1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAGISel.h"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/CodeGen/FastISel.h"
23#include "llvm/CodeGen/FunctionLoweringInfo.h"
24#include "llvm/CodeGen/GCMetadata.h"
25#include "llvm/CodeGen/GCStrategy.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DebugInfo.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InlineAsm.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Module.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Timer.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetMachine.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Target/TargetRegisterInfo.h"
55#include "llvm/Target/TargetSubtargetInfo.h"
56#include "llvm/Transforms/Utils/BasicBlockUtils.h"
57#include <algorithm>
58using namespace llvm;
59
60#define DEBUG_TYPE "isel"
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144
145// Intrinsic instructions...
146STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
147STATISTIC(NumFastIselFailSAddWithOverflow,
148          "Fast isel fails on sadd.with.overflow");
149STATISTIC(NumFastIselFailUAddWithOverflow,
150          "Fast isel fails on uadd.with.overflow");
151STATISTIC(NumFastIselFailSSubWithOverflow,
152          "Fast isel fails on ssub.with.overflow");
153STATISTIC(NumFastIselFailUSubWithOverflow,
154          "Fast isel fails on usub.with.overflow");
155STATISTIC(NumFastIselFailSMulWithOverflow,
156          "Fast isel fails on smul.with.overflow");
157STATISTIC(NumFastIselFailUMulWithOverflow,
158          "Fast isel fails on umul.with.overflow");
159STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
160STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
161STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
162STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
163#endif
164
165static cl::opt<bool>
166EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
167          cl::desc("Enable verbose messages in the \"fast\" "
168                   "instruction selector"));
169static cl::opt<bool>
170EnableFastISelAbort("fast-isel-abort", cl::Hidden,
171          cl::desc("Enable abort calls when \"fast\" instruction selection "
172                   "fails to lower an instruction"));
173static cl::opt<bool>
174EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
175          cl::desc("Enable abort calls when \"fast\" instruction selection "
176                   "fails to lower a formal argument"));
177
178static cl::opt<bool>
179UseMBPI("use-mbpi",
180        cl::desc("use Machine Branch Probability Info"),
181        cl::init(true), cl::Hidden);
182
183#ifndef NDEBUG
184static cl::opt<bool>
185ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
186          cl::desc("Pop up a window to show dags before the first "
187                   "dag combine pass"));
188static cl::opt<bool>
189ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
190          cl::desc("Pop up a window to show dags before legalize types"));
191static cl::opt<bool>
192ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
193          cl::desc("Pop up a window to show dags before legalize"));
194static cl::opt<bool>
195ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
196          cl::desc("Pop up a window to show dags before the second "
197                   "dag combine pass"));
198static cl::opt<bool>
199ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
200          cl::desc("Pop up a window to show dags before the post legalize types"
201                   " dag combine pass"));
202static cl::opt<bool>
203ViewISelDAGs("view-isel-dags", cl::Hidden,
204          cl::desc("Pop up a window to show isel dags as they are selected"));
205static cl::opt<bool>
206ViewSchedDAGs("view-sched-dags", cl::Hidden,
207          cl::desc("Pop up a window to show sched dags as they are processed"));
208static cl::opt<bool>
209ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
210      cl::desc("Pop up a window to show SUnit dags after they are processed"));
211#else
212static const bool ViewDAGCombine1 = false,
213                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
214                  ViewDAGCombine2 = false,
215                  ViewDAGCombineLT = false,
216                  ViewISelDAGs = false, ViewSchedDAGs = false,
217                  ViewSUnitDAGs = false;
218#endif
219
220//===---------------------------------------------------------------------===//
221///
222/// RegisterScheduler class - Track the registration of instruction schedulers.
223///
224//===---------------------------------------------------------------------===//
225MachinePassRegistry RegisterScheduler::Registry;
226
227//===---------------------------------------------------------------------===//
228///
229/// ISHeuristic command line option for instruction schedulers.
230///
231//===---------------------------------------------------------------------===//
232static cl::opt<RegisterScheduler::FunctionPassCtor, false,
233               RegisterPassParser<RegisterScheduler> >
234ISHeuristic("pre-RA-sched",
235            cl::init(&createDefaultScheduler), cl::Hidden,
236            cl::desc("Instruction schedulers available (before register"
237                     " allocation):"));
238
239static RegisterScheduler
240defaultListDAGScheduler("default", "Best scheduler for the target",
241                        createDefaultScheduler);
242
243namespace llvm {
244  //===--------------------------------------------------------------------===//
245  /// \brief This class is used by SelectionDAGISel to temporarily override
246  /// the optimization level on a per-function basis.
247  class OptLevelChanger {
248    SelectionDAGISel &IS;
249    CodeGenOpt::Level SavedOptLevel;
250    bool SavedFastISel;
251
252  public:
253    OptLevelChanger(SelectionDAGISel &ISel,
254                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
255      SavedOptLevel = IS.OptLevel;
256      if (NewOptLevel == SavedOptLevel)
257        return;
258      IS.OptLevel = NewOptLevel;
259      IS.TM.setOptLevel(NewOptLevel);
260      SavedFastISel = IS.TM.Options.EnableFastISel;
261      if (NewOptLevel == CodeGenOpt::None)
262        IS.TM.setFastISel(true);
263      DEBUG(dbgs() << "\nChanging optimization level for Function "
264            << IS.MF->getFunction()->getName() << "\n");
265      DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
266            << " ; After: -O" << NewOptLevel << "\n");
267    }
268
269    ~OptLevelChanger() {
270      if (IS.OptLevel == SavedOptLevel)
271        return;
272      DEBUG(dbgs() << "\nRestoring optimization level for Function "
273            << IS.MF->getFunction()->getName() << "\n");
274      DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
275            << " ; After: -O" << SavedOptLevel << "\n");
276      IS.OptLevel = SavedOptLevel;
277      IS.TM.setOptLevel(SavedOptLevel);
278      IS.TM.setFastISel(SavedFastISel);
279    }
280  };
281
282  //===--------------------------------------------------------------------===//
283  /// createDefaultScheduler - This creates an instruction scheduler appropriate
284  /// for the target.
285  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
286                                             CodeGenOpt::Level OptLevel) {
287    const TargetLowering *TLI = IS->getTargetLowering();
288    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
289
290    if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
291        TLI->getSchedulingPreference() == Sched::Source)
292      return createSourceListDAGScheduler(IS, OptLevel);
293    if (TLI->getSchedulingPreference() == Sched::RegPressure)
294      return createBURRListDAGScheduler(IS, OptLevel);
295    if (TLI->getSchedulingPreference() == Sched::Hybrid)
296      return createHybridListDAGScheduler(IS, OptLevel);
297    if (TLI->getSchedulingPreference() == Sched::VLIW)
298      return createVLIWDAGScheduler(IS, OptLevel);
299    assert(TLI->getSchedulingPreference() == Sched::ILP &&
300           "Unknown sched type!");
301    return createILPListDAGScheduler(IS, OptLevel);
302  }
303}
304
305// EmitInstrWithCustomInserter - This method should be implemented by targets
306// that mark instructions with the 'usesCustomInserter' flag.  These
307// instructions are special in various ways, which require special support to
308// insert.  The specified MachineInstr is created but not inserted into any
309// basic blocks, and this method is called to expand it into a sequence of
310// instructions, potentially also creating new basic blocks and control flow.
311// When new basic blocks are inserted and the edges from MBB to its successors
312// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
313// DenseMap.
314MachineBasicBlock *
315TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
316                                            MachineBasicBlock *MBB) const {
317#ifndef NDEBUG
318  dbgs() << "If a target marks an instruction with "
319          "'usesCustomInserter', it must implement "
320          "TargetLowering::EmitInstrWithCustomInserter!";
321#endif
322  llvm_unreachable(nullptr);
323}
324
325void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
326                                                   SDNode *Node) const {
327  assert(!MI->hasPostISelHook() &&
328         "If a target marks an instruction with 'hasPostISelHook', "
329         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
330}
331
332//===----------------------------------------------------------------------===//
333// SelectionDAGISel code
334//===----------------------------------------------------------------------===//
335
336SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
337                                   CodeGenOpt::Level OL) :
338  MachineFunctionPass(ID), TM(tm),
339  FuncInfo(new FunctionLoweringInfo(TM)),
340  CurDAG(new SelectionDAG(tm, OL)),
341  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
342  GFI(),
343  OptLevel(OL),
344  DAGSize(0) {
345    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
346    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
347    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
348    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
349  }
350
351SelectionDAGISel::~SelectionDAGISel() {
352  delete SDB;
353  delete CurDAG;
354  delete FuncInfo;
355}
356
357void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
358  AU.addRequired<AliasAnalysis>();
359  AU.addPreserved<AliasAnalysis>();
360  AU.addRequired<GCModuleInfo>();
361  AU.addPreserved<GCModuleInfo>();
362  AU.addRequired<TargetLibraryInfo>();
363  if (UseMBPI && OptLevel != CodeGenOpt::None)
364    AU.addRequired<BranchProbabilityInfo>();
365  MachineFunctionPass::getAnalysisUsage(AU);
366}
367
368/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
369/// may trap on it.  In this case we have to split the edge so that the path
370/// through the predecessor block that doesn't go to the phi block doesn't
371/// execute the possibly trapping instruction.
372///
373/// This is required for correctness, so it must be done at -O0.
374///
375static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
376  // Loop for blocks with phi nodes.
377  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
378    PHINode *PN = dyn_cast<PHINode>(BB->begin());
379    if (!PN) continue;
380
381  ReprocessBlock:
382    // For each block with a PHI node, check to see if any of the input values
383    // are potentially trapping constant expressions.  Constant expressions are
384    // the only potentially trapping value that can occur as the argument to a
385    // PHI.
386    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
387      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
388        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
389        if (!CE || !CE->canTrap()) continue;
390
391        // The only case we have to worry about is when the edge is critical.
392        // Since this block has a PHI Node, we assume it has multiple input
393        // edges: check to see if the pred has multiple successors.
394        BasicBlock *Pred = PN->getIncomingBlock(i);
395        if (Pred->getTerminator()->getNumSuccessors() == 1)
396          continue;
397
398        // Okay, we have to split this edge.
399        SplitCriticalEdge(Pred->getTerminator(),
400                          GetSuccessorNumber(Pred, BB), SDISel, true);
401        goto ReprocessBlock;
402      }
403  }
404}
405
406bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
407  // Do some sanity-checking on the command-line options.
408  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
409         "-fast-isel-verbose requires -fast-isel");
410  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
411         "-fast-isel-abort requires -fast-isel");
412
413  const Function &Fn = *mf.getFunction();
414  const TargetInstrInfo &TII = *TM.getInstrInfo();
415  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
416  const TargetLowering *TLI = TM.getTargetLowering();
417
418  MF = &mf;
419  RegInfo = &MF->getRegInfo();
420  AA = &getAnalysis<AliasAnalysis>();
421  LibInfo = &getAnalysis<TargetLibraryInfo>();
422  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
423
424  TargetSubtargetInfo &ST =
425    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
426  ST.resetSubtargetFeatures(MF);
427  TM.resetTargetOptions(MF);
428
429  // Reset OptLevel to None for optnone functions.
430  CodeGenOpt::Level NewOptLevel = OptLevel;
431  if (Fn.hasFnAttribute(Attribute::OptimizeNone))
432    NewOptLevel = CodeGenOpt::None;
433  OptLevelChanger OLC(*this, NewOptLevel);
434
435  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
436
437  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
438
439  CurDAG->init(*MF, TLI);
440  FuncInfo->set(Fn, *MF, CurDAG);
441
442  if (UseMBPI && OptLevel != CodeGenOpt::None)
443    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
444  else
445    FuncInfo->BPI = nullptr;
446
447  SDB->init(GFI, *AA, LibInfo);
448
449  MF->setHasInlineAsm(false);
450
451  SelectAllBasicBlocks(Fn);
452
453  // If the first basic block in the function has live ins that need to be
454  // copied into vregs, emit the copies into the top of the block before
455  // emitting the code for the block.
456  MachineBasicBlock *EntryMBB = MF->begin();
457  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
458
459  DenseMap<unsigned, unsigned> LiveInMap;
460  if (!FuncInfo->ArgDbgValues.empty())
461    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
462           E = RegInfo->livein_end(); LI != E; ++LI)
463      if (LI->second)
464        LiveInMap.insert(std::make_pair(LI->first, LI->second));
465
466  // Insert DBG_VALUE instructions for function arguments to the entry block.
467  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
468    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
469    bool hasFI = MI->getOperand(0).isFI();
470    unsigned Reg =
471        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
472    if (TargetRegisterInfo::isPhysicalRegister(Reg))
473      EntryMBB->insert(EntryMBB->begin(), MI);
474    else {
475      MachineInstr *Def = RegInfo->getVRegDef(Reg);
476      if (Def) {
477        MachineBasicBlock::iterator InsertPos = Def;
478        // FIXME: VR def may not be in entry block.
