TargetInstrInfo.cpp revision 849596ced42f2760c5b63f7676e16829b808b5c9
1//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetInstrInfo.h"
15#include "llvm/CodeGen/MachineFrameInfo.h"
16#include "llvm/CodeGen/MachineMemOperand.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/CodeGen/PseudoSourceValue.h"
19#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCInstrItineraries.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include <cctype>
29using namespace llvm;
30
31static cl::opt<bool> DisableHazardRecognizer(
32  "disable-sched-hazard", cl::Hidden, cl::init(false),
33  cl::desc("Disable hazard detection during preRA scheduling"));
34
35TargetInstrInfo::~TargetInstrInfo() {
36}
37
38const TargetRegisterClass*
39TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
40                             const TargetRegisterInfo *TRI,
41                             const MachineFunction &MF) const {
42  if (OpNum >= MCID.getNumOperands())
43    return 0;
44
45  short RegClass = MCID.OpInfo[OpNum].RegClass;
46  if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
47    return TRI->getPointerRegClass(MF, RegClass);
48
49  // Instructions like INSERT_SUBREG do not have fixed register classes.
50  if (RegClass < 0)
51    return 0;
52
53  // Otherwise just look it up normally.
54  return TRI->getRegClass(RegClass);
55}
56
57/// insertNoop - Insert a noop into the instruction stream at the specified
58/// point.
59void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
60                                 MachineBasicBlock::iterator MI) const {
61  llvm_unreachable("Target didn't implement insertNoop!");
62}
63
64/// Measure the specified inline asm to determine an approximation of its
65/// length.
66/// Comments (which run till the next SeparatorString or newline) do not
67/// count as an instruction.
68/// Any other non-whitespace text is considered an instruction, with
69/// multiple instructions separated by SeparatorString or newlines.
70/// Variable-length instructions are not handled here; this function
71/// may be overloaded in the target code to do that.
72unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
73                                             const MCAsmInfo &MAI) const {
74
75
76  // Count the number of instructions in the asm.
77  bool atInsnStart = true;
78  unsigned Length = 0;
79  for (; *Str; ++Str) {
80    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
81                                strlen(MAI.getSeparatorString())) == 0)
82      atInsnStart = true;
83    if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
84      Length += MAI.getMaxInstLength();
85      atInsnStart = false;
86    }
87    if (atInsnStart && strncmp(Str, MAI.getCommentString(),
88                               strlen(MAI.getCommentString())) == 0)
89      atInsnStart = false;
90  }
91
92  return Length;
93}
94
95/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
96/// after it, replacing it with an unconditional branch to NewDest.
97void
98TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
99                                         MachineBasicBlock *NewDest) const {
100  MachineBasicBlock *MBB = Tail->getParent();
101
102  // Remove all the old successors of MBB from the CFG.
103  while (!MBB->succ_empty())
104    MBB->removeSuccessor(MBB->succ_begin());
105
106  // Remove all the dead instructions from the end of MBB.
107  MBB->erase(Tail, MBB->end());
108
109  // If MBB isn't immediately before MBB, insert a branch to it.
110  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
111    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
112                 Tail->getDebugLoc());
113  MBB->addSuccessor(NewDest);
114}
115
116// commuteInstruction - The default implementation of this method just exchanges
117// the two operands returned by findCommutedOpIndices.
118MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
119                                                  bool NewMI) const {
120  const MCInstrDesc &MCID = MI->getDesc();
121  bool HasDef = MCID.getNumDefs();
122  if (HasDef && !MI->getOperand(0).isReg())
123    // No idea how to commute this instruction. Target should implement its own.
124    return 0;
125  unsigned Idx1, Idx2;
126  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
127    std::string msg;
128    raw_string_ostream Msg(msg);
129    Msg << "Don't know how to commute: " << *MI;
130    report_fatal_error(Msg.str());
131  }
132
133  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
134         "This only knows how to commute register operands so far");
135  unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
136  unsigned Reg1 = MI->getOperand(Idx1).getReg();
137  unsigned Reg2 = MI->getOperand(Idx2).getReg();
138  unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
139  unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
140  unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
141  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
142  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
143  // If destination is tied to either of the commuted source register, then
144  // it must be updated.
145  if (HasDef && Reg0 == Reg1 &&
146      MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
147    Reg2IsKill = false;
148    Reg0 = Reg2;
149    SubReg0 = SubReg2;
150  } else if (HasDef && Reg0 == Reg2 &&
151             MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
152    Reg1IsKill = false;
153    Reg0 = Reg1;
154    SubReg0 = SubReg1;
155  }
156
157  if (NewMI) {
158    // Create a new instruction.
