SelectionDAGBuilder.cpp revision 77e30195a006a022b1554933bc766b604692b9d1
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/StackMaps.h"
37#include "llvm/DebugInfo.h"
38#include "llvm/IR/CallingConv.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/InlineAsm.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Intrinsics.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/Module.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include "llvm/Target/TargetSelectionDAGInfo.h"
62#include <algorithm>
63using namespace llvm;
64
65/// LimitFloatPrecision - Generate low-precision inline sequences for
66/// some float libcalls (6, 8 or 12 bits).
67static unsigned LimitFloatPrecision;
68
69static cl::opt<unsigned, true>
70LimitFPPrecision("limit-float-precision",
71                 cl::desc("Generate low-precision inline sequences "
72                          "for some float libcalls"),
73                 cl::location(LimitFloatPrecision),
74                 cl::init(0));
75
76// Limit the width of DAG chains. This is important in general to prevent
77// prevent DAG-based analysis from blowing up. For example, alias analysis and
78// load clustering may not complete in reasonable time. It is difficult to
79// recognize and avoid this situation within each individual analysis, and
80// future analyses are likely to have the same behavior. Limiting DAG width is
81// the safe approach, and will be especially important with global DAGs.
82//
83// MaxParallelChains default is arbitrarily high to avoid affecting
84// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
85// sequence over this should have been converted to llvm.memcpy by the
86// frontend. It easy to induce this behavior with .ll code such as:
87// %buffer = alloca [4096 x i8]
88// %data = load [4096 x i8]* %argPtr
89// store [4096 x i8] %data, [4096 x i8]* %buffer
90static const unsigned MaxParallelChains = 64;
91
92static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
93                                      const SDValue *Parts, unsigned NumParts,
94                                      MVT PartVT, EVT ValueVT, const Value *V);
95
96/// getCopyFromParts - Create a value that contains the specified legal parts
97/// combined into the value they represent.  If the parts combine to a type
98/// larger then ValueVT then AssertOp can be used to specify whether the extra
99/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
100/// (ISD::AssertSext).
101static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
102                                const SDValue *Parts,
103                                unsigned NumParts, MVT PartVT, EVT ValueVT,
104                                const Value *V,
105                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
106  if (ValueVT.isVector())
107    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
108                                  PartVT, ValueVT, V);
109
110  assert(NumParts > 0 && "No parts to assemble!");
111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
112  SDValue Val = Parts[0];
113
114  if (NumParts > 1) {
115    // Assemble the value from multiple parts.
116    if (ValueVT.isInteger()) {
117      unsigned PartBits = PartVT.getSizeInBits();
118      unsigned ValueBits = ValueVT.getSizeInBits();
119
120      // Assemble the power of 2 part.
121      unsigned RoundParts = NumParts & (NumParts - 1) ?
122        1 << Log2_32(NumParts) : NumParts;
123      unsigned RoundBits = PartBits * RoundParts;
124      EVT RoundVT = RoundBits == ValueBits ?
125        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
126      SDValue Lo, Hi;
127
128      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
129
130      if (RoundParts > 2) {
131        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
132                              PartVT, HalfVT, V);
133        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
134                              RoundParts / 2, PartVT, HalfVT, V);
135      } else {
136        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
137        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
138      }
139
140      if (TLI.isBigEndian())
141        std::swap(Lo, Hi);
142
143      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
144
145      if (RoundParts < NumParts) {
146        // Assemble the trailing non-power-of-2 part.
147        unsigned OddParts = NumParts - RoundParts;
148        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
149        Hi = getCopyFromParts(DAG, DL,
150                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
151
152        // Combine the round and odd parts.
153        Lo = Val;
154        if (TLI.isBigEndian())
155          std::swap(Lo, Hi);
156        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
157        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
158        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
159                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
160                                         TLI.getPointerTy()));
161        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
162        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
163      }
164    } else if (PartVT.isFloatingPoint()) {
165      // FP split into multiple FP parts (for ppcf128)
166      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
167             "Unexpected split");
168      SDValue Lo, Hi;
169      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
170      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
171      if (TLI.isBigEndian())
172        std::swap(Lo, Hi);
173      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
174    } else {
175      // FP split into integer parts (soft fp)
176      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
177             !PartVT.isVector() && "Unexpected split");
178      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
179      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
180    }
181  }
182
183  // There is now one part, held in Val.  Correct it to match ValueVT.
184  EVT PartEVT = Val.getValueType();
185
186  if (PartEVT == ValueVT)
187    return Val;
188
189  if (PartEVT.isInteger() && ValueVT.isInteger()) {
190    if (ValueVT.bitsLT(PartEVT)) {
191      // For a truncate, see if we have any information to
192      // indicate whether the truncated bits will always be
193      // zero or sign-extension.
194      if (AssertOp != ISD::DELETED_NODE)
195        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
196                          DAG.getValueType(ValueVT));
197      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
198    }
199    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
200  }
201
202  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
203    // FP_ROUND's are always exact here.
204    if (ValueVT.bitsLT(Val.getValueType()))
205      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
206                         DAG.getTargetConstant(1, TLI.getPointerTy()));
207
208    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
209  }
210
211  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
212    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
213
214  llvm_unreachable("Unknown mismatch!");
215}
216
217/// getCopyFromPartsVector - Create a value that contains the specified legal
218/// parts combined into the value they represent.  If the parts combine to a
219/// type larger then ValueVT then AssertOp can be used to specify whether the
220/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
221/// ValueVT (ISD::AssertSext).
222static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
223                                      const SDValue *Parts, unsigned NumParts,
224                                      MVT PartVT, EVT ValueVT, const Value *V) {
225  assert(ValueVT.isVector() && "Not a vector value");
226  assert(NumParts > 0 && "No parts to assemble!");
227  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
228  SDValue Val = Parts[0];
229
230  // Handle a multi-element vector.
231  if (NumParts > 1) {
232    EVT IntermediateVT;
233    MVT RegisterVT;
234    unsigned NumIntermediates;
235    unsigned NumRegs =
236    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
237                               NumIntermediates, RegisterVT);
238    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
239    NumParts = NumRegs; // Silence a compiler warning.
240    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
241    assert(RegisterVT == Parts[0].getSimpleValueType() &&
242           "Part type doesn't match part!");
243
244    // Assemble the parts into intermediate operands.
245    SmallVector<SDValue, 8> Ops(NumIntermediates);
246    if (NumIntermediates == NumParts) {
247      // If the register was not expanded, truncate or copy the value,
248      // as appropriate.
249      for (unsigned i = 0; i != NumParts; ++i)
250        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
251                                  PartVT, IntermediateVT, V);
252    } else if (NumParts > 0) {
253      // If the intermediate type was expanded, build the intermediate
254      // operands from the parts.
255      assert(NumParts % NumIntermediates == 0 &&
256             "Must expand into a divisible number of parts!");
257      unsigned Factor = NumParts / NumIntermediates;
258      for (unsigned i = 0; i != NumIntermediates; ++i)
259        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
260                                  PartVT, IntermediateVT, V);
261    }
262
263    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
264    // intermediate operands.
265    Val = DAG.getNode(IntermediateVT.isVector() ?
266                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
267                      ValueVT, &Ops[0], NumIntermediates);
268  }
269
270  // There is now one part, held in Val.  Correct it to match ValueVT.
271  EVT PartEVT = Val.getValueType();
272
273  if (PartEVT == ValueVT)
274    return Val;
275
276  if (PartEVT.isVector()) {
277    // If the element type of the source/dest vectors are the same, but the
278    // parts vector has more elements than the value vector, then we have a
279    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
280    // elements we want.
281    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
282      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
283             "Cannot narrow, it would be a lossy transformation");
284      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
285                         DAG.getConstant(0, TLI.getVectorIdxTy()));
286    }
287
288    // Vector/Vector bitcast.
289    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
290      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
291
292    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
293      "Cannot handle this kind of promotion");
294    // Promoted vector extract
295    bool Smaller = ValueVT.bitsLE(PartEVT);
296    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
297                       DL, ValueVT, Val);
298
299  }
300
301  // Trivial bitcast if the types are the same size and the destination
302  // vector type is legal.
303  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
304      TLI.isTypeLegal(ValueVT))
305    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307  // Handle cases such as i8 -> <1 x i1>
308  if (ValueVT.getVectorNumElements() != 1) {
309    LLVMContext &Ctx = *DAG.getContext();
310    Twine ErrMsg("non-trivial scalar-to-vector conversion");
311    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
312      if (const CallInst *CI = dyn_cast<CallInst>(I))
313        if (isa<InlineAsm>(CI->getCalledValue()))
314          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
315      Ctx.emitError(I, ErrMsg);
316    } else {
317      Ctx.emitError(ErrMsg);
318    }
319    return DAG.getUNDEF(ValueVT);
320  }
321
322  if (ValueVT.getVectorNumElements() == 1 &&
323      ValueVT.getVectorElementType() != PartEVT) {
324    bool Smaller = ValueVT.bitsLE(PartEVT);
325    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
326                       DL, ValueVT.getScalarType(), Val);
327  }
328
329  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
330}
331
332static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
333                                 SDValue Val, SDValue *Parts, unsigned NumParts,
334                                 MVT PartVT, const Value *V);
335
336/// getCopyToParts - Create a series of nodes that contain the specified value
337/// split into legal parts.  If the parts contain more bits than Val, then, for
338/// integers, ExtendKind can be used to specify how to generate the extra bits.
339static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
340                           SDValue Val, SDValue *Parts, unsigned NumParts,
341                           MVT PartVT, const Value *V,
342                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
343  EVT ValueVT = Val.getValueType();
344
345  // Handle the vector case separately.
346  if (ValueVT.isVector())
347    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
348
349  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350  unsigned PartBits = PartVT.getSizeInBits();
351  unsigned OrigNumParts = NumParts;
352  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
353
354  if (NumParts == 0)
355    return;
356
357  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
358  EVT PartEVT = PartVT;
359  if (PartEVT == ValueVT) {
360    assert(NumParts == 1 && "No-op copy with multiple parts!");
361    Parts[0] = Val;
362    return;
363  }
364
365  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
366    // If the parts cover more bits than the value has, promote the value.
367    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
368      assert(NumParts == 1 && "Do not know what to promote to!");
369      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
370    } else {
371      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
372             ValueVT.isInteger() &&
373             "Unknown mismatch!");
374      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
375      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
376      if (PartVT == MVT::x86mmx)
377        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
378    }
379  } else if (PartBits == ValueVT.getSizeInBits()) {
380    // Different types of the same size.
381    assert(NumParts == 1 && PartEVT != ValueVT);
382    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
383  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
384    // If the parts cover less bits than value has, truncate the value.
385    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
386           ValueVT.isInteger() &&
387           "Unknown mismatch!");
388    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
389    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
390    if (PartVT == MVT::x86mmx)
391      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
392  }
393
394  // The value may have changed - recompute ValueVT.
395  ValueVT = Val.getValueType();
396  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
397         "Failed to tile the value with PartVT!");
398
399  if (NumParts == 1) {
400    if (PartEVT != ValueVT) {
401      LLVMContext &Ctx = *DAG.getContext();
402      Twine ErrMsg("scalar-to-vector conversion failed");
403      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
404        if (const CallInst *CI = dyn_cast<CallInst>(I))
405          if (isa<InlineAsm>(CI->getCalledValue()))
406            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
407        Ctx.emitError(I, ErrMsg);
408      } else {
409        Ctx.emitError(ErrMsg);
410      }
411    }
412
413    Parts[0] = Val;
414    return;
415  }
416
417  // Expand the value into multiple parts.
418  if (NumParts & (NumParts - 1)) {
419    // The number of parts is not a power of 2.  Split off and copy the tail.
420    assert(PartVT.isInteger() && ValueVT.isInteger() &&
421           "Do not know what to expand to!");
422    unsigned RoundParts = 1 << Log2_32(NumParts);
423    unsigned RoundBits = RoundParts * PartBits;
424    unsigned OddParts = NumParts - RoundParts;
425    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
426                                 DAG.getIntPtrConstant(RoundBits));
427    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
428
429    if (TLI.isBigEndian())
430      // The odd parts were reversed by getCopyToParts - unreverse them.
431      std::reverse(Parts + RoundParts, Parts + NumParts);
432
433    NumParts = RoundParts;
434    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
435    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
436  }
437
438  // The number of parts is a power of 2.  Repeatedly bisect the value using
439  // EXTRACT_ELEMENT.
440  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
441                         EVT::getIntegerVT(*DAG.getContext(),
442                                           ValueVT.getSizeInBits()),
443                         Val);
444
445  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
446    for (unsigned i = 0; i < NumParts; i += StepSize) {
447      unsigned ThisBits = StepSize * PartBits / 2;
448      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
449      SDValue &Part0 = Parts[i];
450      SDValue &Part1 = Parts[i+StepSize/2];
451
452      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(1));
454      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455                          ThisVT, Part0, DAG.getIntPtrConstant(0));
456
457      if (ThisBits == PartBits && ThisVT != PartVT) {
458        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
459        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
460      }
461    }
462  }
463
464  if (TLI.isBigEndian())
465    std::reverse(Parts, Parts + OrigNumParts);
466}
467
468
469/// getCopyToPartsVector - Create a series of nodes that contain the specified
470/// value split into legal parts.
471static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
472                                 SDValue Val, SDValue *Parts, unsigned NumParts,
473                                 MVT PartVT, const Value *V) {
474  EVT ValueVT = Val.getValueType();
475  assert(ValueVT.isVector() && "Not a vector");
476  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
477
478  if (NumParts == 1) {
479    EVT PartEVT = PartVT;
480    if (PartEVT == ValueVT) {
481      // Nothing to do.
482    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
483      // Bitconvert vector->vector case.
484      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
485    } else if (PartVT.isVector() &&
486               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
487               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
488      EVT ElementVT = PartVT.getVectorElementType();
489      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
490      // undef elements.
491      SmallVector<SDValue, 16> Ops;
492      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
493        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
494                                  ElementVT, Val, DAG.getConstant(i,
495                                                  TLI.getVectorIdxTy())));
496
497      for (unsigned i = ValueVT.getVectorNumElements(),
498           e = PartVT.getVectorNumElements(); i != e; ++i)
499        Ops.push_back(DAG.getUNDEF(ElementVT));
500
501      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
502
503      // FIXME: Use CONCAT for 2x -> 4x.
504
505      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
506      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
507    } else if (PartVT.isVector() &&
508               PartEVT.getVectorElementType().bitsGE(
509                 ValueVT.getVectorElementType()) &&
510               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
511
512      // Promoted vector extract
513      bool Smaller = PartEVT.bitsLE(ValueVT);
514      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
515                        DL, PartVT, Val);
516    } else{
517      // Vector -> scalar conversion.
518      assert(ValueVT.getVectorNumElements() == 1 &&
519             "Only trivial vector-to-scalar conversions should get here!");
520      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
521                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
522
523      bool Smaller = ValueVT.bitsLE(PartVT);
524      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
525                         DL, PartVT, Val);
526    }
527
528    Parts[0] = Val;
529    return;
530  }
531
532  // Handle a multi-element vector.
533  EVT IntermediateVT;
534  MVT RegisterVT;
535  unsigned NumIntermediates;
536  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
537                                                IntermediateVT,
538                                                NumIntermediates, RegisterVT);
539  unsigned NumElements = ValueVT.getVectorNumElements();
540
541  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
542  NumParts = NumRegs; // Silence a compiler warning.
543  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
544
545  // Split the vector into intermediate operands.
546  SmallVector<SDValue, 8> Ops(NumIntermediates);
547  for (unsigned i = 0; i != NumIntermediates; ++i) {
548    if (IntermediateVT.isVector())
549      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
550                           IntermediateVT, Val,
551                   DAG.getConstant(i * (NumElements / NumIntermediates),
552                                   TLI.getVectorIdxTy()));
553    else
554      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
555                           IntermediateVT, Val,
556                           DAG.getConstant(i, TLI.getVectorIdxTy()));
557  }
558
559  // Split the intermediate operands into legal parts.
560  if (NumParts == NumIntermediates) {
561    // If the register was not expanded, promote or copy the value,
562    // as appropriate.
563    for (unsigned i = 0; i != NumParts; ++i)
564      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
565  } else if (NumParts > 0) {
566    // If the intermediate type was expanded, split each the value into
567    // legal parts.
568    assert(NumParts % NumIntermediates == 0 &&
569           "Must expand into a divisible number of parts!");
570    unsigned Factor = NumParts / NumIntermediates;
571    for (unsigned i = 0; i != NumIntermediates; ++i)
572      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
573  }
574}
575
576namespace {
577  /// RegsForValue - This struct represents the registers (physical or virtual)
578  /// that a particular set of values is assigned, and the type information
579  /// about the value. The most common situation is to represent one value at a
580  /// time, but struct or array values are handled element-wise as multiple
581  /// values.  The splitting of aggregates is performed recursively, so that we
582  /// never have aggregate-typed registers. The values at this point do not
583  /// necessarily have legal types, so each value may require one or more
584  /// registers of some legal type.
585  ///
586  struct RegsForValue {
587    /// ValueVTs - The value types of the values, which may not be legal, and
588    /// may need be promoted or synthesized from one or more registers.
589    ///
590    SmallVector<EVT, 4> ValueVTs;
591
592    /// RegVTs - The value types of the registers. This is the same size as
593    /// ValueVTs and it records, for each value, what the type of the assigned
594    /// register or registers are. (Individual values are never synthesized
595    /// from more than one type of register.)
596    ///
597    /// With virtual registers, the contents of RegVTs is redundant with TLI's
598    /// getRegisterType member function, however when with physical registers
599    /// it is necessary to have a separate record of the types.
600    ///
601    SmallVector<MVT, 4> RegVTs;
602
603    /// Regs - This list holds the registers assigned to the values.
604    /// Each legal or promoted value requires one register, and each
605    /// expanded value requires multiple registers.
606    ///
607    SmallVector<unsigned, 4> Regs;
608
609    RegsForValue() {}
610
611    RegsForValue(const SmallVector<unsigned, 4> &regs,
612                 MVT regvt, EVT valuevt)
613      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
614
615    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
616                 unsigned Reg, Type *Ty) {
617      ComputeValueVTs(tli, Ty, ValueVTs);
618
619      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
620        EVT ValueVT = ValueVTs[Value];
621        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
622        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
623        for (unsigned i = 0; i != NumRegs; ++i)
624          Regs.push_back(Reg + i);
625        RegVTs.push_back(RegisterVT);
626        Reg += NumRegs;
627      }
628    }
629
630    /// areValueTypesLegal - Return true if types of all the values are legal.
631    bool areValueTypesLegal(const TargetLowering &TLI) {
632      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
633        MVT RegisterVT = RegVTs[Value];
634        if (!TLI.isTypeLegal(RegisterVT))
635          return false;
636      }
637      return true;
638    }
639
640    /// append - Add the specified values to this one.
641    void append(const RegsForValue &RHS) {
642      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
643      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
644      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
645    }
646
647    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
648    /// this value and returns the result as a ValueVTs value.  This uses
649    /// Chain/Flag as the input and updates them for the output Chain/Flag.
650    /// If the Flag pointer is NULL, no flag is used.
651    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
652                            SDLoc dl,
653                            SDValue &Chain, SDValue *Flag,
654                            const Value *V = 0) const;
655
656    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
657    /// specified value into the registers specified by this object.  This uses
658    /// Chain/Flag as the input and updates them for the output Chain/Flag.
659    /// If the Flag pointer is NULL, no flag is used.
660    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
661                       SDValue &Chain, SDValue *Flag, const Value *V) const;
662
663    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
664    /// operand list.  This adds the code marker, matching input operand index
665    /// (if applicable), and includes the number of values added into it.
666    void AddInlineAsmOperands(unsigned Kind,
667                              bool HasMatching, unsigned MatchingIdx,
668                              SelectionDAG &DAG,
669                              std::vector<SDValue> &Ops) const;
670  };
671}
672
673/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
674/// this value and returns the result as a ValueVT value.  This uses
675/// Chain/Flag as the input and updates them for the output Chain/Flag.
676/// If the Flag pointer is NULL, no flag is used.
677SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
678                                      FunctionLoweringInfo &FuncInfo,
679                                      SDLoc dl,
680                                      SDValue &Chain, SDValue *Flag,
681                                      const Value *V) const {
682  // A Value with type {} or [0 x %t] needs no registers.
683  if (ValueVTs.empty())
684    return SDValue();
685
686  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
687
688  // Assemble the legal parts into the final values.
689  SmallVector<SDValue, 4> Values(ValueVTs.size());
690  SmallVector<SDValue, 8> Parts;
691  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
692    // Copy the legal parts from the registers.
693    EVT ValueVT = ValueVTs[Value];
694    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
695    MVT RegisterVT = RegVTs[Value];
696
697    Parts.resize(NumRegs);
698    for (unsigned i = 0; i != NumRegs; ++i) {
699      SDValue P;
700      if (Flag == 0) {
701        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
702      } else {
703        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
704        *Flag = P.getValue(2);
705      }
706
707      Chain = P.getValue(1);
708      Parts[i] = P;
709
710      // If the source register was virtual and if we know something about it,
711      // add an assert node.
712      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
713          !RegisterVT.isInteger() || RegisterVT.isVector())
714        continue;
715
716      const FunctionLoweringInfo::LiveOutInfo *LOI =
717        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
718      if (!LOI)
719        continue;
720
721      unsigned RegSize = RegisterVT.getSizeInBits();
722      unsigned NumSignBits = LOI->NumSignBits;
723      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
724
725      if (NumZeroBits == RegSize) {
726        // The current value is a zero.
727        // Explicitly express that as it would be easier for
728        // optimizations to kick in.
729        Parts[i] = DAG.getConstant(0, RegisterVT);
730        continue;
731      }
732
733      // FIXME: We capture more information than the dag can represent.  For
734      // now, just use the tightest assertzext/assertsext possible.
735      bool isSExt = true;
736      EVT FromVT(MVT::Other);
737      if (NumSignBits == RegSize)
738        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
739      else if (NumZeroBits >= RegSize-1)
740        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
741      else if (NumSignBits > RegSize-8)
742        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
743      else if (NumZeroBits >= RegSize-8)
744        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
745      else if (NumSignBits > RegSize-16)
746        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
747      else if (NumZeroBits >= RegSize-16)
748        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
749      else if (NumSignBits > RegSize-32)
750        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
751      else if (NumZeroBits >= RegSize-32)
752        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
753      else
754        continue;
755
756      // Add an assertion node.
757      assert(FromVT != MVT::Other);
758      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
759                             RegisterVT, P, DAG.getValueType(FromVT));
760    }
761
762    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
763                                     NumRegs, RegisterVT, ValueVT, V);
764    Part += NumRegs;
765    Parts.clear();
766  }
767
768  return DAG.getNode(ISD::MERGE_VALUES, dl,
769                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
770                     &Values[0], ValueVTs.size());
771}
772
773/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
774/// specified value into the registers specified by this object.  This uses
775/// Chain/Flag as the input and updates them for the output Chain/Flag.
776/// If the Flag pointer is NULL, no flag is used.
777void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
778                                 SDValue &Chain, SDValue *Flag,
779                                 const Value *V) const {
780  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
781
782  // Get the list of the values's legal parts.
783  unsigned NumRegs = Regs.size();
784  SmallVector<SDValue, 8> Parts(NumRegs);
785  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
786    EVT ValueVT = ValueVTs[Value];
787    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
788    MVT RegisterVT = RegVTs[Value];
789    ISD::NodeType ExtendKind =
790      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
791
792    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
793                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
794    Part += NumParts;
795  }
796
797  // Copy the parts into the registers.
798  SmallVector<SDValue, 8> Chains(NumRegs);
799  for (unsigned i = 0; i != NumRegs; ++i) {
800    SDValue Part;
801    if (Flag == 0) {
802      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
803    } else {
804      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
805      *Flag = Part.getValue(1);
806    }
807
808    Chains[i] = Part.getValue(0);
809  }
810
811  if (NumRegs == 1 || Flag)
812    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
813    // flagged to it. That is the CopyToReg nodes and the user are considered
814    // a single scheduling unit. If we create a TokenFactor and return it as
815    // chain, then the TokenFactor is both a predecessor (operand) of the
816    // user as well as a successor (the TF operands are flagged to the user).
817    // c1, f1 = CopyToReg
818    // c2, f2 = CopyToReg
819    // c3     = TokenFactor c1, c2
820    // ...
821    //        = op c3, ..., f2
822    Chain = Chains[NumRegs-1];
823  else
824    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
825}
826
827/// AddInlineAsmOperands - Add this value to the specified inlineasm node
828/// operand list.  This adds the code marker and includes the number of
829/// values added into it.
830void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
831                                        unsigned MatchingIdx,
832                                        SelectionDAG &DAG,
833                                        std::vector<SDValue> &Ops) const {
834  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
835
836  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
837  if (HasMatching)
838    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
839  else if (!Regs.empty() &&
840           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
841    // Put the register class of the virtual registers in the flag word.  That
842    // way, later passes can recompute register class constraints for inline
843    // assembly as well as normal instructions.
844    // Don't do this for tied operands that can use the regclass information
845    // from the def.
846    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
847    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
848    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
849  }
850
851  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
852  Ops.push_back(Res);
853
854  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
855    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
856    MVT RegisterVT = RegVTs[Value];
857    for (unsigned i = 0; i != NumRegs; ++i) {
858      assert(Reg < Regs.size() && "Mismatch in # registers expected");
859      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
860    }
861  }
862}
863
864void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
865                               const TargetLibraryInfo *li) {
866  AA = &aa;
867  GFI = gfi;
868  LibInfo = li;
869  TD = DAG.getTarget().getDataLayout();
870  Context = DAG.getContext();
871  LPadToCallSiteMap.clear();
872}
873
874/// clear - Clear out the current SelectionDAG and the associated
875/// state and prepare this SelectionDAGBuilder object to be used
876/// for a new block. This doesn't clear out information about
877/// additional blocks that are needed to complete switch lowering
878/// or PHI node updating; that information is cleared out as it is
879/// consumed.
880void SelectionDAGBuilder::clear() {
881  NodeMap.clear();
882  UnusedArgNodeMap.clear();
883  PendingLoads.clear();
884  PendingExports.clear();
885  CurInst = NULL;
886  HasTailCall = false;
887}
888
889/// clearDanglingDebugInfo - Clear the dangling debug information
890/// map. This function is separated from the clear so that debug
891/// information that is dangling in a basic block can be properly
892/// resolved in a different basic block. This allows the
893/// SelectionDAG to resolve dangling debug information attached
894/// to PHI nodes.
895void SelectionDAGBuilder::clearDanglingDebugInfo() {
896  DanglingDebugInfoMap.clear();
897}
898
899/// getRoot - Return the current virtual root of the Selection DAG,
900/// flushing any PendingLoad items. This must be done before emitting
901/// a store or any other node that may need to be ordered after any
902/// prior load instructions.
903///
904SDValue SelectionDAGBuilder::getRoot() {
905  if (PendingLoads.empty())
906    return DAG.getRoot();
907
908  if (PendingLoads.size() == 1) {
909    SDValue Root = PendingLoads[0];
910    DAG.setRoot(Root);
911    PendingLoads.clear();
912    return Root;
913  }
914
915  // Otherwise, we have to make a token factor node.
916  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
917                               &PendingLoads[0], PendingLoads.size());
918  PendingLoads.clear();
919  DAG.setRoot(Root);
920  return Root;
921}
922
923/// getControlRoot - Similar to getRoot, but instead of flushing all the
924/// PendingLoad items, flush all the PendingExports items. It is necessary
925/// to do this before emitting a terminator instruction.
926///
927SDValue SelectionDAGBuilder::getControlRoot() {
928  SDValue Root = DAG.getRoot();
929
930  if (PendingExports.empty())
931    return Root;
932
933  // Turn all of the CopyToReg chains into one factored node.
934  if (Root.getOpcode() != ISD::EntryToken) {
935    unsigned i = 0, e = PendingExports.size();
936    for (; i != e; ++i) {
937      assert(PendingExports[i].getNode()->getNumOperands() > 1);
938      if (PendingExports[i].getNode()->getOperand(0) == Root)
939        break;  // Don't add the root if we already indirectly depend on it.
940    }
941
942    if (i == e)
943      PendingExports.push_back(Root);
944  }
945
946  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
947                     &PendingExports[0],
948                     PendingExports.size());
949  PendingExports.clear();
950  DAG.setRoot(Root);
951  return Root;
952}
953
954void SelectionDAGBuilder::visit(const Instruction &I) {
955  // Set up outgoing PHI node register values before emitting the terminator.
956  if (isa<TerminatorInst>(&I))
957    HandlePHINodesInSuccessorBlocks(I.getParent());
958
959  ++SDNodeOrder;
960
961  CurInst = &I;
962
963  visit(I.getOpcode(), I);
964
965  if (!isa<TerminatorInst>(&I) && !HasTailCall)
966    CopyToExportRegsIfNeeded(&I);
967
968  CurInst = NULL;
969}
970
971void SelectionDAGBuilder::visitPHI(const PHINode &) {
972  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
973}
974
975void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
976  // Note: this doesn't use InstVisitor, because it has to work with
977  // ConstantExpr's in addition to instructions.
978  switch (Opcode) {
979  default: llvm_unreachable("Unknown instruction type encountered!");
980    // Build the switch statement using the Instruction.def file.