479        Def->getParent()->insert(std::next(InsertPos), MI);
480      } else
481        DEBUG(dbgs() << "Dropping debug info for dead vreg"
482              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
483    }
484
485    // If Reg is live-in then update debug info to track its copy in a vreg.
486    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
487    if (LDI != LiveInMap.end()) {
488      assert(!hasFI && "There's no handling of frame pointer updating here yet "
489                       "- add if needed");
490      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
491      MachineBasicBlock::iterator InsertPos = Def;
492      const MDNode *Variable =
493        MI->getOperand(MI->getNumOperands()-1).getMetadata();
494      bool IsIndirect = MI->isIndirectDebugValue();
495      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
496      // Def is never a terminator here, so it is ok to increment InsertPos.
497      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
498              TII.get(TargetOpcode::DBG_VALUE),
499              IsIndirect,
500              LDI->second, Offset, Variable);
501
502      // If this vreg is directly copied into an exported register then
503      // that COPY instructions also need DBG_VALUE, if it is the only
504      // user of LDI->second.
505      MachineInstr *CopyUseMI = nullptr;
506      for (MachineRegisterInfo::use_instr_iterator
507           UI = RegInfo->use_instr_begin(LDI->second),
508           E = RegInfo->use_instr_end(); UI != E; ) {
509        MachineInstr *UseMI = &*(UI++);
510        if (UseMI->isDebugValue()) continue;
511        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
512          CopyUseMI = UseMI; continue;
513        }
514        // Otherwise this is another use or second copy use.
515        CopyUseMI = nullptr; break;
516      }
517      if (CopyUseMI) {
518        MachineInstr *NewMI =
519          BuildMI(*MF, CopyUseMI->getDebugLoc(),
520                  TII.get(TargetOpcode::DBG_VALUE),
521                  IsIndirect,
522                  CopyUseMI->getOperand(0).getReg(),
523                  Offset, Variable);
524        MachineBasicBlock::iterator Pos = CopyUseMI;
525        EntryMBB->insertAfter(Pos, NewMI);
526      }
527    }
528  }
529
530  // Determine if there are any calls in this machine function.
531  MachineFrameInfo *MFI = MF->getFrameInfo();
532  for (const auto &MBB : *MF) {
533    if (MFI->hasCalls() && MF->hasInlineAsm())
534      break;
535
536    for (const auto &MI : MBB) {
537      const MCInstrDesc &MCID = TM.getInstrInfo()->get(MI.getOpcode());
538      if ((MCID.isCall() && !MCID.isReturn()) ||
539          MI.isStackAligningInlineAsm()) {
540        MFI->setHasCalls(true);
541      }
542      if (MI.isInlineAsm()) {
543        MF->setHasInlineAsm(true);
544      }
545    }
546  }
547
548  // Determine if there is a call to setjmp in the machine function.
549  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
550
551  // Replace forward-declared registers with the registers containing
552  // the desired value.
553  MachineRegisterInfo &MRI = MF->getRegInfo();
554  for (DenseMap<unsigned, unsigned>::iterator
555       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
556       I != E; ++I) {
557    unsigned From = I->first;
558    unsigned To = I->second;
559    // If To is also scheduled to be replaced, find what its ultimate
560    // replacement is.
561    for (;;) {
562      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
563      if (J == E) break;
564      To = J->second;
565    }
566    // Make sure the new register has a sufficiently constrained register class.
567    if (TargetRegisterInfo::isVirtualRegister(From) &&
568        TargetRegisterInfo::isVirtualRegister(To))
569      MRI.constrainRegClass(To, MRI.getRegClass(From));
570    // Replace it.
571    MRI.replaceRegWith(From, To);
572  }
573
574  // Freeze the set of reserved registers now that MachineFrameInfo has been
575  // set up. All the information required by getReservedRegs() should be
576  // available now.
577  MRI.freezeReservedRegs(*MF);
578
579  // Release function-specific state. SDB and CurDAG are already cleared
580  // at this point.
581  FuncInfo->clear();
582
583  DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
584  DEBUG(MF->print(dbgs()));
585
586  return true;
587}
588
589void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
590                                        BasicBlock::const_iterator End,
591                                        bool &HadTailCall) {
592  // Lower all of the non-terminator instructions. If a call is emitted
593  // as a tail call, cease emitting nodes for this block. Terminators
594  // are handled below.
595  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
596    SDB->visit(*I);
597
598  // Make sure the root of the DAG is up-to-date.
599  CurDAG->setRoot(SDB->getControlRoot());
600  HadTailCall = SDB->HasTailCall;
601  SDB->clear();
602
603  // Final step, emit the lowered DAG as machine code.
604  CodeGenAndEmitDAG();
605}
606
607void SelectionDAGISel::ComputeLiveOutVRegInfo() {
608  SmallPtrSet<SDNode*, 128> VisitedNodes;
609  SmallVector<SDNode*, 128> Worklist;
610
611  Worklist.push_back(CurDAG->getRoot().getNode());
612
613  APInt KnownZero;
614  APInt KnownOne;
615
616  do {
617    SDNode *N = Worklist.pop_back_val();
618
619    // If we've already seen this node, ignore it.
620    if (!VisitedNodes.insert(N))
621      continue;
622
623    // Otherwise, add all chain operands to the worklist.
624    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
625      if (N->getOperand(i).getValueType() == MVT::Other)
626        Worklist.push_back(N->getOperand(i).getNode());
627
628    // If this is a CopyToReg with a vreg dest, process it.
629    if (N->getOpcode() != ISD::CopyToReg)
630      continue;
631
632    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
633    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
634      continue;
635
636    // Ignore non-scalar or non-integer values.
637    SDValue Src = N->getOperand(2);
638    EVT SrcVT = Src.getValueType();
639    if (!SrcVT.isInteger() || SrcVT.isVector())
640      continue;
641
642    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
643    CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
644    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
645  } while (!Worklist.empty());
646}
647
648void SelectionDAGISel::CodeGenAndEmitDAG() {
649  std::string GroupName;
650  if (TimePassesIsEnabled)
651    GroupName = "Instruction Selection and Scheduling";
652  std::string BlockName;
653  int BlockNumber = -1;
654  (void)BlockNumber;
655#ifdef NDEBUG
656  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
657      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
658      ViewSUnitDAGs)
659#endif
660  {
661    BlockNumber = FuncInfo->MBB->getNumber();
662    BlockName = MF->getName().str() + ":" +
663                FuncInfo->MBB->getBasicBlock()->getName().str();
664  }
665  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
666        << " '" << BlockName << "'\n"; CurDAG->dump());
667
668  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
669
670  // Run the DAG combiner in pre-legalize mode.
671  {
672    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
673    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
674  }
675
676  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
677        << " '" << BlockName << "'\n"; CurDAG->dump());
678
679  // Second step, hack on the DAG until it only uses operations and types that
680  // the target supports.
681  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
682                                               BlockName);
683
684  bool Changed;
685  {
686    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
687    Changed = CurDAG->LegalizeTypes();
688  }
689
690  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
691        << " '" << BlockName << "'\n"; CurDAG->dump());
692
693  CurDAG->NewNodesMustHaveLegalTypes = true;
694
695  if (Changed) {
696    if (ViewDAGCombineLT)
697      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
698
699    // Run the DAG combiner in post-type-legalize mode.
700    {
701      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
702                         TimePassesIsEnabled);
703      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
704    }
705
706    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
707          << " '" << BlockName << "'\n"; CurDAG->dump());
708
709  }
710
711  {
712    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
713    Changed = CurDAG->LegalizeVectors();
714  }
715
716  if (Changed) {
717    {
718      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
719      CurDAG->LegalizeTypes();
720    }
721
722    if (ViewDAGCombineLT)
723      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
724
725    // Run the DAG combiner in post-type-legalize mode.
726    {
727      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
728                         TimePassesIsEnabled);
729      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
730    }
731
732    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
733          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
734  }
735
736  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
737
738  {
739    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
740    CurDAG->Legalize();
741  }
742
743  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
744        << " '" << BlockName << "'\n"; CurDAG->dump());
745
746  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
747
748  // Run the DAG combiner in post-legalize mode.
749  {
750    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
751    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
752  }
753
754  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
755        << " '" << BlockName << "'\n"; CurDAG->dump());
756
757  if (OptLevel != CodeGenOpt::None)
758    ComputeLiveOutVRegInfo();
759
760  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
761
762  // Third, instruction select all of the operations to machine code, adding the
763  // code to the MachineBasicBlock.
764  {
765    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
766    DoInstructionSelection();
767  }
768
769  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
770        << " '" << BlockName << "'\n"; CurDAG->dump());
771
772  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
773
774  // Schedule machine code.
775  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
776  {
777    NamedRegionTimer T("Instruction Scheduling", GroupName,
778                       TimePassesIsEnabled);
779    Scheduler->Run(CurDAG, FuncInfo->MBB);
780  }
781
782  if (ViewSUnitDAGs) Scheduler->viewGraph();
783
784  // Emit machine code to BB.  This can change 'BB' to the last block being
785  // inserted into.
786  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
787  {
788    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
789
790    // FuncInfo->InsertPt is passed by reference and set to the end of the
791    // scheduled instructions.
792    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
793  }
794
795  // If the block was split, make sure we update any references that are used to
796  // update PHI nodes later on.
797  if (FirstMBB != LastMBB)
798    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
799
800  // Free the scheduler state.
801  {
802    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
803                       TimePassesIsEnabled);
804    delete Scheduler;
805  }
806
807  // Free the SelectionDAG state, now that we're finished with it.
808  CurDAG->clear();
809}
810
811namespace {
812/// ISelUpdater - helper class to handle updates of the instruction selection
813/// graph.
814class ISelUpdater : public SelectionDAG::DAGUpdateListener {
815  SelectionDAG::allnodes_iterator &ISelPosition;
816public:
817  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
818    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
819
820  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
821  /// deleted is the current ISelPosition node, update ISelPosition.
822  ///
823  void NodeDeleted(SDNode *N, SDNode *E) override {
824    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
825      ++ISelPosition;
826  }
827};
828} // end anonymous namespace
829
830void SelectionDAGISel::DoInstructionSelection() {
831  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
832        << FuncInfo->MBB->getNumber()
833        << " '" << FuncInfo->MBB->getName() << "'\n");
834
835  PreprocessISelDAG();
836
837  // Select target instructions for the DAG.
838  {
839    // Number all nodes with a topological order and set DAGSize.
840    DAGSize = CurDAG->AssignTopologicalOrder();
841
842    // Create a dummy node (which is not added to allnodes), that adds
843    // a reference to the root node, preventing it from being deleted,
844    // and tracking any changes of the root.
845    HandleSDNode Dummy(CurDAG->getRoot());
846    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
847    ++ISelPosition;
848
849    // Make sure that ISelPosition gets properly updated when nodes are deleted
850    // in calls made from this function.
851    ISelUpdater ISU(*CurDAG, ISelPosition);
852
853    // The AllNodes list is now topological-sorted. Visit the
854    // nodes by starting at the end of the list (the root of the
855    // graph) and preceding back toward the beginning (the entry
856    // node).
857    while (ISelPosition != CurDAG->allnodes_begin()) {
858      SDNode *Node = --ISelPosition;
859      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
860      // but there are currently some corner cases that it misses. Also, this
861      // makes it theoretically possible to disable the DAGCombiner.
862      if (Node->use_empty())
863        continue;
864
865      SDNode *ResNode = Select(Node);
866
867      // FIXME: This is pretty gross.  'Select' should be changed to not return
868      // anything at all and this code should be nuked with a tactical strike.
869
870      // If node should not be replaced, continue with the next one.
871      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
872        continue;
873      // Replace node.
874      if (ResNode) {
875        ReplaceUses(Node, ResNode);
876      }
877
878      // If after the replacement this node is not used any more,
879      // remove this dead node.
880      if (Node->use_empty()) // Don't delete EntryToken, etc.
881        CurDAG->RemoveDeadNode(Node);
882    }
883
884    CurDAG->setRoot(Dummy.getValue());
885  }
886
887  DEBUG(dbgs() << "===== Instruction selection ends:\n");
888
889  PostprocessISelDAG();
890}
891
892/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
893/// do other setup for EH landing-pad blocks.
894void SelectionDAGISel::PrepareEHLandingPad() {
895  MachineBasicBlock *MBB = FuncInfo->MBB;
896
897  // Add a label to mark the beginning of the landing pad.  Deletion of the
898  // landing pad can thus be detected via the MachineModuleInfo.
899  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
900
901  // Assign the call site to the landing pad's begin label.
902  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
903
904  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
905  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
906    .addSym(Label);
907
908  // Mark exception register as live in.
909  const TargetLowering *TLI = getTargetLowering();
910  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
911  if (unsigned Reg = TLI->getExceptionPointerRegister())
912    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
913
914  // Mark exception selector register as live in.
915  if (unsigned Reg = TLI->getExceptionSelectorRegister())
916    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
917}
918
919/// isFoldedOrDeadInstruction - Return true if the specified instruction is
920/// side-effect free and is either dead or folded into a generated instruction.