159    MachineFunction &MF = *MI->getParent()->getParent();
160    MI = MF.CloneMachineInstr(MI);
161  }
162
163  if (HasDef) {
164    MI->getOperand(0).setReg(Reg0);
165    MI->getOperand(0).setSubReg(SubReg0);
166  }
167  MI->getOperand(Idx2).setReg(Reg1);
168  MI->getOperand(Idx1).setReg(Reg2);
169  MI->getOperand(Idx2).setSubReg(SubReg1);
170  MI->getOperand(Idx1).setSubReg(SubReg2);
171  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
172  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
173  return MI;
174}
175
176/// findCommutedOpIndices - If specified MI is commutable, return the two
177/// operand indices that would swap value. Return true if the instruction
178/// is not in a form which this routine understands.
179bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
180                                            unsigned &SrcOpIdx1,
181                                            unsigned &SrcOpIdx2) const {
182  assert(!MI->isBundle() &&
183         "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
184
185  const MCInstrDesc &MCID = MI->getDesc();
186  if (!MCID.isCommutable())
187    return false;
188  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
189  // is not true, then the target must implement this.
190  SrcOpIdx1 = MCID.getNumDefs();
191  SrcOpIdx2 = SrcOpIdx1 + 1;
192  if (!MI->getOperand(SrcOpIdx1).isReg() ||
193      !MI->getOperand(SrcOpIdx2).isReg())
194    // No idea.
195    return false;
196  return true;
197}
198
199
200bool
201TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
202  if (!MI->isTerminator()) return false;
203
204  // Conditional branch is a special case.
205  if (MI->isBranch() && !MI->isBarrier())
206    return true;
207  if (!MI->isPredicable())
208    return true;
209  return !isPredicated(MI);
210}
211
212
213bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
214                            const SmallVectorImpl<MachineOperand> &Pred) const {
215  bool MadeChange = false;
216
217  assert(!MI->isBundle() &&
218         "TargetInstrInfo::PredicateInstruction() can't handle bundles");
219
220  const MCInstrDesc &MCID = MI->getDesc();
221  if (!MI->isPredicable())
222    return false;
223
224  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
225    if (MCID.OpInfo[i].isPredicate()) {
226      MachineOperand &MO = MI->getOperand(i);
227      if (MO.isReg()) {
228        MO.setReg(Pred[j].getReg());
229        MadeChange = true;
230      } else if (MO.isImm()) {
231        MO.setImm(Pred[j].getImm());
232        MadeChange = true;
233      } else if (MO.isMBB()) {
234        MO.setMBB(Pred[j].getMBB());
235        MadeChange = true;
236      }
237      ++j;
238    }
239  }
240  return MadeChange;
241}
242
243bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
244                                           const MachineMemOperand *&MMO,
245                                           int &FrameIndex) const {
246  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
247         oe = MI->memoperands_end();
248       o != oe;
249       ++o) {
250    if ((*o)->isLoad() && (*o)->getValue())
251      if (const FixedStackPseudoSourceValue *Value =
252          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
253        FrameIndex = Value->getFrameIndex();
254        MMO = *o;
255        return true;
256      }
257  }
258  return false;
259}
260
261bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
262                                          const MachineMemOperand *&MMO,
263                                          int &FrameIndex) const {
264  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
265         oe = MI->memoperands_end();
266       o != oe;
267       ++o) {
268    if ((*o)->isStore() && (*o)->getValue())
269      if (const FixedStackPseudoSourceValue *Value =
270          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
271        FrameIndex = Value->getFrameIndex();
272        MMO = *o;
273        return true;
274      }
275  }
276  return false;
277}
278
279void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
280                                    MachineBasicBlock::iterator I,
281                                    unsigned DestReg,
282                                    unsigned SubIdx,
283                                    const MachineInstr *Orig,
284                                    const TargetRegisterInfo &TRI) const {
285  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
286  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
287  MBB.insert(I, MI);
288}
289
290bool
291TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
292                                  const MachineInstr *MI1,
293                                  const MachineRegisterInfo *MRI) const {
294  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
295}
296
297MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
298                                         MachineFunction &MF) const {
299  assert(!Orig->isNotDuplicable() &&
300         "Instruction cannot be duplicated");
301  return MF.CloneMachineInstr(Orig);
302}
303
304// If the COPY instruction in MI can be folded to a stack operation, return
305// the register class to use.