981#define HANDLE_INST(NUM, OPCODE, CLASS) \
982    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
983#include "llvm/IR/Instruction.def"
984  }
985}
986
987// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
988// generate the debug data structures now that we've seen its definition.
989void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
990                                                   SDValue Val) {
991  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
992  if (DDI.getDI()) {
993    const DbgValueInst *DI = DDI.getDI();
994    DebugLoc dl = DDI.getdl();
995    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
996    MDNode *Variable = DI->getVariable();
997    uint64_t Offset = DI->getOffset();
998    SDDbgValue *SDV;
999    if (Val.getNode()) {
1000      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1001        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1002                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1003        DAG.AddDbgValue(SDV, Val.getNode(), false);
1004      }
1005    } else
1006      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1007    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1008  }
1009}
1010
1011/// getValue - Return an SDValue for the given Value.
1012SDValue SelectionDAGBuilder::getValue(const Value *V) {
1013  // If we already have an SDValue for this value, use it. It's important
1014  // to do this first, so that we don't create a CopyFromReg if we already
1015  // have a regular SDValue.
1016  SDValue &N = NodeMap[V];
1017  if (N.getNode()) return N;
1018
1019  // If there's a virtual register allocated and initialized for this
1020  // value, use it.
1021  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1022  if (It != FuncInfo.ValueMap.end()) {
1023    unsigned InReg = It->second;
1024    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1025                     InReg, V->getType());
1026    SDValue Chain = DAG.getEntryNode();
1027    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1028    resolveDanglingDebugInfo(V, N);
1029    return N;
1030  }
1031
1032  // Otherwise create a new SDValue and remember it.
1033  SDValue Val = getValueImpl(V);
1034  NodeMap[V] = Val;
1035  resolveDanglingDebugInfo(V, Val);
1036  return Val;
1037}
1038
1039/// getNonRegisterValue - Return an SDValue for the given Value, but
1040/// don't look in FuncInfo.ValueMap for a virtual register.
1041SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042  // If we already have an SDValue for this value, use it.
1043  SDValue &N = NodeMap[V];
1044  if (N.getNode()) return N;
1045
1046  // Otherwise create a new SDValue and remember it.
1047  SDValue Val = getValueImpl(V);
1048  NodeMap[V] = Val;
1049  resolveDanglingDebugInfo(V, Val);
1050  return Val;
1051}
1052
1053/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1054/// Create an SDValue for the given value.
1055SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1056  const TargetLowering *TLI = TM.getTargetLowering();
1057
1058  if (const Constant *C = dyn_cast<Constant>(V)) {
1059    EVT VT = TLI->getValueType(V->getType(), true);
1060
1061    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1062      return DAG.getConstant(*CI, VT);
1063
1064    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1065      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1066
1067    if (isa<ConstantPointerNull>(C)) {
1068      unsigned AS = V->getType()->getPointerAddressSpace();
1069      return DAG.getConstant(0, TLI->getPointerTy(AS));
1070    }
1071
1072    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1073      return DAG.getConstantFP(*CFP, VT);
1074
1075    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1076      return DAG.getUNDEF(VT);
1077
1078    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1079      visit(CE->getOpcode(), *CE);
1080      SDValue N1 = NodeMap[V];
1081      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1082      return N1;
1083    }
1084
1085    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1086      SmallVector<SDValue, 4> Constants;
1087      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1088           OI != OE; ++OI) {
1089        SDNode *Val = getValue(*OI).getNode();
1090        // If the operand is an empty aggregate, there are no values.
1091        if (!Val) continue;
1092        // Add each leaf value from the operand to the Constants list
1093        // to form a flattened list of all the values.
1094        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1095          Constants.push_back(SDValue(Val, i));
1096      }
1097
1098      return DAG.getMergeValues(&Constants[0], Constants.size(),
1099                                getCurSDLoc());
1100    }
1101
1102    if (const ConstantDataSequential *CDS =
1103          dyn_cast<ConstantDataSequential>(C)) {
1104      SmallVector<SDValue, 4> Ops;
1105      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1106        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1107        // Add each leaf value from the operand to the Constants list
1108        // to form a flattened list of all the values.
1109        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1110          Ops.push_back(SDValue(Val, i));
1111      }
1112
1113      if (isa<ArrayType>(CDS->getType()))
1114        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1115      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1116                                      VT, &Ops[0], Ops.size());
1117    }
1118
1119    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1120      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1121             "Unknown struct or array constant!");
1122
1123      SmallVector<EVT, 4> ValueVTs;
1124      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1125      unsigned NumElts = ValueVTs.size();
1126      if (NumElts == 0)
1127        return SDValue(); // empty struct
1128      SmallVector<SDValue, 4> Constants(NumElts);
1129      for (unsigned i = 0; i != NumElts; ++i) {
1130        EVT EltVT = ValueVTs[i];
1131        if (isa<UndefValue>(C))
1132          Constants[i] = DAG.getUNDEF(EltVT);
1133        else if (EltVT.isFloatingPoint())
1134          Constants[i] = DAG.getConstantFP(0, EltVT);
1135        else
1136          Constants[i] = DAG.getConstant(0, EltVT);
1137      }
1138
1139      return DAG.getMergeValues(&Constants[0], NumElts,
1140                                getCurSDLoc());
1141    }
1142
1143    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1144      return DAG.getBlockAddress(BA, VT);
1145
1146    VectorType *VecTy = cast<VectorType>(V->getType());
1147    unsigned NumElements = VecTy->getNumElements();
1148
1149    // Now that we know the number and type of the elements, get that number of
1150    // elements into the Ops array based on what kind of constant it is.
1151    SmallVector<SDValue, 16> Ops;
1152    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1153      for (unsigned i = 0; i != NumElements; ++i)
1154        Ops.push_back(getValue(CV->getOperand(i)));
1155    } else {
1156      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1157      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1158
1159      SDValue Op;
1160      if (EltVT.isFloatingPoint())
1161        Op = DAG.getConstantFP(0, EltVT);
1162      else
1163        Op = DAG.getConstant(0, EltVT);
1164      Ops.assign(NumElements, Op);
1165    }
1166
1167    // Create a BUILD_VECTOR node.
1168    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1169                                    VT, &Ops[0], Ops.size());
1170  }
1171
1172  // If this is a static alloca, generate it as the frameindex instead of
1173  // computation.
1174  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1175    DenseMap<const AllocaInst*, int>::iterator SI =
1176      FuncInfo.StaticAllocaMap.find(AI);
1177    if (SI != FuncInfo.StaticAllocaMap.end())
1178      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1179  }
1180
1181  // If this is an instruction which fast-isel has deferred, select it now.
1182  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1183    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1184    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1185    SDValue Chain = DAG.getEntryNode();
1186    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1187  }
1188
1189  llvm_unreachable("Can't get register for value!");
1190}
1191
1192void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1193  const TargetLowering *TLI = TM.getTargetLowering();
1194  SDValue Chain = getControlRoot();
1195  SmallVector<ISD::OutputArg, 8> Outs;
1196  SmallVector<SDValue, 8> OutVals;
1197
1198  if (!FuncInfo.CanLowerReturn) {
1199    unsigned DemoteReg = FuncInfo.DemoteRegister;
1200    const Function *F = I.getParent()->getParent();
1201
1202    // Emit a store of the return value through the virtual register.
1203    // Leave Outs empty so that LowerReturn won't try to load return
1204    // registers the usual way.
1205    SmallVector<EVT, 1> PtrValueVTs;
1206    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1207                    PtrValueVTs);
1208
1209    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1210    SDValue RetOp = getValue(I.getOperand(0));
1211
1212    SmallVector<EVT, 4> ValueVTs;
1213    SmallVector<uint64_t, 4> Offsets;
1214    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1215    unsigned NumValues = ValueVTs.size();
1216
1217    SmallVector<SDValue, 4> Chains(NumValues);
1218    for (unsigned i = 0; i != NumValues; ++i) {
1219      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1220                                RetPtr.getValueType(), RetPtr,
1221                                DAG.getIntPtrConstant(Offsets[i]));
1222      Chains[i] =
1223        DAG.getStore(Chain, getCurSDLoc(),
1224                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1225                     // FIXME: better loc info would be nice.
1226                     Add, MachinePointerInfo(), false, false, 0);
1227    }
1228
1229    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1230                        MVT::Other, &Chains[0], NumValues);
1231  } else if (I.getNumOperands() != 0) {
1232    SmallVector<EVT, 4> ValueVTs;
1233    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1234    unsigned NumValues = ValueVTs.size();
1235    if (NumValues) {
1236      SDValue RetOp = getValue(I.getOperand(0));
1237      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1238        EVT VT = ValueVTs[j];
1239
1240        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1241
1242        const Function *F = I.getParent()->getParent();
1243        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1244                                            Attribute::SExt))
1245          ExtendKind = ISD::SIGN_EXTEND;
1246        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1247                                                 Attribute::ZExt))
1248          ExtendKind = ISD::ZERO_EXTEND;
1249
1250        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1251          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1252
1253        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1254        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1255        SmallVector<SDValue, 4> Parts(NumParts);
1256        getCopyToParts(DAG, getCurSDLoc(),
1257                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1258                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1259
1260        // 'inreg' on function refers to return value
1261        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1262        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1263                                            Attribute::InReg))
1264          Flags.setInReg();
1265
1266        // Propagate extension type if any
1267        if (ExtendKind == ISD::SIGN_EXTEND)
1268          Flags.setSExt();
1269        else if (ExtendKind == ISD::ZERO_EXTEND)
1270          Flags.setZExt();
1271
1272        for (unsigned i = 0; i < NumParts; ++i) {
1273          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1274                                        VT, /*isfixed=*/true, 0, 0));
1275          OutVals.push_back(Parts[i]);
1276        }
1277      }
1278    }
1279  }
1280
1281  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1282  CallingConv::ID CallConv =
1283    DAG.getMachineFunction().getFunction()->getCallingConv();
1284  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1285                                              Outs, OutVals, getCurSDLoc(),
1286                                              DAG);
1287
1288  // Verify that the target's LowerReturn behaved as expected.
1289  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1290         "LowerReturn didn't return a valid chain!");
1291
1292  // Update the DAG with the new chain value resulting from return lowering.
1293  DAG.setRoot(Chain);
1294}
1295
1296/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1297/// created for it, emit nodes to copy the value into the virtual
1298/// registers.
1299void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1300  // Skip empty types
1301  if (V->getType()->isEmptyTy())
1302    return;
1303
1304  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1305  if (VMI != FuncInfo.ValueMap.end()) {
1306    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1307    CopyValueToVirtualRegister(V, VMI->second);
1308  }
1309}
1310
1311/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1312/// the current basic block, add it to ValueMap now so that we'll get a
1313/// CopyTo/FromReg.
1314void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1315  // No need to export constants.
1316  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1317
1318  // Already exported?
1319  if (FuncInfo.isExportedInst(V)) return;
1320
1321  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1322  CopyValueToVirtualRegister(V, Reg);
1323}
1324
1325bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1326                                                     const BasicBlock *FromBB) {
1327  // The operands of the setcc have to be in this block.  We don't know
1328  // how to export them from some other block.
1329  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1330    // Can export from current BB.
1331    if (VI->getParent() == FromBB)
1332      return true;
1333
1334    // Is already exported, noop.
1335    return FuncInfo.isExportedInst(V);
1336  }
1337
1338  // If this is an argument, we can export it if the BB is the entry block or
1339  // if it is already exported.
1340  if (isa<Argument>(V)) {
1341    if (FromBB == &FromBB->getParent()->getEntryBlock())
1342      return true;
1343
1344    // Otherwise, can only export this if it is already exported.
1345    return FuncInfo.isExportedInst(V);
1346  }
1347
1348  // Otherwise, constants can always be exported.
1349  return true;
1350}
1351
1352/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1353uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1354                                            const MachineBasicBlock *Dst) const {
1355  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1356  if (!BPI)
1357    return 0;
1358  const BasicBlock *SrcBB = Src->getBasicBlock();
1359  const BasicBlock *DstBB = Dst->getBasicBlock();
1360  return BPI->getEdgeWeight(SrcBB, DstBB);
1361}
1362
1363void SelectionDAGBuilder::
1364addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1365                       uint32_t Weight /* = 0 */) {
1366  if (!Weight)
1367    Weight = getEdgeWeight(Src, Dst);
1368  Src->addSuccessor(Dst, Weight);
1369}
1370
1371
1372static bool InBlock(const Value *V, const BasicBlock *BB) {
1373  if (const Instruction *I = dyn_cast<Instruction>(V))
1374    return I->getParent() == BB;
1375  return true;
1376}
1377
1378/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1379/// This function emits a branch and is used at the leaves of an OR or an
1380/// AND operator tree.
1381///
1382void
1383SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1384                                                  MachineBasicBlock *TBB,
1385                                                  MachineBasicBlock *FBB,
1386                                                  MachineBasicBlock *CurBB,
1387                                                  MachineBasicBlock *SwitchBB) {
1388  const BasicBlock *BB = CurBB->getBasicBlock();
1389
1390  // If the leaf of the tree is a comparison, merge the condition into
1391  // the caseblock.
1392  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1393    // The operands of the cmp have to be in this block.  We don't know
1394    // how to export them from some other block.  If this is the first block
1395    // of the sequence, no exporting is needed.
1396    if (CurBB == SwitchBB ||
1397        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1398         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1399      ISD::CondCode Condition;
1400      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1401        Condition = getICmpCondCode(IC->getPredicate());
1402      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1403        Condition = getFCmpCondCode(FC->getPredicate());
1404        if (TM.Options.NoNaNsFPMath)
1405          Condition = getFCmpCodeWithoutNaN(Condition);
1406      } else {
1407        Condition = ISD::SETEQ; // silence warning.
1408        llvm_unreachable("Unknown compare instruction");
1409      }
1410
1411      CaseBlock CB(Condition, BOp->getOperand(0),
1412                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1413      SwitchCases.push_back(CB);
1414      return;
1415    }
1416  }
1417
1418  // Create a CaseBlock record representing this branch.
1419  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1420               NULL, TBB, FBB, CurBB);
1421  SwitchCases.push_back(CB);
1422}
1423
1424/// FindMergedConditions - If Cond is an expression like
1425void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1426                                               MachineBasicBlock *TBB,
1427                                               MachineBasicBlock *FBB,
1428                                               MachineBasicBlock *CurBB,
1429                                               MachineBasicBlock *SwitchBB,
1430                                               unsigned Opc) {
1431  // If this node is not part of the or/and tree, emit it as a branch.
1432  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1433  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1434      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1435      BOp->getParent() != CurBB->getBasicBlock() ||
1436      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1437      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1438    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1439    return;
1440  }
1441
1442  //  Create TmpBB after CurBB.
1443  MachineFunction::iterator BBI = CurBB;
1444  MachineFunction &MF = DAG.getMachineFunction();
1445  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1446  CurBB->getParent()->insert(++BBI, TmpBB);
1447
1448  if (Opc == Instruction::Or) {
1449    // Codegen X | Y as:
1450    //   jmp_if_X TBB
1451    //   jmp TmpBB
1452    // TmpBB:
1453    //   jmp_if_Y TBB
1454    //   jmp FBB
1455    //
1456
1457    // Emit the LHS condition.
1458    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1459
1460    // Emit the RHS condition into TmpBB.
1461    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1462  } else {
1463    assert(Opc == Instruction::And && "Unknown merge op!");
1464    // Codegen X & Y as:
1465    //   jmp_if_X TmpBB
1466    //   jmp FBB
1467    // TmpBB:
1468    //   jmp_if_Y TBB
1469    //   jmp FBB
1470    //
1471    //  This requires creation of TmpBB after CurBB.
1472
1473    // Emit the LHS condition.
1474    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1475
1476    // Emit the RHS condition into TmpBB.
1477    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1478  }
1479}
1480
1481/// If the set of cases should be emitted as a series of branches, return true.
1482/// If we should emit this as a bunch of and/or'd together conditions, return
1483/// false.
1484bool
1485SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1486  if (Cases.size() != 2) return true;
1487
1488  // If this is two comparisons of the same values or'd or and'd together, they
1489  // will get folded into a single comparison, so don't emit two blocks.
1490  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1491       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1492      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1493       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1494    return false;
1495  }
1496
1497  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1498  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1499  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1500      Cases[0].CC == Cases[1].CC &&
1501      isa<Constant>(Cases[0].CmpRHS) &&
1502      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1503    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1504      return false;
1505    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1506      return false;
1507  }
1508
1509  return true;
1510}
1511
1512void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1513  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1514
1515  // Update machine-CFG edges.
1516  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1517
1518  // Figure out which block is immediately after the current one.
1519  MachineBasicBlock *NextBlock = 0;
1520  MachineFunction::iterator BBI = BrMBB;
1521  if (++BBI != FuncInfo.MF->end())
1522    NextBlock = BBI;
1523
1524  if (I.isUnconditional()) {
1525    // Update machine-CFG edges.
1526    BrMBB->addSuccessor(Succ0MBB);
1527
1528    // If this is not a fall-through branch, emit the branch.
1529    if (Succ0MBB != NextBlock)
1530      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1531                              MVT::Other, getControlRoot(),
1532                              DAG.getBasicBlock(Succ0MBB)));
1533
1534    return;
1535  }
1536
1537  // If this condition is one of the special cases we handle, do special stuff
1538  // now.
1539  const Value *CondVal = I.getCondition();
1540  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1541
1542  // If this is a series of conditions that are or'd or and'd together, emit
1543  // this as a sequence of branches instead of setcc's with and/or operations.
1544  // As long as jumps are not expensive, this should improve performance.
1545  // For example, instead of something like:
1546  //     cmp A, B
1547  //     C = seteq
1548  //     cmp D, E
1549  //     F = setle
1550  //     or C, F
1551  //     jnz foo
1552  // Emit:
1553  //     cmp A, B
1554  //     je foo
1555  //     cmp D, E
1556  //     jle foo
1557  //
1558  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1559    if (!TM.getTargetLowering()->isJumpExpensive() &&
1560        BOp->hasOneUse() &&
1561        (BOp->getOpcode() == Instruction::And ||
1562         BOp->getOpcode() == Instruction::Or)) {
1563      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1564                           BOp->getOpcode());
1565      // If the compares in later blocks need to use values not currently
1566      // exported from this block, export them now.  This block should always
1567      // be the first entry.
1568      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1569
1570      // Allow some cases to be rejected.
1571      if (ShouldEmitAsBranches(SwitchCases)) {
1572        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1573          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1574          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1575        }
1576
1577        // Emit the branch for this block.
1578        visitSwitchCase(SwitchCases[0], BrMBB);
1579        SwitchCases.erase(SwitchCases.begin());
1580        return;
1581      }
1582
1583      // Okay, we decided not to do this, remove any inserted MBB's and clear
1584      // SwitchCases.
1585      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1586        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1587
1588      SwitchCases.clear();
1589    }
1590  }
1591
1592  // Create a CaseBlock record representing this branch.
1593  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1594               NULL, Succ0MBB, Succ1MBB, BrMBB);
1595
1596  // Use visitSwitchCase to actually insert the fast branch sequence for this
1597  // cond branch.
1598  visitSwitchCase(CB, BrMBB);
1599}
1600
1601/// visitSwitchCase - Emits the necessary code to represent a single node in
1602/// the binary search tree resulting from lowering a switch instruction.
1603void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1604                                          MachineBasicBlock *SwitchBB) {
1605  SDValue Cond;
1606  SDValue CondLHS = getValue(CB.CmpLHS);
1607  SDLoc dl = getCurSDLoc();
1608
1609  // Build the setcc now.
1610  if (CB.CmpMHS == NULL) {
1611    // Fold "(X == true)" to X and "(X == false)" to !X to
1612    // handle common cases produced by branch lowering.
1613    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1614        CB.CC == ISD::SETEQ)
1615      Cond = CondLHS;
1616    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1617             CB.CC == ISD::SETEQ) {
1618      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1619      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1620    } else
1621      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1622  } else {
1623    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1624
1625    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1626    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1627
1628    SDValue CmpOp = getValue(CB.CmpMHS);
1629    EVT VT = CmpOp.getValueType();
1630
1631    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1632      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1633                          ISD::SETLE);
1634    } else {
1635      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1636                                VT, CmpOp, DAG.getConstant(Low, VT));
1637      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1638                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1639    }
1640  }
1641
1642  // Update successor info
1643  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1644  // TrueBB and FalseBB are always different unless the incoming IR is
1645  // degenerate. This only happens when running llc on weird IR.
1646  if (CB.TrueBB != CB.FalseBB)
1647    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1648
1649  // Set NextBlock to be the MBB immediately after the current one, if any.
1650  // This is used to avoid emitting unnecessary branches to the next block.
1651  MachineBasicBlock *NextBlock = 0;
1652  MachineFunction::iterator BBI = SwitchBB;
1653  if (++BBI != FuncInfo.MF->end())
1654    NextBlock = BBI;
1655
1656  // If the lhs block is the next block, invert the condition so that we can
1657  // fall through to the lhs instead of the rhs block.
1658  if (CB.TrueBB == NextBlock) {
1659    std::swap(CB.TrueBB, CB.FalseBB);
1660    SDValue True = DAG.getConstant(1, Cond.getValueType());
1661    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1662  }
1663
1664  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1665                               MVT::Other, getControlRoot(), Cond,
1666                               DAG.getBasicBlock(CB.TrueBB));
1667
1668  // Insert the false branch. Do this even if it's a fall through branch,
1669  // this makes it easier to do DAG optimizations which require inverting
1670  // the branch condition.
1671  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1672                       DAG.getBasicBlock(CB.FalseBB));
1673
1674  DAG.setRoot(BrCond);
1675}
1676
1677/// visitJumpTable - Emit JumpTable node in the current MBB
1678void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1679  // Emit the code for the jump table
1680  assert(JT.Reg != -1U && "Should lower JT Header first!");
1681  EVT PTy = TM.getTargetLowering()->getPointerTy();
1682  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1683                                     JT.Reg, PTy);
1684  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1685  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1686                                    MVT::Other, Index.getValue(1),
1687                                    Table, Index);
1688  DAG.setRoot(BrJumpTable);
1689}
1690
1691/// visitJumpTableHeader - This function emits necessary code to produce index
1692/// in the JumpTable from switch case.
1693void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1694                                               JumpTableHeader &JTH,
1695                                               MachineBasicBlock *SwitchBB) {
1696  // Subtract the lowest switch case value from the value being switched on and
1697  // conditional branch to default mbb if the result is greater than the
1698  // difference between smallest and largest cases.
1699  SDValue SwitchOp = getValue(JTH.SValue);
1700  EVT VT = SwitchOp.getValueType();
1701  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1702                            DAG.getConstant(JTH.First, VT));
1703
1704  // The SDNode we just created, which holds the value being switched on minus
1705  // the smallest case value, needs to be copied to a virtual register so it
1706  // can be used as an index into the jump table in a subsequent basic block.
1707  // This value may be smaller or larger than the target's pointer type, and
1708  // therefore require extension or truncating.
1709  const TargetLowering *TLI = TM.getTargetLowering();
1710  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1711
1712  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1713  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1714                                    JumpTableReg, SwitchOp);
1715  JT.Reg = JumpTableReg;
1716
1717  // Emit the range check for the jump table, and branch to the default block
1718  // for the switch statement if the value being switched on exceeds the largest
1719  // case in the switch.
1720  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1721                             TLI->getSetCCResultType(*DAG.getContext(),
1722                                                     Sub.getValueType()),
1723                             Sub,
1724                             DAG.getConstant(JTH.Last - JTH.First,VT),
1725                             ISD::SETUGT);
1726
1727  // Set NextBlock to be the MBB immediately after the current one, if any.
1728  // This is used to avoid emitting unnecessary branches to the next block.
1729  MachineBasicBlock *NextBlock = 0;
1730  MachineFunction::iterator BBI = SwitchBB;
1731
1732  if (++BBI != FuncInfo.MF->end())
1733    NextBlock = BBI;
1734
1735  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1736                               MVT::Other, CopyTo, CMP,
1737                               DAG.getBasicBlock(JT.Default));
1738
1739  if (JT.MBB != NextBlock)
1740    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1741                         DAG.getBasicBlock(JT.MBB));
1742
1743  DAG.setRoot(BrCond);
1744}
1745
1746/// Codegen a new tail for a stack protector check ParentMBB which has had its
1747/// tail spliced into a stack protector check success bb.
1748///
1749/// For a high level explanation of how this fits into the stack protector
1750/// generation see the comment on the declaration of class
1751/// StackProtectorDescriptor.
1752void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1753                                                  MachineBasicBlock *ParentBB) {
1754
1755  // First create the loads to the guard/stack slot for the comparison.
1756  const TargetLowering *TLI = TM.getTargetLowering();
1757  EVT PtrTy = TLI->getPointerTy();
1758
1759  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1760  int FI = MFI->getStackProtectorIndex();
1761
1762  const Value *IRGuard = SPD.getGuard();
1763  SDValue GuardPtr = getValue(IRGuard);
1764  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1765
1766  unsigned Align =
1767    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1768  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1769                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1770                              true, false, false, Align);
1771
1772  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1773                                  StackSlotPtr,
1774                                  MachinePointerInfo::getFixedStack(FI),
1775                                  true, false, false, Align);
1776
1777  // Perform the comparison via a subtract/getsetcc.
1778  EVT VT = Guard.getValueType();
1779  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1780
1781  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1782                             TLI->getSetCCResultType(*DAG.getContext(),
1783                                                     Sub.getValueType()),
1784                             Sub, DAG.getConstant(0, VT),
1785                             ISD::SETNE);
1786
1787  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1788  // branch to failure MBB.
1789  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1790                               MVT::Other, StackSlot.getOperand(0),
1791                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1792  // Otherwise branch to success MBB.
1793  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1794                           MVT::Other, BrCond,
1795                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1796
1797  DAG.setRoot(Br);
1798}
1799
1800/// Codegen the failure basic block for a stack protector check.
1801///
1802/// A failure stack protector machine basic block consists simply of a call to
1803/// __stack_chk_fail().
1804///
1805/// For a high level explanation of how this fits into the stack protector
1806/// generation see the comment on the declaration of class
1807/// StackProtectorDescriptor.
1808void
1809SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1810  const TargetLowering *TLI = TM.getTargetLowering();
1811  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1812                                   MVT::isVoid, 0, 0, false, getCurSDLoc(),
1813                                   false, false).second;
1814  DAG.setRoot(Chain);
1815}
1816
1817/// visitBitTestHeader - This function emits necessary code to produce value
1818/// suitable for "bit tests"
1819void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1820                                             MachineBasicBlock *SwitchBB) {
1821  // Subtract the minimum value
1822  SDValue SwitchOp = getValue(B.SValue);
1823  EVT VT = SwitchOp.getValueType();
1824  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1825                            DAG.getConstant(B.First, VT));
1826
1827  // Check range
1828  const TargetLowering *TLI = TM.getTargetLowering();
1829  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1830                                  TLI->getSetCCResultType(*DAG.getContext(),
1831                                                         Sub.getValueType()),
1832                                  Sub, DAG.getConstant(B.Range, VT),
1833                                  ISD::SETUGT);
1834
1835  // Determine the type of the test operands.
1836  bool UsePtrType = false;
1837  if (!TLI->isTypeLegal(VT))
1838    UsePtrType = true;
1839  else {
1840    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1841      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1842        // Switch table case range are encoded into series of masks.
1843        // Just use pointer type, it's guaranteed to fit.
1844        UsePtrType = true;
1845        break;
1846      }
1847  }
1848  if (UsePtrType) {
1849    VT = TLI->getPointerTy();
1850    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1851  }
1852
1853  B.RegVT = VT.getSimpleVT();
1854  B.Reg = FuncInfo.CreateReg(B.RegVT);
1855  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1856                                    B.Reg, Sub);
1857
1858  // Set NextBlock to be the MBB immediately after the current one, if any.
1859  // This is used to avoid emitting unnecessary branches to the next block.
1860  MachineBasicBlock *NextBlock = 0;
1861  MachineFunction::iterator BBI = SwitchBB;
1862  if (++BBI != FuncInfo.MF->end())
1863    NextBlock = BBI;
1864
1865  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1866
1867  addSuccessorWithWeight(SwitchBB, B.Default);
1868  addSuccessorWithWeight(SwitchBB, MBB);
1869
1870  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1871                                MVT::Other, CopyTo, RangeCmp,
1872                                DAG.getBasicBlock(B.Default));
1873
1874  if (MBB != NextBlock)
1875    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1876                          DAG.getBasicBlock(MBB));
1877
1878  DAG.setRoot(BrRange);
1879}
1880
1881/// visitBitTestCase - this function produces one "bit test"
1882void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1883                                           MachineBasicBlock* NextMBB,
1884                                           uint32_t BranchWeightToNext,
1885                                           unsigned Reg,
1886                                           BitTestCase &B,
1887                                           MachineBasicBlock *SwitchBB) {
1888  MVT VT = BB.RegVT;
1889  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1890                                       Reg, VT);
1891  SDValue Cmp;
1892  unsigned PopCount = CountPopulation_64(B.Mask);
1893  const TargetLowering *TLI = TM.getTargetLowering();
1894  if (PopCount == 1) {
1895    // Testing for a single bit; just compare the shift count with what it
1896    // would need to be to shift a 1 bit in that position.
1897    Cmp = DAG.getSetCC(getCurSDLoc(),
1898                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1899                       ShiftOp,
1900                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1901                       ISD::SETEQ);
1902  } else if (PopCount == BB.Range) {
1903    // There is only one zero bit in the range, test for it directly.
