1//===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass inserts stack protectors into functions which need them. A variable
11// with a random value in it is stored onto the stack before the local variables
12// are allocated. Upon exiting the block, the stored value is checked. If it's
13// changed, then there was some sort of violation and the program aborts.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/CodeGen/StackProtector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ValueTracking.h"
21#include "llvm/CodeGen/Analysis.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/IR/Attributes.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalValue.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/CommandLine.h"
36#include <cstdlib>
37using namespace llvm;
38
39#define DEBUG_TYPE "stack-protector"
40
41STATISTIC(NumFunProtected, "Number of functions protected");
42STATISTIC(NumAddrTaken, "Number of local variables that have their address"
43                        " taken.");
44
45static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
46                                          cl::init(true), cl::Hidden);
47
48char StackProtector::ID = 0;
49INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
50                false, true)
51
52FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
53  return new StackProtector(TM);
54}
55
56StackProtector::SSPLayoutKind
57StackProtector::getSSPLayout(const AllocaInst *AI) const {
58  return AI ? Layout.lookup(AI) : SSPLK_None;
59}
60
61void StackProtector::adjustForColoring(const AllocaInst *From,
62                                       const AllocaInst *To) {
63  // When coloring replaces one alloca with another, transfer the SSPLayoutKind
64  // tag from the remapped to the target alloca. The remapped alloca should
65  // have a size smaller than or equal to the replacement alloca.
66  SSPLayoutMap::iterator I = Layout.find(From);
67  if (I != Layout.end()) {
68    SSPLayoutKind Kind = I->second;
69    Layout.erase(I);
70
71    // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
72    // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
73    // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
74    I = Layout.find(To);
75    if (I == Layout.end())
76      Layout.insert(std::make_pair(To, Kind));
77    else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
78      I->second = Kind;
79  }
80}
81
82bool StackProtector::runOnFunction(Function &Fn) {
83  F = &Fn;
84  M = F->getParent();
85  DominatorTreeWrapperPass *DTWP =
86      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87  DT = DTWP ? &DTWP->getDomTree() : nullptr;
88  TLI = TM->getTargetLowering();
89
90  Attribute Attr = Fn.getAttributes().getAttribute(
91      AttributeSet::FunctionIndex, "stack-protector-buffer-size");
92  if (Attr.isStringAttribute() &&
93      Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
94      return false; // Invalid integer string
95
96  if (!RequiresStackProtector())
97    return false;
98
99  ++NumFunProtected;
100  return InsertStackProtectors();
101}
102
103/// \param [out] IsLarge is set to true if a protectable array is found and
104/// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
105/// multiple arrays, this gets set if any of them is large.
106bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
107                                              bool Strong,
108                                              bool InStruct) const {
109  if (!Ty)
110    return false;
111  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
112    if (!AT->getElementType()->isIntegerTy(8)) {
113      // If we're on a non-Darwin platform or we're inside of a structure, don't
114      // add stack protectors unless the array is a character array.
115      // However, in strong mode any array, regardless of type and size,
116      // triggers a protector.
117      if (!Strong && (InStruct || !Trip.isOSDarwin()))
118        return false;
119    }
120
121    // If an array has more than SSPBufferSize bytes of allocated space, then we
122    // emit stack protectors.
123    if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
124      IsLarge = true;
125      return true;
126    }
127
128    if (Strong)
129      // Require a protector for all arrays in strong mode
130      return true;
131  }
132
133  const StructType *ST = dyn_cast<StructType>(Ty);
134  if (!ST)
135    return false;
136
137  bool NeedsProtector = false;
138  for (StructType::element_iterator I = ST->element_begin(),
139                                    E = ST->element_end();
140       I != E; ++I)
141    if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
142      // If the element is a protectable array and is large (>= SSPBufferSize)
143      // then we are done.  If the protectable array is not large, then
144      // keep looking in case a subsequent element is a large array.
145      if (IsLarge)
146        return true;
147      NeedsProtector = true;
148    }
149
150  return NeedsProtector;
151}
152
153bool StackProtector::HasAddressTaken(const Instruction *AI) {
154  for (const User *U : AI->users()) {
155    if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
156      if (AI == SI->getValueOperand())
157        return true;
158    } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
159      if (AI == SI->getOperand(0))
160        return true;
161    } else if (isa<CallInst>(U)) {
162      return true;
163    } else if (isa<InvokeInst>(U)) {
164      return true;
165    } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
166      if (HasAddressTaken(SI))
167        return true;
168    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
169      // Keep track of what PHI nodes we have already visited to ensure
170      // they are only visited once.
171      if (VisitedPHIs.insert(PN))
172        if (HasAddressTaken(PN))
173          return true;
174    } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
175      if (HasAddressTaken(GEP))
176        return true;
177    } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
178      if (HasAddressTaken(BI))
179        return true;
180    }
181  }
182  return false;
183}
184
185/// \brief Check whether or not this function needs a stack protector based
186/// upon the stack protector level.