306static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
307                                              unsigned FoldIdx) {
308  assert(MI->isCopy() && "MI must be a COPY instruction");
309  if (MI->getNumOperands() != 2)
310    return 0;
311  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
312
313  const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
314  const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
315
316  if (FoldOp.getSubReg() || LiveOp.getSubReg())
317    return 0;
318
319  unsigned FoldReg = FoldOp.getReg();
320  unsigned LiveReg = LiveOp.getReg();
321
322  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
323         "Cannot fold physregs");
324
325  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
326  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
327
328  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
329    return RC->contains(LiveOp.getReg()) ? RC : 0;
330
331  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
332    return RC;
333
334  // FIXME: Allow folding when register classes are memory compatible.
335  return 0;
336}
337
338bool TargetInstrInfo::
339canFoldMemoryOperand(const MachineInstr *MI,
340                     const SmallVectorImpl<unsigned> &Ops) const {
341  return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
342}
343
344/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
345/// slot into the specified machine instruction for the specified operand(s).
346/// If this is possible, a new instruction is returned with the specified
347/// operand folded, otherwise NULL is returned. The client is responsible for
348/// removing the old instruction and adding the new one in the instruction
349/// stream.
350MachineInstr*
351TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
352                                   const SmallVectorImpl<unsigned> &Ops,
353                                   int FI) const {
354  unsigned Flags = 0;
355  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
356    if (MI->getOperand(Ops[i]).isDef())
357      Flags |= MachineMemOperand::MOStore;
358    else
359      Flags |= MachineMemOperand::MOLoad;
360
361  MachineBasicBlock *MBB = MI->getParent();
362  assert(MBB && "foldMemoryOperand needs an inserted instruction");
363  MachineFunction &MF = *MBB->getParent();
364
365  // Ask the target to do the actual folding.
366  if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
367    NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
368    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
369    assert((!(Flags & MachineMemOperand::MOStore) ||
370            NewMI->mayStore()) &&
371           "Folded a def to a non-store!");
372    assert((!(Flags & MachineMemOperand::MOLoad) ||
373            NewMI->mayLoad()) &&
374           "Folded a use to a non-load!");
375    const MachineFrameInfo &MFI = *MF.getFrameInfo();
376    assert(MFI.getObjectOffset(FI) != -1);
377    MachineMemOperand *MMO =
378      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
379                              Flags, MFI.getObjectSize(FI),
380                              MFI.getObjectAlignment(FI));
381    NewMI->addMemOperand(MF, MMO);
382
383    // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
384    return MBB->insert(MI, NewMI);
385  }
386
387  // Straight COPY may fold as load/store.
388  if (!MI->isCopy() || Ops.size() != 1)
389    return 0;
390
391  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
392  if (!RC)
393    return 0;
394
395  const MachineOperand &MO = MI->getOperand(1-Ops[0]);
396  MachineBasicBlock::iterator Pos = MI;
397  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
398
399  if (Flags == MachineMemOperand::MOStore)
400    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
401  else
402    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
403  return --Pos;
404}
405
406/// foldMemoryOperand - Same as the previous version except it allows folding
407/// of any load and store from / to any address, not just from a specific
408/// stack slot.
409MachineInstr*
410TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
411                                   const SmallVectorImpl<unsigned> &Ops,
412                                   MachineInstr* LoadMI) const {
413  assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
414#ifndef NDEBUG
415  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
416    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
417#endif
418  MachineBasicBlock &MBB = *MI->getParent();
419  MachineFunction &MF = *MBB.getParent();
420
421  // Ask the target to do the actual folding.
422  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
423  if (!NewMI) return 0;
424
425  NewMI = MBB.insert(MI, NewMI);
426
427  // Copy the memoperands from the load to the folded instruction.
428  if (MI->memoperands_empty()) {
429    NewMI->setMemRefs(LoadMI->memoperands_begin(),
430                      LoadMI->memoperands_end());
431  }
432  else {
433    // Handle the rare case of folding multiple loads.
434    NewMI->setMemRefs(MI->memoperands_begin(),
435                      MI->memoperands_end());
436    for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
437           E = LoadMI->memoperands_end(); I != E; ++I) {
438      NewMI->addMemOperand(MF, *I);
439    }
440  }
441  return NewMI;
442}
443
444bool TargetInstrInfo::
445isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
446                                         AliasAnalysis *AA) const {
447  const MachineFunction &MF = *MI->getParent()->getParent();
448  const MachineRegisterInfo &MRI = MF.getRegInfo();
449  const TargetMachine &TM = MF.getTarget();
450  const TargetInstrInfo &TII = *TM.getInstrInfo();
451
452  // Remat clients assume operand 0 is the defined register.
453  if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
454    return false;
455  unsigned DefReg = MI->getOperand(0).getReg();
456
457  // A sub-register definition can only be rematerialized if the instruction
458  // doesn't read the other parts of the register.  Otherwise it is really a
459  // read-modify-write operation on the full virtual register which cannot be
460  // moved safely.
