SelectionDAGISel.cpp revision 975e958dbc12ba412385b721100fc1c830b0e3ab
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// \brief This class is used by SelectionDAGISel to temporarily override
227  /// the optimization level on a per-function basis.
228  class OptLevelChanger {
229    SelectionDAGISel &IS;
230    CodeGenOpt::Level SavedOptLevel;
231    bool SavedFastISel;
232
233  public:
234    OptLevelChanger(SelectionDAGISel &ISel,
235                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
236      SavedOptLevel = IS.OptLevel;
237      if (NewOptLevel == SavedOptLevel)
238        return;
239      IS.OptLevel = NewOptLevel;
240      IS.TM.setOptLevel(NewOptLevel);
241      SavedFastISel = IS.TM.Options.EnableFastISel;
242      if (NewOptLevel == CodeGenOpt::None)
243        IS.TM.setFastISel(true);
244      DEBUG(dbgs() << "\nChanging optimization level for Function "
245            << IS.MF->getFunction()->getName() << "\n");
246      DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
247            << " ; After: -O" << NewOptLevel << "\n");
248    }
249
250    ~OptLevelChanger() {
251      if (IS.OptLevel == SavedOptLevel)
252        return;
253      DEBUG(dbgs() << "\nRestoring optimization level for Function "
254            << IS.MF->getFunction()->getName() << "\n");
255      DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
256            << " ; After: -O" << SavedOptLevel << "\n");
257      IS.OptLevel = SavedOptLevel;
258      IS.TM.setOptLevel(SavedOptLevel);
259      IS.TM.setFastISel(SavedFastISel);
260    }
261  };
262
263  //===--------------------------------------------------------------------===//
264  /// createDefaultScheduler - This creates an instruction scheduler appropriate
265  /// for the target.
266  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
267                                             CodeGenOpt::Level OptLevel) {
268    const TargetLowering *TLI = IS->getTargetLowering();
269    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
270
271    if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
272        TLI->getSchedulingPreference() == Sched::Source)
273      return createSourceListDAGScheduler(IS, OptLevel);
274    if (TLI->getSchedulingPreference() == Sched::RegPressure)
275      return createBURRListDAGScheduler(IS, OptLevel);
276    if (TLI->getSchedulingPreference() == Sched::Hybrid)
277      return createHybridListDAGScheduler(IS, OptLevel);
278    if (TLI->getSchedulingPreference() == Sched::VLIW)
279      return createVLIWDAGScheduler(IS, OptLevel);
280    assert(TLI->getSchedulingPreference() == Sched::ILP &&
281           "Unknown sched type!");
282    return createILPListDAGScheduler(IS, OptLevel);
283  }
284}
285
286// EmitInstrWithCustomInserter - This method should be implemented by targets
287// that mark instructions with the 'usesCustomInserter' flag.  These
288// instructions are special in various ways, which require special support to
289// insert.  The specified MachineInstr is created but not inserted into any
290// basic blocks, and this method is called to expand it into a sequence of
291// instructions, potentially also creating new basic blocks and control flow.
292// When new basic blocks are inserted and the edges from MBB to its successors
293// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
294// DenseMap.
295MachineBasicBlock *
296TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
297                                            MachineBasicBlock *MBB) const {
298#ifndef NDEBUG
299  dbgs() << "If a target marks an instruction with "
300          "'usesCustomInserter', it must implement "
301          "TargetLowering::EmitInstrWithCustomInserter!";
302#endif
303  llvm_unreachable(0);
304}
305
306void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
307                                                   SDNode *Node) const {
308  assert(!MI->hasPostISelHook() &&
309         "If a target marks an instruction with 'hasPostISelHook', "
310         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
311}
312
313//===----------------------------------------------------------------------===//
314// SelectionDAGISel code
315//===----------------------------------------------------------------------===//
316
317SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
318                                   CodeGenOpt::Level OL) :
319  MachineFunctionPass(ID), TM(tm),
320  FuncInfo(new FunctionLoweringInfo(TM)),
321  CurDAG(new SelectionDAG(tm, OL)),
322  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
323  GFI(),
324  OptLevel(OL),
325  DAGSize(0) {
326    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
327    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
328    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
329    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
330  }
331
332SelectionDAGISel::~SelectionDAGISel() {
333  delete SDB;
334  delete CurDAG;
335  delete FuncInfo;
336}
337
338void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
339  AU.addRequired<AliasAnalysis>();
340  AU.addPreserved<AliasAnalysis>();
341  AU.addRequired<GCModuleInfo>();
342  AU.addPreserved<GCModuleInfo>();
343  AU.addRequired<TargetLibraryInfo>();
344  if (UseMBPI && OptLevel != CodeGenOpt::None)
345    AU.addRequired<BranchProbabilityInfo>();
346  MachineFunctionPass::getAnalysisUsage(AU);
347}
348
349/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
350/// may trap on it.  In this case we have to split the edge so that the path
351/// through the predecessor block that doesn't go to the phi block doesn't
352/// execute the possibly trapping instruction.
353///
354/// This is required for correctness, so it must be done at -O0.
355///
356static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
357  // Loop for blocks with phi nodes.
358  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
359    PHINode *PN = dyn_cast<PHINode>(BB->begin());
360    if (PN == 0) continue;
361
362  ReprocessBlock:
363    // For each block with a PHI node, check to see if any of the input values
364    // are potentially trapping constant expressions.  Constant expressions are
365    // the only potentially trapping value that can occur as the argument to a
366    // PHI.
367    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
368      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
369        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
370        if (CE == 0 || !CE->canTrap()) continue;
371
372        // The only case we have to worry about is when the edge is critical.
373        // Since this block has a PHI Node, we assume it has multiple input
374        // edges: check to see if the pred has multiple successors.
375        BasicBlock *Pred = PN->getIncomingBlock(i);
376        if (Pred->getTerminator()->getNumSuccessors() == 1)
377          continue;
378
379        // Okay, we have to split this edge.
380        SplitCriticalEdge(Pred->getTerminator(),
381                          GetSuccessorNumber(Pred, BB), SDISel, true);
382        goto ReprocessBlock;
383      }
384  }
385}
386
387bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
388  // Do some sanity-checking on the command-line options.
389  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
390         "-fast-isel-verbose requires -fast-isel");
391  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
392         "-fast-isel-abort requires -fast-isel");
393
394  const Function &Fn = *mf.getFunction();
395  const TargetInstrInfo &TII = *TM.getInstrInfo();
396  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
397  const TargetLowering *TLI = TM.getTargetLowering();
398
399  MF = &mf;
400  RegInfo = &MF->getRegInfo();
401  AA = &getAnalysis<AliasAnalysis>();
402  LibInfo = &getAnalysis<TargetLibraryInfo>();
403  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
404  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
405
406  TargetSubtargetInfo &ST =
407    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
408  ST.resetSubtargetFeatures(MF);
409  TM.resetTargetOptions(MF);
410
411  // Reset OptLevel to None for optnone functions.
412  CodeGenOpt::Level NewOptLevel = OptLevel;
413  if (Fn.hasFnAttribute(Attribute::OptimizeNone))
414    NewOptLevel = CodeGenOpt::None;
415  OptLevelChanger OLC(*this, NewOptLevel);
416
417  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
418
419  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
420
421  CurDAG->init(*MF, TTI, TLI);
422  FuncInfo->set(Fn, *MF);
423
424  if (UseMBPI && OptLevel != CodeGenOpt::None)
425    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
426  else
427    FuncInfo->BPI = 0;
428
429  SDB->init(GFI, *AA, LibInfo);
430
431  MF->setHasMSInlineAsm(false);
432  SelectAllBasicBlocks(Fn);
433
434  // If the first basic block in the function has live ins that need to be
435  // copied into vregs, emit the copies into the top of the block before
436  // emitting the code for the block.
437  MachineBasicBlock *EntryMBB = MF->begin();
438  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
439
440  DenseMap<unsigned, unsigned> LiveInMap;
441  if (!FuncInfo->ArgDbgValues.empty())
442    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
443           E = RegInfo->livein_end(); LI != E; ++LI)
444      if (LI->second)
445        LiveInMap.insert(std::make_pair(LI->first, LI->second));
446
447  // Insert DBG_VALUE instructions for function arguments to the entry block.
448  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
449    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
450    bool hasFI = MI->getOperand(0).isFI();
451    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
452    if (TargetRegisterInfo::isPhysicalRegister(Reg))
453      EntryMBB->insert(EntryMBB->begin(), MI);
454    else {
455      MachineInstr *Def = RegInfo->getVRegDef(Reg);
456      if (Def) {
457        MachineBasicBlock::iterator InsertPos = Def;
458        // FIXME: VR def may not be in entry block.
459        Def->getParent()->insert(llvm::next(InsertPos), MI);
460      } else
461        DEBUG(dbgs() << "Dropping debug info for dead vreg"
462              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
463    }
464
465    // If Reg is live-in then update debug info to track its copy in a vreg.
466    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
467    if (LDI != LiveInMap.end()) {
468      assert(!hasFI && "There's no handling of frame pointer updating here yet "
469                       "- add if needed");
470      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
471      MachineBasicBlock::iterator InsertPos = Def;
472      const MDNode *Variable =
473        MI->getOperand(MI->getNumOperands()-1).getMetadata();
474      bool IsIndirect = MI->isIndirectDebugValue();
475      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
476      // Def is never a terminator here, so it is ok to increment InsertPos.
477      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
478              TII.get(TargetOpcode::DBG_VALUE),
479              IsIndirect,
480              LDI->second, Offset, Variable);
481
482      // If this vreg is directly copied into an exported register then
483      // that COPY instructions also need DBG_VALUE, if it is the only
484      // user of LDI->second.
485      MachineInstr *CopyUseMI = NULL;
486      for (MachineRegisterInfo::use_iterator
487             UI = RegInfo->use_begin(LDI->second);
488           MachineInstr *UseMI = UI.skipInstruction();) {
489        if (UseMI->isDebugValue()) continue;
490        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
491          CopyUseMI = UseMI; continue;
492        }
493        // Otherwise this is another use or second copy use.
494        CopyUseMI = NULL; break;
495      }
496      if (CopyUseMI) {
497        MachineInstr *NewMI =
498          BuildMI(*MF, CopyUseMI->getDebugLoc(),
499                  TII.get(TargetOpcode::DBG_VALUE),
500                  IsIndirect,
501                  CopyUseMI->getOperand(0).getReg(),
502                  Offset, Variable);
503        MachineBasicBlock::iterator Pos = CopyUseMI;
504        EntryMBB->insertAfter(Pos, NewMI);
505      }
506    }
507  }
508
509  // Determine if there are any calls in this machine function.
510  MachineFrameInfo *MFI = MF->getFrameInfo();
511  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
512       ++I) {
513
514    if (MFI->hasCalls() && MF->hasMSInlineAsm())
515      break;
516
517    const MachineBasicBlock *MBB = I;
518    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
519         II != IE; ++II) {
520      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
521      if ((MCID.isCall() && !MCID.isReturn()) ||
522          II->isStackAligningInlineAsm()) {
523        MFI->setHasCalls(true);
524      }
525      if (II->isMSInlineAsm()) {
526        MF->setHasMSInlineAsm(true);
527      }
528    }
529  }
530
531  // Determine if there is a call to setjmp in the machine function.
532  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
533
534  // Replace forward-declared registers with the registers containing
535  // the desired value.
536  MachineRegisterInfo &MRI = MF->getRegInfo();
537  for (DenseMap<unsigned, unsigned>::iterator
538       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
539       I != E; ++I) {
540    unsigned From = I->first;
541    unsigned To = I->second;
542    // If To is also scheduled to be replaced, find what its ultimate
543    // replacement is.
544    for (;;) {
545      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
546      if (J == E) break;
547      To = J->second;
548    }
549    // Make sure the new register has a sufficiently constrained register class.