921/// Return false if it needs to be emitted.
922static bool isFoldedOrDeadInstruction(const Instruction *I,
923                                      FunctionLoweringInfo *FuncInfo) {
924  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
925         !isa<TerminatorInst>(I) && // Terminators aren't folded.
926         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
927         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
928         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
929}
930
931#ifndef NDEBUG
932// Collect per Instruction statistics for fast-isel misses.  Only those
933// instructions that cause the bail are accounted for.  It does not account for
934// instructions higher in the block.  Thus, summing the per instructions stats
935// will not add up to what is reported by NumFastIselFailures.
936static void collectFailStats(const Instruction *I) {
937  switch (I->getOpcode()) {
938  default: assert (0 && "<Invalid operator> ");
939
940  // Terminators
941  case Instruction::Ret:         NumFastIselFailRet++; return;
942  case Instruction::Br:          NumFastIselFailBr++; return;
943  case Instruction::Switch:      NumFastIselFailSwitch++; return;
944  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
945  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
946  case Instruction::Resume:      NumFastIselFailResume++; return;
947  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
948
949  // Standard binary operators...
950  case Instruction::Add:  NumFastIselFailAdd++; return;
951  case Instruction::FAdd: NumFastIselFailFAdd++; return;
952  case Instruction::Sub:  NumFastIselFailSub++; return;
953  case Instruction::FSub: NumFastIselFailFSub++; return;
954  case Instruction::Mul:  NumFastIselFailMul++; return;
955  case Instruction::FMul: NumFastIselFailFMul++; return;
956  case Instruction::UDiv: NumFastIselFailUDiv++; return;
957  case Instruction::SDiv: NumFastIselFailSDiv++; return;
958  case Instruction::FDiv: NumFastIselFailFDiv++; return;
959  case Instruction::URem: NumFastIselFailURem++; return;
960  case Instruction::SRem: NumFastIselFailSRem++; return;
961  case Instruction::FRem: NumFastIselFailFRem++; return;
962
963  // Logical operators...
964  case Instruction::And: NumFastIselFailAnd++; return;
965  case Instruction::Or:  NumFastIselFailOr++; return;
966  case Instruction::Xor: NumFastIselFailXor++; return;
967
968  // Memory instructions...
969  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
970  case Instruction::Load:          NumFastIselFailLoad++; return;
971  case Instruction::Store:         NumFastIselFailStore++; return;
972  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
973  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
974  case Instruction::Fence:         NumFastIselFailFence++; return;
975  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
976
977  // Convert instructions...
978  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
979  case Instruction::ZExt:     NumFastIselFailZExt++; return;
980  case Instruction::SExt:     NumFastIselFailSExt++; return;
981  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
982  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
983  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
984  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
985  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
986  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
987  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
988  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
989  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
990
991  // Other instructions...
992  case Instruction::ICmp:           NumFastIselFailICmp++; return;
993  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
994  case Instruction::PHI:            NumFastIselFailPHI++; return;
995  case Instruction::Select:         NumFastIselFailSelect++; return;
996  case Instruction::Call: {
997    if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
998      switch (Intrinsic->getIntrinsicID()) {
999      default:
1000        NumFastIselFailIntrinsicCall++; return;
1001      case Intrinsic::sadd_with_overflow:
1002        NumFastIselFailSAddWithOverflow++; return;
1003      case Intrinsic::uadd_with_overflow:
1004        NumFastIselFailUAddWithOverflow++; return;
1005      case Intrinsic::ssub_with_overflow:
1006        NumFastIselFailSSubWithOverflow++; return;
1007      case Intrinsic::usub_with_overflow:
1008        NumFastIselFailUSubWithOverflow++; return;
1009      case Intrinsic::smul_with_overflow:
1010        NumFastIselFailSMulWithOverflow++; return;
1011      case Intrinsic::umul_with_overflow:
1012        NumFastIselFailUMulWithOverflow++; return;
1013      case Intrinsic::frameaddress:
1014        NumFastIselFailFrameaddress++; return;
1015      case Intrinsic::sqrt:
1016          NumFastIselFailSqrt++; return;
1017      case Intrinsic::experimental_stackmap:
1018        NumFastIselFailStackMap++; return;
1019      case Intrinsic::experimental_patchpoint_void: // fall-through
1020      case Intrinsic::experimental_patchpoint_i64:
1021        NumFastIselFailPatchPoint++; return;
1022      }
1023    }
1024    NumFastIselFailCall++;
1025    return;
1026  }
1027  case Instruction::Shl:            NumFastIselFailShl++; return;
1028  case Instruction::LShr:           NumFastIselFailLShr++; return;
1029  case Instruction::AShr:           NumFastIselFailAShr++; return;
1030  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
1031  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
1032  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
1033  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
1034  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
1035  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
1036  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
1037  }
1038}
1039#endif
1040
1041void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1042  // Initialize the Fast-ISel state, if needed.
1043  FastISel *FastIS = nullptr;
1044  if (TM.Options.EnableFastISel)
1045    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
1046
1047  // Iterate over all basic blocks in the function.
1048  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1049  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1050       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1051    const BasicBlock *LLVMBB = *I;
1052
1053    if (OptLevel != CodeGenOpt::None) {
1054      bool AllPredsVisited = true;
1055      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1056           PI != PE; ++PI) {
1057        if (!FuncInfo->VisitedBBs.count(*PI)) {
1058          AllPredsVisited = false;
1059          break;
1060        }
1061      }
1062
1063      if (AllPredsVisited) {
1064        for (BasicBlock::const_iterator I = LLVMBB->begin();
1065             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1066          FuncInfo->ComputePHILiveOutRegInfo(PN);
1067      } else {
1068        for (BasicBlock::const_iterator I = LLVMBB->begin();
1069             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1070          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1071      }
1072
1073      FuncInfo->VisitedBBs.insert(LLVMBB);
1074    }
1075
1076    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1077    BasicBlock::const_iterator const End = LLVMBB->end();
1078    BasicBlock::const_iterator BI = End;
1079
1080    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1081    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1082
1083    // Setup an EH landing-pad block.
1084    FuncInfo->ExceptionPointerVirtReg = 0;
1085    FuncInfo->ExceptionSelectorVirtReg = 0;
1086    if (FuncInfo->MBB->isLandingPad())
1087      PrepareEHLandingPad();
1088
1089    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1090    if (FastIS) {
1091      FastIS->startNewBlock();
1092
1093      // Emit code for any incoming arguments. This must happen before
1094      // beginning FastISel on the entry block.
1095      if (LLVMBB == &Fn.getEntryBlock()) {
1096        ++NumEntryBlocks;
1097
1098        // Lower any arguments needed in this block if this is the entry block.
1099        if (!FastIS->LowerArguments()) {
1100          // Fast isel failed to lower these arguments
1101          ++NumFastIselFailLowerArguments;
1102          if (EnableFastISelAbortArgs)
1103            llvm_unreachable("FastISel didn't lower all arguments");
1104
1105          // Use SelectionDAG argument lowering
1106          LowerArguments(Fn);
1107          CurDAG->setRoot(SDB->getControlRoot());
1108          SDB->clear();
1109          CodeGenAndEmitDAG();
1110        }
1111
1112        // If we inserted any instructions at the beginning, make a note of
1113        // where they are, so we can be sure to emit subsequent instructions
1114        // after them.
1115        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1116          FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
1117        else
1118          FastIS->setLastLocalValue(nullptr);
1119      }
1120
1121      unsigned NumFastIselRemaining = std::distance(Begin, End);
1122      // Do FastISel on as many instructions as possible.
1123      for (; BI != Begin; --BI) {
1124        const Instruction *Inst = std::prev(BI);
1125
1126        // If we no longer require this instruction, skip it.
1127        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1128          --NumFastIselRemaining;
1129          continue;
1130        }
1131
1132        // Bottom-up: reset the insert pos at the top, after any local-value
1133        // instructions.
1134        FastIS->recomputeInsertPt();
1135
1136        // Try to select the instruction with FastISel.
1137        if (FastIS->SelectInstruction(Inst)) {
1138          --NumFastIselRemaining;
1139          ++NumFastIselSuccess;
1140          // If fast isel succeeded, skip over all the folded instructions, and
1141          // then see if there is a load right before the selected instructions.
1142          // Try to fold the load if so.
1143          const Instruction *BeforeInst = Inst;
1144          while (BeforeInst != Begin) {
1145            BeforeInst = std::prev(BasicBlock::const_iterator(BeforeInst));
1146            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1147              break;
1148          }
1149          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1150              BeforeInst->hasOneUse() &&
1151              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1152            // If we succeeded, don't re-select the load.
1153            BI = std::next(BasicBlock::const_iterator(BeforeInst));
1154            --NumFastIselRemaining;
1155            ++NumFastIselSuccess;
1156          }
1157          continue;
1158        }
1159
1160#ifndef NDEBUG
1161        if (EnableFastISelVerbose2)
1162          collectFailStats(Inst);
1163#endif
1164
1165        // Then handle certain instructions as single-LLVM-Instruction blocks.
1166        if (isa<CallInst>(Inst)) {
1167
1168          if (EnableFastISelVerbose || EnableFastISelAbort) {
1169            dbgs() << "FastISel missed call: ";
1170            Inst->dump();
1171          }
1172
1173          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1174            unsigned &R = FuncInfo->ValueMap[Inst];
1175            if (!R)
1176              R = FuncInfo->CreateRegs(Inst->getType());
1177          }
1178
1179          bool HadTailCall = false;
1180          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1181          SelectBasicBlock(Inst, BI, HadTailCall);
1182
1183          // If the call was emitted as a tail call, we're done with the block.
1184          // We also need to delete any previously emitted instructions.
1185          if (HadTailCall) {
1186            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1187            --BI;
1188            break;
1189          }
1190
1191          // Recompute NumFastIselRemaining as Selection DAG instruction
1192          // selection may have handled the call, input args, etc.
1193          unsigned RemainingNow = std::distance(Begin, BI);
1194          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1195          NumFastIselRemaining = RemainingNow;
1196          continue;
1197        }
1198
1199        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1200          // Don't abort, and use a different message for terminator misses.
1201          NumFastIselFailures += NumFastIselRemaining;
1202          if (EnableFastISelVerbose || EnableFastISelAbort) {
1203            dbgs() << "FastISel missed terminator: ";
1204            Inst->dump();
1205          }
1206        } else {
1207          NumFastIselFailures += NumFastIselRemaining;
1208          if (EnableFastISelVerbose || EnableFastISelAbort) {
1209            dbgs() << "FastISel miss: ";
1210            Inst->dump();
1211          }
1212          if (EnableFastISelAbort)
1213            // The "fast" selector couldn't handle something and bailed.
1214            // For the purpose of debugging, just abort.
1215            llvm_unreachable("FastISel didn't select the entire block");
1216        }
1217        break;
1218      }
1219
1220      FastIS->recomputeInsertPt();
1221    } else {
1222      // Lower any arguments needed in this block if this is the entry block.
1223      if (LLVMBB == &Fn.getEntryBlock()) {
1224        ++NumEntryBlocks;
1225        LowerArguments(Fn);
1226      }
1227    }
1228
1229    if (Begin != BI)
1230      ++NumDAGBlocks;
1231    else
1232      ++NumFastIselBlocks;
1233
1234    if (Begin != BI) {
1235      // Run SelectionDAG instruction selection on the remainder of the block
1236      // not handled by FastISel. If FastISel is not run, this is the entire
1237      // block.
1238      bool HadTailCall;
1239      SelectBasicBlock(Begin, BI, HadTailCall);
1240    }
1241
1242    FinishBasicBlock();
1243    FuncInfo->PHINodesToUpdate.clear();
1244  }
1245
1246  delete FastIS;
1247  SDB->clearDanglingDebugInfo();
1248  SDB->SPDescriptor.resetPerFunctionState();
1249}
1250
1251/// Given that the input MI is before a partial terminator sequence TSeq, return
1252/// true if M + TSeq also a partial terminator sequence.
1253///
1254/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1255/// lowering copy vregs into physical registers, which are then passed into
1256/// terminator instructors so we can satisfy ABI constraints. A partial
1257/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1258/// may be the whole terminator sequence).
1259static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1260  // If we do not have a copy or an implicit def, we return true if and only if
1261  // MI is a debug value.
1262  if (!MI->isCopy() && !MI->isImplicitDef())
1263    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1264    // physical registers if there is debug info associated with the terminator
1265    // of our mbb. We want to include said debug info in our terminator
1266    // sequence, so we return true in that case.
1267    return MI->isDebugValue();
1268
1269  // We have left the terminator sequence if we are not doing one of the
1270  // following:
1271  //
1272  // 1. Copying a vreg into a physical register.
1273  // 2. Copying a vreg into a vreg.
1274  // 3. Defining a register via an implicit def.
1275
1276  // OPI should always be a register definition...