1904    Cmp = DAG.getSetCC(getCurSDLoc(),
1905                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1906                       ShiftOp,
1907                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1908                       ISD::SETNE);
1909  } else {
1910    // Make desired shift
1911    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1912                                    DAG.getConstant(1, VT), ShiftOp);
1913
1914    // Emit bit tests and jumps
1915    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1916                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1917    Cmp = DAG.getSetCC(getCurSDLoc(),
1918                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1919                       AndOp, DAG.getConstant(0, VT),
1920                       ISD::SETNE);
1921  }
1922
1923  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1924  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1925  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1926  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1927
1928  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1929                              MVT::Other, getControlRoot(),
1930                              Cmp, DAG.getBasicBlock(B.TargetBB));
1931
1932  // Set NextBlock to be the MBB immediately after the current one, if any.
1933  // This is used to avoid emitting unnecessary branches to the next block.
1934  MachineBasicBlock *NextBlock = 0;
1935  MachineFunction::iterator BBI = SwitchBB;
1936  if (++BBI != FuncInfo.MF->end())
1937    NextBlock = BBI;
1938
1939  if (NextMBB != NextBlock)
1940    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1941                        DAG.getBasicBlock(NextMBB));
1942
1943  DAG.setRoot(BrAnd);
1944}
1945
1946void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1947  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1948
1949  // Retrieve successors.
1950  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1951  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1952
1953  const Value *Callee(I.getCalledValue());
1954  const Function *Fn = dyn_cast<Function>(Callee);
1955  if (isa<InlineAsm>(Callee))
1956    visitInlineAsm(&I);
1957  else if (Fn && Fn->isIntrinsic()) {
1958    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1959    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1960  } else
1961    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1962
1963  // If the value of the invoke is used outside of its defining block, make it
1964  // available as a virtual register.
1965  CopyToExportRegsIfNeeded(&I);
1966
1967  // Update successor info
1968  addSuccessorWithWeight(InvokeMBB, Return);
1969  addSuccessorWithWeight(InvokeMBB, LandingPad);
1970
1971  // Drop into normal successor.
1972  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1973                          MVT::Other, getControlRoot(),
1974                          DAG.getBasicBlock(Return)));
1975}
1976
1977void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1978  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1979}
1980
1981void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1982  assert(FuncInfo.MBB->isLandingPad() &&
1983         "Call to landingpad not in landing pad!");
1984
1985  MachineBasicBlock *MBB = FuncInfo.MBB;
1986  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1987  AddLandingPadInfo(LP, MMI, MBB);
1988
1989  // If there aren't registers to copy the values into (e.g., during SjLj
1990  // exceptions), then don't bother to create these DAG nodes.
1991  const TargetLowering *TLI = TM.getTargetLowering();
1992  if (TLI->getExceptionPointerRegister() == 0 &&
1993      TLI->getExceptionSelectorRegister() == 0)
1994    return;
1995
1996  SmallVector<EVT, 2> ValueVTs;
1997  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1998  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1999
2000  // Get the two live-in registers as SDValues. The physregs have already been
2001  // copied into virtual registers.
2002  SDValue Ops[2];
2003  Ops[0] = DAG.getZExtOrTrunc(
2004    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2005                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2006    getCurSDLoc(), ValueVTs[0]);
2007  Ops[1] = DAG.getZExtOrTrunc(
2008    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2009                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2010    getCurSDLoc(), ValueVTs[1]);
2011
2012  // Merge into one.
2013  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2014                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
2015                            &Ops[0], 2);
2016  setValue(&LP, Res);
2017}
2018
2019/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2020/// small case ranges).
2021bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2022                                                 CaseRecVector& WorkList,
2023                                                 const Value* SV,
2024                                                 MachineBasicBlock *Default,
2025                                                 MachineBasicBlock *SwitchBB) {
2026  // Size is the number of Cases represented by this range.
2027  size_t Size = CR.Range.second - CR.Range.first;
2028  if (Size > 3)
2029    return false;
2030
2031  // Get the MachineFunction which holds the current MBB.  This is used when
2032  // inserting any additional MBBs necessary to represent the switch.
2033  MachineFunction *CurMF = FuncInfo.MF;
2034
2035  // Figure out which block is immediately after the current one.
2036  MachineBasicBlock *NextBlock = 0;
2037  MachineFunction::iterator BBI = CR.CaseBB;
2038
2039  if (++BBI != FuncInfo.MF->end())
2040    NextBlock = BBI;
2041
2042  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2043  // If any two of the cases has the same destination, and if one value
2044  // is the same as the other, but has one bit unset that the other has set,
2045  // use bit manipulation to do two compares at once.  For example:
2046  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2047  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2048  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2049  if (Size == 2 && CR.CaseBB == SwitchBB) {
2050    Case &Small = *CR.Range.first;
2051    Case &Big = *(CR.Range.second-1);
2052
2053    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2054      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2055      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2056
2057      // Check that there is only one bit different.
2058      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2059          (SmallValue | BigValue) == BigValue) {
2060        // Isolate the common bit.
2061        APInt CommonBit = BigValue & ~SmallValue;
2062        assert((SmallValue | CommonBit) == BigValue &&
2063               CommonBit.countPopulation() == 1 && "Not a common bit?");
2064
2065        SDValue CondLHS = getValue(SV);
2066        EVT VT = CondLHS.getValueType();
2067        SDLoc DL = getCurSDLoc();
2068
2069        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2070                                 DAG.getConstant(CommonBit, VT));
2071        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2072                                    Or, DAG.getConstant(BigValue, VT),
2073                                    ISD::SETEQ);
2074
2075        // Update successor info.
2076        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2077        addSuccessorWithWeight(SwitchBB, Small.BB,
2078                               Small.ExtraWeight + Big.ExtraWeight);
2079        addSuccessorWithWeight(SwitchBB, Default,
2080          // The default destination is the first successor in IR.
2081          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2082
2083        // Insert the true branch.
2084        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2085                                     getControlRoot(), Cond,
2086                                     DAG.getBasicBlock(Small.BB));
2087
2088        // Insert the false branch.
2089        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2090                             DAG.getBasicBlock(Default));
2091
2092        DAG.setRoot(BrCond);
2093        return true;
2094      }
2095    }
2096  }
2097
2098  // Order cases by weight so the most likely case will be checked first.
2099  uint32_t UnhandledWeights = 0;
2100  if (BPI) {
2101    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2102      uint32_t IWeight = I->ExtraWeight;
2103      UnhandledWeights += IWeight;
2104      for (CaseItr J = CR.Range.first; J < I; ++J) {
2105        uint32_t JWeight = J->ExtraWeight;
2106        if (IWeight > JWeight)
2107          std::swap(*I, *J);
2108      }
2109    }
2110  }
2111  // Rearrange the case blocks so that the last one falls through if possible.
2112  Case &BackCase = *(CR.Range.second-1);
2113  if (Size > 1 &&
2114      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2115    // The last case block won't fall through into 'NextBlock' if we emit the
2116    // branches in this order.  See if rearranging a case value would help.
2117    // We start at the bottom as it's the case with the least weight.
2118    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2119      if (I->BB == NextBlock) {
2120        std::swap(*I, BackCase);
2121        break;
2122      }
2123  }
2124
2125  // Create a CaseBlock record representing a conditional branch to
2126  // the Case's target mbb if the value being switched on SV is equal
2127  // to C.
2128  MachineBasicBlock *CurBlock = CR.CaseBB;
2129  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2130    MachineBasicBlock *FallThrough;
2131    if (I != E-1) {
2132      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2133      CurMF->insert(BBI, FallThrough);
2134
2135      // Put SV in a virtual register to make it available from the new blocks.
2136      ExportFromCurrentBlock(SV);
2137    } else {
2138      // If the last case doesn't match, go to the default block.
2139      FallThrough = Default;
2140    }
2141
2142    const Value *RHS, *LHS, *MHS;
2143    ISD::CondCode CC;
2144    if (I->High == I->Low) {
2145      // This is just small small case range :) containing exactly 1 case
2146      CC = ISD::SETEQ;
2147      LHS = SV; RHS = I->High; MHS = NULL;
2148    } else {
2149      CC = ISD::SETLE;
2150      LHS = I->Low; MHS = SV; RHS = I->High;
2151    }
2152
2153    // The false weight should be sum of all un-handled cases.
2154    UnhandledWeights -= I->ExtraWeight;
2155    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2156                 /* me */ CurBlock,
2157                 /* trueweight */ I->ExtraWeight,
2158                 /* falseweight */ UnhandledWeights);
2159
2160    // If emitting the first comparison, just call visitSwitchCase to emit the
2161    // code into the current block.  Otherwise, push the CaseBlock onto the
2162    // vector to be later processed by SDISel, and insert the node's MBB
2163    // before the next MBB.
2164    if (CurBlock == SwitchBB)
2165      visitSwitchCase(CB, SwitchBB);
2166    else
2167      SwitchCases.push_back(CB);
2168
2169    CurBlock = FallThrough;
2170  }
2171
2172  return true;
2173}
2174
2175static inline bool areJTsAllowed(const TargetLowering &TLI) {
2176  return TLI.supportJumpTables() &&
2177          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2178           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2179}
2180
2181static APInt ComputeRange(const APInt &First, const APInt &Last) {
2182  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2183  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2184  return (LastExt - FirstExt + 1ULL);
2185}
2186
2187/// handleJTSwitchCase - Emit jumptable for current switch case range
2188bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2189                                             CaseRecVector &WorkList,
2190                                             const Value *SV,
2191                                             MachineBasicBlock *Default,
2192                                             MachineBasicBlock *SwitchBB) {
2193  Case& FrontCase = *CR.Range.first;
2194  Case& BackCase  = *(CR.Range.second-1);
2195
2196  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2197  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2198
2199  APInt TSize(First.getBitWidth(), 0);
2200  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2201    TSize += I->size();
2202
2203  const TargetLowering *TLI = TM.getTargetLowering();
2204  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2205    return false;
2206
2207  APInt Range = ComputeRange(First, Last);
2208  // The density is TSize / Range. Require at least 40%.
2209  // It should not be possible for IntTSize to saturate for sane code, but make
2210  // sure we handle Range saturation correctly.
2211  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2212  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2213  if (IntTSize * 10 < IntRange * 4)
2214    return false;
2215
2216  DEBUG(dbgs() << "Lowering jump table\n"
2217               << "First entry: " << First << ". Last entry: " << Last << '\n'
2218               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2219
2220  // Get the MachineFunction which holds the current MBB.  This is used when
2221  // inserting any additional MBBs necessary to represent the switch.
2222  MachineFunction *CurMF = FuncInfo.MF;
2223
2224  // Figure out which block is immediately after the current one.
2225  MachineFunction::iterator BBI = CR.CaseBB;
2226  ++BBI;
2227
2228  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2229
2230  // Create a new basic block to hold the code for loading the address
2231  // of the jump table, and jumping to it.  Update successor information;
2232  // we will either branch to the default case for the switch, or the jump
2233  // table.
2234  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2235  CurMF->insert(BBI, JumpTableBB);
2236
2237  addSuccessorWithWeight(CR.CaseBB, Default);
2238  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2239
2240  // Build a vector of destination BBs, corresponding to each target
2241  // of the jump table. If the value of the jump table slot corresponds to
2242  // a case statement, push the case's BB onto the vector, otherwise, push
2243  // the default BB.
2244  std::vector<MachineBasicBlock*> DestBBs;
2245  APInt TEI = First;
2246  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2247    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2248    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2249
2250    if (Low.sle(TEI) && TEI.sle(High)) {
2251      DestBBs.push_back(I->BB);
2252      if (TEI==High)
2253        ++I;
2254    } else {
2255      DestBBs.push_back(Default);
2256    }
2257  }
2258
2259  // Calculate weight for each unique destination in CR.
2260  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2261  if (FuncInfo.BPI)
2262    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2263      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2264          DestWeights.find(I->BB);
2265      if (Itr != DestWeights.end())
2266        Itr->second += I->ExtraWeight;
2267      else
2268        DestWeights[I->BB] = I->ExtraWeight;
2269    }
2270
2271  // Update successor info. Add one edge to each unique successor.
2272  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2273  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2274         E = DestBBs.end(); I != E; ++I) {
2275    if (!SuccsHandled[(*I)->getNumber()]) {
2276      SuccsHandled[(*I)->getNumber()] = true;
2277      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2278          DestWeights.find(*I);
2279      addSuccessorWithWeight(JumpTableBB, *I,
2280                             Itr != DestWeights.end() ? Itr->second : 0);
2281    }
2282  }
2283
2284  // Create a jump table index for this jump table.
2285  unsigned JTEncoding = TLI->getJumpTableEncoding();
2286  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2287                       ->createJumpTableIndex(DestBBs);
2288
2289  // Set the jump table information so that we can codegen it as a second
2290  // MachineBasicBlock
2291  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2292  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2293  if (CR.CaseBB == SwitchBB)
2294    visitJumpTableHeader(JT, JTH, SwitchBB);
2295
2296  JTCases.push_back(JumpTableBlock(JTH, JT));
2297  return true;
2298}
2299
2300/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2301/// 2 subtrees.
2302bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2303                                                  CaseRecVector& WorkList,
2304                                                  const Value* SV,
2305                                                  MachineBasicBlock* Default,
2306                                                  MachineBasicBlock* SwitchBB) {
2307  // Get the MachineFunction which holds the current MBB.  This is used when
2308  // inserting any additional MBBs necessary to represent the switch.
2309  MachineFunction *CurMF = FuncInfo.MF;
2310
2311  // Figure out which block is immediately after the current one.
2312  MachineFunction::iterator BBI = CR.CaseBB;
2313  ++BBI;
2314
2315  Case& FrontCase = *CR.Range.first;
2316  Case& BackCase  = *(CR.Range.second-1);
2317  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2318
2319  // Size is the number of Cases represented by this range.
2320  unsigned Size = CR.Range.second - CR.Range.first;
2321
2322  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2323  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2324  double FMetric = 0;
2325  CaseItr Pivot = CR.Range.first + Size/2;
2326
2327  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2328  // (heuristically) allow us to emit JumpTable's later.
2329  APInt TSize(First.getBitWidth(), 0);
2330  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2331       I!=E; ++I)
2332    TSize += I->size();
2333
2334  APInt LSize = FrontCase.size();
2335  APInt RSize = TSize-LSize;
2336  DEBUG(dbgs() << "Selecting best pivot: \n"
2337               << "First: " << First << ", Last: " << Last <<'\n'
2338               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2339  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2340       J!=E; ++I, ++J) {
2341    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2342    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2343    APInt Range = ComputeRange(LEnd, RBegin);
2344    assert((Range - 2ULL).isNonNegative() &&
2345           "Invalid case distance");
2346    // Use volatile double here to avoid excess precision issues on some hosts,
2347    // e.g. that use 80-bit X87 registers.
2348    volatile double LDensity =
2349       (double)LSize.roundToDouble() /
2350                           (LEnd - First + 1ULL).roundToDouble();
2351    volatile double RDensity =
2352      (double)RSize.roundToDouble() /
2353                           (Last - RBegin + 1ULL).roundToDouble();
2354    double Metric = Range.logBase2()*(LDensity+RDensity);
2355    // Should always split in some non-trivial place
2356    DEBUG(dbgs() <<"=>Step\n"
2357                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2358                 << "LDensity: " << LDensity
2359                 << ", RDensity: " << RDensity << '\n'
2360                 << "Metric: " << Metric << '\n');
2361    if (FMetric < Metric) {
2362      Pivot = J;
2363      FMetric = Metric;
2364      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2365    }
2366
2367    LSize += J->size();
2368    RSize -= J->size();
2369  }
2370
2371  const TargetLowering *TLI = TM.getTargetLowering();
2372  if (areJTsAllowed(*TLI)) {
2373    // If our case is dense we *really* should handle it earlier!
2374    assert((FMetric > 0) && "Should handle dense range earlier!");
2375  } else {
2376    Pivot = CR.Range.first + Size/2;
2377  }
2378
2379  CaseRange LHSR(CR.Range.first, Pivot);
2380  CaseRange RHSR(Pivot, CR.Range.second);
2381  const Constant *C = Pivot->Low;
2382  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2383
2384  // We know that we branch to the LHS if the Value being switched on is
2385  // less than the Pivot value, C.  We use this to optimize our binary
2386  // tree a bit, by recognizing that if SV is greater than or equal to the
2387  // LHS's Case Value, and that Case Value is exactly one less than the
2388  // Pivot's Value, then we can branch directly to the LHS's Target,
2389  // rather than creating a leaf node for it.
2390  if ((LHSR.second - LHSR.first) == 1 &&
2391      LHSR.first->High == CR.GE &&
2392      cast<ConstantInt>(C)->getValue() ==
2393      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2394    TrueBB = LHSR.first->BB;
2395  } else {
2396    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2397    CurMF->insert(BBI, TrueBB);
2398    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2399
2400    // Put SV in a virtual register to make it available from the new blocks.
2401    ExportFromCurrentBlock(SV);
2402  }
2403
2404  // Similar to the optimization above, if the Value being switched on is
2405  // known to be less than the Constant CR.LT, and the current Case Value
2406  // is CR.LT - 1, then we can branch directly to the target block for
2407  // the current Case Value, rather than emitting a RHS leaf node for it.
2408  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2409      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2410      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2411    FalseBB = RHSR.first->BB;
2412  } else {
2413    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2414    CurMF->insert(BBI, FalseBB);
2415    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2416
2417    // Put SV in a virtual register to make it available from the new blocks.
2418    ExportFromCurrentBlock(SV);
2419  }
2420
2421  // Create a CaseBlock record representing a conditional branch to
2422  // the LHS node if the value being switched on SV is less than C.
2423  // Otherwise, branch to LHS.
2424  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2425
2426  if (CR.CaseBB == SwitchBB)
2427    visitSwitchCase(CB, SwitchBB);
2428  else
2429    SwitchCases.push_back(CB);
2430
2431  return true;
2432}
2433
2434/// handleBitTestsSwitchCase - if current case range has few destination and
2435/// range span less, than machine word bitwidth, encode case range into series
2436/// of masks and emit bit tests with these masks.
2437bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2438                                                   CaseRecVector& WorkList,
2439                                                   const Value* SV,
2440                                                   MachineBasicBlock* Default,
2441                                                   MachineBasicBlock* SwitchBB) {
2442  const TargetLowering *TLI = TM.getTargetLowering();
2443  EVT PTy = TLI->getPointerTy();
2444  unsigned IntPtrBits = PTy.getSizeInBits();
2445
2446  Case& FrontCase = *CR.Range.first;
2447  Case& BackCase  = *(CR.Range.second-1);
2448
2449  // Get the MachineFunction which holds the current MBB.  This is used when
2450  // inserting any additional MBBs necessary to represent the switch.
2451  MachineFunction *CurMF = FuncInfo.MF;
2452
2453  // If target does not have legal shift left, do not emit bit tests at all.
2454  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2455    return false;
2456
2457  size_t numCmps = 0;
2458  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2459       I!=E; ++I) {
2460    // Single case counts one, case range - two.
2461    numCmps += (I->Low == I->High ? 1 : 2);
2462  }
2463
2464  // Count unique destinations
2465  SmallSet<MachineBasicBlock*, 4> Dests;
2466  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2467    Dests.insert(I->BB);
2468    if (Dests.size() > 3)
2469      // Don't bother the code below, if there are too much unique destinations
2470      return false;
2471  }
2472  DEBUG(dbgs() << "Total number of unique destinations: "
2473        << Dests.size() << '\n'
2474        << "Total number of comparisons: " << numCmps << '\n');
2475
2476  // Compute span of values.
2477  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2478  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2479  APInt cmpRange = maxValue - minValue;
2480
2481  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2482               << "Low bound: " << minValue << '\n'
2483               << "High bound: " << maxValue << '\n');
2484
2485  if (cmpRange.uge(IntPtrBits) ||
2486      (!(Dests.size() == 1 && numCmps >= 3) &&
2487       !(Dests.size() == 2 && numCmps >= 5) &&
2488       !(Dests.size() >= 3 && numCmps >= 6)))
2489    return false;
2490
2491  DEBUG(dbgs() << "Emitting bit tests\n");
2492  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2493
2494  // Optimize the case where all the case values fit in a
2495  // word without having to subtract minValue. In this case,
2496  // we can optimize away the subtraction.
2497  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2498    cmpRange = maxValue;
2499  } else {
2500    lowBound = minValue;
2501  }
2502
2503  CaseBitsVector CasesBits;
2504  unsigned i, count = 0;
2505
2506  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2507    MachineBasicBlock* Dest = I->BB;
2508    for (i = 0; i < count; ++i)
2509      if (Dest == CasesBits[i].BB)
2510        break;
2511
2512    if (i == count) {
2513      assert((count < 3) && "Too much destinations to test!");
2514      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2515      count++;
2516    }
2517
2518    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2519    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2520
2521    uint64_t lo = (lowValue - lowBound).getZExtValue();
2522    uint64_t hi = (highValue - lowBound).getZExtValue();
2523    CasesBits[i].ExtraWeight += I->ExtraWeight;
2524
2525    for (uint64_t j = lo; j <= hi; j++) {
2526      CasesBits[i].Mask |=  1ULL << j;
2527      CasesBits[i].Bits++;
2528    }
2529
2530  }
2531  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2532
2533  BitTestInfo BTC;
2534
2535  // Figure out which block is immediately after the current one.
2536  MachineFunction::iterator BBI = CR.CaseBB;
2537  ++BBI;
2538
2539  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2540
2541  DEBUG(dbgs() << "Cases:\n");
2542  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2543    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2544                 << ", Bits: " << CasesBits[i].Bits
2545                 << ", BB: " << CasesBits[i].BB << '\n');
2546
2547    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2548    CurMF->insert(BBI, CaseBB);
2549    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2550                              CaseBB,
2551                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2552
2553    // Put SV in a virtual register to make it available from the new blocks.
2554    ExportFromCurrentBlock(SV);
2555  }
2556
2557  BitTestBlock BTB(lowBound, cmpRange, SV,
2558                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2559                   CR.CaseBB, Default, BTC);
2560
2561  if (CR.CaseBB == SwitchBB)
2562    visitBitTestHeader(BTB, SwitchBB);
2563
2564  BitTestCases.push_back(BTB);
2565
2566  return true;
2567}
2568
2569/// Clusterify - Transform simple list of Cases into list of CaseRange's
2570size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2571                                       const SwitchInst& SI) {
2572  size_t numCmps = 0;
2573
2574  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2575  // Start with "simple" cases
2576  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2577       i != e; ++i) {
2578    const BasicBlock *SuccBB = i.getCaseSuccessor();
2579    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2580
2581    uint32_t ExtraWeight =
2582      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2583
2584    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2585                         SMBB, ExtraWeight));
2586  }
2587  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2588
2589  // Merge case into clusters
2590  if (Cases.size() >= 2)
2591    // Must recompute end() each iteration because it may be
2592    // invalidated by erase if we hold on to it
2593    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2594         J != Cases.end(); ) {
2595      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2596      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2597      MachineBasicBlock* nextBB = J->BB;
2598      MachineBasicBlock* currentBB = I->BB;
2599
2600      // If the two neighboring cases go to the same destination, merge them
2601      // into a single case.
2602      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2603        I->High = J->High;
2604        I->ExtraWeight += J->ExtraWeight;
2605        J = Cases.erase(J);
2606      } else {
2607        I = J++;
2608      }
2609    }
2610
2611  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2612    if (I->Low != I->High)
2613      // A range counts double, since it requires two compares.
2614      ++numCmps;
2615  }
2616
2617  return numCmps;
2618}
2619
2620void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2621                                           MachineBasicBlock *Last) {
2622  // Update JTCases.
2623  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2624    if (JTCases[i].first.HeaderBB == First)
2625      JTCases[i].first.HeaderBB = Last;
2626
2627  // Update BitTestCases.
2628  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2629    if (BitTestCases[i].Parent == First)
2630      BitTestCases[i].Parent = Last;
2631}
2632
2633void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2634  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2635
2636  // Figure out which block is immediately after the current one.
2637  MachineBasicBlock *NextBlock = 0;
2638  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2639
2640  // If there is only the default destination, branch to it if it is not the
2641  // next basic block.  Otherwise, just fall through.
2642  if (!SI.getNumCases()) {
2643    // Update machine-CFG edges.
2644
2645    // If this is not a fall-through branch, emit the branch.
2646    SwitchMBB->addSuccessor(Default);
2647    if (Default != NextBlock)
2648      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2649                              MVT::Other, getControlRoot(),
2650                              DAG.getBasicBlock(Default)));
2651
2652    return;
2653  }
2654
2655  // If there are any non-default case statements, create a vector of Cases
2656  // representing each one, and sort the vector so that we can efficiently
2657  // create a binary search tree from them.
2658  CaseVector Cases;
2659  size_t numCmps = Clusterify(Cases, SI);
2660  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2661               << ". Total compares: " << numCmps << '\n');
2662  (void)numCmps;
2663
2664  // Get the Value to be switched on and default basic blocks, which will be
2665  // inserted into CaseBlock records, representing basic blocks in the binary
2666  // search tree.
2667  const Value *SV = SI.getCondition();
2668
2669  // Push the initial CaseRec onto the worklist
2670  CaseRecVector WorkList;
2671  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2672                             CaseRange(Cases.begin(),Cases.end())));
2673
2674  while (!WorkList.empty()) {
2675    // Grab a record representing a case range to process off the worklist
2676    CaseRec CR = WorkList.back();
2677    WorkList.pop_back();
2678
2679    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2680      continue;
2681
2682    // If the range has few cases (two or less) emit a series of specific
2683    // tests.
2684    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2685      continue;
2686
2687    // If the switch has more than N blocks, and is at least 40% dense, and the
2688    // target supports indirect branches, then emit a jump table rather than
2689    // lowering the switch to a binary tree of conditional branches.
2690    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2691    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2692      continue;
2693
2694    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2695    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2696    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2697  }
2698}
2699
2700void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2701  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2702
2703  // Update machine-CFG edges with unique successors.
2704  SmallSet<BasicBlock*, 32> Done;
2705  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2706    BasicBlock *BB = I.getSuccessor(i);
2707    bool Inserted = Done.insert(BB);
2708    if (!Inserted)
2709        continue;
2710
2711    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2712    addSuccessorWithWeight(IndirectBrMBB, Succ);
2713  }
2714
2715  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2716                          MVT::Other, getControlRoot(),
2717                          getValue(I.getAddress())));
2718}
2719
2720void SelectionDAGBuilder::visitFSub(const User &I) {
2721  // -0.0 - X --> fneg
2722  Type *Ty = I.getType();
2723  if (isa<Constant>(I.getOperand(0)) &&
2724      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2725    SDValue Op2 = getValue(I.getOperand(1));
2726    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2727                             Op2.getValueType(), Op2));
2728    return;
2729  }
2730
2731  visitBinary(I, ISD::FSUB);
2732}
2733
2734void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2735  SDValue Op1 = getValue(I.getOperand(0));
2736  SDValue Op2 = getValue(I.getOperand(1));
2737  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2738                           Op1.getValueType(), Op1, Op2));
2739}
2740
2741void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2742  SDValue Op1 = getValue(I.getOperand(0));
2743  SDValue Op2 = getValue(I.getOperand(1));
2744
2745  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2746
2747  // Coerce the shift amount to the right type if we can.
2748  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2749    unsigned ShiftSize = ShiftTy.getSizeInBits();
2750    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2751    SDLoc DL = getCurSDLoc();
2752
2753    // If the operand is smaller than the shift count type, promote it.
2754    if (ShiftSize > Op2Size)
2755      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2756
2757    // If the operand is larger than the shift count type but the shift
2758    // count type has enough bits to represent any shift value, truncate
2759    // it now. This is a common case and it exposes the truncate to
2760    // optimization early.
2761    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2762      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2763    // Otherwise we'll need to temporarily settle for some other convenient
2764    // type.  Type legalization will make adjustments once the shiftee is split.
2765    else
2766      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2767  }
2768
2769  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2770                           Op1.getValueType(), Op1, Op2));
2771}
2772
2773void SelectionDAGBuilder::visitSDiv(const User &I) {
2774  SDValue Op1 = getValue(I.getOperand(0));
2775  SDValue Op2 = getValue(I.getOperand(1));
2776
2777  // Turn exact SDivs into multiplications.
2778  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2779  // exact bit.