550    if (TargetRegisterInfo::isVirtualRegister(From) &&
551        TargetRegisterInfo::isVirtualRegister(To))
552      MRI.constrainRegClass(To, MRI.getRegClass(From));
553    // Replace it.
554    MRI.replaceRegWith(From, To);
555  }
556
557  // Freeze the set of reserved registers now that MachineFrameInfo has been
558  // set up. All the information required by getReservedRegs() should be
559  // available now.
560  MRI.freezeReservedRegs(*MF);
561
562  // Release function-specific state. SDB and CurDAG are already cleared
563  // at this point.
564  FuncInfo->clear();
565
566  return true;
567}
568
569void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
570                                        BasicBlock::const_iterator End,
571                                        bool &HadTailCall) {
572  // Lower all of the non-terminator instructions. If a call is emitted
573  // as a tail call, cease emitting nodes for this block. Terminators
574  // are handled below.
575  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
576    SDB->visit(*I);
577
578  // Make sure the root of the DAG is up-to-date.
579  CurDAG->setRoot(SDB->getControlRoot());
580  HadTailCall = SDB->HasTailCall;
581  SDB->clear();
582
583  // Final step, emit the lowered DAG as machine code.
584  CodeGenAndEmitDAG();
585}
586
587void SelectionDAGISel::ComputeLiveOutVRegInfo() {
588  SmallPtrSet<SDNode*, 128> VisitedNodes;
589  SmallVector<SDNode*, 128> Worklist;
590
591  Worklist.push_back(CurDAG->getRoot().getNode());
592
593  APInt KnownZero;
594  APInt KnownOne;
595
596  do {
597    SDNode *N = Worklist.pop_back_val();
598
599    // If we've already seen this node, ignore it.
600    if (!VisitedNodes.insert(N))
601      continue;
602
603    // Otherwise, add all chain operands to the worklist.
604    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
605      if (N->getOperand(i).getValueType() == MVT::Other)
606        Worklist.push_back(N->getOperand(i).getNode());
607
608    // If this is a CopyToReg with a vreg dest, process it.
609    if (N->getOpcode() != ISD::CopyToReg)
610      continue;
611
612    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
613    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
614      continue;
615
616    // Ignore non-scalar or non-integer values.
617    SDValue Src = N->getOperand(2);
618    EVT SrcVT = Src.getValueType();
619    if (!SrcVT.isInteger() || SrcVT.isVector())
620      continue;
621
622    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
623    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
624    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
625  } while (!Worklist.empty());
626}
627
628void SelectionDAGISel::CodeGenAndEmitDAG() {
629  std::string GroupName;
630  if (TimePassesIsEnabled)
631    GroupName = "Instruction Selection and Scheduling";
632  std::string BlockName;
633  int BlockNumber = -1;
634  (void)BlockNumber;
635#ifdef NDEBUG
636  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
637      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
638      ViewSUnitDAGs)
639#endif
640  {
641    BlockNumber = FuncInfo->MBB->getNumber();
642    BlockName = MF->getName().str() + ":" +
643                FuncInfo->MBB->getBasicBlock()->getName().str();
644  }
645  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
646        << " '" << BlockName << "'\n"; CurDAG->dump());
647
648  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
649
650  // Run the DAG combiner in pre-legalize mode.
651  {
652    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
653    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
654  }
655
656  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
657        << " '" << BlockName << "'\n"; CurDAG->dump());
658
659  // Second step, hack on the DAG until it only uses operations and types that
660  // the target supports.
661  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
662                                               BlockName);
663
664  bool Changed;
665  {
666    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
667    Changed = CurDAG->LegalizeTypes();
668  }
669
670  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
671        << " '" << BlockName << "'\n"; CurDAG->dump());
672
673  CurDAG->NewNodesMustHaveLegalTypes = true;
674
675  if (Changed) {
676    if (ViewDAGCombineLT)
677      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
678
679    // Run the DAG combiner in post-type-legalize mode.
680    {
681      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
682                         TimePassesIsEnabled);
683      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
684    }
685
686    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
687          << " '" << BlockName << "'\n"; CurDAG->dump());
688
689  }
690
691  {
692    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
693    Changed = CurDAG->LegalizeVectors();
694  }
695
696  if (Changed) {
697    {
698      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
699      CurDAG->LegalizeTypes();
700    }
701
702    if (ViewDAGCombineLT)
703      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
704
705    // Run the DAG combiner in post-type-legalize mode.
706    {
707      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
708                         TimePassesIsEnabled);
709      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
710    }
711
712    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
713          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
714  }
715
716  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
717
718  {
719    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
720    CurDAG->Legalize();
721  }
722
723  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
724        << " '" << BlockName << "'\n"; CurDAG->dump());
725
726  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
727
728  // Run the DAG combiner in post-legalize mode.
729  {
730    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
731    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
732  }
733
734  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
735        << " '" << BlockName << "'\n"; CurDAG->dump());
736
737  if (OptLevel != CodeGenOpt::None)
738    ComputeLiveOutVRegInfo();
739
740  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
741
742  // Third, instruction select all of the operations to machine code, adding the
743  // code to the MachineBasicBlock.
744  {
745    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
746    DoInstructionSelection();
747  }
748
749  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
750        << " '" << BlockName << "'\n"; CurDAG->dump());
751
752  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
753
754  // Schedule machine code.
755  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
756  {
757    NamedRegionTimer T("Instruction Scheduling", GroupName,
758                       TimePassesIsEnabled);
759    Scheduler->Run(CurDAG, FuncInfo->MBB);
760  }
761
762  if (ViewSUnitDAGs) Scheduler->viewGraph();
763
764  // Emit machine code to BB.  This can change 'BB' to the last block being
765  // inserted into.
766  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
767  {
768    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
769
770    // FuncInfo->InsertPt is passed by reference and set to the end of the
771    // scheduled instructions.
772    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
773  }
774
775  // If the block was split, make sure we update any references that are used to
776  // update PHI nodes later on.
777  if (FirstMBB != LastMBB)
778    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
779
780  // Free the scheduler state.
781  {
782    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
783                       TimePassesIsEnabled);
784    delete Scheduler;
785  }
786
787  // Free the SelectionDAG state, now that we're finished with it.
788  CurDAG->clear();
789}
790
791namespace {
792/// ISelUpdater - helper class to handle updates of the instruction selection
793/// graph.
794class ISelUpdater : public SelectionDAG::DAGUpdateListener {
795  SelectionDAG::allnodes_iterator &ISelPosition;
796public:
797  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
798    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
799
800  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
801  /// deleted is the current ISelPosition node, update ISelPosition.
802  ///
803  virtual void NodeDeleted(SDNode *N, SDNode *E) {
804    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
805      ++ISelPosition;
806  }
807};
808} // end anonymous namespace
809
810void SelectionDAGISel::DoInstructionSelection() {
811  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
812        << FuncInfo->MBB->getNumber()
813        << " '" << FuncInfo->MBB->getName() << "'\n");
814
815  PreprocessISelDAG();
816
817  // Select target instructions for the DAG.
818  {
819    // Number all nodes with a topological order and set DAGSize.
820    DAGSize = CurDAG->AssignTopologicalOrder();
821
822    // Create a dummy node (which is not added to allnodes), that adds
823    // a reference to the root node, preventing it from being deleted,
824    // and tracking any changes of the root.
825    HandleSDNode Dummy(CurDAG->getRoot());
826    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
827    ++ISelPosition;
828
829    // Make sure that ISelPosition gets properly updated when nodes are deleted
830    // in calls made from this function.
831    ISelUpdater ISU(*CurDAG, ISelPosition);
832
833    // The AllNodes list is now topological-sorted. Visit the
834    // nodes by starting at the end of the list (the root of the
835    // graph) and preceding back toward the beginning (the entry
836    // node).
837    while (ISelPosition != CurDAG->allnodes_begin()) {
838      SDNode *Node = --ISelPosition;
839      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
840      // but there are currently some corner cases that it misses. Also, this
841      // makes it theoretically possible to disable the DAGCombiner.
842      if (Node->use_empty())
843        continue;
844
845      SDNode *ResNode = Select(Node);
846
847      // FIXME: This is pretty gross.  'Select' should be changed to not return
848      // anything at all and this code should be nuked with a tactical strike.
849
850      // If node should not be replaced, continue with the next one.
851      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
852        continue;
853      // Replace node.
854      if (ResNode) {
855        ReplaceUses(Node, ResNode);
856      }
857
858      // If after the replacement this node is not used any more,
859      // remove this dead node.
860      if (Node->use_empty()) // Don't delete EntryToken, etc.
861        CurDAG->RemoveDeadNode(Node);
862    }
863
864    CurDAG->setRoot(Dummy.getValue());
865  }
866
867  DEBUG(dbgs() << "===== Instruction selection ends:\n");
868
869  PostprocessISelDAG();
870}
871
872/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
873/// do other setup for EH landing-pad blocks.
874void SelectionDAGISel::PrepareEHLandingPad() {
875  MachineBasicBlock *MBB = FuncInfo->MBB;
876
877  // Add a label to mark the beginning of the landing pad.  Deletion of the
878  // landing pad can thus be detected via the MachineModuleInfo.
879  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
880
881  // Assign the call site to the landing pad's begin label.
882  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
883
884  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
885  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
886    .addSym(Label);
887
888  // Mark exception register as live in.
889  const TargetLowering *TLI = getTargetLowering();
890  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
891  if (unsigned Reg = TLI->getExceptionPointerRegister())
892    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
893
894  // Mark exception selector register as live in.
895  if (unsigned Reg = TLI->getExceptionSelectorRegister())
896    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
897}
898
899/// isFoldedOrDeadInstruction - Return true if the specified instruction is
900/// side-effect free and is either dead or folded into a generated instruction.
901/// Return false if it needs to be emitted.
902static bool isFoldedOrDeadInstruction(const Instruction *I,
903                                      FunctionLoweringInfo *FuncInfo) {
904  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
905         !isa<TerminatorInst>(I) && // Terminators aren't folded.
906         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
907         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
908         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
909}
910
911#ifndef NDEBUG
912// Collect per Instruction statistics for fast-isel misses.  Only those
913// instructions that cause the bail are accounted for.  It does not account for
914// instructions higher in the block.  Thus, summing the per instructions stats
915// will not add up to what is reported by NumFastIselFailures.
916static void collectFailStats(const Instruction *I) {
917  switch (I->getOpcode()) {
918  default: assert (0 && "<Invalid operator> ");
919
920  // Terminators
921  case Instruction::Ret:         NumFastIselFailRet++; return;
922  case Instruction::Br:          NumFastIselFailBr++; return;
923  case Instruction::Switch:      NumFastIselFailSwitch++; return;
924  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
925  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
926  case Instruction::Resume:      NumFastIselFailResume++; return;
927  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
928
929  // Standard binary operators...
930  case Instruction::Add:  NumFastIselFailAdd++; return;
931  case Instruction::FAdd: NumFastIselFailFAdd++; return;
932  case Instruction::Sub:  NumFastIselFailSub++; return;
933  case Instruction::FSub: NumFastIselFailFSub++; return;
934  case Instruction::Mul:  NumFastIselFailMul++; return;
935  case Instruction::FMul: NumFastIselFailFMul++; return;
936  case Instruction::UDiv: NumFastIselFailUDiv++; return;
937  case Instruction::SDiv: NumFastIselFailSDiv++; return;
938  case Instruction::FDiv: NumFastIselFailFDiv++; return;
939  case Instruction::URem: NumFastIselFailURem++; return;
940  case Instruction::SRem: NumFastIselFailSRem++; return;
941  case Instruction::FRem: NumFastIselFailFRem++; return;
942
943  // Logical operators...
944  case Instruction::And: NumFastIselFailAnd++; return;
945  case Instruction::Or:  NumFastIselFailOr++; return;
946  case Instruction::Xor: NumFastIselFailXor++; return;
947
948  // Memory instructions...
949  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
950  case Instruction::Load:          NumFastIselFailLoad++; return;
951  case Instruction::Store:         NumFastIselFailStore++; return;
952  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
953  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
954  case Instruction::Fence:         NumFastIselFailFence++; return;
955  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
956
957  // Convert instructions...