1277  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1278  if (!OPI->isReg() || !OPI->isDef())
1279    return false;
1280
1281  // Defining any register via an implicit def is always ok.
1282  if (MI->isImplicitDef())
1283    return true;
1284
1285  // Grab the copy source...
1286  MachineInstr::const_mop_iterator OPI2 = OPI;
1287  ++OPI2;
1288  assert(OPI2 != MI->operands_end()
1289         && "Should have a copy implying we should have 2 arguments.");
1290
1291  // Make sure that the copy dest is not a vreg when the copy source is a
1292  // physical register.
1293  if (!OPI2->isReg() ||
1294      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1295       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1296    return false;
1297
1298  return true;
1299}
1300
1301/// Find the split point at which to splice the end of BB into its success stack
1302/// protector check machine basic block.
1303///
1304/// On many platforms, due to ABI constraints, terminators, even before register
1305/// allocation, use physical registers. This creates an issue for us since
1306/// physical registers at this point can not travel across basic
1307/// blocks. Luckily, selectiondag always moves physical registers into vregs
1308/// when they enter functions and moves them through a sequence of copies back
1309/// into the physical registers right before the terminator creating a
1310/// ``Terminator Sequence''. This function is searching for the beginning of the
1311/// terminator sequence so that we can ensure that we splice off not just the
1312/// terminator, but additionally the copies that move the vregs into the
1313/// physical registers.
1314static MachineBasicBlock::iterator
1315FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1316  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1317  //
1318  if (SplitPoint == BB->begin())
1319    return SplitPoint;
1320
1321  MachineBasicBlock::iterator Start = BB->begin();
1322  MachineBasicBlock::iterator Previous = SplitPoint;
1323  --Previous;
1324
1325  while (MIIsInTerminatorSequence(Previous)) {
1326    SplitPoint = Previous;
1327    if (Previous == Start)
1328      break;
1329    --Previous;
1330  }
1331
1332  return SplitPoint;
1333}
1334
1335void
1336SelectionDAGISel::FinishBasicBlock() {
1337
1338  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1339               << FuncInfo->PHINodesToUpdate.size() << "\n";
1340        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1341          dbgs() << "Node " << i << " : ("
1342                 << FuncInfo->PHINodesToUpdate[i].first
1343                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1344
1345  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1346                                  SDB->JTCases.empty() &&
1347                                  SDB->BitTestCases.empty();
1348
1349  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1350  // PHI nodes in successors.
1351  if (MustUpdatePHINodes) {
1352    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1353      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1354      assert(PHI->isPHI() &&
1355             "This is not a machine PHI node that we are updating!");
1356      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1357        continue;
1358      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1359    }
1360  }
1361
1362  // Handle stack protector.
1363  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1364    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1365    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1366
1367    // Find the split point to split the parent mbb. At the same time copy all
1368    // physical registers used in the tail of parent mbb into virtual registers
1369    // before the split point and back into physical registers after the split
1370    // point. This prevents us needing to deal with Live-ins and many other
1371    // register allocation issues caused by us splitting the parent mbb. The
1372    // register allocator will clean up said virtual copies later on.
1373    MachineBasicBlock::iterator SplitPoint =
1374      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1375
1376    // Splice the terminator of ParentMBB into SuccessMBB.
1377    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1378                       SplitPoint,
1379                       ParentMBB->end());
1380
1381    // Add compare/jump on neq/jump to the parent BB.
1382    FuncInfo->MBB = ParentMBB;
1383    FuncInfo->InsertPt = ParentMBB->end();
1384    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1385    CurDAG->setRoot(SDB->getRoot());
1386    SDB->clear();
1387    CodeGenAndEmitDAG();
1388
1389    // CodeGen Failure MBB if we have not codegened it yet.
1390    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1391    if (!FailureMBB->size()) {
1392      FuncInfo->MBB = FailureMBB;
1393      FuncInfo->InsertPt = FailureMBB->end();
1394      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1395      CurDAG->setRoot(SDB->getRoot());
1396      SDB->clear();
1397      CodeGenAndEmitDAG();
1398    }
1399
1400    // Clear the Per-BB State.
1401    SDB->SPDescriptor.resetPerBBState();
1402  }
1403
1404  // If we updated PHI Nodes, return early.
1405  if (MustUpdatePHINodes)
1406    return;
1407
1408  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1409    // Lower header first, if it wasn't already lowered
1410    if (!SDB->BitTestCases[i].Emitted) {
1411      // Set the current basic block to the mbb we wish to insert the code into
1412      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1413      FuncInfo->InsertPt = FuncInfo->MBB->end();
1414      // Emit the code
1415      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1416      CurDAG->setRoot(SDB->getRoot());
1417      SDB->clear();
1418      CodeGenAndEmitDAG();
1419    }
1420
1421    uint32_t UnhandledWeight = 0;
1422    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1423      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1424
1425    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1426      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1427      // Set the current basic block to the mbb we wish to insert the code into
1428      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1429      FuncInfo->InsertPt = FuncInfo->MBB->end();
1430      // Emit the code
1431      if (j+1 != ej)
1432        SDB->visitBitTestCase(SDB->BitTestCases[i],
1433                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1434                              UnhandledWeight,
1435                              SDB->BitTestCases[i].Reg,
1436                              SDB->BitTestCases[i].Cases[j],
1437                              FuncInfo->MBB);
1438      else
1439        SDB->visitBitTestCase(SDB->BitTestCases[i],
1440                              SDB->BitTestCases[i].Default,
1441                              UnhandledWeight,
1442                              SDB->BitTestCases[i].Reg,
1443                              SDB->BitTestCases[i].Cases[j],
1444                              FuncInfo->MBB);
1445
1446
1447      CurDAG->setRoot(SDB->getRoot());
1448      SDB->clear();
1449      CodeGenAndEmitDAG();
1450    }
1451
1452    // Update PHI Nodes
1453    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1454         pi != pe; ++pi) {
1455      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1456      MachineBasicBlock *PHIBB = PHI->getParent();
1457      assert(PHI->isPHI() &&
1458             "This is not a machine PHI node that we are updating!");
1459      // This is "default" BB. We have two jumps to it. From "header" BB and
1460      // from last "case" BB.
1461      if (PHIBB == SDB->BitTestCases[i].Default)
1462        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1463           .addMBB(SDB->BitTestCases[i].Parent)
1464           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1465           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1466      // One of "cases" BB.
1467      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1468           j != ej; ++j) {
1469        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1470        if (cBB->isSuccessor(PHIBB))
1471          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1472      }
1473    }
1474  }
1475  SDB->BitTestCases.clear();
1476
1477  // If the JumpTable record is filled in, then we need to emit a jump table.
1478  // Updating the PHI nodes is tricky in this case, since we need to determine
1479  // whether the PHI is a successor of the range check MBB or the jump table MBB
1480  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1481    // Lower header first, if it wasn't already lowered
1482    if (!SDB->JTCases[i].first.Emitted) {
1483      // Set the current basic block to the mbb we wish to insert the code into
1484      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1485      FuncInfo->InsertPt = FuncInfo->MBB->end();
1486      // Emit the code
1487      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1488                                FuncInfo->MBB);
1489      CurDAG->setRoot(SDB->getRoot());
1490      SDB->clear();
1491      CodeGenAndEmitDAG();
1492    }
1493
1494    // Set the current basic block to the mbb we wish to insert the code into
1495    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1496    FuncInfo->InsertPt = FuncInfo->MBB->end();
1497    // Emit the code
1498    SDB->visitJumpTable(SDB->JTCases[i].second);
1499    CurDAG->setRoot(SDB->getRoot());
1500    SDB->clear();
1501    CodeGenAndEmitDAG();
1502
1503    // Update PHI Nodes
1504    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1505         pi != pe; ++pi) {
1506      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1507      MachineBasicBlock *PHIBB = PHI->getParent();
1508      assert(PHI->isPHI() &&
1509             "This is not a machine PHI node that we are updating!");
1510      // "default" BB. We can go there only from header BB.
1511      if (PHIBB == SDB->JTCases[i].second.Default)
1512        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1513           .addMBB(SDB->JTCases[i].first.HeaderBB);
1514      // JT BB. Just iterate over successors here
1515      if (FuncInfo->MBB->isSuccessor(PHIBB))
1516        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1517    }
1518  }
1519  SDB->JTCases.clear();
1520
1521  // If the switch block involved a branch to one of the actual successors, we
1522  // need to update PHI nodes in that block.
1523  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1524    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1525    assert(PHI->isPHI() &&
1526           "This is not a machine PHI node that we are updating!");
1527    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1528      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1529  }
1530
1531  // If we generated any switch lowering information, build and codegen any
1532  // additional DAGs necessary.
1533  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1534    // Set the current basic block to the mbb we wish to insert the code into
1535    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1536    FuncInfo->InsertPt = FuncInfo->MBB->end();
1537
1538    // Determine the unique successors.
1539    SmallVector<MachineBasicBlock *, 2> Succs;
1540    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1541    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1542      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1543
1544    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1545    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1546    CurDAG->setRoot(SDB->getRoot());
1547    SDB->clear();
1548    CodeGenAndEmitDAG();
1549
1550    // Remember the last block, now that any splitting is done, for use in
1551    // populating PHI nodes in successors.
1552    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1553
1554    // Handle any PHI nodes in successors of this chunk, as if we were coming
1555    // from the original BB before switch expansion.  Note that PHI nodes can
1556    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1557    // handle them the right number of times.
1558    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1559      FuncInfo->MBB = Succs[i];
1560      FuncInfo->InsertPt = FuncInfo->MBB->end();
1561      // FuncInfo->MBB may have been removed from the CFG if a branch was
1562      // constant folded.
1563      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1564        for (MachineBasicBlock::iterator
1565             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1566             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1567          MachineInstrBuilder PHI(*MF, MBBI);
1568          // This value for this PHI node is recorded in PHINodesToUpdate.
1569          for (unsigned pn = 0; ; ++pn) {
1570            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1571                   "Didn't find PHI entry!");
1572            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1573              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1574              break;
1575            }
1576          }
1577        }
1578      }
1579    }
1580  }
1581  SDB->SwitchCases.clear();
1582}
1583
1584
1585/// Create the scheduler. If a specific scheduler was specified
1586/// via the SchedulerRegistry, use it, otherwise select the
1587/// one preferred by the target.
1588///
1589ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1590  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1591
1592  if (!Ctor) {
1593    Ctor = ISHeuristic;
1594    RegisterScheduler::setDefault(Ctor);
1595  }
1596
1597  return Ctor(this, OptLevel);
1598}
1599
1600//===----------------------------------------------------------------------===//
1601// Helper functions used by the generated instruction selector.
1602//===----------------------------------------------------------------------===//
1603// Calls to these methods are generated by tblgen.
1604
1605/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1606/// the dag combiner simplified the 255, we still want to match.  RHS is the
1607/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1608/// specified in the .td file (e.g. 255).
1609bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1610                                    int64_t DesiredMaskS) const {
1611  const APInt &ActualMask = RHS->getAPIntValue();
1612  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1613
1614  // If the actual mask exactly matches, success!
1615  if (ActualMask == DesiredMask)
1616    return true;
1617
1618  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1619  if (ActualMask.intersects(~DesiredMask))
1620    return false;
1621
1622  // Otherwise, the DAG Combiner may have proven that the value coming in is
1623  // either already zero or is not demanded.  Check for known zero input bits.
1624  APInt NeededMask = DesiredMask & ~ActualMask;
1625  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1626    return true;
1627
1628  // TODO: check to see if missing bits are just not demanded.
1629
1630  // Otherwise, this pattern doesn't match.
1631  return false;
1632}
1633
1634/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1635/// the dag combiner simplified the 255, we still want to match.  RHS is the
1636/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1637/// specified in the .td file (e.g. 255).
1638bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1639                                   int64_t DesiredMaskS) const {
1640  const APInt &ActualMask = RHS->getAPIntValue();
1641  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1642
1643  // If the actual mask exactly matches, success!
1644  if (ActualMask == DesiredMask)
1645    return true;
1646
1647  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1648  if (ActualMask.intersects(~DesiredMask))
1649    return false;
1650
1651  // Otherwise, the DAG Combiner may have proven that the value coming in is
1652  // either already zero or is not demanded.  Check for known zero input bits.
1653  APInt NeededMask = DesiredMask & ~ActualMask;
1654
1655  APInt KnownZero, KnownOne;
1656  CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
1657
1658  // If all the missing bits in the or are already known to be set, match!
1659  if ((NeededMask & KnownOne) == NeededMask)
1660    return true;
1661
1662  // TODO: check to see if missing bits are just not demanded.
1663
1664  // Otherwise, this pattern doesn't match.
1665  return false;
1666}
1667
1668
1669/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1670/// by tblgen.  Others should not call it.
1671void SelectionDAGISel::
1672SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1673  std::vector<SDValue> InOps;
1674  std::swap(InOps, Ops);
1675
1676  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1677  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1678  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1679  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1680
1681  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1682  if (InOps[e-1].getValueType() == MVT::Glue)
1683    --e;  // Don't process a glue operand if it is here.
