TargetInstrInfo.cpp revision bb756ca24401e190e3b704e5d92759c7a79cc6b7
1//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetInstrInfo.h"
15#include "llvm/CodeGen/MachineFrameInfo.h"
16#include "llvm/CodeGen/MachineMemOperand.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/CodeGen/PseudoSourceValue.h"
19#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/MC/MCInstrItineraries.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include <cctype>
30using namespace llvm;
31
32static cl::opt<bool> DisableHazardRecognizer(
33  "disable-sched-hazard", cl::Hidden, cl::init(false),
34  cl::desc("Disable hazard detection during preRA scheduling"));
35
36TargetInstrInfo::~TargetInstrInfo() {
37}
38
39const TargetRegisterClass*
40TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
41                             const TargetRegisterInfo *TRI,
42                             const MachineFunction &MF) const {
43  if (OpNum >= MCID.getNumOperands())
44    return 0;
45
46  short RegClass = MCID.OpInfo[OpNum].RegClass;
47  if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
48    return TRI->getPointerRegClass(MF, RegClass);
49
50  // Instructions like INSERT_SUBREG do not have fixed register classes.
51  if (RegClass < 0)
52    return 0;
53
54  // Otherwise just look it up normally.
55  return TRI->getRegClass(RegClass);
56}
57
58/// insertNoop - Insert a noop into the instruction stream at the specified
59/// point.
60void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
61                                 MachineBasicBlock::iterator MI) const {
62  llvm_unreachable("Target didn't implement insertNoop!");
63}
64
65/// Measure the specified inline asm to determine an approximation of its
66/// length.
67/// Comments (which run till the next SeparatorString or newline) do not
68/// count as an instruction.
69/// Any other non-whitespace text is considered an instruction, with
70/// multiple instructions separated by SeparatorString or newlines.
71/// Variable-length instructions are not handled here; this function
72/// may be overloaded in the target code to do that.
73unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
74                                             const MCAsmInfo &MAI) const {
75
76
77  // Count the number of instructions in the asm.
78  bool atInsnStart = true;
79  unsigned Length = 0;
80  for (; *Str; ++Str) {
81    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
82                                strlen(MAI.getSeparatorString())) == 0)
83      atInsnStart = true;
84    if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
85      Length += MAI.getMaxInstLength();
86      atInsnStart = false;
87    }
88    if (atInsnStart && strncmp(Str, MAI.getCommentString(),
89                               strlen(MAI.getCommentString())) == 0)
90      atInsnStart = false;
91  }
92
93  return Length;
94}
95
96/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
97/// after it, replacing it with an unconditional branch to NewDest.
98void
99TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
100                                         MachineBasicBlock *NewDest) const {
101  MachineBasicBlock *MBB = Tail->getParent();
102
103  // Remove all the old successors of MBB from the CFG.
104  while (!MBB->succ_empty())
105    MBB->removeSuccessor(MBB->succ_begin());
106
107  // Remove all the dead instructions from the end of MBB.
108  MBB->erase(Tail, MBB->end());
109
110  // If MBB isn't immediately before MBB, insert a branch to it.
111  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
112    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
113                 Tail->getDebugLoc());
114  MBB->addSuccessor(NewDest);
115}
116
117// commuteInstruction - The default implementation of this method just exchanges
118// the two operands returned by findCommutedOpIndices.
119MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
120                                                  bool NewMI) const {
121  const MCInstrDesc &MCID = MI->getDesc();
122  bool HasDef = MCID.getNumDefs();
123  if (HasDef && !MI->getOperand(0).isReg())
124    // No idea how to commute this instruction. Target should implement its own.
125    return 0;
126  unsigned Idx1, Idx2;
127  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
128    std::string msg;
129    raw_string_ostream Msg(msg);
130    Msg << "Don't know how to commute: " << *MI;
131    report_fatal_error(Msg.str());
132  }
133
134  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
135         "This only knows how to commute register operands so far");
136  unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
137  unsigned Reg1 = MI->getOperand(Idx1).getReg();
138  unsigned Reg2 = MI->getOperand(Idx2).getReg();
139  unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
140  unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
141  unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
142  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
143  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
144  // If destination is tied to either of the commuted source register, then
145  // it must be updated.