958  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
959  case Instruction::ZExt:     NumFastIselFailZExt++; return;
960  case Instruction::SExt:     NumFastIselFailSExt++; return;
961  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
962  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
963  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
964  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
965  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
966  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
967  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
968  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
969  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
970
971  // Other instructions...
972  case Instruction::ICmp:           NumFastIselFailICmp++; return;
973  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
974  case Instruction::PHI:            NumFastIselFailPHI++; return;
975  case Instruction::Select:         NumFastIselFailSelect++; return;
976  case Instruction::Call:           NumFastIselFailCall++; return;
977  case Instruction::Shl:            NumFastIselFailShl++; return;
978  case Instruction::LShr:           NumFastIselFailLShr++; return;
979  case Instruction::AShr:           NumFastIselFailAShr++; return;
980  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
981  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
982  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
983  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
984  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
985  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
986  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
987  }
988}
989#endif
990
991void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
992  // Initialize the Fast-ISel state, if needed.
993  FastISel *FastIS = 0;
994  if (TM.Options.EnableFastISel)
995    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
996
997  // Iterate over all basic blocks in the function.
998  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
999  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1000       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1001    const BasicBlock *LLVMBB = *I;
1002
1003    if (OptLevel != CodeGenOpt::None) {
1004      bool AllPredsVisited = true;
1005      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1006           PI != PE; ++PI) {
1007        if (!FuncInfo->VisitedBBs.count(*PI)) {
1008          AllPredsVisited = false;
1009          break;
1010        }
1011      }
1012
1013      if (AllPredsVisited) {
1014        for (BasicBlock::const_iterator I = LLVMBB->begin();
1015             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1016          FuncInfo->ComputePHILiveOutRegInfo(PN);
1017      } else {
1018        for (BasicBlock::const_iterator I = LLVMBB->begin();
1019             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1020          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1021      }
1022
1023      FuncInfo->VisitedBBs.insert(LLVMBB);
1024    }
1025
1026    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1027    BasicBlock::const_iterator const End = LLVMBB->end();
1028    BasicBlock::const_iterator BI = End;
1029
1030    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1031    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1032
1033    // Setup an EH landing-pad block.
1034    FuncInfo->ExceptionPointerVirtReg = 0;
1035    FuncInfo->ExceptionSelectorVirtReg = 0;
1036    if (FuncInfo->MBB->isLandingPad())
1037      PrepareEHLandingPad();
1038
1039    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1040    if (FastIS) {
1041      FastIS->startNewBlock();
1042
1043      // Emit code for any incoming arguments. This must happen before
1044      // beginning FastISel on the entry block.
1045      if (LLVMBB == &Fn.getEntryBlock()) {
1046        ++NumEntryBlocks;
1047
1048        // Lower any arguments needed in this block if this is the entry block.
1049        if (!FastIS->LowerArguments()) {
1050          // Fast isel failed to lower these arguments
1051          ++NumFastIselFailLowerArguments;
1052          if (EnableFastISelAbortArgs)
1053            llvm_unreachable("FastISel didn't lower all arguments");
1054
1055          // Use SelectionDAG argument lowering
1056          LowerArguments(Fn);
1057          CurDAG->setRoot(SDB->getControlRoot());
1058          SDB->clear();
1059          CodeGenAndEmitDAG();
1060        }
1061
1062        // If we inserted any instructions at the beginning, make a note of
1063        // where they are, so we can be sure to emit subsequent instructions
1064        // after them.
1065        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1066          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1067        else
1068          FastIS->setLastLocalValue(0);
1069      }
1070
1071      unsigned NumFastIselRemaining = std::distance(Begin, End);
1072      // Do FastISel on as many instructions as possible.
1073      for (; BI != Begin; --BI) {
1074        const Instruction *Inst = llvm::prior(BI);
1075
1076        // If we no longer require this instruction, skip it.
1077        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1078          --NumFastIselRemaining;
1079          continue;
1080        }
1081
1082        // Bottom-up: reset the insert pos at the top, after any local-value
1083        // instructions.
1084        FastIS->recomputeInsertPt();
1085
1086        // Try to select the instruction with FastISel.
1087        if (FastIS->SelectInstruction(Inst)) {
1088          --NumFastIselRemaining;
1089          ++NumFastIselSuccess;
1090          // If fast isel succeeded, skip over all the folded instructions, and
1091          // then see if there is a load right before the selected instructions.
1092          // Try to fold the load if so.
1093          const Instruction *BeforeInst = Inst;
1094          while (BeforeInst != Begin) {
1095            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1096            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1097              break;
1098          }
1099          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1100              BeforeInst->hasOneUse() &&
1101              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1102            // If we succeeded, don't re-select the load.
1103            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1104            --NumFastIselRemaining;
1105            ++NumFastIselSuccess;
1106          }
1107          continue;
1108        }
1109
1110#ifndef NDEBUG
1111        if (EnableFastISelVerbose2)
1112          collectFailStats(Inst);
1113#endif
1114
1115        // Then handle certain instructions as single-LLVM-Instruction blocks.
1116        if (isa<CallInst>(Inst)) {
1117
1118          if (EnableFastISelVerbose || EnableFastISelAbort) {
1119            dbgs() << "FastISel missed call: ";
1120            Inst->dump();
1121          }
1122
1123          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1124            unsigned &R = FuncInfo->ValueMap[Inst];
1125            if (!R)
1126              R = FuncInfo->CreateRegs(Inst->getType());
1127          }
1128
1129          bool HadTailCall = false;
1130          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1131          SelectBasicBlock(Inst, BI, HadTailCall);
1132
1133          // If the call was emitted as a tail call, we're done with the block.
1134          // We also need to delete any previously emitted instructions.
1135          if (HadTailCall) {
1136            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1137            --BI;
1138            break;
1139          }
1140
1141          // Recompute NumFastIselRemaining as Selection DAG instruction
1142          // selection may have handled the call, input args, etc.
1143          unsigned RemainingNow = std::distance(Begin, BI);
1144          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1145          NumFastIselRemaining = RemainingNow;
1146          continue;
1147        }
1148
1149        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1150          // Don't abort, and use a different message for terminator misses.
1151          NumFastIselFailures += NumFastIselRemaining;
1152          if (EnableFastISelVerbose || EnableFastISelAbort) {
1153            dbgs() << "FastISel missed terminator: ";
1154            Inst->dump();
1155          }
1156        } else {
1157          NumFastIselFailures += NumFastIselRemaining;
1158          if (EnableFastISelVerbose || EnableFastISelAbort) {
1159            dbgs() << "FastISel miss: ";
1160            Inst->dump();
1161          }
1162          if (EnableFastISelAbort)
1163            // The "fast" selector couldn't handle something and bailed.
1164            // For the purpose of debugging, just abort.
1165            llvm_unreachable("FastISel didn't select the entire block");
1166        }
1167        break;
1168      }
1169
1170      FastIS->recomputeInsertPt();
1171    } else {
1172      // Lower any arguments needed in this block if this is the entry block.
1173      if (LLVMBB == &Fn.getEntryBlock()) {
1174        ++NumEntryBlocks;
1175        LowerArguments(Fn);
1176      }
1177    }
1178
1179    if (Begin != BI)
1180      ++NumDAGBlocks;
1181    else
1182      ++NumFastIselBlocks;
1183
1184    if (Begin != BI) {
1185      // Run SelectionDAG instruction selection on the remainder of the block
1186      // not handled by FastISel. If FastISel is not run, this is the entire
1187      // block.
1188      bool HadTailCall;
1189      SelectBasicBlock(Begin, BI, HadTailCall);
1190    }
1191
1192    FinishBasicBlock();
1193    FuncInfo->PHINodesToUpdate.clear();
1194  }
1195
1196  delete FastIS;
1197  SDB->clearDanglingDebugInfo();
1198  SDB->SPDescriptor.resetPerFunctionState();
1199}
1200
1201/// Given that the input MI is before a partial terminator sequence TSeq, return
1202/// true if M + TSeq also a partial terminator sequence.
1203///
1204/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1205/// lowering copy vregs into physical registers, which are then passed into
1206/// terminator instructors so we can satisfy ABI constraints. A partial
1207/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1208/// may be the whole terminator sequence).
1209static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1210  // If we do not have a copy or an implicit def, we return true if and only if
1211  // MI is a debug value.
1212  if (!MI->isCopy() && !MI->isImplicitDef())
1213    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1214    // physical registers if there is debug info associated with the terminator
1215    // of our mbb. We want to include said debug info in our terminator
1216    // sequence, so we return true in that case.
1217    return MI->isDebugValue();
1218
1219  // We have left the terminator sequence if we are not doing one of the
1220  // following:
1221  //
1222  // 1. Copying a vreg into a physical register.
1223  // 2. Copying a vreg into a vreg.
1224  // 3. Defining a register via an implicit def.
1225
1226  // OPI should always be a register definition...
1227  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1228  if (!OPI->isReg() || !OPI->isDef())
1229    return false;
1230
1231  // Defining any register via an implicit def is always ok.
1232  if (MI->isImplicitDef())
1233    return true;
1234
1235  // Grab the copy source...
1236  MachineInstr::const_mop_iterator OPI2 = OPI;
1237  ++OPI2;
1238  assert(OPI2 != MI->operands_end()
1239         && "Should have a copy implying we should have 2 arguments.");
1240
1241  // Make sure that the copy dest is not a vreg when the copy source is a
1242  // physical register.
1243  if (!OPI2->isReg() ||
1244      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1245       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1246    return false;
1247
1248  return true;
1249}
1250
1251/// Find the split point at which to splice the end of BB into its success stack
1252/// protector check machine basic block.
1253///
1254/// On many platforms, due to ABI constraints, terminators, even before register
1255/// allocation, use physical registers. This creates an issue for us since
1256/// physical registers at this point can not travel across basic
1257/// blocks. Luckily, selectiondag always moves physical registers into vregs
1258/// when they enter functions and moves them through a sequence of copies back
1259/// into the physical registers right before the terminator creating a
1260/// ``Terminator Sequence''. This function is searching for the beginning of the
1261/// terminator sequence so that we can ensure that we splice off not just the
1262/// terminator, but additionally the copies that move the vregs into the
1263/// physical registers.
1264static MachineBasicBlock::iterator
1265FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1266  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1267  //
1268  if (SplitPoint == BB->begin())
1269    return SplitPoint;
1270
1271  MachineBasicBlock::iterator Start = BB->begin();
1272  MachineBasicBlock::iterator Previous = SplitPoint;
1273  --Previous;
1274
1275  while (MIIsInTerminatorSequence(Previous)) {
1276    SplitPoint = Previous;
1277    if (Previous == Start)
1278      break;
1279    --Previous;
1280  }
1281
1282  return SplitPoint;
1283}
1284
1285void
1286SelectionDAGISel::FinishBasicBlock() {
1287
1288  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1289               << FuncInfo->PHINodesToUpdate.size() << "\n";
1290        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1291          dbgs() << "Node " << i << " : ("
1292                 << FuncInfo->PHINodesToUpdate[i].first
1293                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1294
1295  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1296                                  SDB->JTCases.empty() &&
1297                                  SDB->BitTestCases.empty();
1298
1299  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1300  // PHI nodes in successors.
1301  if (MustUpdatePHINodes) {
1302    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1303      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1304      assert(PHI->isPHI() &&
1305             "This is not a machine PHI node that we are updating!");
1306      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1307        continue;
1308      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1309    }
1310  }
1311
1312  // Handle stack protector.
1313  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1314    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1315    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1316
1317    // Find the split point to split the parent mbb. At the same time copy all
1318    // physical registers used in the tail of parent mbb into virtual registers
1319    // before the split point and back into physical registers after the split
1320    // point. This prevents us needing to deal with Live-ins and many other
1321    // register allocation issues caused by us splitting the parent mbb. The
1322    // register allocator will clean up said virtual copies later on.