1684
1685  while (i != e) {
1686    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1687    if (!InlineAsm::isMemKind(Flags)) {
1688      // Just skip over this operand, copying the operands verbatim.
1689      Ops.insert(Ops.end(), InOps.begin()+i,
1690                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1691      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1692    } else {
1693      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1694             "Memory operand with multiple values?");
1695      // Otherwise, this is a memory operand.  Ask the target to select it.
1696      std::vector<SDValue> SelOps;
1697      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1698        report_fatal_error("Could not match memory address.  Inline asm"
1699                           " failure!");
1700
1701      // Add this to the output node.
1702      unsigned NewFlags =
1703        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1704      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1705      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1706      i += 2;
1707    }
1708  }
1709
1710  // Add the glue input back if present.
1711  if (e != InOps.size())
1712    Ops.push_back(InOps.back());
1713}
1714
1715/// findGlueUse - Return use of MVT::Glue value produced by the specified
1716/// SDNode.
1717///
1718static SDNode *findGlueUse(SDNode *N) {
1719  unsigned FlagResNo = N->getNumValues()-1;
1720  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1721    SDUse &Use = I.getUse();
1722    if (Use.getResNo() == FlagResNo)
1723      return Use.getUser();
1724  }
1725  return nullptr;
1726}
1727
1728/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1729/// This function recursively traverses up the operand chain, ignoring
1730/// certain nodes.
1731static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1732                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1733                          bool IgnoreChains) {
1734  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1735  // greater than all of its (recursive) operands.  If we scan to a point where
1736  // 'use' is smaller than the node we're scanning for, then we know we will
1737  // never find it.
1738  //
1739  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1740  // happen because we scan down to newly selected nodes in the case of glue
1741  // uses.
1742  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1743    return false;
1744
1745  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1746  // won't fail if we scan it again.
1747  if (!Visited.insert(Use))
1748    return false;
1749
1750  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1751    // Ignore chain uses, they are validated by HandleMergeInputChains.
1752    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1753      continue;
1754
1755    SDNode *N = Use->getOperand(i).getNode();
1756    if (N == Def) {
1757      if (Use == ImmedUse || Use == Root)
1758        continue;  // We are not looking for immediate use.
1759      assert(N != Root);
1760      return true;
1761    }
1762
1763    // Traverse up the operand chain.
1764    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1765      return true;
1766  }
1767  return false;
1768}
1769
1770/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1771/// operand node N of U during instruction selection that starts at Root.
1772bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1773                                          SDNode *Root) const {
1774  if (OptLevel == CodeGenOpt::None) return false;
1775  return N.hasOneUse();
1776}
1777
1778/// IsLegalToFold - Returns true if the specific operand node N of
1779/// U can be folded during instruction selection that starts at Root.
1780bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1781                                     CodeGenOpt::Level OptLevel,
1782                                     bool IgnoreChains) {
1783  if (OptLevel == CodeGenOpt::None) return false;
1784
1785  // If Root use can somehow reach N through a path that that doesn't contain
1786  // U then folding N would create a cycle. e.g. In the following
1787  // diagram, Root can reach N through X. If N is folded into into Root, then
1788  // X is both a predecessor and a successor of U.
1789  //
1790  //          [N*]           //
1791  //         ^   ^           //
1792  //        /     \          //
1793  //      [U*]    [X]?       //
1794  //        ^     ^          //
1795  //         \   /           //
1796  //          \ /            //
1797  //         [Root*]         //
1798  //
1799  // * indicates nodes to be folded together.
1800  //
1801  // If Root produces glue, then it gets (even more) interesting. Since it
1802  // will be "glued" together with its glue use in the scheduler, we need to
1803  // check if it might reach N.
1804  //
1805  //          [N*]           //
1806  //         ^   ^           //
1807  //        /     \          //
1808  //      [U*]    [X]?       //
1809  //        ^       ^        //
1810  //         \       \       //
1811  //          \      |       //
1812  //         [Root*] |       //
1813  //          ^      |       //
1814  //          f      |       //
1815  //          |      /       //
1816  //         [Y]    /        //
1817  //           ^   /         //
1818  //           f  /          //
1819  //           | /           //
1820  //          [GU]           //
1821  //
1822  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1823  // (call it Fold), then X is a predecessor of GU and a successor of
1824  // Fold. But since Fold and GU are glued together, this will create
1825  // a cycle in the scheduling graph.
1826
1827  // If the node has glue, walk down the graph to the "lowest" node in the
1828  // glueged set.
1829  EVT VT = Root->getValueType(Root->getNumValues()-1);
1830  while (VT == MVT::Glue) {
1831    SDNode *GU = findGlueUse(Root);
1832    if (!GU)
1833      break;
1834    Root = GU;
1835    VT = Root->getValueType(Root->getNumValues()-1);
1836
1837    // If our query node has a glue result with a use, we've walked up it.  If
1838    // the user (which has already been selected) has a chain or indirectly uses
1839    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1840    // this, we cannot ignore chains in this predicate.
1841    IgnoreChains = false;
1842  }
1843
1844
1845  SmallPtrSet<SDNode*, 16> Visited;
1846  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1847}
1848
1849SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1850  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1851  SelectInlineAsmMemoryOperands(Ops);
1852
1853  EVT VTs[] = { MVT::Other, MVT::Glue };
1854  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N), VTs, Ops);
1855  New->setNodeId(-1);
1856  return New.getNode();
1857}
1858
1859SDNode
1860*SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
1861  SDLoc dl(Op);
1862  MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(0));
1863  const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1864  unsigned Reg = getTargetLowering()->getRegisterByName(
1865                 RegStr->getString().data(), Op->getValueType(0));
1866  SDValue New = CurDAG->getCopyFromReg(
1867                        CurDAG->getEntryNode(), dl, Reg, Op->getValueType(0));
1868  New->setNodeId(-1);
1869  return New.getNode();
1870}
1871
1872SDNode
1873*SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
1874  SDLoc dl(Op);
1875  MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
1876  const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1877  unsigned Reg = getTargetLowering()->getRegisterByName(
1878                 RegStr->getString().data(), Op->getOperand(2).getValueType());
1879  SDValue New = CurDAG->getCopyToReg(
1880                        CurDAG->getEntryNode(), dl, Reg, Op->getOperand(2));
1881  New->setNodeId(-1);
1882  return New.getNode();
1883}
1884
1885
1886
1887SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1888  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1889}
1890
1891/// GetVBR - decode a vbr encoding whose top bit is set.
1892LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1893GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1894  assert(Val >= 128 && "Not a VBR");
1895  Val &= 127;  // Remove first vbr bit.
1896
1897  unsigned Shift = 7;
1898  uint64_t NextBits;
1899  do {
1900    NextBits = MatcherTable[Idx++];
1901    Val |= (NextBits&127) << Shift;
1902    Shift += 7;
1903  } while (NextBits & 128);
1904
1905  return Val;
1906}
1907
1908
1909/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1910/// interior glue and chain results to use the new glue and chain results.
1911void SelectionDAGISel::
1912UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1913                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1914                    SDValue InputGlue,
1915                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1916                    bool isMorphNodeTo) {
1917  SmallVector<SDNode*, 4> NowDeadNodes;
1918
1919  // Now that all the normal results are replaced, we replace the chain and
1920  // glue results if present.
1921  if (!ChainNodesMatched.empty()) {
1922    assert(InputChain.getNode() &&
1923           "Matched input chains but didn't produce a chain");
1924    // Loop over all of the nodes we matched that produced a chain result.
1925    // Replace all the chain results with the final chain we ended up with.
1926    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1927      SDNode *ChainNode = ChainNodesMatched[i];
1928
1929      // If this node was already deleted, don't look at it.
1930      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1931        continue;
1932
1933      // Don't replace the results of the root node if we're doing a
1934      // MorphNodeTo.
1935      if (ChainNode == NodeToMatch && isMorphNodeTo)
1936        continue;
1937
1938      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1939      if (ChainVal.getValueType() == MVT::Glue)
1940        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1941      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1942      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1943
1944      // If the node became dead and we haven't already seen it, delete it.
1945      if (ChainNode->use_empty() &&
1946          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1947        NowDeadNodes.push_back(ChainNode);
1948    }
1949  }
1950
1951  // If the result produces glue, update any glue results in the matched
1952  // pattern with the glue result.
1953  if (InputGlue.getNode()) {
1954    // Handle any interior nodes explicitly marked.
1955    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1956      SDNode *FRN = GlueResultNodesMatched[i];
1957
1958      // If this node was already deleted, don't look at it.
1959      if (FRN->getOpcode() == ISD::DELETED_NODE)
1960        continue;
1961
1962      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1963             "Doesn't have a glue result");
1964      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1965                                        InputGlue);
1966
1967      // If the node became dead and we haven't already seen it, delete it.
1968      if (FRN->use_empty() &&
1969          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1970        NowDeadNodes.push_back(FRN);
1971    }
1972  }
1973
1974  if (!NowDeadNodes.empty())
1975    CurDAG->RemoveDeadNodes(NowDeadNodes);
1976
1977  DEBUG(dbgs() << "ISEL: Match complete!\n");
1978}
1979
1980enum ChainResult {
1981  CR_Simple,
1982  CR_InducesCycle,
1983  CR_LeadsToInteriorNode
1984};
1985
1986/// WalkChainUsers - Walk down the users of the specified chained node that is
1987/// part of the pattern we're matching, looking at all of the users we find.
1988/// This determines whether something is an interior node, whether we have a
1989/// non-pattern node in between two pattern nodes (which prevent folding because
1990/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1991/// between pattern nodes (in which case the TF becomes part of the pattern).
1992///
1993/// The walk we do here is guaranteed to be small because we quickly get down to
1994/// already selected nodes "below" us.
1995static ChainResult
1996WalkChainUsers(const SDNode *ChainedNode,
1997               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1998               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1999  ChainResult Result = CR_Simple;
2000
2001  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2002         E = ChainedNode->use_end(); UI != E; ++UI) {
2003    // Make sure the use is of the chain, not some other value we produce.
2004    if (UI.getUse().getValueType() != MVT::Other) continue;
2005
2006    SDNode *User = *UI;
2007
2008    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
2009      continue;
2010
2011    // If we see an already-selected machine node, then we've gone beyond the
2012    // pattern that we're selecting down into the already selected chunk of the
2013    // DAG.
2014    unsigned UserOpcode = User->getOpcode();
2015    if (User->isMachineOpcode() ||
2016        UserOpcode == ISD::CopyToReg ||
2017        UserOpcode == ISD::CopyFromReg ||
2018        UserOpcode == ISD::INLINEASM ||
2019        UserOpcode == ISD::EH_LABEL ||
2020        UserOpcode == ISD::LIFETIME_START ||
2021        UserOpcode == ISD::LIFETIME_END) {
2022      // If their node ID got reset to -1 then they've already been selected.
2023      // Treat them like a MachineOpcode.
2024      if (User->getNodeId() == -1)
2025        continue;
2026    }
2027
2028    // If we have a TokenFactor, we handle it specially.
2029    if (User->getOpcode() != ISD::TokenFactor) {
2030      // If the node isn't a token factor and isn't part of our pattern, then it
2031      // must be a random chained node in between two nodes we're selecting.
2032      // This happens when we have something like:
2033      //   x = load ptr
2034      //   call
2035      //   y = x+4
2036      //   store y -> ptr
2037      // Because we structurally match the load/store as a read/modify/write,
2038      // but the call is chained between them.  We cannot fold in this case
2039      // because it would induce a cycle in the graph.
2040      if (!std::count(ChainedNodesInPattern.begin(),
2041                      ChainedNodesInPattern.end(), User))
2042        return CR_InducesCycle;
2043
2044      // Otherwise we found a node that is part of our pattern.  For example in:
2045      //   x = load ptr
2046      //   y = x+4
2047      //   store y -> ptr
2048      // This would happen when we're scanning down from the load and see the
2049      // store as a user.  Record that there is a use of ChainedNode that is
2050      // part of the pattern and keep scanning uses.
2051      Result = CR_LeadsToInteriorNode;
2052      InteriorChainedNodes.push_back(User);
2053      continue;
2054    }
2055
2056    // If we found a TokenFactor, there are two cases to consider: first if the
2057    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2058    // uses of the TF are in our pattern) we just want to ignore it.  Second,
2059    // the TokenFactor can be sandwiched in between two chained nodes, like so:
2060    //     [Load chain]
2061    //         ^
2062    //         |
2063    //       [Load]
2064    //       ^    ^
2065    //       |    \                    DAG's like cheese
2066    //      /       \                       do you?
2067    //     /         |
2068    // [TokenFactor] [Op]
2069    //     ^          ^
2070    //     |          |
2071    //      \        /
2072    //       \      /
2073    //       [Store]
2074    //
2075    // In this case, the TokenFactor becomes part of our match and we rewrite it
2076    // as a new TokenFactor.