461  if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
462      MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
463    return false;
464
465  // A load from a fixed stack slot can be rematerialized. This may be
466  // redundant with subsequent checks, but it's target-independent,
467  // simple, and a common case.
468  int FrameIdx = 0;
469  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
470      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
471    return true;
472
473  // Avoid instructions obviously unsafe for remat.
474  if (MI->isNotDuplicable() || MI->mayStore() ||
475      MI->hasUnmodeledSideEffects())
476    return false;
477
478  // Don't remat inline asm. We have no idea how expensive it is
479  // even if it's side effect free.
480  if (MI->isInlineAsm())
481    return false;
482
483  // Avoid instructions which load from potentially varying memory.
484  if (MI->mayLoad() && !MI->isInvariantLoad(AA))
485    return false;
486
487  // If any of the registers accessed are non-constant, conservatively assume
488  // the instruction is not rematerializable.
489  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
490    const MachineOperand &MO = MI->getOperand(i);
491    if (!MO.isReg()) continue;
492    unsigned Reg = MO.getReg();
493    if (Reg == 0)
494      continue;
495
496    // Check for a well-behaved physical register.
497    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
498      if (MO.isUse()) {
499        // If the physreg has no defs anywhere, it's just an ambient register
500        // and we can freely move its uses. Alternatively, if it's allocatable,
501        // it could get allocated to something with a def during allocation.
502        if (!MRI.isConstantPhysReg(Reg, MF))
503          return false;
504      } else {
505        // A physreg def. We can't remat it.
506        return false;
507      }
508      continue;
509    }
510
511    // Only allow one virtual-register def.  There may be multiple defs of the
512    // same virtual register, though.
513    if (MO.isDef() && Reg != DefReg)
514      return false;
515
516    // Don't allow any virtual-register uses. Rematting an instruction with
517    // virtual register uses would length the live ranges of the uses, which
518    // is not necessarily a good idea, certainly not "trivial".
519    if (MO.isUse())
520      return false;
521  }
522
523  // Everything checked out.
524  return true;
525}
526
527/// isSchedulingBoundary - Test if the given instruction should be
528/// considered a scheduling boundary. This primarily includes labels
529/// and terminators.
530bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
531                                           const MachineBasicBlock *MBB,
532                                           const MachineFunction &MF) const {
533  // Terminators and labels can't be scheduled around.
534  if (MI->isTerminator() || MI->isLabel())
535    return true;
536
537  // Don't attempt to schedule around any instruction that defines
538  // a stack-oriented pointer, as it's unlikely to be profitable. This
539  // saves compile time, because it doesn't require every single
540  // stack slot reference to depend on the instruction that does the
541  // modification.
542  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
543  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
544  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
545    return true;
546
547  return false;
548}
549
550// Provide a global flag for disabling the PreRA hazard recognizer that targets
551// may choose to honor.
552bool TargetInstrInfo::usePreRAHazardRecognizer() const {
553  return !DisableHazardRecognizer;
554}
555
556// Default implementation of CreateTargetRAHazardRecognizer.
557ScheduleHazardRecognizer *TargetInstrInfo::
558CreateTargetHazardRecognizer(const TargetMachine *TM,
559                             const ScheduleDAG *DAG) const {
560  // Dummy hazard recognizer allows all instructions to issue.
561  return new ScheduleHazardRecognizer();
562}
563
564// Default implementation of CreateTargetMIHazardRecognizer.
565ScheduleHazardRecognizer *TargetInstrInfo::
566CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
567                               const ScheduleDAG *DAG) const {
568  return (ScheduleHazardRecognizer *)
569    new ScoreboardHazardRecognizer(II, DAG, "misched");
570}
571
572// Default implementation of CreateTargetPostRAHazardRecognizer.
573ScheduleHazardRecognizer *TargetInstrInfo::
574CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
575                                   const ScheduleDAG *DAG) const {
576  return (ScheduleHazardRecognizer *)
577    new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
578}
579
580//===----------------------------------------------------------------------===//
581//  SelectionDAG latency interface.
582//===----------------------------------------------------------------------===//
583
584int
585TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
586                                   SDNode *DefNode, unsigned DefIdx,
587                                   SDNode *UseNode, unsigned UseIdx) const {
588  if (!ItinData || ItinData->isEmpty())
589    return -1;
590
591  if (!DefNode->isMachineOpcode())
592    return -1;
593
594  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
595  if (!UseNode->isMachineOpcode())
596    return ItinData->getOperandCycle(DefClass, DefIdx);
597  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
598  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
599}
600
601int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
602                                     SDNode *N) const {
603  if (!ItinData || ItinData->isEmpty())
604    return 1;
605
606  if (!N->isMachineOpcode())
607    return 1;
608
609  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
610}
611
612//===----------------------------------------------------------------------===//
613//  MachineInstr latency interface.