1323    MachineBasicBlock::iterator SplitPoint =
1324      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1325
1326    // Splice the terminator of ParentMBB into SuccessMBB.
1327    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1328                       SplitPoint,
1329                       ParentMBB->end());
1330
1331    // Add compare/jump on neq/jump to the parent BB.
1332    FuncInfo->MBB = ParentMBB;
1333    FuncInfo->InsertPt = ParentMBB->end();
1334    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1335    CurDAG->setRoot(SDB->getRoot());
1336    SDB->clear();
1337    CodeGenAndEmitDAG();
1338
1339    // CodeGen Failure MBB if we have not codegened it yet.
1340    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1341    if (!FailureMBB->size()) {
1342      FuncInfo->MBB = FailureMBB;
1343      FuncInfo->InsertPt = FailureMBB->end();
1344      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1345      CurDAG->setRoot(SDB->getRoot());
1346      SDB->clear();
1347      CodeGenAndEmitDAG();
1348    }
1349
1350    // Clear the Per-BB State.
1351    SDB->SPDescriptor.resetPerBBState();
1352  }
1353
1354  // If we updated PHI Nodes, return early.
1355  if (MustUpdatePHINodes)
1356    return;
1357
1358  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1359    // Lower header first, if it wasn't already lowered
1360    if (!SDB->BitTestCases[i].Emitted) {
1361      // Set the current basic block to the mbb we wish to insert the code into
1362      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1363      FuncInfo->InsertPt = FuncInfo->MBB->end();
1364      // Emit the code
1365      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1366      CurDAG->setRoot(SDB->getRoot());
1367      SDB->clear();
1368      CodeGenAndEmitDAG();
1369    }
1370
1371    uint32_t UnhandledWeight = 0;
1372    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1373      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1374
1375    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1376      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1377      // Set the current basic block to the mbb we wish to insert the code into
1378      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1379      FuncInfo->InsertPt = FuncInfo->MBB->end();
1380      // Emit the code
1381      if (j+1 != ej)
1382        SDB->visitBitTestCase(SDB->BitTestCases[i],
1383                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1384                              UnhandledWeight,
1385                              SDB->BitTestCases[i].Reg,
1386                              SDB->BitTestCases[i].Cases[j],
1387                              FuncInfo->MBB);
1388      else
1389        SDB->visitBitTestCase(SDB->BitTestCases[i],
1390                              SDB->BitTestCases[i].Default,
1391                              UnhandledWeight,
1392                              SDB->BitTestCases[i].Reg,
1393                              SDB->BitTestCases[i].Cases[j],
1394                              FuncInfo->MBB);
1395
1396
1397      CurDAG->setRoot(SDB->getRoot());
1398      SDB->clear();
1399      CodeGenAndEmitDAG();
1400    }
1401
1402    // Update PHI Nodes
1403    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1404         pi != pe; ++pi) {
1405      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1406      MachineBasicBlock *PHIBB = PHI->getParent();
1407      assert(PHI->isPHI() &&
1408             "This is not a machine PHI node that we are updating!");
1409      // This is "default" BB. We have two jumps to it. From "header" BB and
1410      // from last "case" BB.
1411      if (PHIBB == SDB->BitTestCases[i].Default)
1412        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1413           .addMBB(SDB->BitTestCases[i].Parent)
1414           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1415           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1416      // One of "cases" BB.
1417      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1418           j != ej; ++j) {
1419        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1420        if (cBB->isSuccessor(PHIBB))
1421          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1422      }
1423    }
1424  }
1425  SDB->BitTestCases.clear();
1426
1427  // If the JumpTable record is filled in, then we need to emit a jump table.
1428  // Updating the PHI nodes is tricky in this case, since we need to determine
1429  // whether the PHI is a successor of the range check MBB or the jump table MBB
1430  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1431    // Lower header first, if it wasn't already lowered
1432    if (!SDB->JTCases[i].first.Emitted) {
1433      // Set the current basic block to the mbb we wish to insert the code into
1434      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1435      FuncInfo->InsertPt = FuncInfo->MBB->end();
1436      // Emit the code
1437      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1438                                FuncInfo->MBB);
1439      CurDAG->setRoot(SDB->getRoot());
1440      SDB->clear();
1441      CodeGenAndEmitDAG();
1442    }
1443
1444    // Set the current basic block to the mbb we wish to insert the code into
1445    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1446    FuncInfo->InsertPt = FuncInfo->MBB->end();
1447    // Emit the code
1448    SDB->visitJumpTable(SDB->JTCases[i].second);
1449    CurDAG->setRoot(SDB->getRoot());
1450    SDB->clear();
1451    CodeGenAndEmitDAG();
1452
1453    // Update PHI Nodes
1454    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1455         pi != pe; ++pi) {
1456      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1457      MachineBasicBlock *PHIBB = PHI->getParent();
1458      assert(PHI->isPHI() &&
1459             "This is not a machine PHI node that we are updating!");
1460      // "default" BB. We can go there only from header BB.
1461      if (PHIBB == SDB->JTCases[i].second.Default)
1462        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1463           .addMBB(SDB->JTCases[i].first.HeaderBB);
1464      // JT BB. Just iterate over successors here
1465      if (FuncInfo->MBB->isSuccessor(PHIBB))
1466        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1467    }
1468  }
1469  SDB->JTCases.clear();
1470
1471  // If the switch block involved a branch to one of the actual successors, we
1472  // need to update PHI nodes in that block.
1473  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1474    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1475    assert(PHI->isPHI() &&
1476           "This is not a machine PHI node that we are updating!");
1477    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1478      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1479  }
1480
1481  // If we generated any switch lowering information, build and codegen any
1482  // additional DAGs necessary.
1483  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1484    // Set the current basic block to the mbb we wish to insert the code into
1485    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1486    FuncInfo->InsertPt = FuncInfo->MBB->end();
1487
1488    // Determine the unique successors.
1489    SmallVector<MachineBasicBlock *, 2> Succs;
1490    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1491    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1492      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1493
1494    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1495    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1496    CurDAG->setRoot(SDB->getRoot());
1497    SDB->clear();
1498    CodeGenAndEmitDAG();
1499
1500    // Remember the last block, now that any splitting is done, for use in
1501    // populating PHI nodes in successors.
1502    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1503
1504    // Handle any PHI nodes in successors of this chunk, as if we were coming
1505    // from the original BB before switch expansion.  Note that PHI nodes can
1506    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1507    // handle them the right number of times.
1508    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1509      FuncInfo->MBB = Succs[i];
1510      FuncInfo->InsertPt = FuncInfo->MBB->end();
1511      // FuncInfo->MBB may have been removed from the CFG if a branch was
1512      // constant folded.
1513      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1514        for (MachineBasicBlock::iterator
1515             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1516             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1517          MachineInstrBuilder PHI(*MF, MBBI);
1518          // This value for this PHI node is recorded in PHINodesToUpdate.
1519          for (unsigned pn = 0; ; ++pn) {
1520            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1521                   "Didn't find PHI entry!");
1522            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1523              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1524              break;
1525            }
1526          }
1527        }
1528      }
1529    }
1530  }
1531  SDB->SwitchCases.clear();
1532}
1533
1534
1535/// Create the scheduler. If a specific scheduler was specified
1536/// via the SchedulerRegistry, use it, otherwise select the
1537/// one preferred by the target.
1538///
1539ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1540  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1541
1542  if (!Ctor) {
1543    Ctor = ISHeuristic;
1544    RegisterScheduler::setDefault(Ctor);
1545  }
1546
1547  return Ctor(this, OptLevel);
1548}
1549
1550//===----------------------------------------------------------------------===//
1551// Helper functions used by the generated instruction selector.
1552//===----------------------------------------------------------------------===//
1553// Calls to these methods are generated by tblgen.
1554
1555/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1556/// the dag combiner simplified the 255, we still want to match.  RHS is the
1557/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1558/// specified in the .td file (e.g. 255).
1559bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1560                                    int64_t DesiredMaskS) const {
1561  const APInt &ActualMask = RHS->getAPIntValue();
1562  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1563
1564  // If the actual mask exactly matches, success!
1565  if (ActualMask == DesiredMask)
1566    return true;
1567
1568  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1569  if (ActualMask.intersects(~DesiredMask))
1570    return false;
1571
1572  // Otherwise, the DAG Combiner may have proven that the value coming in is
1573  // either already zero or is not demanded.  Check for known zero input bits.
1574  APInt NeededMask = DesiredMask & ~ActualMask;
1575  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1576    return true;
1577
1578  // TODO: check to see if missing bits are just not demanded.
1579
1580  // Otherwise, this pattern doesn't match.
1581  return false;
1582}
1583
1584/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1585/// the dag combiner simplified the 255, we still want to match.  RHS is the
1586/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1587/// specified in the .td file (e.g. 255).
1588bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1589                                   int64_t DesiredMaskS) const {
1590  const APInt &ActualMask = RHS->getAPIntValue();
1591  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1592
1593  // If the actual mask exactly matches, success!
1594  if (ActualMask == DesiredMask)
1595    return true;
1596
1597  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1598  if (ActualMask.intersects(~DesiredMask))
1599    return false;
1600
1601  // Otherwise, the DAG Combiner may have proven that the value coming in is
1602  // either already zero or is not demanded.  Check for known zero input bits.
1603  APInt NeededMask = DesiredMask & ~ActualMask;
1604
1605  APInt KnownZero, KnownOne;
1606  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1607
1608  // If all the missing bits in the or are already known to be set, match!
1609  if ((NeededMask & KnownOne) == NeededMask)
1610    return true;
1611
1612  // TODO: check to see if missing bits are just not demanded.
1613
1614  // Otherwise, this pattern doesn't match.
1615  return false;
1616}
1617
1618
1619/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1620/// by tblgen.  Others should not call it.
1621void SelectionDAGISel::
1622SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1623  std::vector<SDValue> InOps;
1624  std::swap(InOps, Ops);
1625
1626  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1627  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1628  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1629  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1630
1631  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1632  if (InOps[e-1].getValueType() == MVT::Glue)
1633    --e;  // Don't process a glue operand if it is here.
1634
1635  while (i != e) {
1636    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1637    if (!InlineAsm::isMemKind(Flags)) {
1638      // Just skip over this operand, copying the operands verbatim.
1639      Ops.insert(Ops.end(), InOps.begin()+i,
1640                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1641      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1642    } else {
1643      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1644             "Memory operand with multiple values?");
1645      // Otherwise, this is a memory operand.  Ask the target to select it.
1646      std::vector<SDValue> SelOps;
1647      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1648        report_fatal_error("Could not match memory address.  Inline asm"
1649                           " failure!");
1650
1651      // Add this to the output node.
1652      unsigned NewFlags =
1653        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1654      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1655      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1656      i += 2;
1657    }
1658  }
1659
1660  // Add the glue input back if present.
1661  if (e != InOps.size())
1662    Ops.push_back(InOps.back());
1663}
1664
1665/// findGlueUse - Return use of MVT::Glue value produced by the specified
1666/// SDNode.
1667///
1668static SDNode *findGlueUse(SDNode *N) {
1669  unsigned FlagResNo = N->getNumValues()-1;
1670  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1671    SDUse &Use = I.getUse();
1672    if (Use.getResNo() == FlagResNo)
1673      return Use.getUser();
1674  }
1675  return NULL;
1676}
1677
1678/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1679/// This function recursively traverses up the operand chain, ignoring
1680/// certain nodes.
1681static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1682                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1683                          bool IgnoreChains) {
1684  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1685  // greater than all of its (recursive) operands.  If we scan to a point where
1686  // 'use' is smaller than the node we're scanning for, then we know we will
1687  // never find it.
1688  //
1689  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1690  // happen because we scan down to newly selected nodes in the case of glue
1691  // uses.
1692  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1693    return false;
1694
1695  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1696  // won't fail if we scan it again.
1697  if (!Visited.insert(Use))
1698    return false;
1699
1700  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1701    // Ignore chain uses, they are validated by HandleMergeInputChains.