2077    //
2078    // To distinguish these two cases, do a recursive walk down the uses.
2079    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2080    case CR_Simple:
2081      // If the uses of the TokenFactor are just already-selected nodes, ignore
2082      // it, it is "below" our pattern.
2083      continue;
2084    case CR_InducesCycle:
2085      // If the uses of the TokenFactor lead to nodes that are not part of our
2086      // pattern that are not selected, folding would turn this into a cycle,
2087      // bail out now.
2088      return CR_InducesCycle;
2089    case CR_LeadsToInteriorNode:
2090      break;  // Otherwise, keep processing.
2091    }
2092
2093    // Okay, we know we're in the interesting interior case.  The TokenFactor
2094    // is now going to be considered part of the pattern so that we rewrite its
2095    // uses (it may have uses that are not part of the pattern) with the
2096    // ultimate chain result of the generated code.  We will also add its chain
2097    // inputs as inputs to the ultimate TokenFactor we create.
2098    Result = CR_LeadsToInteriorNode;
2099    ChainedNodesInPattern.push_back(User);
2100    InteriorChainedNodes.push_back(User);
2101    continue;
2102  }
2103
2104  return Result;
2105}
2106
2107/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2108/// operation for when the pattern matched at least one node with a chains.  The
2109/// input vector contains a list of all of the chained nodes that we match.  We
2110/// must determine if this is a valid thing to cover (i.e. matching it won't
2111/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2112/// be used as the input node chain for the generated nodes.
2113static SDValue
2114HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2115                       SelectionDAG *CurDAG) {
2116  // Walk all of the chained nodes we've matched, recursively scanning down the
2117  // users of the chain result. This adds any TokenFactor nodes that are caught
2118  // in between chained nodes to the chained and interior nodes list.
2119  SmallVector<SDNode*, 3> InteriorChainedNodes;
2120  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2121    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2122                       InteriorChainedNodes) == CR_InducesCycle)
2123      return SDValue(); // Would induce a cycle.
2124  }
2125
2126  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2127  // that we are interested in.  Form our input TokenFactor node.
2128  SmallVector<SDValue, 3> InputChains;
2129  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2130    // Add the input chain of this node to the InputChains list (which will be
2131    // the operands of the generated TokenFactor) if it's not an interior node.
2132    SDNode *N = ChainNodesMatched[i];
2133    if (N->getOpcode() != ISD::TokenFactor) {
2134      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2135        continue;
2136
2137      // Otherwise, add the input chain.
2138      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2139      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2140      InputChains.push_back(InChain);
2141      continue;
2142    }
2143
2144    // If we have a token factor, we want to add all inputs of the token factor
2145    // that are not part of the pattern we're matching.
2146    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2147      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2148                      N->getOperand(op).getNode()))
2149        InputChains.push_back(N->getOperand(op));
2150    }
2151  }
2152
2153  if (InputChains.size() == 1)
2154    return InputChains[0];
2155  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2156                         MVT::Other, InputChains);
2157}
2158
2159/// MorphNode - Handle morphing a node in place for the selector.
2160SDNode *SelectionDAGISel::
2161MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2162          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2163  // It is possible we're using MorphNodeTo to replace a node with no
2164  // normal results with one that has a normal result (or we could be
2165  // adding a chain) and the input could have glue and chains as well.
2166  // In this case we need to shift the operands down.
2167  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2168  // than the old isel though.
2169  int OldGlueResultNo = -1, OldChainResultNo = -1;
2170
2171  unsigned NTMNumResults = Node->getNumValues();
2172  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2173    OldGlueResultNo = NTMNumResults-1;
2174    if (NTMNumResults != 1 &&
2175        Node->getValueType(NTMNumResults-2) == MVT::Other)
2176      OldChainResultNo = NTMNumResults-2;
2177  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2178    OldChainResultNo = NTMNumResults-1;
2179
2180  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2181  // that this deletes operands of the old node that become dead.
2182  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2183
2184  // MorphNodeTo can operate in two ways: if an existing node with the
2185  // specified operands exists, it can just return it.  Otherwise, it
2186  // updates the node in place to have the requested operands.
2187  if (Res == Node) {
2188    // If we updated the node in place, reset the node ID.  To the isel,
2189    // this should be just like a newly allocated machine node.
2190    Res->setNodeId(-1);
2191  }
2192
2193  unsigned ResNumResults = Res->getNumValues();
2194  // Move the glue if needed.
2195  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2196      (unsigned)OldGlueResultNo != ResNumResults-1)
2197    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2198                                      SDValue(Res, ResNumResults-1));
2199
2200  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2201    --ResNumResults;
2202
2203  // Move the chain reference if needed.
2204  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2205      (unsigned)OldChainResultNo != ResNumResults-1)
2206    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2207                                      SDValue(Res, ResNumResults-1));
2208
2209  // Otherwise, no replacement happened because the node already exists. Replace
2210  // Uses of the old node with the new one.
2211  if (Res != Node)
2212    CurDAG->ReplaceAllUsesWith(Node, Res);
2213
2214  return Res;
2215}
2216
2217/// CheckSame - Implements OP_CheckSame.
2218LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2219CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2220          SDValue N,
2221          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2222  // Accept if it is exactly the same as a previously recorded node.
2223  unsigned RecNo = MatcherTable[MatcherIndex++];
2224  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2225  return N == RecordedNodes[RecNo].first;
2226}
2227
2228/// CheckChildSame - Implements OP_CheckChildXSame.
2229LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2230CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2231             SDValue N,
2232             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2233             unsigned ChildNo) {
2234  if (ChildNo >= N.getNumOperands())
2235    return false;  // Match fails if out of range child #.
2236  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2237                     RecordedNodes);
2238}
2239
2240/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2241LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2242CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2243                      const SelectionDAGISel &SDISel) {
2244  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2245}
2246
2247/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2248LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2249CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2250                   const SelectionDAGISel &SDISel, SDNode *N) {
2251  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2252}
2253
2254LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2255CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2256            SDNode *N) {
2257  uint16_t Opc = MatcherTable[MatcherIndex++];
2258  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2259  return N->getOpcode() == Opc;
2260}
2261
2262LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2263CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2264          SDValue N, const TargetLowering *TLI) {
2265  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2266  if (N.getValueType() == VT) return true;
2267
2268  // Handle the case when VT is iPTR.
2269  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2270}
2271
2272LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2273CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2274               SDValue N, const TargetLowering *TLI, unsigned ChildNo) {
2275  if (ChildNo >= N.getNumOperands())
2276    return false;  // Match fails if out of range child #.
2277  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2278}
2279
2280LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2281CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2282              SDValue N) {
2283  return cast<CondCodeSDNode>(N)->get() ==
2284      (ISD::CondCode)MatcherTable[MatcherIndex++];
2285}
2286
2287LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2288CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2289               SDValue N, const TargetLowering *TLI) {
2290  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2291  if (cast<VTSDNode>(N)->getVT() == VT)
2292    return true;
2293
2294  // Handle the case when VT is iPTR.
2295  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2296}
2297
2298LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2299CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2300             SDValue N) {
2301  int64_t Val = MatcherTable[MatcherIndex++];
2302  if (Val & 128)
2303    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2304
2305  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2306  return C && C->getSExtValue() == Val;
2307}
2308
2309LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2310CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2311                  SDValue N, unsigned ChildNo) {
2312  if (ChildNo >= N.getNumOperands())
2313    return false;  // Match fails if out of range child #.
2314  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2315}
2316
2317LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2318CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2319            SDValue N, const SelectionDAGISel &SDISel) {
2320  int64_t Val = MatcherTable[MatcherIndex++];
2321  if (Val & 128)
2322    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2323
2324  if (N->getOpcode() != ISD::AND) return false;
2325
2326  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2327  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2328}
2329
2330LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2331CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2332           SDValue N, const SelectionDAGISel &SDISel) {
2333  int64_t Val = MatcherTable[MatcherIndex++];
2334  if (Val & 128)
2335    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2336
2337  if (N->getOpcode() != ISD::OR) return false;
2338
2339  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2340  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2341}
2342
2343/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2344/// scope, evaluate the current node.  If the current predicate is known to
2345/// fail, set Result=true and return anything.  If the current predicate is
2346/// known to pass, set Result=false and return the MatcherIndex to continue
2347/// with.  If the current predicate is unknown, set Result=false and return the
2348/// MatcherIndex to continue with.
2349static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2350                                       unsigned Index, SDValue N,
2351                                       bool &Result,
2352                                       const SelectionDAGISel &SDISel,
2353                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2354  switch (Table[Index++]) {
2355  default:
2356    Result = false;
2357    return Index-1;  // Could not evaluate this predicate.
2358  case SelectionDAGISel::OPC_CheckSame:
2359    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2360    return Index;
2361  case SelectionDAGISel::OPC_CheckChild0Same:
2362  case SelectionDAGISel::OPC_CheckChild1Same:
2363  case SelectionDAGISel::OPC_CheckChild2Same:
2364  case SelectionDAGISel::OPC_CheckChild3Same:
2365    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2366                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2367    return Index;
2368  case SelectionDAGISel::OPC_CheckPatternPredicate:
2369    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2370    return Index;
2371  case SelectionDAGISel::OPC_CheckPredicate:
2372    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2373    return Index;
2374  case SelectionDAGISel::OPC_CheckOpcode:
2375    Result = !::CheckOpcode(Table, Index, N.getNode());
2376    return Index;
2377  case SelectionDAGISel::OPC_CheckType:
2378    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2379    return Index;
2380  case SelectionDAGISel::OPC_CheckChild0Type:
2381  case SelectionDAGISel::OPC_CheckChild1Type:
2382  case SelectionDAGISel::OPC_CheckChild2Type:
2383  case SelectionDAGISel::OPC_CheckChild3Type:
2384  case SelectionDAGISel::OPC_CheckChild4Type:
2385  case SelectionDAGISel::OPC_CheckChild5Type:
2386  case SelectionDAGISel::OPC_CheckChild6Type:
2387  case SelectionDAGISel::OPC_CheckChild7Type:
2388    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2389                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2390    return Index;
2391  case SelectionDAGISel::OPC_CheckCondCode:
2392    Result = !::CheckCondCode(Table, Index, N);
2393    return Index;
2394  case SelectionDAGISel::OPC_CheckValueType:
2395    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2396    return Index;
2397  case SelectionDAGISel::OPC_CheckInteger:
2398    Result = !::CheckInteger(Table, Index, N);
2399    return Index;
2400  case SelectionDAGISel::OPC_CheckChild0Integer:
2401  case SelectionDAGISel::OPC_CheckChild1Integer:
2402  case SelectionDAGISel::OPC_CheckChild2Integer:
2403  case SelectionDAGISel::OPC_CheckChild3Integer:
2404  case SelectionDAGISel::OPC_CheckChild4Integer:
2405    Result = !::CheckChildInteger(Table, Index, N,
2406                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2407    return Index;
2408  case SelectionDAGISel::OPC_CheckAndImm:
2409    Result = !::CheckAndImm(Table, Index, N, SDISel);
2410    return Index;
2411  case SelectionDAGISel::OPC_CheckOrImm:
2412    Result = !::CheckOrImm(Table, Index, N, SDISel);
2413    return Index;
2414  }
2415}
2416
2417namespace {
2418
2419struct MatchScope {
2420  /// FailIndex - If this match fails, this is the index to continue with.
2421  unsigned FailIndex;
2422
2423  /// NodeStack - The node stack when the scope was formed.
2424  SmallVector<SDValue, 4> NodeStack;
2425
2426  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2427  unsigned NumRecordedNodes;
2428
2429  /// NumMatchedMemRefs - The number of matched memref entries.
2430  unsigned NumMatchedMemRefs;
2431
2432  /// InputChain/InputGlue - The current chain/glue
2433  SDValue InputChain, InputGlue;
2434
2435  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2436  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2437};
2438
2439}
2440
2441SDNode *SelectionDAGISel::
2442SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2443                 unsigned TableSize) {
2444  // FIXME: Should these even be selected?  Handle these cases in the caller?
2445  switch (NodeToMatch->getOpcode()) {
2446  default:
2447    break;
2448  case ISD::EntryToken:       // These nodes remain the same.
2449  case ISD::BasicBlock:
2450  case ISD::Register:
2451  case ISD::RegisterMask:
2452  //case ISD::VALUETYPE:
2453  //case ISD::CONDCODE:
2454  case ISD::HANDLENODE:
2455  case ISD::MDNODE_SDNODE:
2456  case ISD::TargetConstant:
2457  case ISD::TargetConstantFP:
2458  case ISD::TargetConstantPool:
2459  case ISD::TargetFrameIndex:
2460  case ISD::TargetExternalSymbol:
2461  case ISD::TargetBlockAddress:
2462  case ISD::TargetJumpTable:
2463  case ISD::TargetGlobalTLSAddress:
2464  case ISD::TargetGlobalAddress:
2465  case ISD::TokenFactor:
2466  case ISD::CopyFromReg:
2467  case ISD::CopyToReg:
2468  case ISD::EH_LABEL:
2469  case ISD::LIFETIME_START:
2470  case ISD::LIFETIME_END:
2471    NodeToMatch->setNodeId(-1); // Mark selected.
2472    return nullptr;
2473  case ISD::AssertSext:
2474  case ISD::AssertZext:
2475    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2476                                      NodeToMatch->getOperand(0));
2477    return nullptr;
2478  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2479  case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch);
2480  case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch);
2481  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2482  }
2483
2484  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2485
2486  // Set up the node stack with NodeToMatch as the only node on the stack.