2780  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2781      !isa<ConstantSDNode>(Op1) &&
2782      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2783    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2784                                                        getCurSDLoc(), DAG));
2785  else
2786    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2787                             Op1, Op2));
2788}
2789
2790void SelectionDAGBuilder::visitICmp(const User &I) {
2791  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2792  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2793    predicate = IC->getPredicate();
2794  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2795    predicate = ICmpInst::Predicate(IC->getPredicate());
2796  SDValue Op1 = getValue(I.getOperand(0));
2797  SDValue Op2 = getValue(I.getOperand(1));
2798  ISD::CondCode Opcode = getICmpCondCode(predicate);
2799
2800  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2801  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2802}
2803
2804void SelectionDAGBuilder::visitFCmp(const User &I) {
2805  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2806  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2807    predicate = FC->getPredicate();
2808  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2809    predicate = FCmpInst::Predicate(FC->getPredicate());
2810  SDValue Op1 = getValue(I.getOperand(0));
2811  SDValue Op2 = getValue(I.getOperand(1));
2812  ISD::CondCode Condition = getFCmpCondCode(predicate);
2813  if (TM.Options.NoNaNsFPMath)
2814    Condition = getFCmpCodeWithoutNaN(Condition);
2815  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2816  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2817}
2818
2819void SelectionDAGBuilder::visitSelect(const User &I) {
2820  SmallVector<EVT, 4> ValueVTs;
2821  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2822  unsigned NumValues = ValueVTs.size();
2823  if (NumValues == 0) return;
2824
2825  SmallVector<SDValue, 4> Values(NumValues);
2826  SDValue Cond     = getValue(I.getOperand(0));
2827  SDValue TrueVal  = getValue(I.getOperand(1));
2828  SDValue FalseVal = getValue(I.getOperand(2));
2829  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2830    ISD::VSELECT : ISD::SELECT;
2831
2832  for (unsigned i = 0; i != NumValues; ++i)
2833    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2834                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2835                            Cond,
2836                            SDValue(TrueVal.getNode(),
2837                                    TrueVal.getResNo() + i),
2838                            SDValue(FalseVal.getNode(),
2839                                    FalseVal.getResNo() + i));
2840
2841  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2842                           DAG.getVTList(&ValueVTs[0], NumValues),
2843                           &Values[0], NumValues));
2844}
2845
2846void SelectionDAGBuilder::visitTrunc(const User &I) {
2847  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2848  SDValue N = getValue(I.getOperand(0));
2849  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2850  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2851}
2852
2853void SelectionDAGBuilder::visitZExt(const User &I) {
2854  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2855  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2856  SDValue N = getValue(I.getOperand(0));
2857  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2858  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2859}
2860
2861void SelectionDAGBuilder::visitSExt(const User &I) {
2862  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2863  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2864  SDValue N = getValue(I.getOperand(0));
2865  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2866  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2867}
2868
2869void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2870  // FPTrunc is never a no-op cast, no need to check
2871  SDValue N = getValue(I.getOperand(0));
2872  const TargetLowering *TLI = TM.getTargetLowering();
2873  EVT DestVT = TLI->getValueType(I.getType());
2874  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2875                           DestVT, N,
2876                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2877}
2878
2879void SelectionDAGBuilder::visitFPExt(const User &I) {
2880  // FPExt is never a no-op cast, no need to check
2881  SDValue N = getValue(I.getOperand(0));
2882  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2883  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2884}
2885
2886void SelectionDAGBuilder::visitFPToUI(const User &I) {
2887  // FPToUI is never a no-op cast, no need to check
2888  SDValue N = getValue(I.getOperand(0));
2889  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2890  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2891}
2892
2893void SelectionDAGBuilder::visitFPToSI(const User &I) {
2894  // FPToSI is never a no-op cast, no need to check
2895  SDValue N = getValue(I.getOperand(0));
2896  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2897  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2898}
2899
2900void SelectionDAGBuilder::visitUIToFP(const User &I) {
2901  // UIToFP is never a no-op cast, no need to check
2902  SDValue N = getValue(I.getOperand(0));
2903  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2904  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2905}
2906
2907void SelectionDAGBuilder::visitSIToFP(const User &I) {
2908  // SIToFP is never a no-op cast, no need to check
2909  SDValue N = getValue(I.getOperand(0));
2910  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2911  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2912}
2913
2914void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2915  // What to do depends on the size of the integer and the size of the pointer.
2916  // We can either truncate, zero extend, or no-op, accordingly.
2917  SDValue N = getValue(I.getOperand(0));
2918  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2919  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2920}
2921
2922void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2923  // What to do depends on the size of the integer and the size of the pointer.
2924  // We can either truncate, zero extend, or no-op, accordingly.
2925  SDValue N = getValue(I.getOperand(0));
2926  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2927  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2928}
2929
2930void SelectionDAGBuilder::visitBitCast(const User &I) {
2931  SDValue N = getValue(I.getOperand(0));
2932  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2933
2934  // BitCast assures us that source and destination are the same size so this is
2935  // either a BITCAST or a no-op.
2936  if (DestVT != N.getValueType())
2937    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2938                             DestVT, N)); // convert types.
2939  else
2940    setValue(&I, N);            // noop cast.
2941}
2942
2943void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2944  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2945  const Value *SV = I.getOperand(0);
2946  SDValue N = getValue(SV);
2947  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2948
2949  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2950  unsigned DestAS = I.getType()->getPointerAddressSpace();
2951
2952  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2953    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2954
2955  setValue(&I, N);
2956}
2957
2958void SelectionDAGBuilder::visitInsertElement(const User &I) {
2959  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2960  SDValue InVec = getValue(I.getOperand(0));
2961  SDValue InVal = getValue(I.getOperand(1));
2962  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2963                                     getCurSDLoc(), TLI.getVectorIdxTy());
2964  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2965                           TM.getTargetLowering()->getValueType(I.getType()),
2966                           InVec, InVal, InIdx));
2967}
2968
2969void SelectionDAGBuilder::visitExtractElement(const User &I) {
2970  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2971  SDValue InVec = getValue(I.getOperand(0));
2972  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2973                                     getCurSDLoc(), TLI.getVectorIdxTy());
2974  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2975                           TM.getTargetLowering()->getValueType(I.getType()),
2976                           InVec, InIdx));
2977}
2978
2979// Utility for visitShuffleVector - Return true if every element in Mask,
2980// beginning from position Pos and ending in Pos+Size, falls within the
2981// specified sequential range [L, L+Pos). or is undef.
2982static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2983                                unsigned Pos, unsigned Size, int Low) {
2984  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2985    if (Mask[i] >= 0 && Mask[i] != Low)
2986      return false;
2987  return true;
2988}
2989
2990void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2991  SDValue Src1 = getValue(I.getOperand(0));
2992  SDValue Src2 = getValue(I.getOperand(1));
2993
2994  SmallVector<int, 8> Mask;
2995  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2996  unsigned MaskNumElts = Mask.size();
2997
2998  const TargetLowering *TLI = TM.getTargetLowering();
2999  EVT VT = TLI->getValueType(I.getType());
3000  EVT SrcVT = Src1.getValueType();
3001  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3002
3003  if (SrcNumElts == MaskNumElts) {
3004    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3005                                      &Mask[0]));
3006    return;
3007  }
3008
3009  // Normalize the shuffle vector since mask and vector length don't match.
3010  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3011    // Mask is longer than the source vectors and is a multiple of the source
3012    // vectors.  We can use concatenate vector to make the mask and vectors
3013    // lengths match.
3014    if (SrcNumElts*2 == MaskNumElts) {
3015      // First check for Src1 in low and Src2 in high
3016      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3017          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3018        // The shuffle is concatenating two vectors together.
3019        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3020                                 VT, Src1, Src2));
3021        return;
3022      }
3023      // Then check for Src2 in low and Src1 in high
3024      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3025          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3026        // The shuffle is concatenating two vectors together.
3027        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3028                                 VT, Src2, Src1));
3029        return;
3030      }
3031    }
3032
3033    // Pad both vectors with undefs to make them the same length as the mask.
3034    unsigned NumConcat = MaskNumElts / SrcNumElts;
3035    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3036    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3037    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3038
3039    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3040    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3041    MOps1[0] = Src1;
3042    MOps2[0] = Src2;
3043
3044    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3045                                                  getCurSDLoc(), VT,
3046                                                  &MOps1[0], NumConcat);
3047    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3048                                                  getCurSDLoc(), VT,
3049                                                  &MOps2[0], NumConcat);
3050
3051    // Readjust mask for new input vector length.
3052    SmallVector<int, 8> MappedOps;
3053    for (unsigned i = 0; i != MaskNumElts; ++i) {
3054      int Idx = Mask[i];
3055      if (Idx >= (int)SrcNumElts)
3056        Idx -= SrcNumElts - MaskNumElts;
3057      MappedOps.push_back(Idx);
3058    }
3059
3060    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3061                                      &MappedOps[0]));
3062    return;
3063  }
3064
3065  if (SrcNumElts > MaskNumElts) {
3066    // Analyze the access pattern of the vector to see if we can extract
3067    // two subvectors and do the shuffle. The analysis is done by calculating
3068    // the range of elements the mask access on both vectors.
3069    int MinRange[2] = { static_cast<int>(SrcNumElts),
3070                        static_cast<int>(SrcNumElts)};
3071    int MaxRange[2] = {-1, -1};
3072
3073    for (unsigned i = 0; i != MaskNumElts; ++i) {
3074      int Idx = Mask[i];
3075      unsigned Input = 0;
3076      if (Idx < 0)
3077        continue;
3078
3079      if (Idx >= (int)SrcNumElts) {
3080        Input = 1;
3081        Idx -= SrcNumElts;
3082      }
3083      if (Idx > MaxRange[Input])
3084        MaxRange[Input] = Idx;
3085      if (Idx < MinRange[Input])
3086        MinRange[Input] = Idx;
3087    }
3088
3089    // Check if the access is smaller than the vector size and can we find
3090    // a reasonable extract index.
3091    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3092                                   // Extract.
3093    int StartIdx[2];  // StartIdx to extract from
3094    for (unsigned Input = 0; Input < 2; ++Input) {
3095      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3096        RangeUse[Input] = 0; // Unused
3097        StartIdx[Input] = 0;
3098        continue;
3099      }
3100
3101      // Find a good start index that is a multiple of the mask length. Then
3102      // see if the rest of the elements are in range.
3103      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3104      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3105          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3106        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3107    }
3108
3109    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3110      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3111      return;
3112    }
3113    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3114      // Extract appropriate subvector and generate a vector shuffle
3115      for (unsigned Input = 0; Input < 2; ++Input) {
3116        SDValue &Src = Input == 0 ? Src1 : Src2;
3117        if (RangeUse[Input] == 0)
3118          Src = DAG.getUNDEF(VT);
3119        else
3120          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3121                            Src, DAG.getConstant(StartIdx[Input],
3122                                                 TLI->getVectorIdxTy()));
3123      }
3124
3125      // Calculate new mask.
3126      SmallVector<int, 8> MappedOps;
3127      for (unsigned i = 0; i != MaskNumElts; ++i) {
3128        int Idx = Mask[i];
3129        if (Idx >= 0) {
3130          if (Idx < (int)SrcNumElts)
3131            Idx -= StartIdx[0];
3132          else
3133            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3134        }
3135        MappedOps.push_back(Idx);
3136      }
3137
3138      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3139                                        &MappedOps[0]));
3140      return;
3141    }
3142  }
3143
3144  // We can't use either concat vectors or extract subvectors so fall back to
3145  // replacing the shuffle with extract and build vector.
3146  // to insert and build vector.
3147  EVT EltVT = VT.getVectorElementType();
3148  EVT IdxVT = TLI->getVectorIdxTy();
3149  SmallVector<SDValue,8> Ops;
3150  for (unsigned i = 0; i != MaskNumElts; ++i) {
3151    int Idx = Mask[i];
3152    SDValue Res;
3153
3154    if (Idx < 0) {
3155      Res = DAG.getUNDEF(EltVT);
3156    } else {
3157      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3158      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3159
3160      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3161                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3162    }
3163
3164    Ops.push_back(Res);
3165  }
3166
3167  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3168                           VT, &Ops[0], Ops.size()));
3169}
3170
3171void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3172  const Value *Op0 = I.getOperand(0);
3173  const Value *Op1 = I.getOperand(1);
3174  Type *AggTy = I.getType();
3175  Type *ValTy = Op1->getType();
3176  bool IntoUndef = isa<UndefValue>(Op0);
3177  bool FromUndef = isa<UndefValue>(Op1);
3178
3179  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3180
3181  const TargetLowering *TLI = TM.getTargetLowering();
3182  SmallVector<EVT, 4> AggValueVTs;
3183  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3184  SmallVector<EVT, 4> ValValueVTs;
3185  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3186
3187  unsigned NumAggValues = AggValueVTs.size();
3188  unsigned NumValValues = ValValueVTs.size();
3189  SmallVector<SDValue, 4> Values(NumAggValues);
3190
3191  SDValue Agg = getValue(Op0);
3192  unsigned i = 0;
3193  // Copy the beginning value(s) from the original aggregate.
3194  for (; i != LinearIndex; ++i)
3195    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3196                SDValue(Agg.getNode(), Agg.getResNo() + i);
3197  // Copy values from the inserted value(s).
3198  if (NumValValues) {
3199    SDValue Val = getValue(Op1);
3200    for (; i != LinearIndex + NumValValues; ++i)
3201      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3202                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3203  }
3204  // Copy remaining value(s) from the original aggregate.
3205  for (; i != NumAggValues; ++i)
3206    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3207                SDValue(Agg.getNode(), Agg.getResNo() + i);
3208
3209  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3210                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3211                           &Values[0], NumAggValues));
3212}
3213
3214void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3215  const Value *Op0 = I.getOperand(0);
3216  Type *AggTy = Op0->getType();
3217  Type *ValTy = I.getType();
3218  bool OutOfUndef = isa<UndefValue>(Op0);
3219
3220  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3221
3222  const TargetLowering *TLI = TM.getTargetLowering();
3223  SmallVector<EVT, 4> ValValueVTs;
3224  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3225
3226  unsigned NumValValues = ValValueVTs.size();
3227
3228  // Ignore a extractvalue that produces an empty object
3229  if (!NumValValues) {
3230    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3231    return;
3232  }
3233
3234  SmallVector<SDValue, 4> Values(NumValValues);
3235
3236  SDValue Agg = getValue(Op0);
3237  // Copy out the selected value(s).
3238  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3239    Values[i - LinearIndex] =
3240      OutOfUndef ?
3241        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3242        SDValue(Agg.getNode(), Agg.getResNo() + i);
3243
3244  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3245                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3246                           &Values[0], NumValValues));
3247}
3248
3249void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3250  Value *Op0 = I.getOperand(0);
3251  // Note that the pointer operand may be a vector of pointers. Take the scalar
3252  // element which holds a pointer.
3253  Type *Ty = Op0->getType()->getScalarType();
3254  unsigned AS = Ty->getPointerAddressSpace();
3255  SDValue N = getValue(Op0);
3256
3257  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3258       OI != E; ++OI) {
3259    const Value *Idx = *OI;
3260    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3261      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3262      if (Field) {
3263        // N = N + Offset
3264        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3265        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3266                        DAG.getConstant(Offset, N.getValueType()));
3267      }
3268
3269      Ty = StTy->getElementType(Field);
3270    } else {
3271      Ty = cast<SequentialType>(Ty)->getElementType();
3272
3273      // If this is a constant subscript, handle it quickly.
3274      const TargetLowering *TLI = TM.getTargetLowering();
3275      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3276        if (CI->isZero()) continue;
3277        uint64_t Offs =
3278            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3279        SDValue OffsVal;
3280        EVT PTy = TLI->getPointerTy(AS);
3281        unsigned PtrBits = PTy.getSizeInBits();
3282        if (PtrBits < 64)
3283          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3284                                DAG.getConstant(Offs, MVT::i64));
3285        else
3286          OffsVal = DAG.getConstant(Offs, PTy);
3287
3288        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3289                        OffsVal);
3290        continue;
3291      }
3292
3293      // N = N + Idx * ElementSize;
3294      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3295                                TD->getTypeAllocSize(Ty));
3296      SDValue IdxN = getValue(Idx);
3297
3298      // If the index is smaller or larger than intptr_t, truncate or extend
3299      // it.
3300      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3301
3302      // If this is a multiply by a power of two, turn it into a shl
3303      // immediately.  This is a very common case.
3304      if (ElementSize != 1) {
3305        if (ElementSize.isPowerOf2()) {
3306          unsigned Amt = ElementSize.logBase2();
3307          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3308                             N.getValueType(), IdxN,
3309                             DAG.getConstant(Amt, IdxN.getValueType()));
3310        } else {
3311          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3312          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3313                             N.getValueType(), IdxN, Scale);
3314        }
3315      }
3316
3317      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3318                      N.getValueType(), N, IdxN);
3319    }
3320  }
3321
3322  setValue(&I, N);
3323}
3324
3325void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3326  // If this is a fixed sized alloca in the entry block of the function,
3327  // allocate it statically on the stack.
3328  if (FuncInfo.StaticAllocaMap.count(&I))
3329    return;   // getValue will auto-populate this.
3330
3331  Type *Ty = I.getAllocatedType();
3332  const TargetLowering *TLI = TM.getTargetLowering();
3333  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3334  unsigned Align =
3335    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3336             I.getAlignment());
3337
3338  SDValue AllocSize = getValue(I.getArraySize());
3339
3340  EVT IntPtr = TLI->getPointerTy();
3341  if (AllocSize.getValueType() != IntPtr)
3342    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3343
3344  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3345                          AllocSize,
3346                          DAG.getConstant(TySize, IntPtr));
3347
3348  // Handle alignment.  If the requested alignment is less than or equal to
3349  // the stack alignment, ignore it.  If the size is greater than or equal to
3350  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3351  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3352  if (Align <= StackAlign)
3353    Align = 0;
3354
3355  // Round the size of the allocation up to the stack alignment size
3356  // by add SA-1 to the size.
3357  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3358                          AllocSize.getValueType(), AllocSize,
3359                          DAG.getIntPtrConstant(StackAlign-1));
3360
3361  // Mask out the low bits for alignment purposes.
3362  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3363                          AllocSize.getValueType(), AllocSize,
3364                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3365
3366  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3367  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3368  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3369                            VTs, Ops, 3);
3370  setValue(&I, DSA);
3371  DAG.setRoot(DSA.getValue(1));
3372
3373  // Inform the Frame Information that we have just allocated a variable-sized
3374  // object.
3375  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3376}
3377
3378void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3379  if (I.isAtomic())
3380    return visitAtomicLoad(I);
3381
3382  const Value *SV = I.getOperand(0);
3383  SDValue Ptr = getValue(SV);
3384
3385  Type *Ty = I.getType();
3386
3387  bool isVolatile = I.isVolatile();
3388  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3389  bool isInvariant = I.getMetadata("invariant.load") != 0;
3390  unsigned Alignment = I.getAlignment();
3391  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3392  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3393
3394  SmallVector<EVT, 4> ValueVTs;
3395  SmallVector<uint64_t, 4> Offsets;
3396  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3397  unsigned NumValues = ValueVTs.size();
3398  if (NumValues == 0)
3399    return;
3400
3401  SDValue Root;
3402  bool ConstantMemory = false;
3403  if (I.isVolatile() || NumValues > MaxParallelChains)
3404    // Serialize volatile loads with other side effects.
3405    Root = getRoot();
3406  else if (AA->pointsToConstantMemory(
3407             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3408    // Do not serialize (non-volatile) loads of constant memory with anything.
3409    Root = DAG.getEntryNode();
3410    ConstantMemory = true;
3411  } else {
3412    // Do not serialize non-volatile loads against each other.
3413    Root = DAG.getRoot();
3414  }
3415
3416  SmallVector<SDValue, 4> Values(NumValues);
3417  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3418                                          NumValues));
3419  EVT PtrVT = Ptr.getValueType();
3420  unsigned ChainI = 0;
3421  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3422    // Serializing loads here may result in excessive register pressure, and
3423    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3424    // could recover a bit by hoisting nodes upward in the chain by recognizing
3425    // they are side-effect free or do not alias. The optimizer should really
3426    // avoid this case by converting large object/array copies to llvm.memcpy
3427    // (MaxParallelChains should always remain as failsafe).
3428    if (ChainI == MaxParallelChains) {
3429      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3430      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3431                                  MVT::Other, &Chains[0], ChainI);
3432      Root = Chain;
3433      ChainI = 0;
3434    }
3435    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3436                            PtrVT, Ptr,
3437                            DAG.getConstant(Offsets[i], PtrVT));
3438    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3439                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3440                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3441                            Ranges);
3442
3443    Values[i] = L;
3444    Chains[ChainI] = L.getValue(1);
3445  }
3446
3447  if (!ConstantMemory) {
3448    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3449                                MVT::Other, &Chains[0], ChainI);
3450    if (isVolatile)
3451      DAG.setRoot(Chain);
3452    else
3453      PendingLoads.push_back(Chain);
3454  }
3455
3456  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3457                           DAG.getVTList(&ValueVTs[0], NumValues),
3458                           &Values[0], NumValues));
3459}
3460
3461void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3462  if (I.isAtomic())
3463    return visitAtomicStore(I);
3464
3465  const Value *SrcV = I.getOperand(0);
3466  const Value *PtrV = I.getOperand(1);
3467
3468  SmallVector<EVT, 4> ValueVTs;
3469  SmallVector<uint64_t, 4> Offsets;
3470  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3471  unsigned NumValues = ValueVTs.size();
3472  if (NumValues == 0)
3473    return;
3474
3475  // Get the lowered operands. Note that we do this after
3476  // checking if NumResults is zero, because with zero results
3477  // the operands won't have values in the map.
3478  SDValue Src = getValue(SrcV);
3479  SDValue Ptr = getValue(PtrV);
3480
3481  SDValue Root = getRoot();
3482  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3483                                          NumValues));
3484  EVT PtrVT = Ptr.getValueType();
3485  bool isVolatile = I.isVolatile();
3486  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3487  unsigned Alignment = I.getAlignment();
3488  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3489
3490  unsigned ChainI = 0;
3491  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3492    // See visitLoad comments.
3493    if (ChainI == MaxParallelChains) {
3494      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3495                                  MVT::Other, &Chains[0], ChainI);
3496      Root = Chain;
3497      ChainI = 0;
3498    }
3499    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3500                              DAG.getConstant(Offsets[i], PtrVT));
3501    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3502                              SDValue(Src.getNode(), Src.getResNo() + i),
3503                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3504                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3505    Chains[ChainI] = St;
3506  }
3507
3508  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3509                                  MVT::Other, &Chains[0], ChainI);
3510  DAG.setRoot(StoreNode);
3511}
3512
3513static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3514                                    SynchronizationScope Scope,
3515                                    bool Before, SDLoc dl,
3516                                    SelectionDAG &DAG,
3517                                    const TargetLowering &TLI) {
3518  // Fence, if necessary
3519  if (Before) {
3520    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3521      Order = Release;
3522    else if (Order == Acquire || Order == Monotonic)
3523      return Chain;
3524  } else {
3525    if (Order == AcquireRelease)
3526      Order = Acquire;
3527    else if (Order == Release || Order == Monotonic)
3528      return Chain;
3529  }
3530  SDValue Ops[3];
3531  Ops[0] = Chain;
3532  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3533  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3534  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3535}
3536
3537void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3538  SDLoc dl = getCurSDLoc();
3539  AtomicOrdering Order = I.getOrdering();
3540  SynchronizationScope Scope = I.getSynchScope();
3541
3542  SDValue InChain = getRoot();
3543
3544  const TargetLowering *TLI = TM.getTargetLowering();
3545  if (TLI->getInsertFencesForAtomic())
3546    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3547                                   DAG, *TLI);
3548
3549  SDValue L =
3550    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3551                  getValue(I.getCompareOperand()).getSimpleValueType(),
3552                  InChain,
3553                  getValue(I.getPointerOperand()),
3554                  getValue(I.getCompareOperand()),
3555                  getValue(I.getNewValOperand()),
3556                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3557                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3558                  Scope);
3559
3560  SDValue OutChain = L.getValue(1);
3561
3562  if (TLI->getInsertFencesForAtomic())
3563    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3564                                    DAG, *TLI);
3565
3566  setValue(&I, L);
3567  DAG.setRoot(OutChain);
3568}
3569
3570void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3571  SDLoc dl = getCurSDLoc();
3572  ISD::NodeType NT;
3573  switch (I.getOperation()) {
3574  default: llvm_unreachable("Unknown atomicrmw operation");
3575  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3576  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3577  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3578  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3579  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3580  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3581  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3582  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3583  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3584  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3585  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3586  }
3587  AtomicOrdering Order = I.getOrdering();
3588  SynchronizationScope Scope = I.getSynchScope();
3589
3590  SDValue InChain = getRoot();
3591
3592  const TargetLowering *TLI = TM.getTargetLowering();
3593  if (TLI->getInsertFencesForAtomic())
3594    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3595                                   DAG, *TLI);
3596
3597  SDValue L =
3598    DAG.getAtomic(NT, dl,
3599                  getValue(I.getValOperand()).getSimpleValueType(),
3600                  InChain,
3601                  getValue(I.getPointerOperand()),
3602                  getValue(I.getValOperand()),
3603                  I.getPointerOperand(), 0 /* Alignment */,
3604                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3605                  Scope);
3606
3607  SDValue OutChain = L.getValue(1);
3608
3609  if (TLI->getInsertFencesForAtomic())
3610    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3611                                    DAG, *TLI);
3612
3613  setValue(&I, L);
3614  DAG.setRoot(OutChain);
3615}
3616
3617void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3618  SDLoc dl = getCurSDLoc();
3619  const TargetLowering *TLI = TM.getTargetLowering();
3620  SDValue Ops[3];
3621  Ops[0] = getRoot();
3622  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3623  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3624  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3625}
3626
3627void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3628  SDLoc dl = getCurSDLoc();
3629  AtomicOrdering Order = I.getOrdering();
3630  SynchronizationScope Scope = I.getSynchScope();
3631
3632  SDValue InChain = getRoot();
3633
3634  const TargetLowering *TLI = TM.getTargetLowering();
3635  EVT VT = TLI->getValueType(I.getType());
3636
3637  if (I.getAlignment() < VT.getSizeInBits() / 8)
3638    report_fatal_error("Cannot generate unaligned atomic load");
3639
3640  SDValue L =
3641    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3642                  getValue(I.getPointerOperand()),
3643                  I.getPointerOperand(), I.getAlignment(),
3644                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3645                  Scope);
3646
3647  SDValue OutChain = L.getValue(1);
3648
3649  if (TLI->getInsertFencesForAtomic())
3650    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3651                                    DAG, *TLI);
3652
3653  setValue(&I, L);
3654  DAG.setRoot(OutChain);
3655}
3656
3657void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3658  SDLoc dl = getCurSDLoc();
3659
3660  AtomicOrdering Order = I.getOrdering();
3661  SynchronizationScope Scope = I.getSynchScope();
3662
3663  SDValue InChain = getRoot();
3664
3665  const TargetLowering *TLI = TM.getTargetLowering();
3666  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3667
3668  if (I.getAlignment() < VT.getSizeInBits() / 8)
3669    report_fatal_error("Cannot generate unaligned atomic store");
3670
3671  if (TLI->getInsertFencesForAtomic())
3672    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3673                                   DAG, *TLI);
3674
3675  SDValue OutChain =
3676    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3677                  InChain,
3678                  getValue(I.getPointerOperand()),
3679                  getValue(I.getValueOperand()),
3680                  I.getPointerOperand(), I.getAlignment(),
3681                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3682                  Scope);
3683
3684  if (TLI->getInsertFencesForAtomic())
3685    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3686                                    DAG, *TLI);
3687
3688  DAG.setRoot(OutChain);
3689}
3690
3691/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3692/// node.
3693void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3694                                               unsigned Intrinsic) {
3695  bool HasChain = !I.doesNotAccessMemory();
3696  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3697
3698  // Build the operand list.
3699  SmallVector<SDValue, 8> Ops;
3700  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3701    if (OnlyLoad) {
3702      // We don't need to serialize loads against other loads.
3703      Ops.push_back(DAG.getRoot());
3704    } else {
3705      Ops.push_back(getRoot());
3706    }
3707  }
3708
3709  // Info is set by getTgtMemInstrinsic
3710  TargetLowering::IntrinsicInfo Info;
3711  const TargetLowering *TLI = TM.getTargetLowering();
3712  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3713
3714  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3715  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3716      Info.opc == ISD::INTRINSIC_W_CHAIN)
3717    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3718
3719  // Add all operands of the call to the operand list.
3720  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3721    SDValue Op = getValue(I.getArgOperand(i));
3722    Ops.push_back(Op);
3723  }
3724
3725  SmallVector<EVT, 4> ValueVTs;
3726  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3727
3728  if (HasChain)
3729    ValueVTs.push_back(MVT::Other);
3730
3731  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3732
3733  // Create the node.
3734  SDValue Result;
3735  if (IsTgtIntrinsic) {
3736    // This is target intrinsic that touches memory
3737    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3738                                     VTs, &Ops[0], Ops.size(),
3739                                     Info.memVT,
3740                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3741                                     Info.align, Info.vol,
3742                                     Info.readMem, Info.writeMem);
3743  } else if (!HasChain) {
3744    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3745                         VTs, &Ops[0], Ops.size());
3746  } else if (!I.getType()->isVoidTy()) {
3747    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3748                         VTs, &Ops[0], Ops.size());
3749  } else {
3750    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3751                         VTs, &Ops[0], Ops.size());
3752  }
3753
3754  if (HasChain) {
3755    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3756    if (OnlyLoad)
3757      PendingLoads.push_back(Chain);
3758    else
3759      DAG.setRoot(Chain);
3760  }
3761
3762  if (!I.getType()->isVoidTy()) {
3763    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3764      EVT VT = TLI->getValueType(PTy);
3765      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3766    }
3767
3768    setValue(&I, Result);
3769  }
3770}
3771
3772/// GetSignificand - Get the significand and build it into a floating-point
3773/// number with exponent of 1:
3774///
3775///   Op = (Op & 0x007fffff) | 0x3f800000;
3776///
3777/// where Op is the hexadecimal representation of floating point value.
