
7313  DAG.setRoot(NewRoot);
7314
7315  // Set up the argument values.
7316  unsigned i = 0;
7317  Idx = 1;
7318  if (!FuncInfo->CanLowerReturn) {
7319    // Create a virtual register for the sret pointer, and put in a copy
7320    // from the sret argument into it.
7321    SmallVector<EVT, 1> ValueVTs;
7322    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7323    MVT VT = ValueVTs[0].getSimpleVT();
7324    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7325    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7326    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7327                                        RegVT, VT, NULL, AssertOp);
7328
7329    MachineFunction& MF = SDB->DAG.getMachineFunction();
7330    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7331    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7332    FuncInfo->DemoteRegister = SRetReg;
7333    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7334                                    SRetReg, ArgValue);
7335    DAG.setRoot(NewRoot);
7336
7337    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7338    // Idx indexes LLVM arguments.  Don't touch it.
7339    ++i;
7340  }
7341
7342  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7343      ++I, ++Idx) {
7344    SmallVector<SDValue, 4> ArgValues;
7345    SmallVector<EVT, 4> ValueVTs;
7346    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7347    unsigned NumValues = ValueVTs.size();
7348
7349    // If this argument is unused then remember its value. It is used to generate
7350    // debugging information.
7351    if (I->use_empty() && NumValues) {
7352      SDB->setUnusedArgValue(I, InVals[i]);
7353
7354      // Also remember any frame index for use in FastISel.
7355      if (FrameIndexSDNode *FI =
7356          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7357        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7358    }
7359
7360    for (unsigned Val = 0; Val != NumValues; ++Val) {
7361      EVT VT = ValueVTs[Val];
7362      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7363      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7364
7365      if (!I->use_empty()) {
7366        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7367        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7368          AssertOp = ISD::AssertSext;
7369        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7370          AssertOp = ISD::AssertZext;
7371
7372        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7373                                             NumParts, PartVT, VT,
7374                                             NULL, AssertOp));
7375      }
7376
7377      i += NumParts;
7378    }
7379
7380    // We don't need to do anything else for unused arguments.
7381    if (ArgValues.empty())
7382      continue;
7383
7384    // Note down frame index.
7385    if (FrameIndexSDNode *FI =
7386        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7387      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7388
7389    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7390                                     SDB->getCurSDLoc());
7391
7392    SDB->setValue(I, Res);
7393    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7394      if (LoadSDNode *LNode =
7395          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7396        if (FrameIndexSDNode *FI =
7397            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7398        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7399    }
7400
7401    // If this argument is live outside of the entry block, insert a copy from
7402    // wherever we got it to the vreg that other BB's will reference it as.
7403    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7404      // If we can, though, try to skip creating an unnecessary vreg.
7405      // FIXME: This isn't very clean... it would be nice to make this more
7406      // general.  It's also subtly incompatible with the hacks FastISel
7407      // uses with vregs.
7408      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7409      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7410        FuncInfo->ValueMap[I] = Reg;
7411        continue;
7412      }
7413    }
7414    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7415      FuncInfo->InitializeRegForValue(I);
7416      SDB->CopyToExportRegsIfNeeded(I);
7417    }
7418  }
7419
7420  assert(i == InVals.size() && "Argument register count mismatch!");
7421
7422  // Finally, if the target has anything special to do, allow it to do so.
7423  // FIXME: this should insert code into the DAG!
7424  EmitFunctionEntryCode();
7425}
7426
7427/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7428/// ensure constants are generated when needed.  Remember the virtual registers
7429/// that need to be added to the Machine PHI nodes as input.  We cannot just
7430/// directly add them, because expansion might result in multiple MBB's for one
7431/// BB.  As such, the start of the BB might correspond to a different MBB than
7432/// the end.
7433///
7434void
7435SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7436  const TerminatorInst *TI = LLVMBB->getTerminator();
7437
7438  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7439
7440  // Check successor nodes' PHI nodes that expect a constant to be available
7441  // from this block.
7442  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7443    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7444    if (!isa<PHINode>(SuccBB->begin())) continue;
7445    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7446
7447    // If this terminator has multiple identical successors (common for
7448    // switches), only handle each succ once.
7449    if (!SuccsHandled.insert(SuccMBB)) continue;
7450
7451    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7452
7453    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7454    // nodes and Machine PHI nodes, but the incoming operands have not been
7455    // emitted yet.
7456    for (BasicBlock::const_iterator I = SuccBB->begin();
7457         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7458      // Ignore dead phi's.
7459      if (PN->use_empty()) continue;
7460
7461      // Skip empty types
7462      if (PN->getType()->isEmptyTy())
7463        continue;
7464
7465      unsigned Reg;
7466      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7467
7468      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7469        unsigned &RegOut = ConstantsOut[C];
7470        if (RegOut == 0) {
7471          RegOut = FuncInfo.CreateRegs(C->getType());
7472          CopyValueToVirtualRegister(C, RegOut);
7473        }
7474        Reg = RegOut;
7475      } else {
7476        DenseMap<const Value *, unsigned>::iterator I =
7477          FuncInfo.ValueMap.find(PHIOp);
7478        if (I != FuncInfo.ValueMap.end())
7479          Reg = I->second;
7480        else {
7481          assert(isa<AllocaInst>(PHIOp) &&
7482                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7483                 "Didn't codegen value into a register!??");
7484          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7485          CopyValueToVirtualRegister(PHIOp, Reg);
7486        }
7487      }
7488
7489      // Remember that this register needs to added to the machine PHI node as
7490      // the input for this MBB.
7491      SmallVector<EVT, 4> ValueVTs;
7492      const TargetLowering *TLI = TM.getTargetLowering();
7493      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7494      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7495        EVT VT = ValueVTs[vti];
7496        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7497        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7498          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7499        Reg += NumRegisters;
7500      }
7501    }
7502  }
7503
7504  ConstantsOut.clear();
7505}
7506
7507/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7508/// is 0.
7509MachineBasicBlock *
7510SelectionDAGBuilder::StackProtectorDescriptor::
7511AddSuccessorMBB(const BasicBlock *BB,
7512                MachineBasicBlock *ParentMBB,
7513                MachineBasicBlock *SuccMBB) {
7514  // If SuccBB has not been created yet, create it.
7515  if (!SuccMBB) {
7516    MachineFunction *MF = ParentMBB->getParent();
7517    MachineFunction::iterator BBI = ParentMBB;
7518    SuccMBB = MF->CreateMachineBasicBlock(BB);
7519    MF->insert(++BBI, SuccMBB);
7520  }
7521  // Add it as a successor of ParentMBB.
7522  ParentMBB->addSuccessor(SuccMBB);
7523  return SuccMBB;
7524}
7525