2487  SmallVector<SDValue, 8> NodeStack;
2488  SDValue N = SDValue(NodeToMatch, 0);
2489  NodeStack.push_back(N);
2490
2491  // MatchScopes - Scopes used when matching, if a match failure happens, this
2492  // indicates where to continue checking.
2493  SmallVector<MatchScope, 8> MatchScopes;
2494
2495  // RecordedNodes - This is the set of nodes that have been recorded by the
2496  // state machine.  The second value is the parent of the node, or null if the
2497  // root is recorded.
2498  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2499
2500  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2501  // pattern.
2502  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2503
2504  // These are the current input chain and glue for use when generating nodes.
2505  // Various Emit operations change these.  For example, emitting a copytoreg
2506  // uses and updates these.
2507  SDValue InputChain, InputGlue;
2508
2509  // ChainNodesMatched - If a pattern matches nodes that have input/output
2510  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2511  // which ones they are.  The result is captured into this list so that we can
2512  // update the chain results when the pattern is complete.
2513  SmallVector<SDNode*, 3> ChainNodesMatched;
2514  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2515
2516  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2517        NodeToMatch->dump(CurDAG);
2518        dbgs() << '\n');
2519
2520  // Determine where to start the interpreter.  Normally we start at opcode #0,
2521  // but if the state machine starts with an OPC_SwitchOpcode, then we
2522  // accelerate the first lookup (which is guaranteed to be hot) with the
2523  // OpcodeOffset table.
2524  unsigned MatcherIndex = 0;
2525
2526  if (!OpcodeOffset.empty()) {
2527    // Already computed the OpcodeOffset table, just index into it.
2528    if (N.getOpcode() < OpcodeOffset.size())
2529      MatcherIndex = OpcodeOffset[N.getOpcode()];
2530    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2531
2532  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2533    // Otherwise, the table isn't computed, but the state machine does start
2534    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2535    // is the first time we're selecting an instruction.
2536    unsigned Idx = 1;
2537    while (1) {
2538      // Get the size of this case.
2539      unsigned CaseSize = MatcherTable[Idx++];
2540      if (CaseSize & 128)
2541        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2542      if (CaseSize == 0) break;
2543
2544      // Get the opcode, add the index to the table.
2545      uint16_t Opc = MatcherTable[Idx++];
2546      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2547      if (Opc >= OpcodeOffset.size())
2548        OpcodeOffset.resize((Opc+1)*2);
2549      OpcodeOffset[Opc] = Idx;
2550      Idx += CaseSize;
2551    }
2552
2553    // Okay, do the lookup for the first opcode.
2554    if (N.getOpcode() < OpcodeOffset.size())
2555      MatcherIndex = OpcodeOffset[N.getOpcode()];
2556  }
2557
2558  while (1) {
2559    assert(MatcherIndex < TableSize && "Invalid index");
2560#ifndef NDEBUG
2561    unsigned CurrentOpcodeIndex = MatcherIndex;
2562#endif
2563    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2564    switch (Opcode) {
2565    case OPC_Scope: {
2566      // Okay, the semantics of this operation are that we should push a scope
2567      // then evaluate the first child.  However, pushing a scope only to have
2568      // the first check fail (which then pops it) is inefficient.  If we can
2569      // determine immediately that the first check (or first several) will
2570      // immediately fail, don't even bother pushing a scope for them.
2571      unsigned FailIndex;
2572
2573      while (1) {
2574        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2575        if (NumToSkip & 128)
2576          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2577        // Found the end of the scope with no match.
2578        if (NumToSkip == 0) {
2579          FailIndex = 0;
2580          break;
2581        }
2582
2583        FailIndex = MatcherIndex+NumToSkip;
2584
2585        unsigned MatcherIndexOfPredicate = MatcherIndex;
2586        (void)MatcherIndexOfPredicate; // silence warning.
2587
2588        // If we can't evaluate this predicate without pushing a scope (e.g. if
2589        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2590        // push the scope and evaluate the full predicate chain.
2591        bool Result;
2592        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2593                                              Result, *this, RecordedNodes);
2594        if (!Result)
2595          break;
2596
2597        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2598                     << "index " << MatcherIndexOfPredicate
2599                     << ", continuing at " << FailIndex << "\n");
2600        ++NumDAGIselRetries;
2601
2602        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2603        // move to the next case.
2604        MatcherIndex = FailIndex;
2605      }
2606
2607      // If the whole scope failed to match, bail.
2608      if (FailIndex == 0) break;
2609
2610      // Push a MatchScope which indicates where to go if the first child fails
2611      // to match.
2612      MatchScope NewEntry;
2613      NewEntry.FailIndex = FailIndex;
2614      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2615      NewEntry.NumRecordedNodes = RecordedNodes.size();
2616      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2617      NewEntry.InputChain = InputChain;
2618      NewEntry.InputGlue = InputGlue;
2619      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2620      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2621      MatchScopes.push_back(NewEntry);
2622      continue;
2623    }
2624    case OPC_RecordNode: {
2625      // Remember this node, it may end up being an operand in the pattern.
2626      SDNode *Parent = nullptr;
2627      if (NodeStack.size() > 1)
2628        Parent = NodeStack[NodeStack.size()-2].getNode();
2629      RecordedNodes.push_back(std::make_pair(N, Parent));
2630      continue;
2631    }
2632
2633    case OPC_RecordChild0: case OPC_RecordChild1:
2634    case OPC_RecordChild2: case OPC_RecordChild3:
2635    case OPC_RecordChild4: case OPC_RecordChild5:
2636    case OPC_RecordChild6: case OPC_RecordChild7: {
2637      unsigned ChildNo = Opcode-OPC_RecordChild0;
2638      if (ChildNo >= N.getNumOperands())
2639        break;  // Match fails if out of range child #.
2640
2641      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2642                                             N.getNode()));
2643      continue;
2644    }
2645    case OPC_RecordMemRef:
2646      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2647      continue;
2648
2649    case OPC_CaptureGlueInput:
2650      // If the current node has an input glue, capture it in InputGlue.
2651      if (N->getNumOperands() != 0 &&
2652          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2653        InputGlue = N->getOperand(N->getNumOperands()-1);
2654      continue;
2655
2656    case OPC_MoveChild: {
2657      unsigned ChildNo = MatcherTable[MatcherIndex++];
2658      if (ChildNo >= N.getNumOperands())
2659        break;  // Match fails if out of range child #.
2660      N = N.getOperand(ChildNo);
2661      NodeStack.push_back(N);
2662      continue;
2663    }
2664
2665    case OPC_MoveParent:
2666      // Pop the current node off the NodeStack.
2667      NodeStack.pop_back();
2668      assert(!NodeStack.empty() && "Node stack imbalance!");
2669      N = NodeStack.back();
2670      continue;
2671
2672    case OPC_CheckSame:
2673      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2674      continue;
2675
2676    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2677    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2678      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2679                            Opcode-OPC_CheckChild0Same))
2680        break;
2681      continue;
2682
2683    case OPC_CheckPatternPredicate:
2684      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2685      continue;
2686    case OPC_CheckPredicate:
2687      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2688                                N.getNode()))
2689        break;
2690      continue;
2691    case OPC_CheckComplexPat: {
2692      unsigned CPNum = MatcherTable[MatcherIndex++];
2693      unsigned RecNo = MatcherTable[MatcherIndex++];
2694      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2695      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2696                               RecordedNodes[RecNo].first, CPNum,
2697                               RecordedNodes))
2698        break;
2699      continue;
2700    }
2701    case OPC_CheckOpcode:
2702      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2703      continue;
2704
2705    case OPC_CheckType:
2706      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2707        break;
2708      continue;
2709
2710    case OPC_SwitchOpcode: {
2711      unsigned CurNodeOpcode = N.getOpcode();
2712      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2713      unsigned CaseSize;
2714      while (1) {
2715        // Get the size of this case.
2716        CaseSize = MatcherTable[MatcherIndex++];
2717        if (CaseSize & 128)
2718          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2719        if (CaseSize == 0) break;
2720
2721        uint16_t Opc = MatcherTable[MatcherIndex++];
2722        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2723
2724        // If the opcode matches, then we will execute this case.
2725        if (CurNodeOpcode == Opc)
2726          break;
2727
2728        // Otherwise, skip over this case.
2729        MatcherIndex += CaseSize;
2730      }
2731
2732      // If no cases matched, bail out.
2733      if (CaseSize == 0) break;
2734
2735      // Otherwise, execute the case we found.
2736      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2737                   << " to " << MatcherIndex << "\n");
2738      continue;
2739    }
2740
2741    case OPC_SwitchType: {
2742      MVT CurNodeVT = N.getSimpleValueType();
2743      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2744      unsigned CaseSize;
2745      while (1) {
2746        // Get the size of this case.
2747        CaseSize = MatcherTable[MatcherIndex++];
2748        if (CaseSize & 128)
2749          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2750        if (CaseSize == 0) break;
2751
2752        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2753        if (CaseVT == MVT::iPTR)
2754          CaseVT = getTargetLowering()->getPointerTy();
2755
2756        // If the VT matches, then we will execute this case.
2757        if (CurNodeVT == CaseVT)
2758          break;
2759
2760        // Otherwise, skip over this case.
2761        MatcherIndex += CaseSize;
2762      }
2763
2764      // If no cases matched, bail out.
2765      if (CaseSize == 0) break;
2766
2767      // Otherwise, execute the case we found.
2768      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2769                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2770      continue;
2771    }
2772    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2773    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2774    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2775    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2776      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2777                            Opcode-OPC_CheckChild0Type))
2778        break;
2779      continue;
2780    case OPC_CheckCondCode:
2781      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2782      continue;
2783    case OPC_CheckValueType:
2784      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2785        break;
2786      continue;
2787    case OPC_CheckInteger:
2788      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2789      continue;
2790    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
2791    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
2792    case OPC_CheckChild4Integer:
2793      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
2794                               Opcode-OPC_CheckChild0Integer)) break;
2795      continue;
2796    case OPC_CheckAndImm:
2797      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2798      continue;
2799    case OPC_CheckOrImm:
2800      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2801      continue;
2802
2803    case OPC_CheckFoldableChainNode: {
2804      assert(NodeStack.size() != 1 && "No parent node");
2805      // Verify that all intermediate nodes between the root and this one have
2806      // a single use.
2807      bool HasMultipleUses = false;
2808      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2809        if (!NodeStack[i].hasOneUse()) {
2810          HasMultipleUses = true;
2811          break;
2812        }
2813      if (HasMultipleUses) break;
2814
2815      // Check to see that the target thinks this is profitable to fold and that
2816      // we can fold it without inducing cycles in the graph.
2817      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2818                              NodeToMatch) ||
2819          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2820                         NodeToMatch, OptLevel,
2821                         true/*We validate our own chains*/))
2822        break;
2823
2824      continue;
2825    }
2826    case OPC_EmitInteger: {
2827      MVT::SimpleValueType VT =
2828        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2829      int64_t Val = MatcherTable[MatcherIndex++];
2830      if (Val & 128)
2831        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2832      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2833                              CurDAG->getTargetConstant(Val, VT), nullptr));
2834      continue;
2835    }
2836    case OPC_EmitRegister: {
2837      MVT::SimpleValueType VT =
2838        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2839      unsigned RegNo = MatcherTable[MatcherIndex++];
2840      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2841                              CurDAG->getRegister(RegNo, VT), nullptr));
2842      continue;
2843    }
2844    case OPC_EmitRegister2: {
2845      // For targets w/ more than 256 register names, the register enum
2846      // values are stored in two bytes in the matcher table (just like
2847      // opcodes).
2848      MVT::SimpleValueType VT =
2849        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2850      unsigned RegNo = MatcherTable[MatcherIndex++];
2851      RegNo |= MatcherTable[MatcherIndex++] << 8;
2852      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2853                              CurDAG->getRegister(RegNo, VT), nullptr));
2854      continue;
2855    }
2856
2857    case OPC_EmitConvertToTarget:  {
2858      // Convert from IMM/FPIMM to target version.
2859      unsigned RecNo = MatcherTable[MatcherIndex++];
2860      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
2861      SDValue Imm = RecordedNodes[RecNo].first;
2862
2863      if (Imm->getOpcode() == ISD::Constant) {
2864        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2865        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2866      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2867        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2868        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2869      }
2870
2871      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2872      continue;
2873    }
2874
2875    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2876    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2877      // These are space-optimized forms of OPC_EmitMergeInputChains.