1702    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1703      continue;
1704
1705    SDNode *N = Use->getOperand(i).getNode();
1706    if (N == Def) {
1707      if (Use == ImmedUse || Use == Root)
1708        continue;  // We are not looking for immediate use.
1709      assert(N != Root);
1710      return true;
1711    }
1712
1713    // Traverse up the operand chain.
1714    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1715      return true;
1716  }
1717  return false;
1718}
1719
1720/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1721/// operand node N of U during instruction selection that starts at Root.
1722bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1723                                          SDNode *Root) const {
1724  if (OptLevel == CodeGenOpt::None) return false;
1725  return N.hasOneUse();
1726}
1727
1728/// IsLegalToFold - Returns true if the specific operand node N of
1729/// U can be folded during instruction selection that starts at Root.
1730bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1731                                     CodeGenOpt::Level OptLevel,
1732                                     bool IgnoreChains) {
1733  if (OptLevel == CodeGenOpt::None) return false;
1734
1735  // If Root use can somehow reach N through a path that that doesn't contain
1736  // U then folding N would create a cycle. e.g. In the following
1737  // diagram, Root can reach N through X. If N is folded into into Root, then
1738  // X is both a predecessor and a successor of U.
1739  //
1740  //          [N*]           //
1741  //         ^   ^           //
1742  //        /     \          //
1743  //      [U*]    [X]?       //
1744  //        ^     ^          //
1745  //         \   /           //
1746  //          \ /            //
1747  //         [Root*]         //
1748  //
1749  // * indicates nodes to be folded together.
1750  //
1751  // If Root produces glue, then it gets (even more) interesting. Since it
1752  // will be "glued" together with its glue use in the scheduler, we need to
1753  // check if it might reach N.
1754  //
1755  //          [N*]           //
1756  //         ^   ^           //
1757  //        /     \          //
1758  //      [U*]    [X]?       //
1759  //        ^       ^        //
1760  //         \       \       //
1761  //          \      |       //
1762  //         [Root*] |       //
1763  //          ^      |       //
1764  //          f      |       //
1765  //          |      /       //
1766  //         [Y]    /        //
1767  //           ^   /         //
1768  //           f  /          //
1769  //           | /           //
1770  //          [GU]           //
1771  //
1772  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1773  // (call it Fold), then X is a predecessor of GU and a successor of
1774  // Fold. But since Fold and GU are glued together, this will create
1775  // a cycle in the scheduling graph.
1776
1777  // If the node has glue, walk down the graph to the "lowest" node in the
1778  // glueged set.
1779  EVT VT = Root->getValueType(Root->getNumValues()-1);
1780  while (VT == MVT::Glue) {
1781    SDNode *GU = findGlueUse(Root);
1782    if (GU == NULL)
1783      break;
1784    Root = GU;
1785    VT = Root->getValueType(Root->getNumValues()-1);
1786
1787    // If our query node has a glue result with a use, we've walked up it.  If
1788    // the user (which has already been selected) has a chain or indirectly uses
1789    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1790    // this, we cannot ignore chains in this predicate.
1791    IgnoreChains = false;
1792  }
1793
1794
1795  SmallPtrSet<SDNode*, 16> Visited;
1796  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1797}
1798
1799SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1800  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1801  SelectInlineAsmMemoryOperands(Ops);
1802
1803  EVT VTs[] = { MVT::Other, MVT::Glue };
1804  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1805                                VTs, &Ops[0], Ops.size());
1806  New->setNodeId(-1);
1807  return New.getNode();
1808}
1809
1810SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1811  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1812}
1813
1814/// GetVBR - decode a vbr encoding whose top bit is set.
1815LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1816GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1817  assert(Val >= 128 && "Not a VBR");
1818  Val &= 127;  // Remove first vbr bit.
1819
1820  unsigned Shift = 7;
1821  uint64_t NextBits;
1822  do {
1823    NextBits = MatcherTable[Idx++];
1824    Val |= (NextBits&127) << Shift;
1825    Shift += 7;
1826  } while (NextBits & 128);
1827
1828  return Val;
1829}
1830
1831
1832/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1833/// interior glue and chain results to use the new glue and chain results.
1834void SelectionDAGISel::
1835UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1836                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1837                    SDValue InputGlue,
1838                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1839                    bool isMorphNodeTo) {
1840  SmallVector<SDNode*, 4> NowDeadNodes;
1841
1842  // Now that all the normal results are replaced, we replace the chain and
1843  // glue results if present.
1844  if (!ChainNodesMatched.empty()) {
1845    assert(InputChain.getNode() != 0 &&
1846           "Matched input chains but didn't produce a chain");
1847    // Loop over all of the nodes we matched that produced a chain result.
1848    // Replace all the chain results with the final chain we ended up with.
1849    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1850      SDNode *ChainNode = ChainNodesMatched[i];
1851
1852      // If this node was already deleted, don't look at it.
1853      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1854        continue;
1855
1856      // Don't replace the results of the root node if we're doing a
1857      // MorphNodeTo.
1858      if (ChainNode == NodeToMatch && isMorphNodeTo)
1859        continue;
1860
1861      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1862      if (ChainVal.getValueType() == MVT::Glue)
1863        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1864      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1865      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1866
1867      // If the node became dead and we haven't already seen it, delete it.
1868      if (ChainNode->use_empty() &&
1869          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1870        NowDeadNodes.push_back(ChainNode);
1871    }
1872  }
1873
1874  // If the result produces glue, update any glue results in the matched
1875  // pattern with the glue result.
1876  if (InputGlue.getNode() != 0) {
1877    // Handle any interior nodes explicitly marked.
1878    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1879      SDNode *FRN = GlueResultNodesMatched[i];
1880
1881      // If this node was already deleted, don't look at it.
1882      if (FRN->getOpcode() == ISD::DELETED_NODE)
1883        continue;
1884
1885      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1886             "Doesn't have a glue result");
1887      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1888                                        InputGlue);
1889
1890      // If the node became dead and we haven't already seen it, delete it.
1891      if (FRN->use_empty() &&
1892          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1893        NowDeadNodes.push_back(FRN);
1894    }
1895  }
1896
1897  if (!NowDeadNodes.empty())
1898    CurDAG->RemoveDeadNodes(NowDeadNodes);
1899
1900  DEBUG(dbgs() << "ISEL: Match complete!\n");
1901}
1902
1903enum ChainResult {
1904  CR_Simple,
1905  CR_InducesCycle,
1906  CR_LeadsToInteriorNode
1907};
1908
1909/// WalkChainUsers - Walk down the users of the specified chained node that is
1910/// part of the pattern we're matching, looking at all of the users we find.
1911/// This determines whether something is an interior node, whether we have a
1912/// non-pattern node in between two pattern nodes (which prevent folding because
1913/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1914/// between pattern nodes (in which case the TF becomes part of the pattern).
1915///
1916/// The walk we do here is guaranteed to be small because we quickly get down to
1917/// already selected nodes "below" us.
1918static ChainResult
1919WalkChainUsers(const SDNode *ChainedNode,
1920               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1921               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1922  ChainResult Result = CR_Simple;
1923
1924  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1925         E = ChainedNode->use_end(); UI != E; ++UI) {
1926    // Make sure the use is of the chain, not some other value we produce.
1927    if (UI.getUse().getValueType() != MVT::Other) continue;
1928
1929    SDNode *User = *UI;
1930
1931    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1932      continue;
1933
1934    // If we see an already-selected machine node, then we've gone beyond the
1935    // pattern that we're selecting down into the already selected chunk of the
1936    // DAG.
1937    unsigned UserOpcode = User->getOpcode();
1938    if (User->isMachineOpcode() ||
1939        UserOpcode == ISD::CopyToReg ||
1940        UserOpcode == ISD::CopyFromReg ||
1941        UserOpcode == ISD::INLINEASM ||
1942        UserOpcode == ISD::EH_LABEL ||
1943        UserOpcode == ISD::LIFETIME_START ||
1944        UserOpcode == ISD::LIFETIME_END) {
1945      // If their node ID got reset to -1 then they've already been selected.
1946      // Treat them like a MachineOpcode.
1947      if (User->getNodeId() == -1)
1948        continue;
1949    }
1950
1951    // If we have a TokenFactor, we handle it specially.
1952    if (User->getOpcode() != ISD::TokenFactor) {
1953      // If the node isn't a token factor and isn't part of our pattern, then it
1954      // must be a random chained node in between two nodes we're selecting.
1955      // This happens when we have something like:
1956      //   x = load ptr
1957      //   call
1958      //   y = x+4
1959      //   store y -> ptr
1960      // Because we structurally match the load/store as a read/modify/write,
1961      // but the call is chained between them.  We cannot fold in this case
1962      // because it would induce a cycle in the graph.
1963      if (!std::count(ChainedNodesInPattern.begin(),
1964                      ChainedNodesInPattern.end(), User))
1965        return CR_InducesCycle;
1966
1967      // Otherwise we found a node that is part of our pattern.  For example in:
1968      //   x = load ptr
1969      //   y = x+4
1970      //   store y -> ptr
1971      // This would happen when we're scanning down from the load and see the
1972      // store as a user.  Record that there is a use of ChainedNode that is
1973      // part of the pattern and keep scanning uses.
1974      Result = CR_LeadsToInteriorNode;
1975      InteriorChainedNodes.push_back(User);
1976      continue;
1977    }
1978
1979    // If we found a TokenFactor, there are two cases to consider: first if the
1980    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1981    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1982    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1983    //     [Load chain]
1984    //         ^
1985    //         |
1986    //       [Load]
1987    //       ^    ^
1988    //       |    \                    DAG's like cheese
1989    //      /       \                       do you?
1990    //     /         |
1991    // [TokenFactor] [Op]
1992    //     ^          ^
1993    //     |          |
1994    //      \        /
1995    //       \      /
1996    //       [Store]
1997    //
1998    // In this case, the TokenFactor becomes part of our match and we rewrite it
1999    // as a new TokenFactor.
2000    //
2001    // To distinguish these two cases, do a recursive walk down the uses.
2002    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2003    case CR_Simple:
2004      // If the uses of the TokenFactor are just already-selected nodes, ignore
2005      // it, it is "below" our pattern.
2006      continue;
2007    case CR_InducesCycle:
2008      // If the uses of the TokenFactor lead to nodes that are not part of our
2009      // pattern that are not selected, folding would turn this into a cycle,
2010      // bail out now.
2011      return CR_InducesCycle;
2012    case CR_LeadsToInteriorNode:
2013      break;  // Otherwise, keep processing.
2014    }
2015
2016    // Okay, we know we're in the interesting interior case.  The TokenFactor
2017    // is now going to be considered part of the pattern so that we rewrite its
2018    // uses (it may have uses that are not part of the pattern) with the
2019    // ultimate chain result of the generated code.  We will also add its chain
2020    // inputs as inputs to the ultimate TokenFactor we create.
2021    Result = CR_LeadsToInteriorNode;
2022    ChainedNodesInPattern.push_back(User);
2023    InteriorChainedNodes.push_back(User);
2024    continue;
2025  }
2026
2027  return Result;
2028}
2029
2030/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2031/// operation for when the pattern matched at least one node with a chains.  The
2032/// input vector contains a list of all of the chained nodes that we match.  We
2033/// must determine if this is a valid thing to cover (i.e. matching it won't
2034/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2035/// be used as the input node chain for the generated nodes.
2036static SDValue
2037HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2038                       SelectionDAG *CurDAG) {
2039  // Walk all of the chained nodes we've matched, recursively scanning down the
2040  // users of the chain result. This adds any TokenFactor nodes that are caught
2041  // in between chained nodes to the chained and interior nodes list.
2042  SmallVector<SDNode*, 3> InteriorChainedNodes;
2043  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2044    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2045                       InteriorChainedNodes) == CR_InducesCycle)
2046      return SDValue(); // Would induce a cycle.