3778static SDValue
3779GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3780  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3781                           DAG.getConstant(0x007fffff, MVT::i32));
3782  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3783                           DAG.getConstant(0x3f800000, MVT::i32));
3784  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3785}
3786
3787/// GetExponent - Get the exponent:
3788///
3789///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3790///
3791/// where Op is the hexadecimal representation of floating point value.
3792static SDValue
3793GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3794            SDLoc dl) {
3795  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3796                           DAG.getConstant(0x7f800000, MVT::i32));
3797  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3798                           DAG.getConstant(23, TLI.getPointerTy()));
3799  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3800                           DAG.getConstant(127, MVT::i32));
3801  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3802}
3803
3804/// getF32Constant - Get 32-bit floating point constant.
3805static SDValue
3806getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3807  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3808                           MVT::f32);
3809}
3810
3811/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3812/// limited-precision mode.
3813static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3814                         const TargetLowering &TLI) {
3815  if (Op.getValueType() == MVT::f32 &&
3816      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3817
3818    // Put the exponent in the right bit position for later addition to the
3819    // final result:
3820    //
3821    //   #define LOG2OFe 1.4426950f
3822    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3823    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3824                             getF32Constant(DAG, 0x3fb8aa3b));
3825    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3826
3827    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3828    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3829    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3830
3831    //   IntegerPartOfX <<= 23;
3832    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3833                                 DAG.getConstant(23, TLI.getPointerTy()));
3834
3835    SDValue TwoToFracPartOfX;
3836    if (LimitFloatPrecision <= 6) {
3837      // For floating-point precision of 6:
3838      //
3839      //   TwoToFractionalPartOfX =
3840      //     0.997535578f +
3841      //       (0.735607626f + 0.252464424f * x) * x;
3842      //
3843      // error 0.0144103317, which is 6 bits
3844      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3845                               getF32Constant(DAG, 0x3e814304));
3846      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3847                               getF32Constant(DAG, 0x3f3c50c8));
3848      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3849      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3850                                     getF32Constant(DAG, 0x3f7f5e7e));
3851    } else if (LimitFloatPrecision <= 12) {
3852      // For floating-point precision of 12:
3853      //
3854      //   TwoToFractionalPartOfX =
3855      //     0.999892986f +
3856      //       (0.696457318f +
3857      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3858      //
3859      // 0.000107046256 error, which is 13 to 14 bits
3860      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3861                               getF32Constant(DAG, 0x3da235e3));
3862      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3863                               getF32Constant(DAG, 0x3e65b8f3));
3864      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3865      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3866                               getF32Constant(DAG, 0x3f324b07));
3867      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3868      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3869                                     getF32Constant(DAG, 0x3f7ff8fd));
3870    } else { // LimitFloatPrecision <= 18
3871      // For floating-point precision of 18:
3872      //
3873      //   TwoToFractionalPartOfX =
3874      //     0.999999982f +
3875      //       (0.693148872f +
3876      //         (0.240227044f +
3877      //           (0.554906021e-1f +
3878      //             (0.961591928e-2f +
3879      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3880      //
3881      // error 2.47208000*10^(-7), which is better than 18 bits
3882      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3883                               getF32Constant(DAG, 0x3924b03e));
3884      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3885                               getF32Constant(DAG, 0x3ab24b87));
3886      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3887      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3888                               getF32Constant(DAG, 0x3c1d8c17));
3889      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3890      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3891                               getF32Constant(DAG, 0x3d634a1d));
3892      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3893      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3894                               getF32Constant(DAG, 0x3e75fe14));
3895      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3896      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3897                                getF32Constant(DAG, 0x3f317234));
3898      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3899      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3900                                     getF32Constant(DAG, 0x3f800000));
3901    }
3902
3903    // Add the exponent into the result in integer domain.
3904    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3905    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3906                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3907                                   t13, IntegerPartOfX));
3908  }
3909
3910  // No special expansion.
3911  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3912}
3913
3914/// expandLog - Lower a log intrinsic. Handles the special sequences for
3915/// limited-precision mode.
3916static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3917                         const TargetLowering &TLI) {
3918  if (Op.getValueType() == MVT::f32 &&
3919      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3920    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3921
3922    // Scale the exponent by log(2) [0.69314718f].
3923    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3924    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3925                                        getF32Constant(DAG, 0x3f317218));
3926
3927    // Get the significand and build it into a floating-point number with
3928    // exponent of 1.
3929    SDValue X = GetSignificand(DAG, Op1, dl);
3930
3931    SDValue LogOfMantissa;
3932    if (LimitFloatPrecision <= 6) {
3933      // For floating-point precision of 6:
3934      //
3935      //   LogofMantissa =
3936      //     -1.1609546f +
3937      //       (1.4034025f - 0.23903021f * x) * x;
3938      //
3939      // error 0.0034276066, which is better than 8 bits
3940      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3941                               getF32Constant(DAG, 0xbe74c456));
3942      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3943                               getF32Constant(DAG, 0x3fb3a2b1));
3944      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3945      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3946                                  getF32Constant(DAG, 0x3f949a29));
3947    } else if (LimitFloatPrecision <= 12) {
3948      // For floating-point precision of 12:
3949      //
3950      //   LogOfMantissa =
3951      //     -1.7417939f +
3952      //       (2.8212026f +
3953      //         (-1.4699568f +
3954      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3955      //
3956      // error 0.000061011436, which is 14 bits
3957      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3958                               getF32Constant(DAG, 0xbd67b6d6));
3959      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3960                               getF32Constant(DAG, 0x3ee4f4b8));
3961      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3962      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3963                               getF32Constant(DAG, 0x3fbc278b));
3964      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3965      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3966                               getF32Constant(DAG, 0x40348e95));
3967      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3968      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3969                                  getF32Constant(DAG, 0x3fdef31a));
3970    } else { // LimitFloatPrecision <= 18
3971      // For floating-point precision of 18:
3972      //
3973      //   LogOfMantissa =
3974      //     -2.1072184f +
3975      //       (4.2372794f +
3976      //         (-3.7029485f +
3977      //           (2.2781945f +
3978      //             (-0.87823314f +
3979      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3980      //
3981      // error 0.0000023660568, which is better than 18 bits
3982      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3983                               getF32Constant(DAG, 0xbc91e5ac));
3984      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3985                               getF32Constant(DAG, 0x3e4350aa));
3986      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3987      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3988                               getF32Constant(DAG, 0x3f60d3e3));
3989      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3990      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3991                               getF32Constant(DAG, 0x4011cdf0));
3992      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3993      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3994                               getF32Constant(DAG, 0x406cfd1c));
3995      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3996      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3997                               getF32Constant(DAG, 0x408797cb));
3998      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3999      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4000                                  getF32Constant(DAG, 0x4006dcab));
4001    }
4002
4003    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4004  }
4005
4006  // No special expansion.
4007  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4008}
4009
4010/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4011/// limited-precision mode.
4012static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4013                          const TargetLowering &TLI) {
4014  if (Op.getValueType() == MVT::f32 &&
4015      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4016    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4017
4018    // Get the exponent.
4019    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4020
4021    // Get the significand and build it into a floating-point number with
4022    // exponent of 1.
4023    SDValue X = GetSignificand(DAG, Op1, dl);
4024
4025    // Different possible minimax approximations of significand in
4026    // floating-point for various degrees of accuracy over [1,2].
4027    SDValue Log2ofMantissa;
4028    if (LimitFloatPrecision <= 6) {
4029      // For floating-point precision of 6:
4030      //
4031      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4032      //
4033      // error 0.0049451742, which is more than 7 bits
4034      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4035                               getF32Constant(DAG, 0xbeb08fe0));
4036      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4037                               getF32Constant(DAG, 0x40019463));
4038      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4039      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4040                                   getF32Constant(DAG, 0x3fd6633d));
4041    } else if (LimitFloatPrecision <= 12) {
4042      // For floating-point precision of 12:
4043      //
4044      //   Log2ofMantissa =
4045      //     -2.51285454f +
4046      //       (4.07009056f +
4047      //         (-2.12067489f +
4048      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4049      //
4050      // error 0.0000876136000, which is better than 13 bits
4051      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4052                               getF32Constant(DAG, 0xbda7262e));
4053      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4054                               getF32Constant(DAG, 0x3f25280b));
4055      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4056      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4057                               getF32Constant(DAG, 0x4007b923));
4058      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4059      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4060                               getF32Constant(DAG, 0x40823e2f));
4061      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4062      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4063                                   getF32Constant(DAG, 0x4020d29c));
4064    } else { // LimitFloatPrecision <= 18
4065      // For floating-point precision of 18:
4066      //
4067      //   Log2ofMantissa =
4068      //     -3.0400495f +
4069      //       (6.1129976f +
4070      //         (-5.3420409f +
4071      //           (3.2865683f +
4072      //             (-1.2669343f +
4073      //               (0.27515199f -
4074      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4075      //
4076      // error 0.0000018516, which is better than 18 bits
4077      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4078                               getF32Constant(DAG, 0xbcd2769e));
4079      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4080                               getF32Constant(DAG, 0x3e8ce0b9));
4081      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4082      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4083                               getF32Constant(DAG, 0x3fa22ae7));
4084      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4085      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4086                               getF32Constant(DAG, 0x40525723));
4087      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4088      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4089                               getF32Constant(DAG, 0x40aaf200));
4090      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4091      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4092                               getF32Constant(DAG, 0x40c39dad));
4093      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4094      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4095                                   getF32Constant(DAG, 0x4042902c));
4096    }
4097
4098    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4099  }
4100
4101  // No special expansion.
4102  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4103}
4104
4105/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4106/// limited-precision mode.
4107static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4108                           const TargetLowering &TLI) {
4109  if (Op.getValueType() == MVT::f32 &&
4110      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4111    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4112
4113    // Scale the exponent by log10(2) [0.30102999f].
4114    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4115    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4116                                        getF32Constant(DAG, 0x3e9a209a));
4117
4118    // Get the significand and build it into a floating-point number with
4119    // exponent of 1.
4120    SDValue X = GetSignificand(DAG, Op1, dl);
4121
4122    SDValue Log10ofMantissa;
4123    if (LimitFloatPrecision <= 6) {
4124      // For floating-point precision of 6:
4125      //
4126      //   Log10ofMantissa =
4127      //     -0.50419619f +
4128      //       (0.60948995f - 0.10380950f * x) * x;
4129      //
4130      // error 0.0014886165, which is 6 bits
4131      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4132                               getF32Constant(DAG, 0xbdd49a13));
4133      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4134                               getF32Constant(DAG, 0x3f1c0789));
4135      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4136      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4137                                    getF32Constant(DAG, 0x3f011300));
4138    } else if (LimitFloatPrecision <= 12) {
4139      // For floating-point precision of 12:
4140      //
4141      //   Log10ofMantissa =
4142      //     -0.64831180f +
4143      //       (0.91751397f +
4144      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4145      //
4146      // error 0.00019228036, which is better than 12 bits
4147      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4148                               getF32Constant(DAG, 0x3d431f31));
4149      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4150                               getF32Constant(DAG, 0x3ea21fb2));
4151      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4152      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4153                               getF32Constant(DAG, 0x3f6ae232));
4154      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4155      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4156                                    getF32Constant(DAG, 0x3f25f7c3));
4157    } else { // LimitFloatPrecision <= 18
4158      // For floating-point precision of 18:
4159      //
4160      //   Log10ofMantissa =
4161      //     -0.84299375f +
4162      //       (1.5327582f +
4163      //         (-1.0688956f +
4164      //           (0.49102474f +
4165      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4166      //
4167      // error 0.0000037995730, which is better than 18 bits
4168      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4169                               getF32Constant(DAG, 0x3c5d51ce));
4170      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4171                               getF32Constant(DAG, 0x3e00685a));
4172      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4173      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4174                               getF32Constant(DAG, 0x3efb6798));
4175      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4176      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4177                               getF32Constant(DAG, 0x3f88d192));
4178      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4179      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4180                               getF32Constant(DAG, 0x3fc4316c));
4181      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4182      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4183                                    getF32Constant(DAG, 0x3f57ce70));
4184    }
4185
4186    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4187  }
4188
4189  // No special expansion.
4190  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4191}
4192
4193/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4194/// limited-precision mode.
4195static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4196                          const TargetLowering &TLI) {
4197  if (Op.getValueType() == MVT::f32 &&
4198      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4199    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4200
4201    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4202    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4203    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4204
4205    //   IntegerPartOfX <<= 23;
4206    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4207                                 DAG.getConstant(23, TLI.getPointerTy()));
4208
4209    SDValue TwoToFractionalPartOfX;
4210    if (LimitFloatPrecision <= 6) {
4211      // For floating-point precision of 6:
4212      //
4213      //   TwoToFractionalPartOfX =
4214      //     0.997535578f +
4215      //       (0.735607626f + 0.252464424f * x) * x;
4216      //
4217      // error 0.0144103317, which is 6 bits
4218      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219                               getF32Constant(DAG, 0x3e814304));
4220      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4221                               getF32Constant(DAG, 0x3f3c50c8));
4222      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4223      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4224                                           getF32Constant(DAG, 0x3f7f5e7e));
4225    } else if (LimitFloatPrecision <= 12) {
4226      // For floating-point precision of 12:
4227      //
4228      //   TwoToFractionalPartOfX =
4229      //     0.999892986f +
4230      //       (0.696457318f +
4231      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4232      //
4233      // error 0.000107046256, which is 13 to 14 bits
4234      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4235                               getF32Constant(DAG, 0x3da235e3));
4236      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4237                               getF32Constant(DAG, 0x3e65b8f3));
4238      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4239      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4240                               getF32Constant(DAG, 0x3f324b07));
4241      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4242      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4243                                           getF32Constant(DAG, 0x3f7ff8fd));
4244    } else { // LimitFloatPrecision <= 18
4245      // For floating-point precision of 18:
4246      //
4247      //   TwoToFractionalPartOfX =
4248      //     0.999999982f +
4249      //       (0.693148872f +
4250      //         (0.240227044f +
4251      //           (0.554906021e-1f +
4252      //             (0.961591928e-2f +
4253      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4254      // error 2.47208000*10^(-7), which is better than 18 bits
4255      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4256                               getF32Constant(DAG, 0x3924b03e));
4257      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4258                               getF32Constant(DAG, 0x3ab24b87));
4259      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4260      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4261                               getF32Constant(DAG, 0x3c1d8c17));
4262      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4263      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4264                               getF32Constant(DAG, 0x3d634a1d));
4265      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4266      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4267                               getF32Constant(DAG, 0x3e75fe14));
4268      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4269      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4270                                getF32Constant(DAG, 0x3f317234));
4271      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4272      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4273                                           getF32Constant(DAG, 0x3f800000));
4274    }
4275
4276    // Add the exponent into the result in integer domain.
4277    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4278                              TwoToFractionalPartOfX);
4279    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4280                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4281                                   t13, IntegerPartOfX));
4282  }
4283
4284  // No special expansion.
4285  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4286}
4287
4288/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4289/// limited-precision mode with x == 10.0f.
4290static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4291                         SelectionDAG &DAG, const TargetLowering &TLI) {
4292  bool IsExp10 = false;
4293  if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4294      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4295    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4296      APFloat Ten(10.0f);
4297      IsExp10 = LHSC->isExactlyValue(Ten);
4298    }
4299  }
4300
4301  if (IsExp10) {
4302    // Put the exponent in the right bit position for later addition to the
4303    // final result:
4304    //
4305    //   #define LOG2OF10 3.3219281f
4306    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4307    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4308                             getF32Constant(DAG, 0x40549a78));
4309    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4310
4311    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4312    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4313    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4314
4315    //   IntegerPartOfX <<= 23;
4316    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4317                                 DAG.getConstant(23, TLI.getPointerTy()));
4318
4319    SDValue TwoToFractionalPartOfX;
4320    if (LimitFloatPrecision <= 6) {
4321      // For floating-point precision of 6:
4322      //
4323      //   twoToFractionalPartOfX =
4324      //     0.997535578f +
4325      //       (0.735607626f + 0.252464424f * x) * x;
4326      //
4327      // error 0.0144103317, which is 6 bits
4328      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4329                               getF32Constant(DAG, 0x3e814304));
4330      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4331                               getF32Constant(DAG, 0x3f3c50c8));
4332      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4333      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4334                                           getF32Constant(DAG, 0x3f7f5e7e));
4335    } else if (LimitFloatPrecision <= 12) {
4336      // For floating-point precision of 12:
4337      //
4338      //   TwoToFractionalPartOfX =
4339      //     0.999892986f +
4340      //       (0.696457318f +
4341      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4342      //
4343      // error 0.000107046256, which is 13 to 14 bits
4344      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4345                               getF32Constant(DAG, 0x3da235e3));
4346      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4347                               getF32Constant(DAG, 0x3e65b8f3));
4348      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4349      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4350                               getF32Constant(DAG, 0x3f324b07));
4351      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4352      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4353                                           getF32Constant(DAG, 0x3f7ff8fd));
4354    } else { // LimitFloatPrecision <= 18
4355      // For floating-point precision of 18:
4356      //
4357      //   TwoToFractionalPartOfX =
4358      //     0.999999982f +
4359      //       (0.693148872f +
4360      //         (0.240227044f +
4361      //           (0.554906021e-1f +
4362      //             (0.961591928e-2f +
4363      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4364      // error 2.47208000*10^(-7), which is better than 18 bits
4365      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4366                               getF32Constant(DAG, 0x3924b03e));
4367      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4368                               getF32Constant(DAG, 0x3ab24b87));
4369      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4370      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4371                               getF32Constant(DAG, 0x3c1d8c17));
4372      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4373      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4374                               getF32Constant(DAG, 0x3d634a1d));
4375      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4376      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4377                               getF32Constant(DAG, 0x3e75fe14));
4378      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4379      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4380                                getF32Constant(DAG, 0x3f317234));
4381      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4382      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4383                                           getF32Constant(DAG, 0x3f800000));
4384    }
4385
4386    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4387    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4388                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4389                                   t13, IntegerPartOfX));
4390  }
4391
4392  // No special expansion.
4393  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4394}
4395
4396
4397/// ExpandPowI - Expand a llvm.powi intrinsic.
4398static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4399                          SelectionDAG &DAG) {
4400  // If RHS is a constant, we can expand this out to a multiplication tree,
4401  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4402  // optimizing for size, we only want to do this if the expansion would produce
4403  // a small number of multiplies, otherwise we do the full expansion.
4404  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4405    // Get the exponent as a positive value.
4406    unsigned Val = RHSC->getSExtValue();
4407    if ((int)Val < 0) Val = -Val;
4408
4409    // powi(x, 0) -> 1.0
4410    if (Val == 0)
4411      return DAG.getConstantFP(1.0, LHS.getValueType());
4412
4413    const Function *F = DAG.getMachineFunction().getFunction();
4414    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4415                                         Attribute::OptimizeForSize) ||
4416        // If optimizing for size, don't insert too many multiplies.  This
4417        // inserts up to 5 multiplies.
4418        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4419      // We use the simple binary decomposition method to generate the multiply
4420      // sequence.  There are more optimal ways to do this (for example,
4421      // powi(x,15) generates one more multiply than it should), but this has
4422      // the benefit of being both really simple and much better than a libcall.
4423      SDValue Res;  // Logically starts equal to 1.0
4424      SDValue CurSquare = LHS;
4425      while (Val) {
4426        if (Val & 1) {
4427          if (Res.getNode())
4428            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4429          else
4430            Res = CurSquare;  // 1.0*CurSquare.
4431        }
4432
4433        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4434                                CurSquare, CurSquare);
4435        Val >>= 1;
4436      }
4437
4438      // If the original was negative, invert the result, producing 1/(x*x*x).
4439      if (RHSC->getSExtValue() < 0)
4440        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4441                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4442      return Res;
4443    }
4444  }
4445
4446  // Otherwise, expand to a libcall.
4447  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4448}
4449
4450// getTruncatedArgReg - Find underlying register used for an truncated
4451// argument.
4452static unsigned getTruncatedArgReg(const SDValue &N) {
4453  if (N.getOpcode() != ISD::TRUNCATE)
4454    return 0;
4455
4456  const SDValue &Ext = N.getOperand(0);
4457  if (Ext.getOpcode() == ISD::AssertZext ||
4458      Ext.getOpcode() == ISD::AssertSext) {
4459    const SDValue &CFR = Ext.getOperand(0);
4460    if (CFR.getOpcode() == ISD::CopyFromReg)
4461      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4462    if (CFR.getOpcode() == ISD::TRUNCATE)
4463      return getTruncatedArgReg(CFR);
4464  }
4465  return 0;
4466}
4467
4468/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4469/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4470/// At the end of instruction selection, they will be inserted to the entry BB.
4471bool
4472SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4473                                              int64_t Offset,
4474                                              const SDValue &N) {
4475  const Argument *Arg = dyn_cast<Argument>(V);
4476  if (!Arg)
4477    return false;
4478
4479  MachineFunction &MF = DAG.getMachineFunction();
4480  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4481
4482  // Ignore inlined function arguments here.
4483  DIVariable DV(Variable);
4484  if (DV.isInlinedFnArgument(MF.getFunction()))
4485    return false;
4486
4487  Optional<MachineOperand> Op;
4488  // Some arguments' frame index is recorded during argument lowering.
4489  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4490    Op = MachineOperand::CreateFI(FI);
4491
4492  if (!Op && N.getNode()) {
4493    unsigned Reg;
4494    if (N.getOpcode() == ISD::CopyFromReg)
4495      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4496    else
4497      Reg = getTruncatedArgReg(N);
4498    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4499      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4500      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4501      if (PR)
4502        Reg = PR;
4503    }
4504    if (Reg)
4505      Op = MachineOperand::CreateReg(Reg, false);
4506  }
4507
4508  if (!Op) {
4509    // Check if ValueMap has reg number.
4510    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4511    if (VMI != FuncInfo.ValueMap.end())
4512      Op = MachineOperand::CreateReg(VMI->second, false);
4513  }
4514
4515  if (!Op && N.getNode())
4516    // Check if frame index is available.
4517    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4518      if (FrameIndexSDNode *FINode =
4519          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4520        Op = MachineOperand::CreateFI(FINode->getIndex());
4521
4522  if (!Op)
4523    return false;
4524
4525  // FIXME: This does not handle register-indirect values at offset 0.
4526  bool IsIndirect = Offset != 0;
4527  if (Op->isReg())
4528    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4529                                            TII->get(TargetOpcode::DBG_VALUE),
4530                                            IsIndirect,
4531                                            Op->getReg(), Offset, Variable));
4532  else
4533    FuncInfo.ArgDbgValues.push_back(
4534      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4535          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4536
4537  return true;
4538}
4539
4540// VisualStudio defines setjmp as _setjmp
4541#if defined(_MSC_VER) && defined(setjmp) && \
4542                         !defined(setjmp_undefined_for_msvc)
4543#  pragma push_macro("setjmp")
4544#  undef setjmp
4545#  define setjmp_undefined_for_msvc
4546#endif
4547
4548/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4549/// we want to emit this as a call to a named external function, return the name
4550/// otherwise lower it and return null.
4551const char *
4552SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4553  const TargetLowering *TLI = TM.getTargetLowering();
4554  SDLoc sdl = getCurSDLoc();
4555  DebugLoc dl = getCurDebugLoc();
4556  SDValue Res;
4557
4558  switch (Intrinsic) {
4559  default:
4560    // By default, turn this into a target intrinsic node.
4561    visitTargetIntrinsic(I, Intrinsic);
4562    return 0;
4563  case Intrinsic::vastart:  visitVAStart(I); return 0;
4564  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4565  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4566  case Intrinsic::returnaddress:
4567    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4568                             getValue(I.getArgOperand(0))));
4569    return 0;
4570  case Intrinsic::frameaddress:
4571    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4572                             getValue(I.getArgOperand(0))));
4573    return 0;
4574  case Intrinsic::setjmp:
4575    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4576  case Intrinsic::longjmp:
4577    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4578  case Intrinsic::memcpy: {
4579    // Assert for address < 256 since we support only user defined address
4580    // spaces.
4581    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4582           < 256 &&
4583           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4584           < 256 &&
4585           "Unknown address space");
4586    SDValue Op1 = getValue(I.getArgOperand(0));
4587    SDValue Op2 = getValue(I.getArgOperand(1));
4588    SDValue Op3 = getValue(I.getArgOperand(2));
4589    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4590    if (!Align)
4591      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4592    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4593    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4594                              MachinePointerInfo(I.getArgOperand(0)),
4595                              MachinePointerInfo(I.getArgOperand(1))));
4596    return 0;
4597  }
4598  case Intrinsic::memset: {
4599    // Assert for address < 256 since we support only user defined address
4600    // spaces.
4601    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4602           < 256 &&
4603           "Unknown address space");
4604    SDValue Op1 = getValue(I.getArgOperand(0));
4605    SDValue Op2 = getValue(I.getArgOperand(1));
4606    SDValue Op3 = getValue(I.getArgOperand(2));
4607    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4608    if (!Align)
4609      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4610    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4611    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4612                              MachinePointerInfo(I.getArgOperand(0))));
4613    return 0;
4614  }
4615  case Intrinsic::memmove: {
4616    // Assert for address < 256 since we support only user defined address
4617    // spaces.
4618    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4619           < 256 &&
4620           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4621           < 256 &&
4622           "Unknown address space");
4623    SDValue Op1 = getValue(I.getArgOperand(0));
4624    SDValue Op2 = getValue(I.getArgOperand(1));
4625    SDValue Op3 = getValue(I.getArgOperand(2));
4626    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4627    if (!Align)
4628      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4629    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4630    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4631                               MachinePointerInfo(I.getArgOperand(0)),
4632                               MachinePointerInfo(I.getArgOperand(1))));
4633    return 0;
4634  }
4635  case Intrinsic::dbg_declare: {
4636    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4637    MDNode *Variable = DI.getVariable();
4638    const Value *Address = DI.getAddress();
4639    DIVariable DIVar(Variable);
4640    assert((!DIVar || DIVar.isVariable()) &&
4641      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4642    if (!Address || !DIVar) {
4643      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4644      return 0;
4645    }
4646
4647    // Check if address has undef value.
4648    if (isa<UndefValue>(Address) ||
4649        (Address->use_empty() && !isa<Argument>(Address))) {
4650      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4651      return 0;
4652    }
4653
4654    SDValue &N = NodeMap[Address];
4655    if (!N.getNode() && isa<Argument>(Address))
4656      // Check unused arguments map.
4657      N = UnusedArgNodeMap[Address];
4658    SDDbgValue *SDV;
4659    if (N.getNode()) {
4660      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4661        Address = BCI->getOperand(0);
4662      // Parameters are handled specially.
4663      bool isParameter =
4664        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4665         isa<Argument>(Address));
4666
4667      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4668
4669      if (isParameter && !AI) {
4670        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4671        if (FINode)
4672          // Byval parameter.  We have a frame index at this point.
4673          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4674                                0, dl, SDNodeOrder);
4675        else {
4676          // Address is an argument, so try to emit its dbg value using
4677          // virtual register info from the FuncInfo.ValueMap.
4678          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4679          return 0;
4680        }
4681      } else if (AI)
4682        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4683                              0, dl, SDNodeOrder);
4684      else {
4685        // Can't do anything with other non-AI cases yet.
4686        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4687        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4688        DEBUG(Address->dump());
4689        return 0;
4690      }
4691      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4692    } else {
4693      // If Address is an argument then try to emit its dbg value using
4694      // virtual register info from the FuncInfo.ValueMap.
4695      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4696        // If variable is pinned by a alloca in dominating bb then
4697        // use StaticAllocaMap.
4698        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4699          if (AI->getParent() != DI.getParent()) {
4700            DenseMap<const AllocaInst*, int>::iterator SI =
4701              FuncInfo.StaticAllocaMap.find(AI);
4702            if (SI != FuncInfo.StaticAllocaMap.end()) {
4703              SDV = DAG.getDbgValue(Variable, SI->second,
4704                                    0, dl, SDNodeOrder);
4705              DAG.AddDbgValue(SDV, 0, false);
4706              return 0;
4707            }
4708          }
4709        }
4710        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4711      }
4712    }
4713    return 0;
4714  }
4715  case Intrinsic::dbg_value: {
4716    const DbgValueInst &DI = cast<DbgValueInst>(I);
4717    DIVariable DIVar(DI.getVariable());
4718    assert((!DIVar || DIVar.isVariable()) &&
4719      "Variable in DbgValueInst should be either null or a DIVariable.");
4720    if (!DIVar)
4721      return 0;
4722
4723    MDNode *Variable = DI.getVariable();
4724    uint64_t Offset = DI.getOffset();
4725    const Value *V = DI.getValue();
4726    if (!V)
4727      return 0;
4728
4729    SDDbgValue *SDV;
4730    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4731      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4732      DAG.AddDbgValue(SDV, 0, false);
4733    } else {
4734      // Do not use getValue() in here; we don't want to generate code at
4735      // this point if it hasn't been done yet.
4736      SDValue N = NodeMap[V];
4737      if (!N.getNode() && isa<Argument>(V))
4738        // Check unused arguments map.
4739        N = UnusedArgNodeMap[V];
4740      if (N.getNode()) {
4741        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4742          SDV = DAG.getDbgValue(Variable, N.getNode(),
4743                                N.getResNo(), Offset, dl, SDNodeOrder);
4744          DAG.AddDbgValue(SDV, N.getNode(), false);
4745        }
4746      } else if (!V->use_empty() ) {
4747        // Do not call getValue(V) yet, as we don't want to generate code.