187///
188/// We use two heuristics: a standard (ssp) and strong (sspstrong).
189/// The standard heuristic which will add a guard variable to functions that
190/// call alloca with a either a variable size or a size >= SSPBufferSize,
191/// functions with character buffers larger than SSPBufferSize, and functions
192/// with aggregates containing character buffers larger than SSPBufferSize. The
193/// strong heuristic will add a guard variables to functions that call alloca
194/// regardless of size, functions with any buffer regardless of type and size,
195/// functions with aggregates that contain any buffer regardless of type and
196/// size, and functions that contain stack-based variables that have had their
197/// address taken.
198bool StackProtector::RequiresStackProtector() {
199  bool Strong = false;
200  bool NeedsProtector = false;
201  if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
202                                      Attribute::StackProtectReq)) {
203    NeedsProtector = true;
204    Strong = true; // Use the same heuristic as strong to determine SSPLayout
205  } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
206                                             Attribute::StackProtectStrong))
207    Strong = true;
208  else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
209                                            Attribute::StackProtect))
210    return false;
211
212  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
213    BasicBlock *BB = I;
214
215    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
216         ++II) {
217      if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
218        if (AI->isArrayAllocation()) {
219          // SSP-Strong: Enable protectors for any call to alloca, regardless
220          // of size.
221          if (Strong)
222            return true;
223
224          if (const ConstantInt *CI =
225                  dyn_cast<ConstantInt>(AI->getArraySize())) {
226            if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
227              // A call to alloca with size >= SSPBufferSize requires
228              // stack protectors.
229              Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
230              NeedsProtector = true;
231            } else if (Strong) {
232              // Require protectors for all alloca calls in strong mode.
233              Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
234              NeedsProtector = true;
235            }
236          } else {
237            // A call to alloca with a variable size requires protectors.
238            Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
239            NeedsProtector = true;
240          }
241          continue;
242        }
243
244        bool IsLarge = false;
245        if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
246          Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
247                                                   : SSPLK_SmallArray));
248          NeedsProtector = true;
249          continue;
250        }
251
252        if (Strong && HasAddressTaken(AI)) {
253          ++NumAddrTaken;
254          Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
255          NeedsProtector = true;
256        }
257      }
258    }
259  }
260
261  return NeedsProtector;
262}
263
264static bool InstructionWillNotHaveChain(const Instruction *I) {
265  return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
266         isSafeToSpeculativelyExecute(I);
267}
268
269/// Identify if RI has a previous instruction in the "Tail Position" and return
270/// it. Otherwise return 0.
271///
272/// This is based off of the code in llvm::isInTailCallPosition. The difference
273/// is that it inverts the first part of llvm::isInTailCallPosition since
274/// isInTailCallPosition is checking if a call is in a tail call position, and
275/// we are searching for an unknown tail call that might be in the tail call
276/// position. Once we find the call though, the code uses the same refactored
277/// code, returnTypeIsEligibleForTailCall.
278static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
279                                       const TargetLoweringBase *TLI) {
280  // Establish a reasonable upper bound on the maximum amount of instructions we
281  // will look through to find a tail call.
282  unsigned SearchCounter = 0;
283  const unsigned MaxSearch = 4;
284  bool NoInterposingChain = true;
285
286  for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
287       I != E && SearchCounter < MaxSearch; ++I) {
288    Instruction *Inst = &*I;
289
290    // Skip over debug intrinsics and do not allow them to affect our MaxSearch
291    // counter.
292    if (isa<DbgInfoIntrinsic>(Inst))
293      continue;
294
295    // If we find a call and the following conditions are satisifed, then we
296    // have found a tail call that satisfies at least the target independent
297    // requirements of a tail call:
298    //
299    // 1. The call site has the tail marker.
300    //
301    // 2. The call site either will not cause the creation of a chain or if a
302    // chain is necessary there are no instructions in between the callsite and
303    // the call which would create an interposing chain.
304    //
305    // 3. The return type of the function does not impede tail call
306    // optimization.
307    if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
308      if (CI->isTailCall() &&
309          (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
310          returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
311        return CI;
312    }
313
314    // If we did not find a call see if we have an instruction that may create
315    // an interposing chain.
316    NoInterposingChain =
317        NoInterposingChain && InstructionWillNotHaveChain(Inst);
318
319    // Increment max search.
320    SearchCounter++;
321  }
322
323  return nullptr;
324}
325
326/// Insert code into the entry block that stores the __stack_chk_guard
327/// variable onto the stack:
328///
329///   entry:
330///     StackGuardSlot = alloca i8*
331///     StackGuard = load __stack_chk_guard
332///     call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
333///
334/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
335/// node.