2047  }
2048
2049  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2050  // that we are interested in.  Form our input TokenFactor node.
2051  SmallVector<SDValue, 3> InputChains;
2052  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2053    // Add the input chain of this node to the InputChains list (which will be
2054    // the operands of the generated TokenFactor) if it's not an interior node.
2055    SDNode *N = ChainNodesMatched[i];
2056    if (N->getOpcode() != ISD::TokenFactor) {
2057      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2058        continue;
2059
2060      // Otherwise, add the input chain.
2061      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2062      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2063      InputChains.push_back(InChain);
2064      continue;
2065    }
2066
2067    // If we have a token factor, we want to add all inputs of the token factor
2068    // that are not part of the pattern we're matching.
2069    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2070      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2071                      N->getOperand(op).getNode()))
2072        InputChains.push_back(N->getOperand(op));
2073    }
2074  }
2075
2076  if (InputChains.size() == 1)
2077    return InputChains[0];
2078  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2079                         MVT::Other, &InputChains[0], InputChains.size());
2080}
2081
2082/// MorphNode - Handle morphing a node in place for the selector.
2083SDNode *SelectionDAGISel::
2084MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2085          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2086  // It is possible we're using MorphNodeTo to replace a node with no
2087  // normal results with one that has a normal result (or we could be
2088  // adding a chain) and the input could have glue and chains as well.
2089  // In this case we need to shift the operands down.
2090  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2091  // than the old isel though.
2092  int OldGlueResultNo = -1, OldChainResultNo = -1;
2093
2094  unsigned NTMNumResults = Node->getNumValues();
2095  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2096    OldGlueResultNo = NTMNumResults-1;
2097    if (NTMNumResults != 1 &&
2098        Node->getValueType(NTMNumResults-2) == MVT::Other)
2099      OldChainResultNo = NTMNumResults-2;
2100  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2101    OldChainResultNo = NTMNumResults-1;
2102
2103  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2104  // that this deletes operands of the old node that become dead.
2105  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2106
2107  // MorphNodeTo can operate in two ways: if an existing node with the
2108  // specified operands exists, it can just return it.  Otherwise, it
2109  // updates the node in place to have the requested operands.
2110  if (Res == Node) {
2111    // If we updated the node in place, reset the node ID.  To the isel,
2112    // this should be just like a newly allocated machine node.
2113    Res->setNodeId(-1);
2114  }
2115
2116  unsigned ResNumResults = Res->getNumValues();
2117  // Move the glue if needed.
2118  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2119      (unsigned)OldGlueResultNo != ResNumResults-1)
2120    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2121                                      SDValue(Res, ResNumResults-1));
2122
2123  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2124    --ResNumResults;
2125
2126  // Move the chain reference if needed.
2127  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2128      (unsigned)OldChainResultNo != ResNumResults-1)
2129    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2130                                      SDValue(Res, ResNumResults-1));
2131
2132  // Otherwise, no replacement happened because the node already exists. Replace
2133  // Uses of the old node with the new one.
2134  if (Res != Node)
2135    CurDAG->ReplaceAllUsesWith(Node, Res);
2136
2137  return Res;
2138}
2139
2140/// CheckSame - Implements OP_CheckSame.
2141LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2142CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2143          SDValue N,
2144          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2145  // Accept if it is exactly the same as a previously recorded node.
2146  unsigned RecNo = MatcherTable[MatcherIndex++];
2147  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2148  return N == RecordedNodes[RecNo].first;
2149}
2150
2151/// CheckChildSame - Implements OP_CheckChildXSame.
2152LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2153CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2154             SDValue N,
2155             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2156             unsigned ChildNo) {
2157  if (ChildNo >= N.getNumOperands())
2158    return false;  // Match fails if out of range child #.
2159  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2160                     RecordedNodes);
2161}
2162
2163/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2164LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2165CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2166                      const SelectionDAGISel &SDISel) {
2167  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2168}
2169
2170/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2171LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2172CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2173                   const SelectionDAGISel &SDISel, SDNode *N) {
2174  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2175}
2176
2177LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2178CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2179            SDNode *N) {
2180  uint16_t Opc = MatcherTable[MatcherIndex++];
2181  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2182  return N->getOpcode() == Opc;
2183}
2184
2185LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2186CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2187          SDValue N, const TargetLowering *TLI) {
2188  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2189  if (N.getValueType() == VT) return true;
2190
2191  // Handle the case when VT is iPTR.
2192  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2193}
2194
2195LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2196CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2197               SDValue N, const TargetLowering *TLI,
2198               unsigned ChildNo) {
2199  if (ChildNo >= N.getNumOperands())
2200    return false;  // Match fails if out of range child #.
2201  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2202}
2203
2204LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2205CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2206              SDValue N) {
2207  return cast<CondCodeSDNode>(N)->get() ==
2208      (ISD::CondCode)MatcherTable[MatcherIndex++];
2209}
2210
2211LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2212CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2213               SDValue N, const TargetLowering *TLI) {
2214  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2215  if (cast<VTSDNode>(N)->getVT() == VT)
2216    return true;
2217
2218  // Handle the case when VT is iPTR.
2219  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2220}
2221
2222LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2223CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2224             SDValue N) {
2225  int64_t Val = MatcherTable[MatcherIndex++];
2226  if (Val & 128)
2227    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2228
2229  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2230  return C != 0 && C->getSExtValue() == Val;
2231}
2232
2233LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2234CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2235            SDValue N, const SelectionDAGISel &SDISel) {
2236  int64_t Val = MatcherTable[MatcherIndex++];
2237  if (Val & 128)
2238    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2239
2240  if (N->getOpcode() != ISD::AND) return false;
2241
2242  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2243  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2244}
2245
2246LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2247CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2248           SDValue N, const SelectionDAGISel &SDISel) {
2249  int64_t Val = MatcherTable[MatcherIndex++];
2250  if (Val & 128)
2251    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2252
2253  if (N->getOpcode() != ISD::OR) return false;
2254
2255  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2256  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2257}
2258
2259/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2260/// scope, evaluate the current node.  If the current predicate is known to
2261/// fail, set Result=true and return anything.  If the current predicate is
2262/// known to pass, set Result=false and return the MatcherIndex to continue
2263/// with.  If the current predicate is unknown, set Result=false and return the
2264/// MatcherIndex to continue with.
2265static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2266                                       unsigned Index, SDValue N,
2267                                       bool &Result,
2268                                       const SelectionDAGISel &SDISel,
2269                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2270  switch (Table[Index++]) {
2271  default:
2272    Result = false;
2273    return Index-1;  // Could not evaluate this predicate.
2274  case SelectionDAGISel::OPC_CheckSame:
2275    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2276    return Index;
2277  case SelectionDAGISel::OPC_CheckChild0Same:
2278  case SelectionDAGISel::OPC_CheckChild1Same:
2279  case SelectionDAGISel::OPC_CheckChild2Same:
2280  case SelectionDAGISel::OPC_CheckChild3Same:
2281    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2282                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2283    return Index;
2284  case SelectionDAGISel::OPC_CheckPatternPredicate:
2285    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2286    return Index;
2287  case SelectionDAGISel::OPC_CheckPredicate:
2288    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2289    return Index;
2290  case SelectionDAGISel::OPC_CheckOpcode:
2291    Result = !::CheckOpcode(Table, Index, N.getNode());
2292    return Index;
2293  case SelectionDAGISel::OPC_CheckType:
2294    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2295    return Index;
2296  case SelectionDAGISel::OPC_CheckChild0Type:
2297  case SelectionDAGISel::OPC_CheckChild1Type:
2298  case SelectionDAGISel::OPC_CheckChild2Type:
2299  case SelectionDAGISel::OPC_CheckChild3Type:
2300  case SelectionDAGISel::OPC_CheckChild4Type:
2301  case SelectionDAGISel::OPC_CheckChild5Type:
2302  case SelectionDAGISel::OPC_CheckChild6Type:
2303  case SelectionDAGISel::OPC_CheckChild7Type:
2304    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2305                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2306    return Index;
2307  case SelectionDAGISel::OPC_CheckCondCode:
2308    Result = !::CheckCondCode(Table, Index, N);
2309    return Index;
2310  case SelectionDAGISel::OPC_CheckValueType:
2311    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2312    return Index;
2313  case SelectionDAGISel::OPC_CheckInteger:
2314    Result = !::CheckInteger(Table, Index, N);
2315    return Index;
2316  case SelectionDAGISel::OPC_CheckAndImm:
2317    Result = !::CheckAndImm(Table, Index, N, SDISel);
2318    return Index;
2319  case SelectionDAGISel::OPC_CheckOrImm:
2320    Result = !::CheckOrImm(Table, Index, N, SDISel);
2321    return Index;
2322  }
2323}
2324
2325namespace {
2326
2327struct MatchScope {
2328  /// FailIndex - If this match fails, this is the index to continue with.
2329  unsigned FailIndex;
2330
2331  /// NodeStack - The node stack when the scope was formed.
2332  SmallVector<SDValue, 4> NodeStack;
2333
2334  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2335  unsigned NumRecordedNodes;
2336
2337  /// NumMatchedMemRefs - The number of matched memref entries.
2338  unsigned NumMatchedMemRefs;
2339
2340  /// InputChain/InputGlue - The current chain/glue
2341  SDValue InputChain, InputGlue;
2342
2343  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2344  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2345};
2346
2347}
2348
2349SDNode *SelectionDAGISel::
2350SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2351                 unsigned TableSize) {
2352  // FIXME: Should these even be selected?  Handle these cases in the caller?
2353  switch (NodeToMatch->getOpcode()) {
2354  default:
2355    break;
2356  case ISD::EntryToken:       // These nodes remain the same.
2357  case ISD::BasicBlock:
2358  case ISD::Register:
2359  case ISD::RegisterMask:
2360  //case ISD::VALUETYPE:
2361  //case ISD::CONDCODE:
2362  case ISD::HANDLENODE:
2363  case ISD::MDNODE_SDNODE:
2364  case ISD::TargetConstant:
2365  case ISD::TargetConstantFP:
2366  case ISD::TargetConstantPool:
2367  case ISD::TargetFrameIndex:
2368  case ISD::TargetExternalSymbol:
2369  case ISD::TargetBlockAddress:
2370  case ISD::TargetJumpTable:
2371  case ISD::TargetGlobalTLSAddress:
2372  case ISD::TargetGlobalAddress:
2373  case ISD::TokenFactor:
2374  case ISD::CopyFromReg:
2375  case ISD::CopyToReg:
2376  case ISD::EH_LABEL:
2377  case ISD::LIFETIME_START:
2378  case ISD::LIFETIME_END:
2379    NodeToMatch->setNodeId(-1); // Mark selected.
2380    return 0;
2381  case ISD::AssertSext:
2382  case ISD::AssertZext:
2383    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2384                                      NodeToMatch->getOperand(0));
2385    return 0;
2386  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2387  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2388  }
2389
2390  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2391
2392  // Set up the node stack with NodeToMatch as the only node on the stack.
2393  SmallVector<SDValue, 8> NodeStack;
2394  SDValue N = SDValue(NodeToMatch, 0);
2395  NodeStack.push_back(N);
2396
2397  // MatchScopes - Scopes used when matching, if a match failure happens, this
2398  // indicates where to continue checking.
2399  SmallVector<MatchScope, 8> MatchScopes;
2400
2401  // RecordedNodes - This is the set of nodes that have been recorded by the
2402  // state machine.  The second value is the parent of the node, or null if the
2403  // root is recorded.
2404  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2405
2406  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2407  // pattern.
2408  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2409
2410  // These are the current input chain and glue for use when generating nodes.
2411  // Various Emit operations change these.  For example, emitting a copytoreg
2412  // uses and updates these.
2413  SDValue InputChain, InputGlue;
2414
2415  // ChainNodesMatched - If a pattern matches nodes that have input/output
2416  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2417  // which ones they are.  The result is captured into this list so that we can
2418  // update the chain results when the pattern is complete.