4748        // Remember it for later.
4749        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4750        DanglingDebugInfoMap[V] = DDI;
4751      } else {
4752        // We may expand this to cover more cases.  One case where we have no
4753        // data available is an unreferenced parameter.
4754        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4755      }
4756    }
4757
4758    // Build a debug info table entry.
4759    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4760      V = BCI->getOperand(0);
4761    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4762    // Don't handle byval struct arguments or VLAs, for example.
4763    if (!AI) {
4764      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4765      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4766      return 0;
4767    }
4768    DenseMap<const AllocaInst*, int>::iterator SI =
4769      FuncInfo.StaticAllocaMap.find(AI);
4770    if (SI == FuncInfo.StaticAllocaMap.end())
4771      return 0; // VLAs.
4772    int FI = SI->second;
4773
4774    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4775    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4776      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4777    return 0;
4778  }
4779
4780  case Intrinsic::eh_typeid_for: {
4781    // Find the type id for the given typeinfo.
4782    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4783    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4784    Res = DAG.getConstant(TypeID, MVT::i32);
4785    setValue(&I, Res);
4786    return 0;
4787  }
4788
4789  case Intrinsic::eh_return_i32:
4790  case Intrinsic::eh_return_i64:
4791    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4792    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4793                            MVT::Other,
4794                            getControlRoot(),
4795                            getValue(I.getArgOperand(0)),
4796                            getValue(I.getArgOperand(1))));
4797    return 0;
4798  case Intrinsic::eh_unwind_init:
4799    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4800    return 0;
4801  case Intrinsic::eh_dwarf_cfa: {
4802    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4803                                        TLI->getPointerTy());
4804    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4805                                 CfaArg.getValueType(),
4806                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4807                                             CfaArg.getValueType()),
4808                                 CfaArg);
4809    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4810                             TLI->getPointerTy(),
4811                             DAG.getConstant(0, TLI->getPointerTy()));
4812    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4813                             FA, Offset));
4814    return 0;
4815  }
4816  case Intrinsic::eh_sjlj_callsite: {
4817    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4818    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4819    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4820    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4821
4822    MMI.setCurrentCallSite(CI->getZExtValue());
4823    return 0;
4824  }
4825  case Intrinsic::eh_sjlj_functioncontext: {
4826    // Get and store the index of the function context.
4827    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4828    AllocaInst *FnCtx =
4829      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4830    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4831    MFI->setFunctionContextIndex(FI);
4832    return 0;
4833  }
4834  case Intrinsic::eh_sjlj_setjmp: {
4835    SDValue Ops[2];
4836    Ops[0] = getRoot();
4837    Ops[1] = getValue(I.getArgOperand(0));
4838    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4839                             DAG.getVTList(MVT::i32, MVT::Other),
4840                             Ops, 2);
4841    setValue(&I, Op.getValue(0));
4842    DAG.setRoot(Op.getValue(1));
4843    return 0;
4844  }
4845  case Intrinsic::eh_sjlj_longjmp: {
4846    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4847                            getRoot(), getValue(I.getArgOperand(0))));
4848    return 0;
4849  }
4850
4851  case Intrinsic::x86_mmx_pslli_w:
4852  case Intrinsic::x86_mmx_pslli_d:
4853  case Intrinsic::x86_mmx_pslli_q:
4854  case Intrinsic::x86_mmx_psrli_w:
4855  case Intrinsic::x86_mmx_psrli_d:
4856  case Intrinsic::x86_mmx_psrli_q:
4857  case Intrinsic::x86_mmx_psrai_w:
4858  case Intrinsic::x86_mmx_psrai_d: {
4859    SDValue ShAmt = getValue(I.getArgOperand(1));
4860    if (isa<ConstantSDNode>(ShAmt)) {
4861      visitTargetIntrinsic(I, Intrinsic);
4862      return 0;
4863    }
4864    unsigned NewIntrinsic = 0;
4865    EVT ShAmtVT = MVT::v2i32;
4866    switch (Intrinsic) {
4867    case Intrinsic::x86_mmx_pslli_w:
4868      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4869      break;
4870    case Intrinsic::x86_mmx_pslli_d:
4871      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4872      break;
4873    case Intrinsic::x86_mmx_pslli_q:
4874      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4875      break;
4876    case Intrinsic::x86_mmx_psrli_w:
4877      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4878      break;
4879    case Intrinsic::x86_mmx_psrli_d:
4880      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4881      break;
4882    case Intrinsic::x86_mmx_psrli_q:
4883      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4884      break;
4885    case Intrinsic::x86_mmx_psrai_w:
4886      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4887      break;
4888    case Intrinsic::x86_mmx_psrai_d:
4889      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4890      break;
4891    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4892    }
4893
4894    // The vector shift intrinsics with scalars uses 32b shift amounts but
4895    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4896    // to be zero.
4897    // We must do this early because v2i32 is not a legal type.
4898    SDValue ShOps[2];
4899    ShOps[0] = ShAmt;
4900    ShOps[1] = DAG.getConstant(0, MVT::i32);
4901    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4902    EVT DestVT = TLI->getValueType(I.getType());
4903    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4904    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4905                       DAG.getConstant(NewIntrinsic, MVT::i32),
4906                       getValue(I.getArgOperand(0)), ShAmt);
4907    setValue(&I, Res);
4908    return 0;
4909  }
4910  case Intrinsic::x86_avx_vinsertf128_pd_256:
4911  case Intrinsic::x86_avx_vinsertf128_ps_256:
4912  case Intrinsic::x86_avx_vinsertf128_si_256:
4913  case Intrinsic::x86_avx2_vinserti128: {
4914    EVT DestVT = TLI->getValueType(I.getType());
4915    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4916    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4917                   ElVT.getVectorNumElements();
4918    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4919                      getValue(I.getArgOperand(0)),
4920                      getValue(I.getArgOperand(1)),
4921                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4922    setValue(&I, Res);
4923    return 0;
4924  }
4925  case Intrinsic::x86_avx_vextractf128_pd_256:
4926  case Intrinsic::x86_avx_vextractf128_ps_256:
4927  case Intrinsic::x86_avx_vextractf128_si_256:
4928  case Intrinsic::x86_avx2_vextracti128: {
4929    EVT DestVT = TLI->getValueType(I.getType());
4930    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4931                   DestVT.getVectorNumElements();
4932    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4933                      getValue(I.getArgOperand(0)),
4934                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4935    setValue(&I, Res);
4936    return 0;
4937  }
4938  case Intrinsic::convertff:
4939  case Intrinsic::convertfsi:
4940  case Intrinsic::convertfui:
4941  case Intrinsic::convertsif:
4942  case Intrinsic::convertuif:
4943  case Intrinsic::convertss:
4944  case Intrinsic::convertsu:
4945  case Intrinsic::convertus:
4946  case Intrinsic::convertuu: {
4947    ISD::CvtCode Code = ISD::CVT_INVALID;
4948    switch (Intrinsic) {
4949    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4950    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4951    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4952    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4953    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4954    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4955    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4956    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4957    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4958    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4959    }
4960    EVT DestVT = TLI->getValueType(I.getType());
4961    const Value *Op1 = I.getArgOperand(0);
4962    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4963                               DAG.getValueType(DestVT),
4964                               DAG.getValueType(getValue(Op1).getValueType()),
4965                               getValue(I.getArgOperand(1)),
4966                               getValue(I.getArgOperand(2)),
4967                               Code);
4968    setValue(&I, Res);
4969    return 0;
4970  }
4971  case Intrinsic::powi:
4972    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4973                            getValue(I.getArgOperand(1)), DAG));
4974    return 0;
4975  case Intrinsic::log:
4976    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4977    return 0;
4978  case Intrinsic::log2:
4979    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4980    return 0;
4981  case Intrinsic::log10:
4982    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4983    return 0;
4984  case Intrinsic::exp:
4985    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4986    return 0;
4987  case Intrinsic::exp2:
4988    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4989    return 0;
4990  case Intrinsic::pow:
4991    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4992                           getValue(I.getArgOperand(1)), DAG, *TLI));
4993    return 0;
4994  case Intrinsic::sqrt:
4995  case Intrinsic::fabs:
4996  case Intrinsic::sin:
4997  case Intrinsic::cos:
4998  case Intrinsic::floor:
4999  case Intrinsic::ceil:
5000  case Intrinsic::trunc:
5001  case Intrinsic::rint:
5002  case Intrinsic::nearbyint:
5003  case Intrinsic::round: {
5004    unsigned Opcode;
5005    switch (Intrinsic) {
5006    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5007    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5008    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5009    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5010    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5011    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5012    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5013    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5014    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5015    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5016    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5017    }
5018
5019    setValue(&I, DAG.getNode(Opcode, sdl,
5020                             getValue(I.getArgOperand(0)).getValueType(),
5021                             getValue(I.getArgOperand(0))));
5022    return 0;
5023  }
5024  case Intrinsic::copysign:
5025    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5026                             getValue(I.getArgOperand(0)).getValueType(),
5027                             getValue(I.getArgOperand(0)),
5028                             getValue(I.getArgOperand(1))));
5029    return 0;
5030  case Intrinsic::fma:
5031    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5032                             getValue(I.getArgOperand(0)).getValueType(),
5033                             getValue(I.getArgOperand(0)),
5034                             getValue(I.getArgOperand(1)),
5035                             getValue(I.getArgOperand(2))));
5036    return 0;
5037  case Intrinsic::fmuladd: {
5038    EVT VT = TLI->getValueType(I.getType());
5039    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5040        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5041      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5042                               getValue(I.getArgOperand(0)).getValueType(),
5043                               getValue(I.getArgOperand(0)),
5044                               getValue(I.getArgOperand(1)),
5045                               getValue(I.getArgOperand(2))));
5046    } else {
5047      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5048                                getValue(I.getArgOperand(0)).getValueType(),
5049                                getValue(I.getArgOperand(0)),
5050                                getValue(I.getArgOperand(1)));
5051      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5052                                getValue(I.getArgOperand(0)).getValueType(),
5053                                Mul,
5054                                getValue(I.getArgOperand(2)));
5055      setValue(&I, Add);
5056    }
5057    return 0;
5058  }
5059  case Intrinsic::convert_to_fp16:
5060    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5061                             MVT::i16, getValue(I.getArgOperand(0))));
5062    return 0;
5063  case Intrinsic::convert_from_fp16:
5064    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5065                             MVT::f32, getValue(I.getArgOperand(0))));
5066    return 0;
5067  case Intrinsic::pcmarker: {
5068    SDValue Tmp = getValue(I.getArgOperand(0));
5069    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5070    return 0;
5071  }
5072  case Intrinsic::readcyclecounter: {
5073    SDValue Op = getRoot();
5074    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5075                      DAG.getVTList(MVT::i64, MVT::Other),
5076                      &Op, 1);
5077    setValue(&I, Res);
5078    DAG.setRoot(Res.getValue(1));
5079    return 0;
5080  }
5081  case Intrinsic::bswap:
5082    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5083                             getValue(I.getArgOperand(0)).getValueType(),
5084                             getValue(I.getArgOperand(0))));
5085    return 0;
5086  case Intrinsic::cttz: {
5087    SDValue Arg = getValue(I.getArgOperand(0));
5088    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5089    EVT Ty = Arg.getValueType();
5090    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5091                             sdl, Ty, Arg));
5092    return 0;
5093  }
5094  case Intrinsic::ctlz: {
5095    SDValue Arg = getValue(I.getArgOperand(0));
5096    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5097    EVT Ty = Arg.getValueType();
5098    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5099                             sdl, Ty, Arg));
5100    return 0;
5101  }
5102  case Intrinsic::ctpop: {
5103    SDValue Arg = getValue(I.getArgOperand(0));
5104    EVT Ty = Arg.getValueType();
5105    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5106    return 0;
5107  }
5108  case Intrinsic::stacksave: {
5109    SDValue Op = getRoot();
5110    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5111                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5112    setValue(&I, Res);
5113    DAG.setRoot(Res.getValue(1));
5114    return 0;
5115  }
5116  case Intrinsic::stackrestore: {
5117    Res = getValue(I.getArgOperand(0));
5118    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5119    return 0;
5120  }
5121  case Intrinsic::stackprotector: {
5122    // Emit code into the DAG to store the stack guard onto the stack.
5123    MachineFunction &MF = DAG.getMachineFunction();
5124    MachineFrameInfo *MFI = MF.getFrameInfo();
5125    EVT PtrTy = TLI->getPointerTy();
5126
5127    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5128    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5129
5130    int FI = FuncInfo.StaticAllocaMap[Slot];
5131    MFI->setStackProtectorIndex(FI);
5132
5133    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5134
5135    // Store the stack protector onto the stack.
5136    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5137                       MachinePointerInfo::getFixedStack(FI),
5138                       true, false, 0);
5139    setValue(&I, Res);
5140    DAG.setRoot(Res);
5141    return 0;
5142  }
5143  case Intrinsic::objectsize: {
5144    // If we don't know by now, we're never going to know.
5145    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5146
5147    assert(CI && "Non-constant type in __builtin_object_size?");
5148
5149    SDValue Arg = getValue(I.getCalledValue());
5150    EVT Ty = Arg.getValueType();
5151
5152    if (CI->isZero())
5153      Res = DAG.getConstant(-1ULL, Ty);
5154    else
5155      Res = DAG.getConstant(0, Ty);
5156
5157    setValue(&I, Res);
5158    return 0;
5159  }
5160  case Intrinsic::annotation:
5161  case Intrinsic::ptr_annotation:
5162    // Drop the intrinsic, but forward the value
5163    setValue(&I, getValue(I.getOperand(0)));
5164    return 0;
5165  case Intrinsic::var_annotation:
5166    // Discard annotate attributes
5167    return 0;
5168
5169  case Intrinsic::init_trampoline: {
5170    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5171
5172    SDValue Ops[6];
5173    Ops[0] = getRoot();
5174    Ops[1] = getValue(I.getArgOperand(0));
5175    Ops[2] = getValue(I.getArgOperand(1));
5176    Ops[3] = getValue(I.getArgOperand(2));
5177    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5178    Ops[5] = DAG.getSrcValue(F);
5179
5180    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5181
5182    DAG.setRoot(Res);
5183    return 0;
5184  }
5185  case Intrinsic::adjust_trampoline: {
5186    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5187                             TLI->getPointerTy(),
5188                             getValue(I.getArgOperand(0))));
5189    return 0;
5190  }
5191  case Intrinsic::gcroot:
5192    if (GFI) {
5193      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5194      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5195
5196      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5197      GFI->addStackRoot(FI->getIndex(), TypeMap);
5198    }
5199    return 0;
5200  case Intrinsic::gcread:
5201  case Intrinsic::gcwrite:
5202    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5203  case Intrinsic::flt_rounds:
5204    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5205    return 0;
5206
5207  case Intrinsic::expect: {
5208    // Just replace __builtin_expect(exp, c) with EXP.
5209    setValue(&I, getValue(I.getArgOperand(0)));
5210    return 0;
5211  }
5212
5213  case Intrinsic::debugtrap:
5214  case Intrinsic::trap: {
5215    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5216    if (TrapFuncName.empty()) {
5217      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5218        ISD::TRAP : ISD::DEBUGTRAP;
5219      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5220      return 0;
5221    }
5222    TargetLowering::ArgListTy Args;
5223    TargetLowering::
5224    CallLoweringInfo CLI(getRoot(), I.getType(),
5225                 false, false, false, false, 0, CallingConv::C,
5226                 /*isTailCall=*/false,
5227                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5228                 DAG.getExternalSymbol(TrapFuncName.data(),
5229                                       TLI->getPointerTy()),
5230                 Args, DAG, sdl);
5231    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5232    DAG.setRoot(Result.second);
5233    return 0;
5234  }
5235
5236  case Intrinsic::uadd_with_overflow:
5237  case Intrinsic::sadd_with_overflow:
5238  case Intrinsic::usub_with_overflow:
5239  case Intrinsic::ssub_with_overflow:
5240  case Intrinsic::umul_with_overflow:
5241  case Intrinsic::smul_with_overflow: {
5242    ISD::NodeType Op;
5243    switch (Intrinsic) {
5244    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5245    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5246    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5247    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5248    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5249    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5250    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5251    }
5252    SDValue Op1 = getValue(I.getArgOperand(0));
5253    SDValue Op2 = getValue(I.getArgOperand(1));
5254
5255    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5256    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5257    return 0;
5258  }
5259  case Intrinsic::prefetch: {
5260    SDValue Ops[5];
5261    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5262    Ops[0] = getRoot();
5263    Ops[1] = getValue(I.getArgOperand(0));
5264    Ops[2] = getValue(I.getArgOperand(1));
5265    Ops[3] = getValue(I.getArgOperand(2));
5266    Ops[4] = getValue(I.getArgOperand(3));
5267    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5268                                        DAG.getVTList(MVT::Other),
5269                                        &Ops[0], 5,
5270                                        EVT::getIntegerVT(*Context, 8),
5271                                        MachinePointerInfo(I.getArgOperand(0)),
5272                                        0, /* align */
5273                                        false, /* volatile */
5274                                        rw==0, /* read */
5275                                        rw==1)); /* write */
5276    return 0;
5277  }
5278  case Intrinsic::lifetime_start:
5279  case Intrinsic::lifetime_end: {
5280    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5281    // Stack coloring is not enabled in O0, discard region information.
5282    if (TM.getOptLevel() == CodeGenOpt::None)
5283      return 0;
5284
5285    SmallVector<Value *, 4> Allocas;
5286    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5287
5288    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5289           E = Allocas.end(); Object != E; ++Object) {
5290      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5291
5292      // Could not find an Alloca.
5293      if (!LifetimeObject)
5294        continue;
5295
5296      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5297
5298      SDValue Ops[2];
5299      Ops[0] = getRoot();
5300      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5301      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5302
5303      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5304      DAG.setRoot(Res);
5305    }
5306    return 0;
5307  }
5308  case Intrinsic::invariant_start:
5309    // Discard region information.
5310    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5311    return 0;
5312  case Intrinsic::invariant_end:
5313    // Discard region information.
5314    return 0;
5315  case Intrinsic::stackprotectorcheck: {
5316    // Do not actually emit anything for this basic block. Instead we initialize
5317    // the stack protector descriptor and export the guard variable so we can
5318    // access it in FinishBasicBlock.
5319    const BasicBlock *BB = I.getParent();
5320    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5321    ExportFromCurrentBlock(SPDescriptor.getGuard());
5322
5323    // Flush our exports since we are going to process a terminator.
5324    (void)getControlRoot();
5325    return 0;
5326  }
5327  case Intrinsic::donothing:
5328    // ignore
5329    return 0;
5330  case Intrinsic::experimental_stackmap: {
5331    visitStackmap(I);
5332    return 0;
5333  }
5334  case Intrinsic::experimental_patchpoint_void:
5335  case Intrinsic::experimental_patchpoint_i64: {
5336    visitPatchpoint(I);
5337    return 0;
5338  }
5339  }
5340}
5341
5342void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5343                                      bool isTailCall,
5344                                      MachineBasicBlock *LandingPad) {
5345  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5346  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5347  Type *RetTy = FTy->getReturnType();
5348  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5349  MCSymbol *BeginLabel = 0;
5350
5351  TargetLowering::ArgListTy Args;
5352  TargetLowering::ArgListEntry Entry;
5353  Args.reserve(CS.arg_size());
5354
5355  // Check whether the function can return without sret-demotion.
5356  SmallVector<ISD::OutputArg, 4> Outs;
5357  const TargetLowering *TLI = TM.getTargetLowering();
5358  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5359
5360  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5361                                            DAG.getMachineFunction(),
5362                                            FTy->isVarArg(), Outs,
5363                                            FTy->getContext());
5364
5365  SDValue DemoteStackSlot;
5366  int DemoteStackIdx = -100;
5367
5368  if (!CanLowerReturn) {
5369    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5370                      FTy->getReturnType());
5371    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5372                      FTy->getReturnType());
5373    MachineFunction &MF = DAG.getMachineFunction();
5374    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5375    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5376
5377    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5378    Entry.Node = DemoteStackSlot;
5379    Entry.Ty = StackSlotPtrType;
5380    Entry.isSExt = false;
5381    Entry.isZExt = false;
5382    Entry.isInReg = false;
5383    Entry.isSRet = true;
5384    Entry.isNest = false;
5385    Entry.isByVal = false;
5386    Entry.isReturned = false;
5387    Entry.Alignment = Align;
5388    Args.push_back(Entry);
5389    RetTy = Type::getVoidTy(FTy->getContext());
5390  }
5391
5392  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5393       i != e; ++i) {
5394    const Value *V = *i;
5395
5396    // Skip empty types
5397    if (V->getType()->isEmptyTy())
5398      continue;
5399
5400    SDValue ArgNode = getValue(V);
5401    Entry.Node = ArgNode; Entry.Ty = V->getType();
5402
5403    // Skip the first return-type Attribute to get to params.
5404    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5405    Args.push_back(Entry);
5406  }
5407
5408  if (LandingPad) {
5409    // Insert a label before the invoke call to mark the try range.  This can be
5410    // used to detect deletion of the invoke via the MachineModuleInfo.
5411    BeginLabel = MMI.getContext().CreateTempSymbol();
5412
5413    // For SjLj, keep track of which landing pads go with which invokes
5414    // so as to maintain the ordering of pads in the LSDA.
5415    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5416    if (CallSiteIndex) {
5417      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5418      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5419
5420      // Now that the call site is handled, stop tracking it.
5421      MMI.setCurrentCallSite(0);
5422    }
5423
5424    // Both PendingLoads and PendingExports must be flushed here;
5425    // this call might not return.
5426    (void)getRoot();
5427    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5428  }
5429
5430  // Check if target-independent constraints permit a tail call here.
5431  // Target-dependent constraints are checked within TLI->LowerCallTo.
5432  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5433    isTailCall = false;
5434
5435  TargetLowering::
5436  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5437                       getCurSDLoc(), CS);
5438  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5439  assert((isTailCall || Result.second.getNode()) &&
5440         "Non-null chain expected with non-tail call!");
5441  assert((Result.second.getNode() || !Result.first.getNode()) &&
5442         "Null value expected with tail call!");
5443  if (Result.first.getNode()) {
5444    setValue(CS.getInstruction(), Result.first);
5445  } else if (!CanLowerReturn && Result.second.getNode()) {
5446    // The instruction result is the result of loading from the
5447    // hidden sret parameter.
5448    SmallVector<EVT, 1> PVTs;
5449    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5450
5451    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5452    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5453    EVT PtrVT = PVTs[0];
5454
5455    SmallVector<EVT, 4> RetTys;
5456    SmallVector<uint64_t, 4> Offsets;
5457    RetTy = FTy->getReturnType();
5458    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5459
5460    unsigned NumValues = RetTys.size();
5461    SmallVector<SDValue, 4> Values(NumValues);
5462    SmallVector<SDValue, 4> Chains(NumValues);
5463
5464    for (unsigned i = 0; i < NumValues; ++i) {
5465      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5466                                DemoteStackSlot,
5467                                DAG.getConstant(Offsets[i], PtrVT));
5468      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5469                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5470                              false, false, false, 1);
5471      Values[i] = L;
5472      Chains[i] = L.getValue(1);
5473    }
5474
5475    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5476                                MVT::Other, &Chains[0], NumValues);
5477    PendingLoads.push_back(Chain);
5478
5479    setValue(CS.getInstruction(),
5480             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5481                         DAG.getVTList(&RetTys[0], RetTys.size()),
5482                         &Values[0], Values.size()));
5483  }
5484
5485  if (!Result.second.getNode()) {
5486    // As a special case, a null chain means that a tail call has been emitted
5487    // and the DAG root is already updated.
5488    HasTailCall = true;
5489
5490    // Since there's no actual continuation from this block, nothing can be
5491    // relying on us setting vregs for them.
5492    PendingExports.clear();
5493  } else {
5494    DAG.setRoot(Result.second);
5495  }
5496
5497  if (LandingPad) {
5498    // Insert a label at the end of the invoke call to mark the try range.  This
5499    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5500    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5501    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5502
5503    // Inform MachineModuleInfo of range.
5504    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5505  }
5506}
5507
5508/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5509/// value is equal or not-equal to zero.
5510static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5511  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5512       UI != E; ++UI) {
5513    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5514      if (IC->isEquality())
5515        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5516          if (C->isNullValue())
5517            continue;
5518    // Unknown instruction.
5519    return false;
5520  }
5521  return true;
5522}
5523
5524static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5525                             Type *LoadTy,
5526                             SelectionDAGBuilder &Builder) {
5527
5528  // Check to see if this load can be trivially constant folded, e.g. if the
5529  // input is from a string literal.
5530  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5531    // Cast pointer to the type we really want to load.
5532    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5533                                         PointerType::getUnqual(LoadTy));
5534
5535    if (const Constant *LoadCst =
5536          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5537                                       Builder.TD))
5538      return Builder.getValue(LoadCst);
5539  }
5540
5541  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5542  // still constant memory, the input chain can be the entry node.
5543  SDValue Root;
5544  bool ConstantMemory = false;
5545
5546  // Do not serialize (non-volatile) loads of constant memory with anything.
5547  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5548    Root = Builder.DAG.getEntryNode();
5549    ConstantMemory = true;
5550  } else {
5551    // Do not serialize non-volatile loads against each other.
5552    Root = Builder.DAG.getRoot();
5553  }
5554
5555  SDValue Ptr = Builder.getValue(PtrVal);
5556  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5557                                        Ptr, MachinePointerInfo(PtrVal),
5558                                        false /*volatile*/,
5559                                        false /*nontemporal*/,
5560                                        false /*isinvariant*/, 1 /* align=1 */);
5561
5562  if (!ConstantMemory)
5563    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5564  return LoadVal;
5565}
5566
5567/// processIntegerCallValue - Record the value for an instruction that
5568/// produces an integer result, converting the type where necessary.
5569void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5570                                                  SDValue Value,
5571                                                  bool IsSigned) {
5572  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5573  if (IsSigned)
5574    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5575  else
5576    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5577  setValue(&I, Value);
5578}
5579
5580/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5581/// If so, return true and lower it, otherwise return false and it will be
5582/// lowered like a normal call.
5583bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5584  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5585  if (I.getNumArgOperands() != 3)
5586    return false;
5587
5588  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5589  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5590      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5591      !I.getType()->isIntegerTy())
5592    return false;
5593
5594  const Value *Size = I.getArgOperand(2);
5595  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5596  if (CSize && CSize->getZExtValue() == 0) {
5597    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5598    setValue(&I, DAG.getConstant(0, CallVT));
5599    return true;
5600  }
5601
5602  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5603  std::pair<SDValue, SDValue> Res =
5604    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5605                                getValue(LHS), getValue(RHS), getValue(Size),
5606                                MachinePointerInfo(LHS),
5607                                MachinePointerInfo(RHS));
5608  if (Res.first.getNode()) {
5609    processIntegerCallValue(I, Res.first, true);
5610    PendingLoads.push_back(Res.second);
5611    return true;
5612  }
5613
5614  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5615  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5616  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5617    bool ActuallyDoIt = true;
5618    MVT LoadVT;
5619    Type *LoadTy;
5620    switch (CSize->getZExtValue()) {
5621    default:
5622      LoadVT = MVT::Other;
5623      LoadTy = 0;
5624      ActuallyDoIt = false;
5625      break;
5626    case 2:
5627      LoadVT = MVT::i16;
5628      LoadTy = Type::getInt16Ty(CSize->getContext());
5629      break;
5630    case 4:
5631      LoadVT = MVT::i32;
5632      LoadTy = Type::getInt32Ty(CSize->getContext());
5633      break;
5634    case 8:
5635      LoadVT = MVT::i64;
5636      LoadTy = Type::getInt64Ty(CSize->getContext());
5637      break;
5638        /*
5639    case 16:
5640      LoadVT = MVT::v4i32;
5641      LoadTy = Type::getInt32Ty(CSize->getContext());
5642      LoadTy = VectorType::get(LoadTy, 4);
5643      break;
5644         */
5645    }
5646
5647    // This turns into unaligned loads.  We only do this if the target natively
5648    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5649    // we'll only produce a small number of byte loads.
5650
5651    // Require that we can find a legal MVT, and only do this if the target
5652    // supports unaligned loads of that type.  Expanding into byte loads would
5653    // bloat the code.
5654    const TargetLowering *TLI = TM.getTargetLowering();
5655    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5656      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5657      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5658      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5659        ActuallyDoIt = false;
5660    }
5661
5662    if (ActuallyDoIt) {
5663      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5664      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5665
5666      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5667                                 ISD::SETNE);
5668      processIntegerCallValue(I, Res, false);
5669      return true;
5670    }
5671  }
5672
5673
5674  return false;
5675}
5676
5677/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5678/// form.  If so, return true and lower it, otherwise return false and it
5679/// will be lowered like a normal call.
5680bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5681  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5682  if (I.getNumArgOperands() != 3)
5683    return false;
5684
5685  const Value *Src = I.getArgOperand(0);
5686  const Value *Char = I.getArgOperand(1);
5687  const Value *Length = I.getArgOperand(2);
5688  if (!Src->getType()->isPointerTy() ||
5689      !Char->getType()->isIntegerTy() ||
5690      !Length->getType()->isIntegerTy() ||
5691      !I.getType()->isPointerTy())
5692    return false;
5693
5694  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5695  std::pair<SDValue, SDValue> Res =
5696    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5697                                getValue(Src), getValue(Char), getValue(Length),
5698                                MachinePointerInfo(Src));
5699  if (Res.first.getNode()) {
5700    setValue(&I, Res.first);
5701    PendingLoads.push_back(Res.second);
5702    return true;
5703  }
5704
5705  return false;
5706}
5707
5708/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5709/// optimized form.  If so, return true and lower it, otherwise return false
5710/// and it will be lowered like a normal call.