336static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
337                           const TargetLoweringBase *TLI, const Triple &Trip,
338                           AllocaInst *&AI, Value *&StackGuardVar) {
339  bool SupportsSelectionDAGSP = false;
340  PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
341  unsigned AddressSpace, Offset;
342  if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
343    Constant *OffsetVal =
344        ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
345
346    StackGuardVar = ConstantExpr::getIntToPtr(
347        OffsetVal, PointerType::get(PtrTy, AddressSpace));
348  } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
349    StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
350    cast<GlobalValue>(StackGuardVar)
351        ->setVisibility(GlobalValue::HiddenVisibility);
352  } else {
353    SupportsSelectionDAGSP = true;
354    StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
355  }
356
357  IRBuilder<> B(&F->getEntryBlock().front());
358  AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
359  LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
360  B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
361                AI);
362
363  return SupportsSelectionDAGSP;
364}
365
366/// InsertStackProtectors - Insert code into the prologue and epilogue of the
367/// function.
368///
369///  - The prologue code loads and stores the stack guard onto the stack.
370///  - The epilogue checks the value stored in the prologue against the original
371///    value. It calls __stack_chk_fail if they differ.
372bool StackProtector::InsertStackProtectors() {
373  bool HasPrologue = false;
374  bool SupportsSelectionDAGSP =
375      EnableSelectionDAGSP && !TM->Options.EnableFastISel;
376  AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
377  Value *StackGuardVar = nullptr; // The stack guard variable.
378
379  for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
380    BasicBlock *BB = I++;
381    ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
382    if (!RI)
383      continue;
384
385    if (!HasPrologue) {
386      HasPrologue = true;
387      SupportsSelectionDAGSP &=
388          CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
389    }
390
391    if (SupportsSelectionDAGSP) {
392      // Since we have a potential tail call, insert the special stack check
393      // intrinsic.
394      Instruction *InsertionPt = nullptr;
395      if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
396        InsertionPt = CI;
397      } else {
398        InsertionPt = RI;
399        // At this point we know that BB has a return statement so it *DOES*
400        // have a terminator.
401        assert(InsertionPt != nullptr && "BB must have a terminator instruction at "
402                                   "this point.");
403      }
404
405      Function *Intrinsic =
406          Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
407      CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
408
409    } else {
410      // If we do not support SelectionDAG based tail calls, generate IR level
411      // tail calls.
412      //
413      // For each block with a return instruction, convert this:
414      //
415      //   return:
416      //     ...
417      //     ret ...
418      //
419      // into this:
420      //
421      //   return:
422      //     ...
423      //     %1 = load __stack_chk_guard
424      //     %2 = load StackGuardSlot
425      //     %3 = cmp i1 %1, %2
426      //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
427      //
428      //   SP_return:
429      //     ret ...
430      //
431      //   CallStackCheckFailBlk:
432      //     call void @__stack_chk_fail()
433      //     unreachable
434
435      // Create the FailBB. We duplicate the BB every time since the MI tail
436      // merge pass will merge together all of the various BB into one including
437      // fail BB generated by the stack protector pseudo instruction.
438      BasicBlock *FailBB = CreateFailBB();
439
440      // Split the basic block before the return instruction.
441      BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
442
443      // Update the dominator tree if we need to.
444      if (DT && DT->isReachableFromEntry(BB)) {
445        DT->addNewBlock(NewBB, BB);
446        DT->addNewBlock(FailBB, BB);
447      }
448
449      // Remove default branch instruction to the new BB.
450      BB->getTerminator()->eraseFromParent();
451
452      // Move the newly created basic block to the point right after the old
453      // basic block so that it's in the "fall through" position.
454      NewBB->moveAfter(BB);
455
456      // Generate the stack protector instructions in the old basic block.
457      IRBuilder<> B(BB);
458      LoadInst *LI1 = B.CreateLoad(StackGuardVar);
459      LoadInst *LI2 = B.CreateLoad(AI);
460      Value *Cmp = B.CreateICmpEQ(LI1, LI2);
461      B.CreateCondBr(Cmp, NewBB, FailBB);
462    }
463  }
464
465  // Return if we didn't modify any basic blocks. I.e., there are no return
466  // statements in the function.
467  if (!HasPrologue)
468    return false;
469
470  return true;
471}
472
473/// CreateFailBB - Create a basic block to jump to when the stack protector
474/// check fails.
475BasicBlock *StackProtector::CreateFailBB() {
476  LLVMContext &Context = F->getContext();
477  BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
478  IRBuilder<> B(FailBB);
479  if (Trip.getOS() == llvm::Triple::OpenBSD) {
480    Constant *StackChkFail = M->getOrInsertFunction(
481        "__stack_smash_handler", Type::getVoidTy(Context),
482        Type::getInt8PtrTy(Context), NULL);
483
484    B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
485  } else {
486    Constant *StackChkFail = M->getOrInsertFunction(
487        "__stack_chk_fail", Type::getVoidTy(Context), NULL);
488    B.CreateCall(StackChkFail);
489  }
490  B.CreateUnreachable();
491  return FailBB;
492}
493