2419  SmallVector<SDNode*, 3> ChainNodesMatched;
2420  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2421
2422  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2423        NodeToMatch->dump(CurDAG);
2424        dbgs() << '\n');
2425
2426  // Determine where to start the interpreter.  Normally we start at opcode #0,
2427  // but if the state machine starts with an OPC_SwitchOpcode, then we
2428  // accelerate the first lookup (which is guaranteed to be hot) with the
2429  // OpcodeOffset table.
2430  unsigned MatcherIndex = 0;
2431
2432  if (!OpcodeOffset.empty()) {
2433    // Already computed the OpcodeOffset table, just index into it.
2434    if (N.getOpcode() < OpcodeOffset.size())
2435      MatcherIndex = OpcodeOffset[N.getOpcode()];
2436    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2437
2438  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2439    // Otherwise, the table isn't computed, but the state machine does start
2440    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2441    // is the first time we're selecting an instruction.
2442    unsigned Idx = 1;
2443    while (1) {
2444      // Get the size of this case.
2445      unsigned CaseSize = MatcherTable[Idx++];
2446      if (CaseSize & 128)
2447        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2448      if (CaseSize == 0) break;
2449
2450      // Get the opcode, add the index to the table.
2451      uint16_t Opc = MatcherTable[Idx++];
2452      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2453      if (Opc >= OpcodeOffset.size())
2454        OpcodeOffset.resize((Opc+1)*2);
2455      OpcodeOffset[Opc] = Idx;
2456      Idx += CaseSize;
2457    }
2458
2459    // Okay, do the lookup for the first opcode.
2460    if (N.getOpcode() < OpcodeOffset.size())
2461      MatcherIndex = OpcodeOffset[N.getOpcode()];
2462  }
2463
2464  while (1) {
2465    assert(MatcherIndex < TableSize && "Invalid index");
2466#ifndef NDEBUG
2467    unsigned CurrentOpcodeIndex = MatcherIndex;
2468#endif
2469    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2470    switch (Opcode) {
2471    case OPC_Scope: {
2472      // Okay, the semantics of this operation are that we should push a scope
2473      // then evaluate the first child.  However, pushing a scope only to have
2474      // the first check fail (which then pops it) is inefficient.  If we can
2475      // determine immediately that the first check (or first several) will
2476      // immediately fail, don't even bother pushing a scope for them.
2477      unsigned FailIndex;
2478
2479      while (1) {
2480        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2481        if (NumToSkip & 128)
2482          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2483        // Found the end of the scope with no match.
2484        if (NumToSkip == 0) {
2485          FailIndex = 0;
2486          break;
2487        }
2488
2489        FailIndex = MatcherIndex+NumToSkip;
2490
2491        unsigned MatcherIndexOfPredicate = MatcherIndex;
2492        (void)MatcherIndexOfPredicate; // silence warning.
2493
2494        // If we can't evaluate this predicate without pushing a scope (e.g. if
2495        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2496        // push the scope and evaluate the full predicate chain.
2497        bool Result;
2498        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2499                                              Result, *this, RecordedNodes);
2500        if (!Result)
2501          break;
2502
2503        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2504                     << "index " << MatcherIndexOfPredicate
2505                     << ", continuing at " << FailIndex << "\n");
2506        ++NumDAGIselRetries;
2507
2508        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2509        // move to the next case.
2510        MatcherIndex = FailIndex;
2511      }
2512
2513      // If the whole scope failed to match, bail.
2514      if (FailIndex == 0) break;
2515
2516      // Push a MatchScope which indicates where to go if the first child fails
2517      // to match.
2518      MatchScope NewEntry;
2519      NewEntry.FailIndex = FailIndex;
2520      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2521      NewEntry.NumRecordedNodes = RecordedNodes.size();
2522      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2523      NewEntry.InputChain = InputChain;
2524      NewEntry.InputGlue = InputGlue;
2525      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2526      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2527      MatchScopes.push_back(NewEntry);
2528      continue;
2529    }
2530    case OPC_RecordNode: {
2531      // Remember this node, it may end up being an operand in the pattern.
2532      SDNode *Parent = 0;
2533      if (NodeStack.size() > 1)
2534        Parent = NodeStack[NodeStack.size()-2].getNode();
2535      RecordedNodes.push_back(std::make_pair(N, Parent));
2536      continue;
2537    }
2538
2539    case OPC_RecordChild0: case OPC_RecordChild1:
2540    case OPC_RecordChild2: case OPC_RecordChild3:
2541    case OPC_RecordChild4: case OPC_RecordChild5:
2542    case OPC_RecordChild6: case OPC_RecordChild7: {
2543      unsigned ChildNo = Opcode-OPC_RecordChild0;
2544      if (ChildNo >= N.getNumOperands())
2545        break;  // Match fails if out of range child #.
2546
2547      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2548                                             N.getNode()));
2549      continue;
2550    }
2551    case OPC_RecordMemRef:
2552      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2553      continue;
2554
2555    case OPC_CaptureGlueInput:
2556      // If the current node has an input glue, capture it in InputGlue.
2557      if (N->getNumOperands() != 0 &&
2558          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2559        InputGlue = N->getOperand(N->getNumOperands()-1);
2560      continue;
2561
2562    case OPC_MoveChild: {
2563      unsigned ChildNo = MatcherTable[MatcherIndex++];
2564      if (ChildNo >= N.getNumOperands())
2565        break;  // Match fails if out of range child #.
2566      N = N.getOperand(ChildNo);
2567      NodeStack.push_back(N);
2568      continue;
2569    }
2570
2571    case OPC_MoveParent:
2572      // Pop the current node off the NodeStack.
2573      NodeStack.pop_back();
2574      assert(!NodeStack.empty() && "Node stack imbalance!");
2575      N = NodeStack.back();
2576      continue;
2577
2578    case OPC_CheckSame:
2579      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2580      continue;
2581
2582    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2583    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2584      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2585                            Opcode-OPC_CheckChild0Same))
2586        break;
2587      continue;
2588
2589    case OPC_CheckPatternPredicate:
2590      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2591      continue;
2592    case OPC_CheckPredicate:
2593      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2594                                N.getNode()))
2595        break;
2596      continue;
2597    case OPC_CheckComplexPat: {
2598      unsigned CPNum = MatcherTable[MatcherIndex++];
2599      unsigned RecNo = MatcherTable[MatcherIndex++];
2600      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2601      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2602                               RecordedNodes[RecNo].first, CPNum,
2603                               RecordedNodes))
2604        break;
2605      continue;
2606    }
2607    case OPC_CheckOpcode:
2608      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2609      continue;
2610
2611    case OPC_CheckType:
2612      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2613        break;
2614      continue;
2615
2616    case OPC_SwitchOpcode: {
2617      unsigned CurNodeOpcode = N.getOpcode();
2618      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2619      unsigned CaseSize;
2620      while (1) {
2621        // Get the size of this case.
2622        CaseSize = MatcherTable[MatcherIndex++];
2623        if (CaseSize & 128)
2624          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2625        if (CaseSize == 0) break;
2626
2627        uint16_t Opc = MatcherTable[MatcherIndex++];
2628        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2629
2630        // If the opcode matches, then we will execute this case.
2631        if (CurNodeOpcode == Opc)
2632          break;
2633
2634        // Otherwise, skip over this case.
2635        MatcherIndex += CaseSize;
2636      }
2637
2638      // If no cases matched, bail out.
2639      if (CaseSize == 0) break;
2640
2641      // Otherwise, execute the case we found.
2642      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2643                   << " to " << MatcherIndex << "\n");
2644      continue;
2645    }
2646
2647    case OPC_SwitchType: {
2648      MVT CurNodeVT = N.getSimpleValueType();
2649      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2650      unsigned CaseSize;
2651      while (1) {
2652        // Get the size of this case.
2653        CaseSize = MatcherTable[MatcherIndex++];
2654        if (CaseSize & 128)
2655          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2656        if (CaseSize == 0) break;
2657
2658        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2659        if (CaseVT == MVT::iPTR)
2660          CaseVT = getTargetLowering()->getPointerTy();
2661
2662        // If the VT matches, then we will execute this case.
2663        if (CurNodeVT == CaseVT)
2664          break;
2665
2666        // Otherwise, skip over this case.
2667        MatcherIndex += CaseSize;
2668      }
2669
2670      // If no cases matched, bail out.
2671      if (CaseSize == 0) break;
2672
2673      // Otherwise, execute the case we found.
2674      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2675                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2676      continue;
2677    }
2678    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2679    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2680    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2681    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2682      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2683                            Opcode-OPC_CheckChild0Type))
2684        break;
2685      continue;
2686    case OPC_CheckCondCode:
2687      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2688      continue;
2689    case OPC_CheckValueType:
2690      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2691        break;
2692      continue;
2693    case OPC_CheckInteger:
2694      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2695      continue;
2696    case OPC_CheckAndImm:
2697      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2698      continue;
2699    case OPC_CheckOrImm:
2700      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2701      continue;
2702
2703    case OPC_CheckFoldableChainNode: {
2704      assert(NodeStack.size() != 1 && "No parent node");
2705      // Verify that all intermediate nodes between the root and this one have
2706      // a single use.
2707      bool HasMultipleUses = false;
2708      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2709        if (!NodeStack[i].hasOneUse()) {
2710          HasMultipleUses = true;
2711          break;
2712        }
2713      if (HasMultipleUses) break;
2714
2715      // Check to see that the target thinks this is profitable to fold and that
2716      // we can fold it without inducing cycles in the graph.
2717      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2718                              NodeToMatch) ||
2719          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2720                         NodeToMatch, OptLevel,
2721                         true/*We validate our own chains*/))
2722        break;
2723
2724      continue;
2725    }
2726    case OPC_EmitInteger: {
2727      MVT::SimpleValueType VT =
2728        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2729      int64_t Val = MatcherTable[MatcherIndex++];
2730      if (Val & 128)
2731        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2732      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2733                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2734      continue;
2735    }
2736    case OPC_EmitRegister: {
2737      MVT::SimpleValueType VT =
2738        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2739      unsigned RegNo = MatcherTable[MatcherIndex++];
2740      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2741                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2742      continue;
2743    }
2744    case OPC_EmitRegister2: {
2745      // For targets w/ more than 256 register names, the register enum
2746      // values are stored in two bytes in the matcher table (just like
2747      // opcodes).
2748      MVT::SimpleValueType VT =
2749        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2750      unsigned RegNo = MatcherTable[MatcherIndex++];
2751      RegNo |= MatcherTable[MatcherIndex++] << 8;
2752      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2753                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2754      continue;
2755    }
2756
2757    case OPC_EmitConvertToTarget:  {
2758      // Convert from IMM/FPIMM to target version.
2759      unsigned RecNo = MatcherTable[MatcherIndex++];
2760      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
2761      SDValue Imm = RecordedNodes[RecNo].first;
2762
2763      if (Imm->getOpcode() == ISD::Constant) {
2764        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2765        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2766      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2767        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2768        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2769      }
2770
2771      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2772      continue;
2773    }
2774
2775    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2776    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2777      // These are space-optimized forms of OPC_EmitMergeInputChains.
2778      assert(InputChain.getNode() == 0 &&
2779             "EmitMergeInputChains should be the first chain producing node");
2780      assert(ChainNodesMatched.empty() &&
2781             "Should only have one EmitMergeInputChains per match");
2782
2783      // Read all of the chained nodes.
2784      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2785      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2786      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2787
2788      // FIXME: What if other value results of the node have uses not matched
2789      // by this pattern?
2790      if (ChainNodesMatched.back() != NodeToMatch &&
2791          !RecordedNodes[RecNo].first.hasOneUse()) {
2792        ChainNodesMatched.clear();
2793        break;
2794      }
2795
2796      // Merge the input chains if they are not intra-pattern references.
2797      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2798
2799      if (InputChain.getNode() == 0)
2800        break;  // Failed to merge.