5711bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5712  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5713  if (I.getNumArgOperands() != 2)
5714    return false;
5715
5716  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5717  if (!Arg0->getType()->isPointerTy() ||
5718      !Arg1->getType()->isPointerTy() ||
5719      !I.getType()->isPointerTy())
5720    return false;
5721
5722  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5723  std::pair<SDValue, SDValue> Res =
5724    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5725                                getValue(Arg0), getValue(Arg1),
5726                                MachinePointerInfo(Arg0),
5727                                MachinePointerInfo(Arg1), isStpcpy);
5728  if (Res.first.getNode()) {
5729    setValue(&I, Res.first);
5730    DAG.setRoot(Res.second);
5731    return true;
5732  }
5733
5734  return false;
5735}
5736
5737/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5738/// If so, return true and lower it, otherwise return false and it will be
5739/// lowered like a normal call.
5740bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5741  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5742  if (I.getNumArgOperands() != 2)
5743    return false;
5744
5745  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5746  if (!Arg0->getType()->isPointerTy() ||
5747      !Arg1->getType()->isPointerTy() ||
5748      !I.getType()->isIntegerTy())
5749    return false;
5750
5751  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5752  std::pair<SDValue, SDValue> Res =
5753    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5754                                getValue(Arg0), getValue(Arg1),
5755                                MachinePointerInfo(Arg0),
5756                                MachinePointerInfo(Arg1));
5757  if (Res.first.getNode()) {
5758    processIntegerCallValue(I, Res.first, true);
5759    PendingLoads.push_back(Res.second);
5760    return true;
5761  }
5762
5763  return false;
5764}
5765
5766/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5767/// form.  If so, return true and lower it, otherwise return false and it
5768/// will be lowered like a normal call.
5769bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5770  // Verify that the prototype makes sense.  size_t strlen(char *)
5771  if (I.getNumArgOperands() != 1)
5772    return false;
5773
5774  const Value *Arg0 = I.getArgOperand(0);
5775  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5776    return false;
5777
5778  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5779  std::pair<SDValue, SDValue> Res =
5780    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5781                                getValue(Arg0), MachinePointerInfo(Arg0));
5782  if (Res.first.getNode()) {
5783    processIntegerCallValue(I, Res.first, false);
5784    PendingLoads.push_back(Res.second);
5785    return true;
5786  }
5787
5788  return false;
5789}
5790
5791/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5792/// form.  If so, return true and lower it, otherwise return false and it
5793/// will be lowered like a normal call.
5794bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5795  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5796  if (I.getNumArgOperands() != 2)
5797    return false;
5798
5799  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5800  if (!Arg0->getType()->isPointerTy() ||
5801      !Arg1->getType()->isIntegerTy() ||
5802      !I.getType()->isIntegerTy())
5803    return false;
5804
5805  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5806  std::pair<SDValue, SDValue> Res =
5807    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5808                                 getValue(Arg0), getValue(Arg1),
5809                                 MachinePointerInfo(Arg0));
5810  if (Res.first.getNode()) {
5811    processIntegerCallValue(I, Res.first, false);
5812    PendingLoads.push_back(Res.second);
5813    return true;
5814  }
5815
5816  return false;
5817}
5818
5819/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5820/// operation (as expected), translate it to an SDNode with the specified opcode
5821/// and return true.
5822bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5823                                              unsigned Opcode) {
5824  // Sanity check that it really is a unary floating-point call.
5825  if (I.getNumArgOperands() != 1 ||
5826      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5827      I.getType() != I.getArgOperand(0)->getType() ||
5828      !I.onlyReadsMemory())
5829    return false;
5830
5831  SDValue Tmp = getValue(I.getArgOperand(0));
5832  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5833  return true;
5834}
5835
5836void SelectionDAGBuilder::visitCall(const CallInst &I) {
5837  // Handle inline assembly differently.
5838  if (isa<InlineAsm>(I.getCalledValue())) {
5839    visitInlineAsm(&I);
5840    return;
5841  }
5842
5843  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5844  ComputeUsesVAFloatArgument(I, &MMI);
5845
5846  const char *RenameFn = 0;
5847  if (Function *F = I.getCalledFunction()) {
5848    if (F->isDeclaration()) {
5849      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5850        if (unsigned IID = II->getIntrinsicID(F)) {
5851          RenameFn = visitIntrinsicCall(I, IID);
5852          if (!RenameFn)
5853            return;
5854        }
5855      }
5856      if (unsigned IID = F->getIntrinsicID()) {
5857        RenameFn = visitIntrinsicCall(I, IID);
5858        if (!RenameFn)
5859          return;
5860      }
5861    }
5862
5863    // Check for well-known libc/libm calls.  If the function is internal, it
5864    // can't be a library call.
5865    LibFunc::Func Func;
5866    if (!F->hasLocalLinkage() && F->hasName() &&
5867        LibInfo->getLibFunc(F->getName(), Func) &&
5868        LibInfo->hasOptimizedCodeGen(Func)) {
5869      switch (Func) {
5870      default: break;
5871      case LibFunc::copysign:
5872      case LibFunc::copysignf:
5873      case LibFunc::copysignl:
5874        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5875            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5876            I.getType() == I.getArgOperand(0)->getType() &&
5877            I.getType() == I.getArgOperand(1)->getType() &&
5878            I.onlyReadsMemory()) {
5879          SDValue LHS = getValue(I.getArgOperand(0));
5880          SDValue RHS = getValue(I.getArgOperand(1));
5881          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5882                                   LHS.getValueType(), LHS, RHS));
5883          return;
5884        }
5885        break;
5886      case LibFunc::fabs:
5887      case LibFunc::fabsf:
5888      case LibFunc::fabsl:
5889        if (visitUnaryFloatCall(I, ISD::FABS))
5890          return;
5891        break;
5892      case LibFunc::sin:
5893      case LibFunc::sinf:
5894      case LibFunc::sinl:
5895        if (visitUnaryFloatCall(I, ISD::FSIN))
5896          return;
5897        break;
5898      case LibFunc::cos:
5899      case LibFunc::cosf:
5900      case LibFunc::cosl:
5901        if (visitUnaryFloatCall(I, ISD::FCOS))
5902          return;
5903        break;
5904      case LibFunc::sqrt:
5905      case LibFunc::sqrtf:
5906      case LibFunc::sqrtl:
5907      case LibFunc::sqrt_finite:
5908      case LibFunc::sqrtf_finite:
5909      case LibFunc::sqrtl_finite:
5910        if (visitUnaryFloatCall(I, ISD::FSQRT))
5911          return;
5912        break;
5913      case LibFunc::floor:
5914      case LibFunc::floorf:
5915      case LibFunc::floorl:
5916        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5917          return;
5918        break;
5919      case LibFunc::nearbyint:
5920      case LibFunc::nearbyintf:
5921      case LibFunc::nearbyintl:
5922        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5923          return;
5924        break;
5925      case LibFunc::ceil:
5926      case LibFunc::ceilf:
5927      case LibFunc::ceill:
5928        if (visitUnaryFloatCall(I, ISD::FCEIL))
5929          return;
5930        break;
5931      case LibFunc::rint:
5932      case LibFunc::rintf:
5933      case LibFunc::rintl:
5934        if (visitUnaryFloatCall(I, ISD::FRINT))
5935          return;
5936        break;
5937      case LibFunc::round:
5938      case LibFunc::roundf:
5939      case LibFunc::roundl:
5940        if (visitUnaryFloatCall(I, ISD::FROUND))
5941          return;
5942        break;
5943      case LibFunc::trunc:
5944      case LibFunc::truncf:
5945      case LibFunc::truncl:
5946        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5947          return;
5948        break;
5949      case LibFunc::log2:
5950      case LibFunc::log2f:
5951      case LibFunc::log2l:
5952        if (visitUnaryFloatCall(I, ISD::FLOG2))
5953          return;
5954        break;
5955      case LibFunc::exp2:
5956      case LibFunc::exp2f:
5957      case LibFunc::exp2l:
5958        if (visitUnaryFloatCall(I, ISD::FEXP2))
5959          return;
5960        break;
5961      case LibFunc::memcmp:
5962        if (visitMemCmpCall(I))
5963          return;
5964        break;
5965      case LibFunc::memchr:
5966        if (visitMemChrCall(I))
5967          return;
5968        break;
5969      case LibFunc::strcpy:
5970        if (visitStrCpyCall(I, false))
5971          return;
5972        break;
5973      case LibFunc::stpcpy:
5974        if (visitStrCpyCall(I, true))
5975          return;
5976        break;
5977      case LibFunc::strcmp:
5978        if (visitStrCmpCall(I))
5979          return;
5980        break;
5981      case LibFunc::strlen:
5982        if (visitStrLenCall(I))
5983          return;
5984        break;
5985      case LibFunc::strnlen:
5986        if (visitStrNLenCall(I))
5987          return;
5988        break;
5989      }
5990    }
5991  }
5992
5993  SDValue Callee;
5994  if (!RenameFn)
5995    Callee = getValue(I.getCalledValue());
5996  else
5997    Callee = DAG.getExternalSymbol(RenameFn,
5998                                   TM.getTargetLowering()->getPointerTy());
5999
6000  // Check if we can potentially perform a tail call. More detailed checking is
6001  // be done within LowerCallTo, after more information about the call is known.
6002  LowerCallTo(&I, Callee, I.isTailCall());
6003}
6004
6005namespace {
6006
6007/// AsmOperandInfo - This contains information for each constraint that we are
6008/// lowering.
6009class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6010public:
6011  /// CallOperand - If this is the result output operand or a clobber
6012  /// this is null, otherwise it is the incoming operand to the CallInst.
6013  /// This gets modified as the asm is processed.
6014  SDValue CallOperand;
6015
6016  /// AssignedRegs - If this is a register or register class operand, this
6017  /// contains the set of register corresponding to the operand.
6018  RegsForValue AssignedRegs;
6019
6020  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6021    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
6022  }
6023
6024  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6025  /// corresponds to.  If there is no Value* for this operand, it returns
6026  /// MVT::Other.
6027  EVT getCallOperandValEVT(LLVMContext &Context,
6028                           const TargetLowering &TLI,
6029                           const DataLayout *TD) const {
6030    if (CallOperandVal == 0) return MVT::Other;
6031
6032    if (isa<BasicBlock>(CallOperandVal))
6033      return TLI.getPointerTy();
6034
6035    llvm::Type *OpTy = CallOperandVal->getType();
6036
6037    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6038    // If this is an indirect operand, the operand is a pointer to the
6039    // accessed type.
6040    if (isIndirect) {
6041      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6042      if (!PtrTy)
6043        report_fatal_error("Indirect operand for inline asm not a pointer!");
6044      OpTy = PtrTy->getElementType();
6045    }
6046
6047    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6048    if (StructType *STy = dyn_cast<StructType>(OpTy))
6049      if (STy->getNumElements() == 1)
6050        OpTy = STy->getElementType(0);
6051
6052    // If OpTy is not a single value, it may be a struct/union that we
6053    // can tile with integers.
6054    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6055      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
6056      switch (BitSize) {
6057      default: break;
6058      case 1:
6059      case 8:
6060      case 16:
6061      case 32:
6062      case 64:
6063      case 128:
6064        OpTy = IntegerType::get(Context, BitSize);
6065        break;
6066      }
6067    }
6068
6069    return TLI.getValueType(OpTy, true);
6070  }
6071};
6072
6073typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6074
6075} // end anonymous namespace
6076
6077/// GetRegistersForValue - Assign registers (virtual or physical) for the
6078/// specified operand.  We prefer to assign virtual registers, to allow the
6079/// register allocator to handle the assignment process.  However, if the asm
6080/// uses features that we can't model on machineinstrs, we have SDISel do the
6081/// allocation.  This produces generally horrible, but correct, code.
6082///
6083///   OpInfo describes the operand.
6084///
6085static void GetRegistersForValue(SelectionDAG &DAG,
6086                                 const TargetLowering &TLI,
6087                                 SDLoc DL,
6088                                 SDISelAsmOperandInfo &OpInfo) {
6089  LLVMContext &Context = *DAG.getContext();
6090
6091  MachineFunction &MF = DAG.getMachineFunction();
6092  SmallVector<unsigned, 4> Regs;
6093
6094  // If this is a constraint for a single physreg, or a constraint for a
6095  // register class, find it.
6096  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6097    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6098                                     OpInfo.ConstraintVT);
6099
6100  unsigned NumRegs = 1;
6101  if (OpInfo.ConstraintVT != MVT::Other) {
6102    // If this is a FP input in an integer register (or visa versa) insert a bit
6103    // cast of the input value.  More generally, handle any case where the input
6104    // value disagrees with the register class we plan to stick this in.
6105    if (OpInfo.Type == InlineAsm::isInput &&
6106        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6107      // Try to convert to the first EVT that the reg class contains.  If the
6108      // types are identical size, use a bitcast to convert (e.g. two differing
6109      // vector types).
6110      MVT RegVT = *PhysReg.second->vt_begin();
6111      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
6112        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6113                                         RegVT, OpInfo.CallOperand);
6114        OpInfo.ConstraintVT = RegVT;
6115      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6116        // If the input is a FP value and we want it in FP registers, do a
6117        // bitcast to the corresponding integer type.  This turns an f64 value
6118        // into i64, which can be passed with two i32 values on a 32-bit
6119        // machine.
6120        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6121        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6122                                         RegVT, OpInfo.CallOperand);
6123        OpInfo.ConstraintVT = RegVT;
6124      }
6125    }
6126
6127    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6128  }
6129
6130  MVT RegVT;
6131  EVT ValueVT = OpInfo.ConstraintVT;
6132
6133  // If this is a constraint for a specific physical register, like {r17},
6134  // assign it now.
6135  if (unsigned AssignedReg = PhysReg.first) {
6136    const TargetRegisterClass *RC = PhysReg.second;
6137    if (OpInfo.ConstraintVT == MVT::Other)
6138      ValueVT = *RC->vt_begin();
6139
6140    // Get the actual register value type.  This is important, because the user
6141    // may have asked for (e.g.) the AX register in i32 type.  We need to
6142    // remember that AX is actually i16 to get the right extension.
6143    RegVT = *RC->vt_begin();
6144
6145    // This is a explicit reference to a physical register.
6146    Regs.push_back(AssignedReg);
6147
6148    // If this is an expanded reference, add the rest of the regs to Regs.
6149    if (NumRegs != 1) {
6150      TargetRegisterClass::iterator I = RC->begin();
6151      for (; *I != AssignedReg; ++I)
6152        assert(I != RC->end() && "Didn't find reg!");
6153
6154      // Already added the first reg.
6155      --NumRegs; ++I;
6156      for (; NumRegs; --NumRegs, ++I) {
6157        assert(I != RC->end() && "Ran out of registers to allocate!");
6158        Regs.push_back(*I);
6159      }
6160    }
6161
6162    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6163    return;
6164  }
6165
6166  // Otherwise, if this was a reference to an LLVM register class, create vregs
6167  // for this reference.
6168  if (const TargetRegisterClass *RC = PhysReg.second) {
6169    RegVT = *RC->vt_begin();
6170    if (OpInfo.ConstraintVT == MVT::Other)
6171      ValueVT = RegVT;
6172
6173    // Create the appropriate number of virtual registers.
6174    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6175    for (; NumRegs; --NumRegs)
6176      Regs.push_back(RegInfo.createVirtualRegister(RC));
6177
6178    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6179    return;
6180  }
6181
6182  // Otherwise, we couldn't allocate enough registers for this.
6183}
6184
6185/// visitInlineAsm - Handle a call to an InlineAsm object.
6186///
6187void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6188  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6189
6190  /// ConstraintOperands - Information about all of the constraints.
6191  SDISelAsmOperandInfoVector ConstraintOperands;
6192
6193  const TargetLowering *TLI = TM.getTargetLowering();
6194  TargetLowering::AsmOperandInfoVector
6195    TargetConstraints = TLI->ParseConstraints(CS);
6196
6197  bool hasMemory = false;
6198
6199  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6200  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6201  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6202    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6203    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6204
6205    MVT OpVT = MVT::Other;
6206
6207    // Compute the value type for each operand.
6208    switch (OpInfo.Type) {
6209    case InlineAsm::isOutput:
6210      // Indirect outputs just consume an argument.
6211      if (OpInfo.isIndirect) {
6212        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6213        break;
6214      }
6215
6216      // The return value of the call is this value.  As such, there is no
6217      // corresponding argument.
6218      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6219      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6220        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6221      } else {
6222        assert(ResNo == 0 && "Asm only has one result!");
6223        OpVT = TLI->getSimpleValueType(CS.getType());
6224      }
6225      ++ResNo;
6226      break;
6227    case InlineAsm::isInput:
6228      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6229      break;
6230    case InlineAsm::isClobber:
6231      // Nothing to do.
6232      break;
6233    }
6234
6235    // If this is an input or an indirect output, process the call argument.
6236    // BasicBlocks are labels, currently appearing only in asm's.
6237    if (OpInfo.CallOperandVal) {
6238      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6239        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6240      } else {
6241        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6242      }
6243
6244      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
6245        getSimpleVT();
6246    }
6247
6248    OpInfo.ConstraintVT = OpVT;
6249
6250    // Indirect operand accesses access memory.
6251    if (OpInfo.isIndirect)
6252      hasMemory = true;
6253    else {
6254      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6255        TargetLowering::ConstraintType
6256          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6257        if (CType == TargetLowering::C_Memory) {
6258          hasMemory = true;
6259          break;
6260        }
6261      }
6262    }
6263  }
6264
6265  SDValue Chain, Flag;
6266
6267  // We won't need to flush pending loads if this asm doesn't touch
6268  // memory and is nonvolatile.
6269  if (hasMemory || IA->hasSideEffects())
6270    Chain = getRoot();
6271  else
6272    Chain = DAG.getRoot();
6273
6274  // Second pass over the constraints: compute which constraint option to use
6275  // and assign registers to constraints that want a specific physreg.
6276  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6277    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6278
6279    // If this is an output operand with a matching input operand, look up the
6280    // matching input. If their types mismatch, e.g. one is an integer, the
6281    // other is floating point, or their sizes are different, flag it as an
6282    // error.
6283    if (OpInfo.hasMatchingInput()) {
6284      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6285
6286      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6287        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6288          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6289                                            OpInfo.ConstraintVT);
6290        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6291          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6292                                            Input.ConstraintVT);
6293        if ((OpInfo.ConstraintVT.isInteger() !=
6294             Input.ConstraintVT.isInteger()) ||
6295            (MatchRC.second != InputRC.second)) {
6296          report_fatal_error("Unsupported asm: input constraint"
6297                             " with a matching output constraint of"
6298                             " incompatible type!");
6299        }
6300        Input.ConstraintVT = OpInfo.ConstraintVT;
6301      }
6302    }
6303
6304    // Compute the constraint code and ConstraintType to use.
6305    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6306
6307    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6308        OpInfo.Type == InlineAsm::isClobber)
6309      continue;
6310
6311    // If this is a memory input, and if the operand is not indirect, do what we
6312    // need to to provide an address for the memory input.
6313    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6314        !OpInfo.isIndirect) {
6315      assert((OpInfo.isMultipleAlternative ||
6316              (OpInfo.Type == InlineAsm::isInput)) &&
6317             "Can only indirectify direct input operands!");
6318
6319      // Memory operands really want the address of the value.  If we don't have
6320      // an indirect input, put it in the constpool if we can, otherwise spill
6321      // it to a stack slot.
6322      // TODO: This isn't quite right. We need to handle these according to
6323      // the addressing mode that the constraint wants. Also, this may take
6324      // an additional register for the computation and we don't want that
6325      // either.
6326
6327      // If the operand is a float, integer, or vector constant, spill to a
6328      // constant pool entry to get its address.
6329      const Value *OpVal = OpInfo.CallOperandVal;
6330      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6331          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6332        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6333                                                 TLI->getPointerTy());
6334      } else {
6335        // Otherwise, create a stack slot and emit a store to it before the
6336        // asm.
6337        Type *Ty = OpVal->getType();
6338        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6339        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6340        MachineFunction &MF = DAG.getMachineFunction();
6341        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6342        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6343        Chain = DAG.getStore(Chain, getCurSDLoc(),
6344                             OpInfo.CallOperand, StackSlot,
6345                             MachinePointerInfo::getFixedStack(SSFI),
6346                             false, false, 0);
6347        OpInfo.CallOperand = StackSlot;
6348      }
6349
6350      // There is no longer a Value* corresponding to this operand.
6351      OpInfo.CallOperandVal = 0;
6352
6353      // It is now an indirect operand.
6354      OpInfo.isIndirect = true;
6355    }
6356
6357    // If this constraint is for a specific register, allocate it before
6358    // anything else.
6359    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6360      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6361  }
6362
6363  // Second pass - Loop over all of the operands, assigning virtual or physregs
6364  // to register class operands.
6365  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6366    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6367
6368    // C_Register operands have already been allocated, Other/Memory don't need
6369    // to be.
6370    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6371      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6372  }
6373
6374  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6375  std::vector<SDValue> AsmNodeOperands;
6376  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6377  AsmNodeOperands.push_back(
6378          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6379                                      TLI->getPointerTy()));
6380
6381  // If we have a !srcloc metadata node associated with it, we want to attach
6382  // this to the ultimately generated inline asm machineinstr.  To do this, we
6383  // pass in the third operand as this (potentially null) inline asm MDNode.
6384  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6385  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6386
6387  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6388  // bits as operand 3.
6389  unsigned ExtraInfo = 0;
6390  if (IA->hasSideEffects())
6391    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6392  if (IA->isAlignStack())
6393    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6394  // Set the asm dialect.
6395  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6396
6397  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6398  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6399    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6400
6401    // Compute the constraint code and ConstraintType to use.
6402    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6403
6404    // Ideally, we would only check against memory constraints.  However, the
6405    // meaning of an other constraint can be target-specific and we can't easily
6406    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6407    // for other constriants as well.
6408    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6409        OpInfo.ConstraintType == TargetLowering::C_Other) {
6410      if (OpInfo.Type == InlineAsm::isInput)
6411        ExtraInfo |= InlineAsm::Extra_MayLoad;
6412      else if (OpInfo.Type == InlineAsm::isOutput)
6413        ExtraInfo |= InlineAsm::Extra_MayStore;
6414      else if (OpInfo.Type == InlineAsm::isClobber)
6415        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6416    }
6417  }
6418
6419  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6420                                                  TLI->getPointerTy()));
6421
6422  // Loop over all of the inputs, copying the operand values into the
6423  // appropriate registers and processing the output regs.
6424  RegsForValue RetValRegs;
6425
6426  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6427  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6428
6429  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6430    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6431
6432    switch (OpInfo.Type) {
6433    case InlineAsm::isOutput: {
6434      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6435          OpInfo.ConstraintType != TargetLowering::C_Register) {
6436        // Memory output, or 'other' output (e.g. 'X' constraint).
6437        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6438
6439        // Add information to the INLINEASM node to know about this output.
6440        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6441        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6442                                                        TLI->getPointerTy()));
6443        AsmNodeOperands.push_back(OpInfo.CallOperand);
6444        break;
6445      }
6446
6447      // Otherwise, this is a register or register class output.
6448
6449      // Copy the output from the appropriate register.  Find a register that
6450      // we can use.
6451      if (OpInfo.AssignedRegs.Regs.empty()) {
6452        LLVMContext &Ctx = *DAG.getContext();
6453        Ctx.emitError(CS.getInstruction(),
6454                      "couldn't allocate output register for constraint '" +
6455                          Twine(OpInfo.ConstraintCode) + "'");
6456        return;
6457      }
6458
6459      // If this is an indirect operand, store through the pointer after the
6460      // asm.
6461      if (OpInfo.isIndirect) {
6462        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6463                                                      OpInfo.CallOperandVal));
6464      } else {
6465        // This is the result value of the call.
6466        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6467        // Concatenate this output onto the outputs list.
6468        RetValRegs.append(OpInfo.AssignedRegs);
6469      }
6470
6471      // Add information to the INLINEASM node to know that this register is
6472      // set.
6473      OpInfo.AssignedRegs
6474          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6475                                    ? InlineAsm::Kind_RegDefEarlyClobber
6476                                    : InlineAsm::Kind_RegDef,
6477                                false, 0, DAG, AsmNodeOperands);
6478      break;
6479    }
6480    case InlineAsm::isInput: {
6481      SDValue InOperandVal = OpInfo.CallOperand;
6482
6483      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6484        // If this is required to match an output register we have already set,
6485        // just use its register.
6486        unsigned OperandNo = OpInfo.getMatchedOperand();
6487
6488        // Scan until we find the definition we already emitted of this operand.
6489        // When we find it, create a RegsForValue operand.
6490        unsigned CurOp = InlineAsm::Op_FirstOperand;
6491        for (; OperandNo; --OperandNo) {
6492          // Advance to the next operand.
6493          unsigned OpFlag =
6494            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6495          assert((InlineAsm::isRegDefKind(OpFlag) ||
6496                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6497                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6498          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6499        }
6500
6501        unsigned OpFlag =
6502          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6503        if (InlineAsm::isRegDefKind(OpFlag) ||
6504            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6505          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6506          if (OpInfo.isIndirect) {
6507            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6508            LLVMContext &Ctx = *DAG.getContext();
6509            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6510                                               " don't know how to handle tied "
6511                                               "indirect register inputs");
6512            return;
6513          }
6514
6515          RegsForValue MatchedRegs;
6516          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6517          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6518          MatchedRegs.RegVTs.push_back(RegVT);
6519          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6520          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6521               i != e; ++i) {
6522            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6523              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6524            else {
6525              LLVMContext &Ctx = *DAG.getContext();
6526              Ctx.emitError(CS.getInstruction(),
6527                            "inline asm error: This value"
6528                            " type register class is not natively supported!");
6529              return;
6530            }
6531          }
6532          // Use the produced MatchedRegs object to
6533          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6534                                    Chain, &Flag, CS.getInstruction());
6535          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6536                                           true, OpInfo.getMatchedOperand(),
6537                                           DAG, AsmNodeOperands);
6538          break;
6539        }
6540
6541        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6542        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6543               "Unexpected number of operands");
6544        // Add information to the INLINEASM node to know about this input.
6545        // See InlineAsm.h isUseOperandTiedToDef.
6546        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6547                                                    OpInfo.getMatchedOperand());
6548        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6549                                                        TLI->getPointerTy()));
6550        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6551        break;
6552      }
6553
6554      // Treat indirect 'X' constraint as memory.
6555      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6556          OpInfo.isIndirect)
6557        OpInfo.ConstraintType = TargetLowering::C_Memory;
6558
6559      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6560        std::vector<SDValue> Ops;
6561        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6562                                          Ops, DAG);
6563        if (Ops.empty()) {
6564          LLVMContext &Ctx = *DAG.getContext();
6565          Ctx.emitError(CS.getInstruction(),
6566                        "invalid operand for inline asm constraint '" +
6567                            Twine(OpInfo.ConstraintCode) + "'");
6568          return;
6569        }
6570
6571        // Add information to the INLINEASM node to know about this input.
6572        unsigned ResOpType =
6573          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6574        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6575                                                        TLI->getPointerTy()));
6576        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6577        break;
6578      }
6579
6580      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6581        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6582        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6583               "Memory operands expect pointer values");
6584
6585        // Add information to the INLINEASM node to know about this input.
6586        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6587        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6588                                                        TLI->getPointerTy()));
6589        AsmNodeOperands.push_back(InOperandVal);
6590        break;
6591      }
6592
6593      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6594              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6595             "Unknown constraint type!");
6596
6597      // TODO: Support this.
6598      if (OpInfo.isIndirect) {
6599        LLVMContext &Ctx = *DAG.getContext();
6600        Ctx.emitError(CS.getInstruction(),
6601                      "Don't know how to handle indirect register inputs yet "
6602                      "for constraint '" +
6603                          Twine(OpInfo.ConstraintCode) + "'");
6604        return;
6605      }
6606
6607      // Copy the input into the appropriate registers.
6608      if (OpInfo.AssignedRegs.Regs.empty()) {
6609        LLVMContext &Ctx = *DAG.getContext();
6610        Ctx.emitError(CS.getInstruction(),
6611                      "couldn't allocate input reg for constraint '" +
6612                          Twine(OpInfo.ConstraintCode) + "'");
6613        return;
6614      }
6615
6616      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6617                                        Chain, &Flag, CS.getInstruction());
6618
6619      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6620                                               DAG, AsmNodeOperands);
6621      break;
6622    }
6623    case InlineAsm::isClobber: {
6624      // Add the clobbered value to the operand list, so that the register
6625      // allocator is aware that the physreg got clobbered.
6626      if (!OpInfo.AssignedRegs.Regs.empty())
6627        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6628                                                 false, 0, DAG,
6629                                                 AsmNodeOperands);
6630      break;
6631    }
6632    }
6633  }
6634
6635  // Finish up input operands.  Set the input chain and add the flag last.