146  if (HasDef && Reg0 == Reg1 &&
147      MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
148    Reg2IsKill = false;
149    Reg0 = Reg2;
150    SubReg0 = SubReg2;
151  } else if (HasDef && Reg0 == Reg2 &&
152             MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
153    Reg1IsKill = false;
154    Reg0 = Reg1;
155    SubReg0 = SubReg1;
156  }
157
158  if (NewMI) {
159    // Create a new instruction.
160    MachineFunction &MF = *MI->getParent()->getParent();
161    MI = MF.CloneMachineInstr(MI);
162  }
163
164  if (HasDef) {
165    MI->getOperand(0).setReg(Reg0);
166    MI->getOperand(0).setSubReg(SubReg0);
167  }
168  MI->getOperand(Idx2).setReg(Reg1);
169  MI->getOperand(Idx1).setReg(Reg2);
170  MI->getOperand(Idx2).setSubReg(SubReg1);
171  MI->getOperand(Idx1).setSubReg(SubReg2);
172  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
173  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
174  return MI;
175}
176
177/// findCommutedOpIndices - If specified MI is commutable, return the two
178/// operand indices that would swap value. Return true if the instruction
179/// is not in a form which this routine understands.
180bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
181                                            unsigned &SrcOpIdx1,
182                                            unsigned &SrcOpIdx2) const {
183  assert(!MI->isBundle() &&
184         "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
185
186  const MCInstrDesc &MCID = MI->getDesc();
187  if (!MCID.isCommutable())
188    return false;
189  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
190  // is not true, then the target must implement this.
191  SrcOpIdx1 = MCID.getNumDefs();
192  SrcOpIdx2 = SrcOpIdx1 + 1;
193  if (!MI->getOperand(SrcOpIdx1).isReg() ||
194      !MI->getOperand(SrcOpIdx2).isReg())
195    // No idea.
196    return false;
197  return true;
198}
199
200
201bool
202TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
203  if (!MI->isTerminator()) return false;
204
205  // Conditional branch is a special case.
206  if (MI->isBranch() && !MI->isBarrier())
207    return true;
208  if (!MI->isPredicable())
209    return true;
210  return !isPredicated(MI);
211}
212
213
214bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
215                            const SmallVectorImpl<MachineOperand> &Pred) const {
216  bool MadeChange = false;
217
218  assert(!MI->isBundle() &&
219         "TargetInstrInfo::PredicateInstruction() can't handle bundles");
220
221  const MCInstrDesc &MCID = MI->getDesc();
222  if (!MI->isPredicable())
223    return false;
224
225  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
226    if (MCID.OpInfo[i].isPredicate()) {
227      MachineOperand &MO = MI->getOperand(i);
228      if (MO.isReg()) {
229        MO.setReg(Pred[j].getReg());
230        MadeChange = true;
231      } else if (MO.isImm()) {
232        MO.setImm(Pred[j].getImm());
233        MadeChange = true;
234      } else if (MO.isMBB()) {
235        MO.setMBB(Pred[j].getMBB());
236        MadeChange = true;
237      }
238      ++j;
239    }
240  }
241  return MadeChange;
242}
243
244bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
245                                           const MachineMemOperand *&MMO,
246                                           int &FrameIndex) const {
247  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
248         oe = MI->memoperands_end();
249       o != oe;
250       ++o) {
251    if ((*o)->isLoad() && (*o)->getValue())
252      if (const FixedStackPseudoSourceValue *Value =
253          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
254        FrameIndex = Value->getFrameIndex();
255        MMO = *o;
256        return true;
257      }
258  }
259  return false;
260}
261
262bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
263                                          const MachineMemOperand *&MMO,
264                                          int &FrameIndex) const {
265  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
266         oe = MI->memoperands_end();
267       o != oe;
268       ++o) {
269    if ((*o)->isStore() && (*o)->getValue())
270      if (const FixedStackPseudoSourceValue *Value =
271          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
272        FrameIndex = Value->getFrameIndex();
273        MMO = *o;
274        return true;
275      }
276  }
277  return false;
278}
279
280bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
281                                        unsigned SubIdx, unsigned &Size,
282                                        unsigned &Offset,
283                                        const TargetMachine *TM) const {
284  if (!SubIdx) {
285    Size = RC->getSize();
286    Offset = 0;
287    return true;
288  }
289  unsigned BitSize = TM->getRegisterInfo()->getSubRegIdxSize(SubIdx);
290  // Convert bit size to byte size to be consistent with
291  // MCRegisterClass::getSize().