2801      continue;
2802    }
2803
2804    case OPC_EmitMergeInputChains: {
2805      assert(InputChain.getNode() == 0 &&
2806             "EmitMergeInputChains should be the first chain producing node");
2807      // This node gets a list of nodes we matched in the input that have
2808      // chains.  We want to token factor all of the input chains to these nodes
2809      // together.  However, if any of the input chains is actually one of the
2810      // nodes matched in this pattern, then we have an intra-match reference.
2811      // Ignore these because the newly token factored chain should not refer to
2812      // the old nodes.
2813      unsigned NumChains = MatcherTable[MatcherIndex++];
2814      assert(NumChains != 0 && "Can't TF zero chains");
2815
2816      assert(ChainNodesMatched.empty() &&
2817             "Should only have one EmitMergeInputChains per match");
2818
2819      // Read all of the chained nodes.
2820      for (unsigned i = 0; i != NumChains; ++i) {
2821        unsigned RecNo = MatcherTable[MatcherIndex++];
2822        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2823        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2824
2825        // FIXME: What if other value results of the node have uses not matched
2826        // by this pattern?
2827        if (ChainNodesMatched.back() != NodeToMatch &&
2828            !RecordedNodes[RecNo].first.hasOneUse()) {
2829          ChainNodesMatched.clear();
2830          break;
2831        }
2832      }
2833
2834      // If the inner loop broke out, the match fails.
2835      if (ChainNodesMatched.empty())
2836        break;
2837
2838      // Merge the input chains if they are not intra-pattern references.
2839      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2840
2841      if (InputChain.getNode() == 0)
2842        break;  // Failed to merge.
2843
2844      continue;
2845    }
2846
2847    case OPC_EmitCopyToReg: {
2848      unsigned RecNo = MatcherTable[MatcherIndex++];
2849      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
2850      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2851
2852      if (InputChain.getNode() == 0)
2853        InputChain = CurDAG->getEntryNode();
2854
2855      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2856                                        DestPhysReg, RecordedNodes[RecNo].first,
2857                                        InputGlue);
2858
2859      InputGlue = InputChain.getValue(1);
2860      continue;
2861    }
2862
2863    case OPC_EmitNodeXForm: {
2864      unsigned XFormNo = MatcherTable[MatcherIndex++];
2865      unsigned RecNo = MatcherTable[MatcherIndex++];
2866      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
2867      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2868      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2869      continue;
2870    }
2871
2872    case OPC_EmitNode:
2873    case OPC_MorphNodeTo: {
2874      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2875      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2876      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2877      // Get the result VT list.
2878      unsigned NumVTs = MatcherTable[MatcherIndex++];
2879      SmallVector<EVT, 4> VTs;
2880      for (unsigned i = 0; i != NumVTs; ++i) {
2881        MVT::SimpleValueType VT =
2882          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2883        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2884        VTs.push_back(VT);
2885      }
2886
2887      if (EmitNodeInfo & OPFL_Chain)
2888        VTs.push_back(MVT::Other);
2889      if (EmitNodeInfo & OPFL_GlueOutput)
2890        VTs.push_back(MVT::Glue);
2891
2892      // This is hot code, so optimize the two most common cases of 1 and 2
2893      // results.
2894      SDVTList VTList;
2895      if (VTs.size() == 1)
2896        VTList = CurDAG->getVTList(VTs[0]);
2897      else if (VTs.size() == 2)
2898        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2899      else
2900        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2901
2902      // Get the operand list.
2903      unsigned NumOps = MatcherTable[MatcherIndex++];
2904      SmallVector<SDValue, 8> Ops;
2905      for (unsigned i = 0; i != NumOps; ++i) {
2906        unsigned RecNo = MatcherTable[MatcherIndex++];
2907        if (RecNo & 128)
2908          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2909
2910        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2911        Ops.push_back(RecordedNodes[RecNo].first);
2912      }
2913
2914      // If there are variadic operands to add, handle them now.
2915      if (EmitNodeInfo & OPFL_VariadicInfo) {
2916        // Determine the start index to copy from.
2917        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2918        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2919        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2920               "Invalid variadic node");
2921        // Copy all of the variadic operands, not including a potential glue
2922        // input.
2923        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2924             i != e; ++i) {
2925          SDValue V = NodeToMatch->getOperand(i);
2926          if (V.getValueType() == MVT::Glue) break;
2927          Ops.push_back(V);
2928        }
2929      }
2930
2931      // If this has chain/glue inputs, add them.
2932      if (EmitNodeInfo & OPFL_Chain)
2933        Ops.push_back(InputChain);
2934      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2935        Ops.push_back(InputGlue);
2936
2937      // Create the node.
2938      SDNode *Res = 0;
2939      if (Opcode != OPC_MorphNodeTo) {
2940        // If this is a normal EmitNode command, just create the new node and
2941        // add the results to the RecordedNodes list.
2942        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2943                                     VTList, Ops);
2944
2945        // Add all the non-glue/non-chain results to the RecordedNodes list.
2946        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2947          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2948          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2949                                                             (SDNode*) 0));
2950        }
2951
2952      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2953        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2954                        EmitNodeInfo);
2955      } else {
2956        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2957        // We will visit the equivalent node later.
2958        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2959        return 0;
2960      }
2961
2962      // If the node had chain/glue results, update our notion of the current
2963      // chain and glue.
2964      if (EmitNodeInfo & OPFL_GlueOutput) {
2965        InputGlue = SDValue(Res, VTs.size()-1);
2966        if (EmitNodeInfo & OPFL_Chain)
2967          InputChain = SDValue(Res, VTs.size()-2);
2968      } else if (EmitNodeInfo & OPFL_Chain)
2969        InputChain = SDValue(Res, VTs.size()-1);
2970
2971      // If the OPFL_MemRefs glue is set on this node, slap all of the
2972      // accumulated memrefs onto it.
2973      //
2974      // FIXME: This is vastly incorrect for patterns with multiple outputs
2975      // instructions that access memory and for ComplexPatterns that match
2976      // loads.
2977      if (EmitNodeInfo & OPFL_MemRefs) {
2978        // Only attach load or store memory operands if the generated
2979        // instruction may load or store.
2980        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2981        bool mayLoad = MCID.mayLoad();
2982        bool mayStore = MCID.mayStore();
2983
2984        unsigned NumMemRefs = 0;
2985        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2986               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2987          if ((*I)->isLoad()) {
2988            if (mayLoad)
2989              ++NumMemRefs;
2990          } else if ((*I)->isStore()) {
2991            if (mayStore)
2992              ++NumMemRefs;
2993          } else {
2994            ++NumMemRefs;
2995          }
2996        }
2997
2998        MachineSDNode::mmo_iterator MemRefs =
2999          MF->allocateMemRefsArray(NumMemRefs);
3000
3001        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3002        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3003               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3004          if ((*I)->isLoad()) {
3005            if (mayLoad)
3006              *MemRefsPos++ = *I;
3007          } else if ((*I)->isStore()) {
3008            if (mayStore)
3009              *MemRefsPos++ = *I;
3010          } else {
3011            *MemRefsPos++ = *I;
3012          }
3013        }
3014
3015        cast<MachineSDNode>(Res)
3016          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3017      }
3018
3019      DEBUG(dbgs() << "  "
3020                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3021                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3022
3023      // If this was a MorphNodeTo then we're completely done!
3024      if (Opcode == OPC_MorphNodeTo) {
3025        // Update chain and glue uses.
3026        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3027                            InputGlue, GlueResultNodesMatched, true);
3028        return Res;
3029      }
3030
3031      continue;
3032    }
3033
3034    case OPC_MarkGlueResults: {
3035      unsigned NumNodes = MatcherTable[MatcherIndex++];
3036
3037      // Read and remember all the glue-result nodes.
3038      for (unsigned i = 0; i != NumNodes; ++i) {
3039        unsigned RecNo = MatcherTable[MatcherIndex++];
3040        if (RecNo & 128)
3041          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3042
3043        assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3044        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3045      }
3046      continue;
3047    }
3048
3049    case OPC_CompleteMatch: {
3050      // The match has been completed, and any new nodes (if any) have been
3051      // created.  Patch up references to the matched dag to use the newly
3052      // created nodes.
3053      unsigned NumResults = MatcherTable[MatcherIndex++];
3054
3055      for (unsigned i = 0; i != NumResults; ++i) {
3056        unsigned ResSlot = MatcherTable[MatcherIndex++];
3057        if (ResSlot & 128)
3058          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3059
3060        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3061        SDValue Res = RecordedNodes[ResSlot].first;
3062
3063        assert(i < NodeToMatch->getNumValues() &&
3064               NodeToMatch->getValueType(i) != MVT::Other &&
3065               NodeToMatch->getValueType(i) != MVT::Glue &&
3066               "Invalid number of results to complete!");
3067        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3068                NodeToMatch->getValueType(i) == MVT::iPTR ||
3069                Res.getValueType() == MVT::iPTR ||
3070                NodeToMatch->getValueType(i).getSizeInBits() ==
3071                    Res.getValueType().getSizeInBits()) &&
3072               "invalid replacement");
3073        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3074      }
3075
3076      // If the root node defines glue, add it to the glue nodes to update list.
3077      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3078        GlueResultNodesMatched.push_back(NodeToMatch);
3079
3080      // Update chain and glue uses.
3081      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3082                          InputGlue, GlueResultNodesMatched, false);
3083
3084      assert(NodeToMatch->use_empty() &&
3085             "Didn't replace all uses of the node?");
3086
3087      // FIXME: We just return here, which interacts correctly with SelectRoot
3088      // above.  We should fix this to not return an SDNode* anymore.
3089      return 0;
3090    }
3091    }
3092
3093    // If the code reached this point, then the match failed.  See if there is
3094    // another child to try in the current 'Scope', otherwise pop it until we
3095    // find a case to check.
3096    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3097    ++NumDAGIselRetries;
3098    while (1) {
3099      if (MatchScopes.empty()) {
3100        CannotYetSelect(NodeToMatch);
3101        return 0;
3102      }
3103
3104      // Restore the interpreter state back to the point where the scope was
3105      // formed.
3106      MatchScope &LastScope = MatchScopes.back();
3107      RecordedNodes.resize(LastScope.NumRecordedNodes);
3108      NodeStack.clear();
3109      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3110      N = NodeStack.back();
3111
3112      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3113        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3114      MatcherIndex = LastScope.FailIndex;
3115
3116      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3117
3118      InputChain = LastScope.InputChain;
3119      InputGlue = LastScope.InputGlue;
3120      if (!LastScope.HasChainNodesMatched)
3121        ChainNodesMatched.clear();
3122      if (!LastScope.HasGlueResultNodesMatched)
3123        GlueResultNodesMatched.clear();
3124
3125      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3126      // we have reached the end of this scope, otherwise we have another child
3127      // in the current scope to try.
3128      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3129      if (NumToSkip & 128)
3130        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3131
3132      // If we have another child in this scope to match, update FailIndex and
3133      // try it.
3134      if (NumToSkip != 0) {
3135        LastScope.FailIndex = MatcherIndex+NumToSkip;
3136        break;
3137      }
3138
3139      // End of this scope, pop it and try the next child in the containing
3140      // scope.
3141      MatchScopes.pop_back();
3142    }
3143  }
3144}
3145
3146
3147
3148void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3149  std::string msg;
3150  raw_string_ostream Msg(msg);
3151  Msg << "Cannot select: ";
3152
3153  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3154      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3155      N->getOpcode() != ISD::INTRINSIC_VOID) {
3156    N->printrFull(Msg, CurDAG);
3157    Msg << "\nIn function: " << MF->getName();
3158  } else {
3159    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3160    unsigned iid =
3161      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3162    if (iid < Intrinsic::num_intrinsics)
3163      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3164    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3165      Msg << "target intrinsic %" << TII->getName(iid);
3166    else
3167      Msg << "unknown intrinsic #" << iid;
3168  }
3169  report_fatal_error(Msg.str());
3170}
3171
3172char SelectionDAGISel::ID = 0;
3173