6636  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6637  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6638
6639  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6640                      DAG.getVTList(MVT::Other, MVT::Glue),
6641                      &AsmNodeOperands[0], AsmNodeOperands.size());
6642  Flag = Chain.getValue(1);
6643
6644  // If this asm returns a register value, copy the result from that register
6645  // and set it as the value of the call.
6646  if (!RetValRegs.Regs.empty()) {
6647    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6648                                             Chain, &Flag, CS.getInstruction());
6649
6650    // FIXME: Why don't we do this for inline asms with MRVs?
6651    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6652      EVT ResultType = TLI->getValueType(CS.getType());
6653
6654      // If any of the results of the inline asm is a vector, it may have the
6655      // wrong width/num elts.  This can happen for register classes that can
6656      // contain multiple different value types.  The preg or vreg allocated may
6657      // not have the same VT as was expected.  Convert it to the right type
6658      // with bit_convert.
6659      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6660        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6661                          ResultType, Val);
6662
6663      } else if (ResultType != Val.getValueType() &&
6664                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6665        // If a result value was tied to an input value, the computed result may
6666        // have a wider width than the expected result.  Extract the relevant
6667        // portion.
6668        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6669      }
6670
6671      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6672    }
6673
6674    setValue(CS.getInstruction(), Val);
6675    // Don't need to use this as a chain in this case.
6676    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6677      return;
6678  }
6679
6680  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6681
6682  // Process indirect outputs, first output all of the flagged copies out of
6683  // physregs.
6684  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6685    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6686    const Value *Ptr = IndirectStoresToEmit[i].second;
6687    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6688                                             Chain, &Flag, IA);
6689    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6690  }
6691
6692  // Emit the non-flagged stores from the physregs.
6693  SmallVector<SDValue, 8> OutChains;
6694  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6695    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6696                               StoresToEmit[i].first,
6697                               getValue(StoresToEmit[i].second),
6698                               MachinePointerInfo(StoresToEmit[i].second),
6699                               false, false, 0);
6700    OutChains.push_back(Val);
6701  }
6702
6703  if (!OutChains.empty())
6704    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6705                        &OutChains[0], OutChains.size());
6706
6707  DAG.setRoot(Chain);
6708}
6709
6710void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6711  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6712                          MVT::Other, getRoot(),
6713                          getValue(I.getArgOperand(0)),
6714                          DAG.getSrcValue(I.getArgOperand(0))));
6715}
6716
6717void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6718  const TargetLowering *TLI = TM.getTargetLowering();
6719  const DataLayout &TD = *TLI->getDataLayout();
6720  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6721                           getRoot(), getValue(I.getOperand(0)),
6722                           DAG.getSrcValue(I.getOperand(0)),
6723                           TD.getABITypeAlignment(I.getType()));
6724  setValue(&I, V);
6725  DAG.setRoot(V.getValue(1));
6726}
6727
6728void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6729  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6730                          MVT::Other, getRoot(),
6731                          getValue(I.getArgOperand(0)),
6732                          DAG.getSrcValue(I.getArgOperand(0))));
6733}
6734
6735void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6736  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6737                          MVT::Other, getRoot(),
6738                          getValue(I.getArgOperand(0)),
6739                          getValue(I.getArgOperand(1)),
6740                          DAG.getSrcValue(I.getArgOperand(0)),
6741                          DAG.getSrcValue(I.getArgOperand(1))));
6742}
6743
6744/// \brief Lower an argument list according to the target calling convention.
6745///
6746/// \return A tuple of <return-value, token-chain>
6747///
6748/// This is a helper for lowering intrinsics that follow a target calling
6749/// convention or require stack pointer adjustment. Only a subset of the
6750/// intrinsic's operands need to participate in the calling convention.
6751std::pair<SDValue, SDValue>
6752SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6753                                       unsigned NumArgs, SDValue Callee,
6754                                       bool useVoidTy) {
6755  TargetLowering::ArgListTy Args;
6756  Args.reserve(NumArgs);
6757
6758  // Populate the argument list.
6759  // Attributes for args start at offset 1, after the return attribute.
6760  ImmutableCallSite CS(&CI);
6761  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6762       ArgI != ArgE; ++ArgI) {
6763    const Value *V = CI.getOperand(ArgI);
6764
6765    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6766
6767    TargetLowering::ArgListEntry Entry;
6768    Entry.Node = getValue(V);
6769    Entry.Ty = V->getType();
6770    Entry.setAttributes(&CS, AttrI);
6771    Args.push_back(Entry);
6772  }
6773
6774  Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6775  TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false,
6776    /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs,
6777    CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
6778    /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
6779
6780  const TargetLowering *TLI = TM.getTargetLowering();
6781  return TLI->LowerCallTo(CLI);
6782}
6783
6784/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6785void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6786  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6787  //                                  [live variables...])
6788
6789  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6790
6791  SDValue Callee = getValue(CI.getCalledValue());
6792
6793  // Lower into a call sequence with no args and no return value.
6794  std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee);
6795  // Set the root to the target-lowered call chain.
6796  SDValue Chain = Result.second;
6797  DAG.setRoot(Chain);
6798
6799  /// Get a call instruction from the call sequence chain.
6800  /// Tail calls are not allowed.
6801  SDNode *CallEnd = Chain.getNode();
6802  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6803         "Expected a callseq node.");
6804  SDNode *Call = CallEnd->getOperand(0).getNode();
6805  bool hasGlue = Call->getGluedNode();
6806
6807  // Replace the target specific call node with the stackmap intrinsic.
6808  SmallVector<SDValue, 8> Ops;
6809
6810  // Add the <id> and <numShadowBytes> constants.
6811  for (unsigned i = 0; i < 2; ++i) {
6812    SDValue tmp = getValue(CI.getOperand(i));
6813    Ops.push_back(DAG.getTargetConstant(
6814        cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
6815  }
6816  // Push live variables for the stack map.
6817  for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i)
6818    Ops.push_back(getValue(CI.getArgOperand(i)));
6819
6820  // Push the chain (this is originally the first operand of the call, but
6821  // becomes now the last or second to last operand).
6822  Ops.push_back(*(Call->op_begin()));
6823
6824    // Push the glue flag (last operand).
6825  if (hasGlue)
6826    Ops.push_back(*(Call->op_end()-1));
6827
6828  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6829
6830  // Replace the target specific call node with a STACKMAP node.
6831  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(),
6832                                         NodeTys, Ops);
6833
6834  // StackMap generates no value, so nothing goes in the NodeMap.
6835
6836  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6837  // call sequence.
6838  DAG.ReplaceAllUsesWith(Call, MN);
6839
6840  DAG.DeleteNode(Call);
6841}
6842
6843/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6844void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6845  // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>,
6846  //                                                 i32 <numBytes>,
6847  //                                                 i8* <target>,
6848  //                                                 i32 <numArgs>,
6849  //                                                 [Args...],
6850  //                                                 [live variables...])
6851
6852  CallingConv::ID CC = CI.getCallingConv();
6853  bool isAnyRegCC = CC == CallingConv::AnyReg;
6854  bool hasDef = !CI.getType()->isVoidTy();
6855  SDValue Callee = getValue(CI.getOperand(2)); // <target>
6856
6857  // Get the real number of arguments participating in the call <numArgs>
6858  unsigned NumArgs =
6859    cast<ConstantSDNode>(getValue(CI.getArgOperand(3)))->getZExtValue();
6860
6861  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6862  assert(CI.getNumArgOperands() >= NumArgs + 4 &&
6863         "Not enough arguments provided to the patchpoint intrinsic");
6864
6865  // For AnyRegCC the arguments are lowered later on manually.
6866  unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6867  std::pair<SDValue, SDValue> Result =
6868    LowerCallOperands(CI, 4, NumCallArgs, Callee, isAnyRegCC);
6869
6870  // Set the root to the target-lowered call chain.
6871  SDValue Chain = Result.second;
6872  DAG.setRoot(Chain);
6873
6874  SDNode *CallEnd = Chain.getNode();
6875  if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6876    CallEnd = CallEnd->getOperand(0).getNode();
6877
6878  /// Get a call instruction from the call sequence chain.
6879  /// Tail calls are not allowed.
6880  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6881         "Expected a callseq node.");
6882  SDNode *Call = CallEnd->getOperand(0).getNode();
6883  bool hasGlue = Call->getGluedNode();
6884
6885  // Replace the target specific call node with the patchable intrinsic.
6886  SmallVector<SDValue, 8> Ops;
6887
6888  // Add the <id> and <numNopBytes> constants.
6889  for (unsigned i = 0; i < 2; ++i) {
6890    SDValue tmp = getValue(CI.getOperand(i));
6891    Ops.push_back(DAG.getTargetConstant(
6892        cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
6893  }
6894  // Assume that the Callee is a constant address.
6895  Ops.push_back(
6896    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
6897                          /*isTarget=*/true));
6898
6899  // Adjust <numArgs> to account for any arguments that have been passed on the
6900  // stack instead.
6901  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6902  unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
6903  NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
6904  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
6905
6906  // Add the calling convention
6907  Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
6908
6909  // Add the arguments we omitted previously. The register allocator should
6910  // place these in any free register.
6911  if (isAnyRegCC)
6912    for (unsigned i = 4, e = NumArgs + 4; i != e; ++i)
6913      Ops.push_back(getValue(CI.getArgOperand(i)));
6914
6915  // Push the arguments from the call instruction.
6916  SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
6917  for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
6918    Ops.push_back(*i);
6919
6920  // Push live variables for the stack map.
6921  for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) {
6922    SDValue OpVal = getValue(CI.getArgOperand(i));
6923    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6924      Ops.push_back(
6925        DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6926      Ops.push_back(
6927        DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6928    } else
6929      Ops.push_back(OpVal);
6930  }
6931
6932  // Push the register mask info.
6933  if (hasGlue)
6934    Ops.push_back(*(Call->op_end()-2));
6935  else
6936    Ops.push_back(*(Call->op_end()-1));
6937
6938  // Push the chain (this is originally the first operand of the call, but
6939  // becomes now the last or second to last operand).
6940  Ops.push_back(*(Call->op_begin()));
6941
6942  // Push the glue flag (last operand).
6943  if (hasGlue)
6944    Ops.push_back(*(Call->op_end()-1));
6945
6946  SDVTList NodeTys;
6947  if (isAnyRegCC && hasDef) {
6948    // Create the return types based on the intrinsic definition
6949    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6950    SmallVector<EVT, 3> ValueVTs;
6951    ComputeValueVTs(TLI, CI.getType(), ValueVTs);
6952    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6953
6954    // There is always a chain and a glue type at the end
6955    ValueVTs.push_back(MVT::Other);
6956    ValueVTs.push_back(MVT::Glue);
6957    NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
6958  } else
6959    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6960
6961  // Replace the target specific call node with a PATCHPOINT node.
6962  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6963                                         getCurSDLoc(), NodeTys, Ops);
6964
6965  // Update the NodeMap.
6966  if (hasDef) {
6967    if (isAnyRegCC)
6968      setValue(&CI, SDValue(MN, 0));
6969    else
6970      setValue(&CI, Result.first);
6971  }
6972
6973  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6974  // call sequence. Furthermore the location of the chain and glue can change
6975  // when the AnyReg calling convention is used and the intrinsic returns a
6976  // value.
6977  if (isAnyRegCC && hasDef) {
6978    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6979    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6980    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6981  } else
6982    DAG.ReplaceAllUsesWith(Call, MN);
6983  DAG.DeleteNode(Call);
6984}
6985
6986/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6987/// implementation, which just calls LowerCall.
6988/// FIXME: When all targets are
6989/// migrated to using LowerCall, this hook should be integrated into SDISel.
6990std::pair<SDValue, SDValue>
6991TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6992  // Handle the incoming return values from the call.
6993  CLI.Ins.clear();
6994  SmallVector<EVT, 4> RetTys;
6995  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6996  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6997    EVT VT = RetTys[I];
6998    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6999    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7000    for (unsigned i = 0; i != NumRegs; ++i) {
7001      ISD::InputArg MyFlags;
7002      MyFlags.VT = RegisterVT;
7003      MyFlags.ArgVT = VT;
7004      MyFlags.Used = CLI.IsReturnValueUsed;
7005      if (CLI.RetSExt)
7006        MyFlags.Flags.setSExt();
7007      if (CLI.RetZExt)
7008        MyFlags.Flags.setZExt();
7009      if (CLI.IsInReg)
7010        MyFlags.Flags.setInReg();
7011      CLI.Ins.push_back(MyFlags);
7012    }
7013  }
7014
7015  // Handle all of the outgoing arguments.
7016  CLI.Outs.clear();
7017  CLI.OutVals.clear();
7018  ArgListTy &Args = CLI.Args;
7019  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7020    SmallVector<EVT, 4> ValueVTs;
7021    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7022    for (unsigned Value = 0, NumValues = ValueVTs.size();
7023         Value != NumValues; ++Value) {
7024      EVT VT = ValueVTs[Value];
7025      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7026      SDValue Op = SDValue(Args[i].Node.getNode(),
7027                           Args[i].Node.getResNo() + Value);
7028      ISD::ArgFlagsTy Flags;
7029      unsigned OriginalAlignment =
7030        getDataLayout()->getABITypeAlignment(ArgTy);
7031
7032      if (Args[i].isZExt)
7033        Flags.setZExt();
7034      if (Args[i].isSExt)
7035        Flags.setSExt();
7036      if (Args[i].isInReg)
7037        Flags.setInReg();
7038      if (Args[i].isSRet)
7039        Flags.setSRet();
7040      if (Args[i].isByVal) {
7041        Flags.setByVal();
7042        PointerType *Ty = cast<PointerType>(Args[i].Ty);
7043        Type *ElementTy = Ty->getElementType();
7044        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7045        // For ByVal, alignment should come from FE.  BE will guess if this
7046        // info is not there but there are cases it cannot get right.
7047        unsigned FrameAlign;
7048        if (Args[i].Alignment)
7049          FrameAlign = Args[i].Alignment;
7050        else
7051          FrameAlign = getByValTypeAlignment(ElementTy);
7052        Flags.setByValAlign(FrameAlign);
7053      }
7054      if (Args[i].isNest)
7055        Flags.setNest();
7056      Flags.setOrigAlign(OriginalAlignment);
7057
7058      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7059      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7060      SmallVector<SDValue, 4> Parts(NumParts);
7061      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7062
7063      if (Args[i].isSExt)
7064        ExtendKind = ISD::SIGN_EXTEND;
7065      else if (Args[i].isZExt)
7066        ExtendKind = ISD::ZERO_EXTEND;
7067
7068      // Conservatively only handle 'returned' on non-vectors for now
7069      if (Args[i].isReturned && !Op.getValueType().isVector()) {
7070        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7071               "unexpected use of 'returned'");
7072        // Before passing 'returned' to the target lowering code, ensure that
7073        // either the register MVT and the actual EVT are the same size or that
7074        // the return value and argument are extended in the same way; in these
7075        // cases it's safe to pass the argument register value unchanged as the
7076        // return register value (although it's at the target's option whether
7077        // to do so)
7078        // TODO: allow code generation to take advantage of partially preserved
7079        // registers rather than clobbering the entire register when the
7080        // parameter extension method is not compatible with the return
7081        // extension method
7082        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7083            (ExtendKind != ISD::ANY_EXTEND &&
7084             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7085        Flags.setReturned();
7086      }
7087
7088      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
7089                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
7090
7091      for (unsigned j = 0; j != NumParts; ++j) {
7092        // if it isn't first piece, alignment must be 1
7093        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7094                               i < CLI.NumFixedArgs,
7095                               i, j*Parts[j].getValueType().getStoreSize());
7096        if (NumParts > 1 && j == 0)
7097          MyFlags.Flags.setSplit();
7098        else if (j != 0)
7099          MyFlags.Flags.setOrigAlign(1);
7100
7101        CLI.Outs.push_back(MyFlags);
7102        CLI.OutVals.push_back(Parts[j]);
7103      }
7104    }
7105  }
7106
7107  SmallVector<SDValue, 4> InVals;
7108  CLI.Chain = LowerCall(CLI, InVals);
7109
7110  // Verify that the target's LowerCall behaved as expected.
7111  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7112         "LowerCall didn't return a valid chain!");
7113  assert((!CLI.IsTailCall || InVals.empty()) &&
7114         "LowerCall emitted a return value for a tail call!");
7115  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7116         "LowerCall didn't emit the correct number of values!");
7117
7118  // For a tail call, the return value is merely live-out and there aren't
7119  // any nodes in the DAG representing it. Return a special value to
7120  // indicate that a tail call has been emitted and no more Instructions
7121  // should be processed in the current block.
7122  if (CLI.IsTailCall) {
7123    CLI.DAG.setRoot(CLI.Chain);
7124    return std::make_pair(SDValue(), SDValue());
7125  }
7126
7127  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7128          assert(InVals[i].getNode() &&
7129                 "LowerCall emitted a null value!");
7130          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7131                 "LowerCall emitted a value with the wrong type!");
7132        });
7133
7134  // Collect the legal value parts into potentially illegal values
7135  // that correspond to the original function's return values.
7136  ISD::NodeType AssertOp = ISD::DELETED_NODE;
7137  if (CLI.RetSExt)
7138    AssertOp = ISD::AssertSext;
7139  else if (CLI.RetZExt)
7140    AssertOp = ISD::AssertZext;
7141  SmallVector<SDValue, 4> ReturnValues;
7142  unsigned CurReg = 0;
7143  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7144    EVT VT = RetTys[I];
7145    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7146    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7147
7148    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7149                                            NumRegs, RegisterVT, VT, NULL,
7150                                            AssertOp));
7151    CurReg += NumRegs;
7152  }
7153
7154  // For a function returning void, there is no return value. We can't create
7155  // such a node, so we just return a null return value in that case. In
7156  // that case, nothing will actually look at the value.
7157  if (ReturnValues.empty())
7158    return std::make_pair(SDValue(), CLI.Chain);
7159
7160  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7161                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
7162                            &ReturnValues[0], ReturnValues.size());
7163  return std::make_pair(Res, CLI.Chain);
7164}
7165
7166void TargetLowering::LowerOperationWrapper(SDNode *N,
7167                                           SmallVectorImpl<SDValue> &Results,
7168                                           SelectionDAG &DAG) const {
7169  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7170  if (Res.getNode())
7171    Results.push_back(Res);
7172}
7173
7174SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7175  llvm_unreachable("LowerOperation not implemented for this target!");
7176}
7177
7178void
7179SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7180  SDValue Op = getNonRegisterValue(V);
7181  assert((Op.getOpcode() != ISD::CopyFromReg ||
7182          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7183         "Copy from a reg to the same reg!");
7184  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7185
7186  const TargetLowering *TLI = TM.getTargetLowering();
7187  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7188  SDValue Chain = DAG.getEntryNode();
7189  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
7190  PendingExports.push_back(Chain);
7191}
7192
7193#include "llvm/CodeGen/SelectionDAGISel.h"
7194
7195/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7196/// entry block, return true.  This includes arguments used by switches, since
7197/// the switch may expand into multiple basic blocks.
7198static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7199  // With FastISel active, we may be splitting blocks, so force creation
7200  // of virtual registers for all non-dead arguments.
7201  if (FastISel)
7202    return A->use_empty();
7203
7204  const BasicBlock *Entry = A->getParent()->begin();
7205  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
7206       UI != E; ++UI) {
7207    const User *U = *UI;
7208    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7209      return false;  // Use not in entry block.
7210  }
7211  return true;
7212}
7213
7214void SelectionDAGISel::LowerArguments(const Function &F) {
7215  SelectionDAG &DAG = SDB->DAG;
7216  SDLoc dl = SDB->getCurSDLoc();
7217  const TargetLowering *TLI = getTargetLowering();
7218  const DataLayout *TD = TLI->getDataLayout();
7219  SmallVector<ISD::InputArg, 16> Ins;
7220
7221  if (!FuncInfo->CanLowerReturn) {
7222    // Put in an sret pointer parameter before all the other parameters.
7223    SmallVector<EVT, 1> ValueVTs;
7224    ComputeValueVTs(*getTargetLowering(),
7225                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
7226
7227    // NOTE: Assuming that a pointer will never break down to more than one VT
7228    // or one register.
7229    ISD::ArgFlagsTy Flags;
7230    Flags.setSRet();
7231    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7232    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7233    Ins.push_back(RetArg);
7234  }
7235
7236  // Set up the incoming argument description vector.
7237  unsigned Idx = 1;
7238  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7239       I != E; ++I, ++Idx) {
7240    SmallVector<EVT, 4> ValueVTs;
7241    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7242    bool isArgValueUsed = !I->use_empty();
7243    unsigned PartBase = 0;
7244    for (unsigned Value = 0, NumValues = ValueVTs.size();
7245         Value != NumValues; ++Value) {
7246      EVT VT = ValueVTs[Value];
7247      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7248      ISD::ArgFlagsTy Flags;
7249      unsigned OriginalAlignment =
7250        TD->getABITypeAlignment(ArgTy);
7251
7252      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7253        Flags.setZExt();
7254      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7255        Flags.setSExt();
7256      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7257        Flags.setInReg();
7258      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7259        Flags.setSRet();
7260      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
7261        Flags.setByVal();
7262        PointerType *Ty = cast<PointerType>(I->getType());
7263        Type *ElementTy = Ty->getElementType();
7264        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
7265        // For ByVal, alignment should be passed from FE.  BE will guess if
7266        // this info is not there but there are cases it cannot get right.
7267        unsigned FrameAlign;
7268        if (F.getParamAlignment(Idx))
7269          FrameAlign = F.getParamAlignment(Idx);
7270        else
7271          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7272        Flags.setByValAlign(FrameAlign);
7273      }
7274      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7275        Flags.setNest();
7276      Flags.setOrigAlign(OriginalAlignment);
7277
7278      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7279      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7280      for (unsigned i = 0; i != NumRegs; ++i) {
7281        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7282                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7283        if (NumRegs > 1 && i == 0)
7284          MyFlags.Flags.setSplit();
7285        // if it isn't first piece, alignment must be 1
7286        else if (i > 0)
7287          MyFlags.Flags.setOrigAlign(1);
7288        Ins.push_back(MyFlags);
7289      }
7290      PartBase += VT.getStoreSize();
7291    }
7292  }
7293
7294  // Call the target to set up the argument values.
7295  SmallVector<SDValue, 8> InVals;
7296  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7297                                              F.isVarArg(), Ins,
7298                                              dl, DAG, InVals);
7299
7300  // Verify that the target's LowerFormalArguments behaved as expected.
7301  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7302         "LowerFormalArguments didn't return a valid chain!");
7303  assert(InVals.size() == Ins.size() &&
7304         "LowerFormalArguments didn't emit the correct number of values!");
7305  DEBUG({
7306      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7307        assert(InVals[i].getNode() &&
7308               "LowerFormalArguments emitted a null value!");
7309        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7310               "LowerFormalArguments emitted a value with the wrong type!");
7311      }
7312    });
7313
7314  // Update the DAG with the new chain value resulting from argument lowering.
7315  DAG.setRoot(NewRoot);
7316
7317  // Set up the argument values.
7318  unsigned i = 0;
7319  Idx = 1;
7320  if (!FuncInfo->CanLowerReturn) {
7321    // Create a virtual register for the sret pointer, and put in a copy
7322    // from the sret argument into it.
7323    SmallVector<EVT, 1> ValueVTs;
7324    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7325    MVT VT = ValueVTs[0].getSimpleVT();
7326    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7327    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7328    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7329                                        RegVT, VT, NULL, AssertOp);
7330
7331    MachineFunction& MF = SDB->DAG.getMachineFunction();
7332    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7333    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7334    FuncInfo->DemoteRegister = SRetReg;
7335    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7336                                    SRetReg, ArgValue);
7337    DAG.setRoot(NewRoot);
7338
7339    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7340    // Idx indexes LLVM arguments.  Don't touch it.
7341    ++i;
7342  }
7343
7344  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7345      ++I, ++Idx) {
7346    SmallVector<SDValue, 4> ArgValues;
7347    SmallVector<EVT, 4> ValueVTs;
7348    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7349    unsigned NumValues = ValueVTs.size();
7350
7351    // If this argument is unused then remember its value. It is used to generate
7352    // debugging information.
7353    if (I->use_empty() && NumValues) {
7354      SDB->setUnusedArgValue(I, InVals[i]);
7355
7356      // Also remember any frame index for use in FastISel.
7357      if (FrameIndexSDNode *FI =
7358          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7359        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7360    }
7361
7362    for (unsigned Val = 0; Val != NumValues; ++Val) {
7363      EVT VT = ValueVTs[Val];
7364      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7365      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7366
7367      if (!I->use_empty()) {
7368        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7369        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7370          AssertOp = ISD::AssertSext;
7371        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7372          AssertOp = ISD::AssertZext;
7373
7374        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7375                                             NumParts, PartVT, VT,
7376                                             NULL, AssertOp));
7377      }
7378
7379      i += NumParts;
7380    }
7381
7382    // We don't need to do anything else for unused arguments.
7383    if (ArgValues.empty())
7384      continue;
7385
7386    // Note down frame index.
7387    if (FrameIndexSDNode *FI =
7388        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7389      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7390
7391    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7392                                     SDB->getCurSDLoc());
7393
7394    SDB->setValue(I, Res);
7395    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7396      if (LoadSDNode *LNode =
7397          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7398        if (FrameIndexSDNode *FI =
7399            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7400        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7401    }
7402
7403    // If this argument is live outside of the entry block, insert a copy from
7404    // wherever we got it to the vreg that other BB's will reference it as.
7405    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7406      // If we can, though, try to skip creating an unnecessary vreg.
7407      // FIXME: This isn't very clean... it would be nice to make this more
7408      // general.  It's also subtly incompatible with the hacks FastISel
7409      // uses with vregs.
7410      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7411      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7412        FuncInfo->ValueMap[I] = Reg;
7413        continue;
7414      }
7415    }
7416    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7417      FuncInfo->InitializeRegForValue(I);
7418      SDB->CopyToExportRegsIfNeeded(I);
7419    }
7420  }
7421
7422  assert(i == InVals.size() && "Argument register count mismatch!");
7423
7424  // Finally, if the target has anything special to do, allow it to do so.
7425  // FIXME: this should insert code into the DAG!
7426  EmitFunctionEntryCode();
7427}
7428
7429/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7430/// ensure constants are generated when needed.  Remember the virtual registers
7431/// that need to be added to the Machine PHI nodes as input.  We cannot just
7432/// directly add them, because expansion might result in multiple MBB's for one
7433/// BB.  As such, the start of the BB might correspond to a different MBB than
7434/// the end.
7435///
7436void
7437SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7438  const TerminatorInst *TI = LLVMBB->getTerminator();
7439
7440  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7441
7442  // Check successor nodes' PHI nodes that expect a constant to be available
7443  // from this block.
7444  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7445    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7446    if (!isa<PHINode>(SuccBB->begin())) continue;
7447    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7448
7449    // If this terminator has multiple identical successors (common for
7450    // switches), only handle each succ once.
7451    if (!SuccsHandled.insert(SuccMBB)) continue;
7452
7453    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7454
7455    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7456    // nodes and Machine PHI nodes, but the incoming operands have not been
7457    // emitted yet.
7458    for (BasicBlock::const_iterator I = SuccBB->begin();
7459         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7460      // Ignore dead phi's.
7461      if (PN->use_empty()) continue;
7462
7463      // Skip empty types
7464      if (PN->getType()->isEmptyTy())
7465        continue;
7466
7467      unsigned Reg;
7468      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7469
7470      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7471        unsigned &RegOut = ConstantsOut[C];
7472        if (RegOut == 0) {
7473          RegOut = FuncInfo.CreateRegs(C->getType());
7474          CopyValueToVirtualRegister(C, RegOut);
7475        }
7476        Reg = RegOut;
7477      } else {
7478        DenseMap<const Value *, unsigned>::iterator I =
7479          FuncInfo.ValueMap.find(PHIOp);
7480        if (I != FuncInfo.ValueMap.end())
7481          Reg = I->second;
7482        else {
7483          assert(isa<AllocaInst>(PHIOp) &&
7484                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7485                 "Didn't codegen value into a register!??");
7486          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7487          CopyValueToVirtualRegister(PHIOp, Reg);
7488        }
7489      }
7490
7491      // Remember that this register needs to added to the machine PHI node as
7492      // the input for this MBB.
7493      SmallVector<EVT, 4> ValueVTs;
7494      const TargetLowering *TLI = TM.getTargetLowering();
7495      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7496      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7497        EVT VT = ValueVTs[vti];
7498        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7499        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7500          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7501        Reg += NumRegisters;
7502      }
7503    }
7504  }
7505
7506  ConstantsOut.clear();
7507}
7508
7509/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7510/// is 0.
7511MachineBasicBlock *
7512SelectionDAGBuilder::StackProtectorDescriptor::
7513AddSuccessorMBB(const BasicBlock *BB,
7514                MachineBasicBlock *ParentMBB,
7515                MachineBasicBlock *SuccMBB) {
7516  // If SuccBB has not been created yet, create it.
7517  if (!SuccMBB) {
7518    MachineFunction *MF = ParentMBB->getParent();
7519    MachineFunction::iterator BBI = ParentMBB;
7520    SuccMBB = MF->CreateMachineBasicBlock(BB);
7521    MF->insert(++BBI, SuccMBB);
7522  }
7523  // Add it as a successor of ParentMBB.
7524  ParentMBB->addSuccessor(SuccMBB);
7525  return SuccMBB;
7526}
7527