2878      assert(!InputChain.getNode() &&
2879             "EmitMergeInputChains should be the first chain producing node");
2880      assert(ChainNodesMatched.empty() &&
2881             "Should only have one EmitMergeInputChains per match");
2882
2883      // Read all of the chained nodes.
2884      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2885      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2886      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2887
2888      // FIXME: What if other value results of the node have uses not matched
2889      // by this pattern?
2890      if (ChainNodesMatched.back() != NodeToMatch &&
2891          !RecordedNodes[RecNo].first.hasOneUse()) {
2892        ChainNodesMatched.clear();
2893        break;
2894      }
2895
2896      // Merge the input chains if they are not intra-pattern references.
2897      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2898
2899      if (!InputChain.getNode())
2900        break;  // Failed to merge.
2901      continue;
2902    }
2903
2904    case OPC_EmitMergeInputChains: {
2905      assert(!InputChain.getNode() &&
2906             "EmitMergeInputChains should be the first chain producing node");
2907      // This node gets a list of nodes we matched in the input that have
2908      // chains.  We want to token factor all of the input chains to these nodes
2909      // together.  However, if any of the input chains is actually one of the
2910      // nodes matched in this pattern, then we have an intra-match reference.
2911      // Ignore these because the newly token factored chain should not refer to
2912      // the old nodes.
2913      unsigned NumChains = MatcherTable[MatcherIndex++];
2914      assert(NumChains != 0 && "Can't TF zero chains");
2915
2916      assert(ChainNodesMatched.empty() &&
2917             "Should only have one EmitMergeInputChains per match");
2918
2919      // Read all of the chained nodes.
2920      for (unsigned i = 0; i != NumChains; ++i) {
2921        unsigned RecNo = MatcherTable[MatcherIndex++];
2922        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2923        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2924
2925        // FIXME: What if other value results of the node have uses not matched
2926        // by this pattern?
2927        if (ChainNodesMatched.back() != NodeToMatch &&
2928            !RecordedNodes[RecNo].first.hasOneUse()) {
2929          ChainNodesMatched.clear();
2930          break;
2931        }
2932      }
2933
2934      // If the inner loop broke out, the match fails.
2935      if (ChainNodesMatched.empty())
2936        break;
2937
2938      // Merge the input chains if they are not intra-pattern references.
2939      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2940
2941      if (!InputChain.getNode())
2942        break;  // Failed to merge.
2943
2944      continue;
2945    }
2946
2947    case OPC_EmitCopyToReg: {
2948      unsigned RecNo = MatcherTable[MatcherIndex++];
2949      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
2950      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2951
2952      if (!InputChain.getNode())
2953        InputChain = CurDAG->getEntryNode();
2954
2955      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2956                                        DestPhysReg, RecordedNodes[RecNo].first,
2957                                        InputGlue);
2958
2959      InputGlue = InputChain.getValue(1);
2960      continue;
2961    }
2962
2963    case OPC_EmitNodeXForm: {
2964      unsigned XFormNo = MatcherTable[MatcherIndex++];
2965      unsigned RecNo = MatcherTable[MatcherIndex++];
2966      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
2967      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2968      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
2969      continue;
2970    }
2971
2972    case OPC_EmitNode:
2973    case OPC_MorphNodeTo: {
2974      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2975      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2976      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2977      // Get the result VT list.
2978      unsigned NumVTs = MatcherTable[MatcherIndex++];
2979      SmallVector<EVT, 4> VTs;
2980      for (unsigned i = 0; i != NumVTs; ++i) {
2981        MVT::SimpleValueType VT =
2982          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2983        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2984        VTs.push_back(VT);
2985      }
2986
2987      if (EmitNodeInfo & OPFL_Chain)
2988        VTs.push_back(MVT::Other);
2989      if (EmitNodeInfo & OPFL_GlueOutput)
2990        VTs.push_back(MVT::Glue);
2991
2992      // This is hot code, so optimize the two most common cases of 1 and 2
2993      // results.
2994      SDVTList VTList;
2995      if (VTs.size() == 1)
2996        VTList = CurDAG->getVTList(VTs[0]);
2997      else if (VTs.size() == 2)
2998        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2999      else
3000        VTList = CurDAG->getVTList(VTs);
3001
3002      // Get the operand list.
3003      unsigned NumOps = MatcherTable[MatcherIndex++];
3004      SmallVector<SDValue, 8> Ops;
3005      for (unsigned i = 0; i != NumOps; ++i) {
3006        unsigned RecNo = MatcherTable[MatcherIndex++];
3007        if (RecNo & 128)
3008          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3009
3010        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3011        Ops.push_back(RecordedNodes[RecNo].first);
3012      }
3013
3014      // If there are variadic operands to add, handle them now.
3015      if (EmitNodeInfo & OPFL_VariadicInfo) {
3016        // Determine the start index to copy from.
3017        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3018        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3019        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3020               "Invalid variadic node");
3021        // Copy all of the variadic operands, not including a potential glue
3022        // input.
3023        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3024             i != e; ++i) {
3025          SDValue V = NodeToMatch->getOperand(i);
3026          if (V.getValueType() == MVT::Glue) break;
3027          Ops.push_back(V);
3028        }
3029      }
3030
3031      // If this has chain/glue inputs, add them.
3032      if (EmitNodeInfo & OPFL_Chain)
3033        Ops.push_back(InputChain);
3034      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3035        Ops.push_back(InputGlue);
3036
3037      // Create the node.
3038      SDNode *Res = nullptr;
3039      if (Opcode != OPC_MorphNodeTo) {
3040        // If this is a normal EmitNode command, just create the new node and
3041        // add the results to the RecordedNodes list.
3042        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3043                                     VTList, Ops);
3044
3045        // Add all the non-glue/non-chain results to the RecordedNodes list.
3046        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3047          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3048          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3049                                                             nullptr));
3050        }
3051
3052      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
3053        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
3054      } else {
3055        // NodeToMatch was eliminated by CSE when the target changed the DAG.
3056        // We will visit the equivalent node later.
3057        DEBUG(dbgs() << "Node was eliminated by CSE\n");
3058        return nullptr;
3059      }
3060
3061      // If the node had chain/glue results, update our notion of the current
3062      // chain and glue.
3063      if (EmitNodeInfo & OPFL_GlueOutput) {
3064        InputGlue = SDValue(Res, VTs.size()-1);
3065        if (EmitNodeInfo & OPFL_Chain)
3066          InputChain = SDValue(Res, VTs.size()-2);
3067      } else if (EmitNodeInfo & OPFL_Chain)
3068        InputChain = SDValue(Res, VTs.size()-1);
3069
3070      // If the OPFL_MemRefs glue is set on this node, slap all of the
3071      // accumulated memrefs onto it.
3072      //
3073      // FIXME: This is vastly incorrect for patterns with multiple outputs
3074      // instructions that access memory and for ComplexPatterns that match
3075      // loads.
3076      if (EmitNodeInfo & OPFL_MemRefs) {
3077        // Only attach load or store memory operands if the generated
3078        // instruction may load or store.
3079        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
3080        bool mayLoad = MCID.mayLoad();
3081        bool mayStore = MCID.mayStore();
3082
3083        unsigned NumMemRefs = 0;
3084        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3085               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3086          if ((*I)->isLoad()) {
3087            if (mayLoad)
3088              ++NumMemRefs;
3089          } else if ((*I)->isStore()) {
3090            if (mayStore)
3091              ++NumMemRefs;
3092          } else {
3093            ++NumMemRefs;
3094          }
3095        }
3096
3097        MachineSDNode::mmo_iterator MemRefs =
3098          MF->allocateMemRefsArray(NumMemRefs);
3099
3100        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3101        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3102               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3103          if ((*I)->isLoad()) {
3104            if (mayLoad)
3105              *MemRefsPos++ = *I;
3106          } else if ((*I)->isStore()) {
3107            if (mayStore)
3108              *MemRefsPos++ = *I;
3109          } else {
3110            *MemRefsPos++ = *I;
3111          }
3112        }
3113
3114        cast<MachineSDNode>(Res)
3115          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3116      }
3117
3118      DEBUG(dbgs() << "  "
3119                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3120                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3121
3122      // If this was a MorphNodeTo then we're completely done!
3123      if (Opcode == OPC_MorphNodeTo) {
3124        // Update chain and glue uses.
3125        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3126                            InputGlue, GlueResultNodesMatched, true);
3127        return Res;
3128      }
3129
3130      continue;
3131    }
3132
3133    case OPC_MarkGlueResults: {
3134      unsigned NumNodes = MatcherTable[MatcherIndex++];
3135
3136      // Read and remember all the glue-result nodes.
3137      for (unsigned i = 0; i != NumNodes; ++i) {
3138        unsigned RecNo = MatcherTable[MatcherIndex++];
3139        if (RecNo & 128)
3140          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3141
3142        assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3143        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3144      }
3145      continue;
3146    }
3147
3148    case OPC_CompleteMatch: {
3149      // The match has been completed, and any new nodes (if any) have been
3150      // created.  Patch up references to the matched dag to use the newly
3151      // created nodes.
3152      unsigned NumResults = MatcherTable[MatcherIndex++];
3153
3154      for (unsigned i = 0; i != NumResults; ++i) {
3155        unsigned ResSlot = MatcherTable[MatcherIndex++];
3156        if (ResSlot & 128)
3157          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3158
3159        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3160        SDValue Res = RecordedNodes[ResSlot].first;
3161
3162        assert(i < NodeToMatch->getNumValues() &&
3163               NodeToMatch->getValueType(i) != MVT::Other &&
3164               NodeToMatch->getValueType(i) != MVT::Glue &&
3165               "Invalid number of results to complete!");
3166        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3167                NodeToMatch->getValueType(i) == MVT::iPTR ||
3168                Res.getValueType() == MVT::iPTR ||
3169                NodeToMatch->getValueType(i).getSizeInBits() ==
3170                    Res.getValueType().getSizeInBits()) &&
3171               "invalid replacement");
3172        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3173      }
3174
3175      // If the root node defines glue, add it to the glue nodes to update list.
3176      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3177        GlueResultNodesMatched.push_back(NodeToMatch);
3178
3179      // Update chain and glue uses.
3180      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3181                          InputGlue, GlueResultNodesMatched, false);
3182
3183      assert(NodeToMatch->use_empty() &&
3184             "Didn't replace all uses of the node?");
3185
3186      // FIXME: We just return here, which interacts correctly with SelectRoot
3187      // above.  We should fix this to not return an SDNode* anymore.
3188      return nullptr;
3189    }
3190    }
3191
3192    // If the code reached this point, then the match failed.  See if there is
3193    // another child to try in the current 'Scope', otherwise pop it until we
3194    // find a case to check.
3195    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3196    ++NumDAGIselRetries;
3197    while (1) {
3198      if (MatchScopes.empty()) {
3199        CannotYetSelect(NodeToMatch);
3200        return nullptr;
3201      }
3202
3203      // Restore the interpreter state back to the point where the scope was
3204      // formed.
3205      MatchScope &LastScope = MatchScopes.back();
3206      RecordedNodes.resize(LastScope.NumRecordedNodes);
3207      NodeStack.clear();
3208      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3209      N = NodeStack.back();
3210
3211      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3212        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3213      MatcherIndex = LastScope.FailIndex;
3214
3215      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3216
3217      InputChain = LastScope.InputChain;
3218      InputGlue = LastScope.InputGlue;
3219      if (!LastScope.HasChainNodesMatched)
3220        ChainNodesMatched.clear();
3221      if (!LastScope.HasGlueResultNodesMatched)
3222        GlueResultNodesMatched.clear();
3223
3224      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3225      // we have reached the end of this scope, otherwise we have another child
3226      // in the current scope to try.
3227      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3228      if (NumToSkip & 128)
3229        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3230
3231      // If we have another child in this scope to match, update FailIndex and
3232      // try it.
3233      if (NumToSkip != 0) {
3234        LastScope.FailIndex = MatcherIndex+NumToSkip;
3235        break;
3236      }
3237
3238      // End of this scope, pop it and try the next child in the containing
3239      // scope.
3240      MatchScopes.pop_back();
3241    }
3242  }
3243}
3244
3245
3246
3247void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3248  std::string msg;
3249  raw_string_ostream Msg(msg);
3250  Msg << "Cannot select: ";
3251
3252  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3253      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3254      N->getOpcode() != ISD::INTRINSIC_VOID) {
3255    N->printrFull(Msg, CurDAG);
3256    Msg << "\nIn function: " << MF->getName();
3257  } else {
3258    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3259    unsigned iid =
3260      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3261    if (iid < Intrinsic::num_intrinsics)
3262      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3263    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3264      Msg << "target intrinsic %" << TII->getName(iid);
3265    else
3266      Msg << "unknown intrinsic #" << iid;
3267  }
3268  report_fatal_error(Msg.str());
3269}
3270
3271char SelectionDAGISel::ID = 0;
3272