292  if (BitSize % 8)
293    return false;
294
295  int BitOffset = TM->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
296  if (BitOffset < 0 || BitOffset % 8)
297    return false;
298
299  Size = BitSize /= 8;
300  Offset = (unsigned)BitOffset / 8;
301
302  assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
303
304  if (!TM->getDataLayout()->isLittleEndian()) {
305    Offset = RC->getSize() - (Offset + Size);
306  }
307  return true;
308}
309
310void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
311                                    MachineBasicBlock::iterator I,
312                                    unsigned DestReg,
313                                    unsigned SubIdx,
314                                    const MachineInstr *Orig,
315                                    const TargetRegisterInfo &TRI) const {
316  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
317  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
318  MBB.insert(I, MI);
319}
320
321bool
322TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
323                                  const MachineInstr *MI1,
324                                  const MachineRegisterInfo *MRI) const {
325  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
326}
327
328MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
329                                         MachineFunction &MF) const {
330  assert(!Orig->isNotDuplicable() &&
331         "Instruction cannot be duplicated");
332  return MF.CloneMachineInstr(Orig);
333}
334
335// If the COPY instruction in MI can be folded to a stack operation, return
336// the register class to use.
337static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
338                                              unsigned FoldIdx) {
339  assert(MI->isCopy() && "MI must be a COPY instruction");
340  if (MI->getNumOperands() != 2)
341    return 0;
342  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
343
344  const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
345  const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
346
347  if (FoldOp.getSubReg() || LiveOp.getSubReg())
348    return 0;
349
350  unsigned FoldReg = FoldOp.getReg();
351  unsigned LiveReg = LiveOp.getReg();
352
353  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
354         "Cannot fold physregs");
355
356  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
357  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
358
359  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
360    return RC->contains(LiveOp.getReg()) ? RC : 0;
361
362  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
363    return RC;
364
365  // FIXME: Allow folding when register classes are memory compatible.
366  return 0;
367}
368
369bool TargetInstrInfo::
370canFoldMemoryOperand(const MachineInstr *MI,
371                     const SmallVectorImpl<unsigned> &Ops) const {
372  return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
373}
374
375/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
376/// slot into the specified machine instruction for the specified operand(s).
377/// If this is possible, a new instruction is returned with the specified
378/// operand folded, otherwise NULL is returned. The client is responsible for
379/// removing the old instruction and adding the new one in the instruction
380/// stream.
381MachineInstr*
382TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
383                                   const SmallVectorImpl<unsigned> &Ops,
384                                   int FI) const {
385  unsigned Flags = 0;
386  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
387    if (MI->getOperand(Ops[i]).isDef())
388      Flags |= MachineMemOperand::MOStore;
389    else
390      Flags |= MachineMemOperand::MOLoad;
391
392  MachineBasicBlock *MBB = MI->getParent();
393  assert(MBB && "foldMemoryOperand needs an inserted instruction");
394  MachineFunction &MF = *MBB->getParent();
395
396  // Ask the target to do the actual folding.
397  if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
398    NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
399    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
400    assert((!(Flags & MachineMemOperand::MOStore) ||
401            NewMI->mayStore()) &&
402           "Folded a def to a non-store!");
403    assert((!(Flags & MachineMemOperand::MOLoad) ||
404            NewMI->mayLoad()) &&
405           "Folded a use to a non-load!");
406    const MachineFrameInfo &MFI = *MF.getFrameInfo();
407    assert(MFI.getObjectOffset(FI) != -1);
408    MachineMemOperand *MMO =
409      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
410                              Flags, MFI.getObjectSize(FI),
411                              MFI.getObjectAlignment(FI));
412    NewMI->addMemOperand(MF, MMO);
413
414    // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
415    return MBB->insert(MI, NewMI);
416  }
417
418  // Straight COPY may fold as load/store.
419  if (!MI->isCopy() || Ops.size() != 1)
420    return 0;
421
422  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
423  if (!RC)
424    return 0;
425
426  const MachineOperand &MO = MI->getOperand(1-Ops[0]);
427  MachineBasicBlock::iterator Pos = MI;
428  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
429
430  if (Flags == MachineMemOperand::MOStore)
431    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
432  else
433    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
434  return --Pos;
435}
436
437/// foldMemoryOperand - Same as the previous version except it allows folding
438/// of any load and store from / to any address, not just from a specific
439/// stack slot.