614//===----------------------------------------------------------------------===//
615
616unsigned
617TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
618                                const MachineInstr *MI) const {
619  if (!ItinData || ItinData->isEmpty())
620    return 1;
621
622  unsigned Class = MI->getDesc().getSchedClass();
623  int UOps = ItinData->Itineraries[Class].NumMicroOps;
624  if (UOps >= 0)
625    return UOps;
626
627  // The # of u-ops is dynamically determined. The specific target should
628  // override this function to return the right number.
629  return 1;
630}
631
632/// Return the default expected latency for a def based on it's opcode.
633unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
634                                            const MachineInstr *DefMI) const {
635  if (DefMI->isTransient())
636    return 0;
637  if (DefMI->mayLoad())
638    return SchedModel->LoadLatency;
639  if (isHighLatencyDef(DefMI->getOpcode()))
640    return SchedModel->HighLatency;
641  return 1;
642}
643
644unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
645  return 0;
646}
647
648unsigned TargetInstrInfo::
649getInstrLatency(const InstrItineraryData *ItinData,
650                const MachineInstr *MI,
651                unsigned *PredCost) const {
652  // Default to one cycle for no itinerary. However, an "empty" itinerary may
653  // still have a MinLatency property, which getStageLatency checks.
654  if (!ItinData)
655    return MI->mayLoad() ? 2 : 1;
656
657  return ItinData->getStageLatency(MI->getDesc().getSchedClass());
658}
659
660bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
661                                       const MachineInstr *DefMI,
662                                       unsigned DefIdx) const {
663  if (!ItinData || ItinData->isEmpty())
664    return false;
665
666  unsigned DefClass = DefMI->getDesc().getSchedClass();
667  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
668  return (DefCycle != -1 && DefCycle <= 1);
669}
670
671/// Both DefMI and UseMI must be valid.  By default, call directly to the
672/// itinerary. This may be overriden by the target.
673int TargetInstrInfo::
674getOperandLatency(const InstrItineraryData *ItinData,
675                  const MachineInstr *DefMI, unsigned DefIdx,
676                  const MachineInstr *UseMI, unsigned UseIdx) const {
677  unsigned DefClass = DefMI->getDesc().getSchedClass();
678  unsigned UseClass = UseMI->getDesc().getSchedClass();
679  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
680}
681
682/// If we can determine the operand latency from the def only, without itinerary
683/// lookup, do so. Otherwise return -1.
684int TargetInstrInfo::computeDefOperandLatency(
685  const InstrItineraryData *ItinData,
686  const MachineInstr *DefMI) const {
687
688  // Let the target hook getInstrLatency handle missing itineraries.
689  if (!ItinData)
690    return getInstrLatency(ItinData, DefMI);
691
692  if(ItinData->isEmpty())
693    return defaultDefLatency(ItinData->SchedModel, DefMI);
694
695  // ...operand lookup required
696  return -1;
697}
698
699/// computeOperandLatency - Compute and return the latency of the given data
700/// dependent def and use when the operand indices are already known. UseMI may
701/// be NULL for an unknown use.
702///
703/// FindMin may be set to get the minimum vs. expected latency. Minimum
704/// latency is used for scheduling groups, while expected latency is for
705/// instruction cost and critical path.
706///
707/// Depending on the subtarget's itinerary properties, this may or may not need
708/// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
709/// UseIdx to compute min latency.
710unsigned TargetInstrInfo::
711computeOperandLatency(const InstrItineraryData *ItinData,
712                      const MachineInstr *DefMI, unsigned DefIdx,
713                      const MachineInstr *UseMI, unsigned UseIdx) const {
714
715  int DefLatency = computeDefOperandLatency(ItinData, DefMI);
716  if (DefLatency >= 0)
717    return DefLatency;
718
719  assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
720
721  int OperLatency = 0;
722  if (UseMI)
723    OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
724  else {
725    unsigned DefClass = DefMI->getDesc().getSchedClass();
726    OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
727  }
728  if (OperLatency >= 0)
729    return OperLatency;
730
731  // No operand latency was found.
732  unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
733
734  // Expected latency is the max of the stage latency and itinerary props.
735  InstrLatency = std::max(InstrLatency,
736                          defaultDefLatency(ItinData->SchedModel, DefMI));
737  return InstrLatency;
738}
739