440MachineInstr*
441TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
442                                   const SmallVectorImpl<unsigned> &Ops,
443                                   MachineInstr* LoadMI) const {
444  assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
445#ifndef NDEBUG
446  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
447    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
448#endif
449  MachineBasicBlock &MBB = *MI->getParent();
450  MachineFunction &MF = *MBB.getParent();
451
452  // Ask the target to do the actual folding.
453  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
454  if (!NewMI) return 0;
455
456  NewMI = MBB.insert(MI, NewMI);
457
458  // Copy the memoperands from the load to the folded instruction.
459  if (MI->memoperands_empty()) {
460    NewMI->setMemRefs(LoadMI->memoperands_begin(),
461                      LoadMI->memoperands_end());
462  }
463  else {
464    // Handle the rare case of folding multiple loads.
465    NewMI->setMemRefs(MI->memoperands_begin(),
466                      MI->memoperands_end());
467    for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
468           E = LoadMI->memoperands_end(); I != E; ++I) {
469      NewMI->addMemOperand(MF, *I);
470    }
471  }
472  return NewMI;
473}
474
475bool TargetInstrInfo::
476isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
477                                         AliasAnalysis *AA) const {
478  const MachineFunction &MF = *MI->getParent()->getParent();
479  const MachineRegisterInfo &MRI = MF.getRegInfo();
480  const TargetMachine &TM = MF.getTarget();
481  const TargetInstrInfo &TII = *TM.getInstrInfo();
482
483  // Remat clients assume operand 0 is the defined register.
484  if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
485    return false;
486  unsigned DefReg = MI->getOperand(0).getReg();
487
488  // A sub-register definition can only be rematerialized if the instruction
489  // doesn't read the other parts of the register.  Otherwise it is really a
490  // read-modify-write operation on the full virtual register which cannot be
491  // moved safely.
492  if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
493      MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
494    return false;
495
496  // A load from a fixed stack slot can be rematerialized. This may be
497  // redundant with subsequent checks, but it's target-independent,
498  // simple, and a common case.
499  int FrameIdx = 0;
500  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
501      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
502    return true;
503
504  // Avoid instructions obviously unsafe for remat.
505  if (MI->isNotDuplicable() || MI->mayStore() ||
506      MI->hasUnmodeledSideEffects())
507    return false;
508
509  // Don't remat inline asm. We have no idea how expensive it is
510  // even if it's side effect free.
511  if (MI->isInlineAsm())
512    return false;
513
514  // Avoid instructions which load from potentially varying memory.
515  if (MI->mayLoad() && !MI->isInvariantLoad(AA))
516    return false;
517
518  // If any of the registers accessed are non-constant, conservatively assume
519  // the instruction is not rematerializable.
520  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
521    const MachineOperand &MO = MI->getOperand(i);
522    if (!MO.isReg()) continue;
523    unsigned Reg = MO.getReg();
524    if (Reg == 0)
525      continue;
526
527    // Check for a well-behaved physical register.
528    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
529      if (MO.isUse()) {
530        // If the physreg has no defs anywhere, it's just an ambient register
531        // and we can freely move its uses. Alternatively, if it's allocatable,
532        // it could get allocated to something with a def during allocation.
533        if (!MRI.isConstantPhysReg(Reg, MF))
534          return false;
535      } else {
536        // A physreg def. We can't remat it.
537        return false;
538      }
539      continue;
540    }
541
542    // Only allow one virtual-register def.  There may be multiple defs of the
543    // same virtual register, though.
544    if (MO.isDef() && Reg != DefReg)
545      return false;
546
547    // Don't allow any virtual-register uses. Rematting an instruction with
548    // virtual register uses would length the live ranges of the uses, which
549    // is not necessarily a good idea, certainly not "trivial".
550    if (MO.isUse())
551      return false;
552  }
553
554  // Everything checked out.
555  return true;
556}
557
558/// isSchedulingBoundary - Test if the given instruction should be
559/// considered a scheduling boundary. This primarily includes labels
560/// and terminators.
561bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
562                                           const MachineBasicBlock *MBB,
563                                           const MachineFunction &MF) const {
564  // Terminators and labels can't be scheduled around.
565  if (MI->isTerminator() || MI->isLabel())
566    return true;
567
568  // Don't attempt to schedule around any instruction that defines
569  // a stack-oriented pointer, as it's unlikely to be profitable. This
570  // saves compile time, because it doesn't require every single
571  // stack slot reference to depend on the instruction that does the
572  // modification.
573  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
574  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
575  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
576    return true;
577
578  return false;
579}
580
581// Provide a global flag for disabling the PreRA hazard recognizer that targets
582// may choose to honor.
583bool TargetInstrInfo::usePreRAHazardRecognizer() const {
584  return !DisableHazardRecognizer;
585}
586
587// Default implementation of CreateTargetRAHazardRecognizer.
588ScheduleHazardRecognizer *TargetInstrInfo::
589CreateTargetHazardRecognizer(const TargetMachine *TM,
590                             const ScheduleDAG *DAG) const {
591  // Dummy hazard recognizer allows all instructions to issue.
592  return new ScheduleHazardRecognizer();
593}
594
595// Default implementation of CreateTargetMIHazardRecognizer.
596ScheduleHazardRecognizer *TargetInstrInfo::
597CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
598                               const ScheduleDAG *DAG) const {
599  return (ScheduleHazardRecognizer *)
600    new ScoreboardHazardRecognizer(II, DAG, "misched");
601}
602
603// Default implementation of CreateTargetPostRAHazardRecognizer.
604ScheduleHazardRecognizer *TargetInstrInfo::
605CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
606                                   const ScheduleDAG *DAG) const {
607  return (ScheduleHazardRecognizer *)
608    new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
609}
610
611//===----------------------------------------------------------------------===//
612//  SelectionDAG latency interface.
613//===----------------------------------------------------------------------===//
614
615int
616TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
617                                   SDNode *DefNode, unsigned DefIdx,
618                                   SDNode *UseNode, unsigned UseIdx) const {
619  if (!ItinData || ItinData->isEmpty())
620    return -1;
621
622  if (!DefNode->isMachineOpcode())
623    return -1;
624
625  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
626  if (!UseNode->isMachineOpcode())
627    return ItinData->getOperandCycle(DefClass, DefIdx);
628  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
629  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
630}
631
632int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
633                                     SDNode *N) const {
634  if (!ItinData || ItinData->isEmpty())
635    return 1;
636
637  if (!N->isMachineOpcode())
638    return 1;
639
640  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
641}
642
643//===----------------------------------------------------------------------===//
644//  MachineInstr latency interface.
645//===----------------------------------------------------------------------===//
646
647unsigned
648TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
649                                const MachineInstr *MI) const {
650  if (!ItinData || ItinData->isEmpty())
651    return 1;
652
653  unsigned Class = MI->getDesc().getSchedClass();
654  int UOps = ItinData->Itineraries[Class].NumMicroOps;
655  if (UOps >= 0)
656    return UOps;
657
658  // The # of u-ops is dynamically determined. The specific target should
659  // override this function to return the right number.
660  return 1;
661}
662
663/// Return the default expected latency for a def based on it's opcode.
664unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
665                                            const MachineInstr *DefMI) const {
666  if (DefMI->isTransient())
667    return 0;
668  if (DefMI->mayLoad())
669    return SchedModel->LoadLatency;
670  if (isHighLatencyDef(DefMI->getOpcode()))
671    return SchedModel->HighLatency;
672  return 1;
673}
674
675unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
676  return 0;
677}
678
679unsigned TargetInstrInfo::
680getInstrLatency(const InstrItineraryData *ItinData,
681                const MachineInstr *MI,
682                unsigned *PredCost) const {
683  // Default to one cycle for no itinerary. However, an "empty" itinerary may
684  // still have a MinLatency property, which getStageLatency checks.
685  if (!ItinData)
686    return MI->mayLoad() ? 2 : 1;
687
688  return ItinData->getStageLatency(MI->getDesc().getSchedClass());
689}
690
691bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
692                                       const MachineInstr *DefMI,
693                                       unsigned DefIdx) const {
694  if (!ItinData || ItinData->isEmpty())
695    return false;
696
697  unsigned DefClass = DefMI->getDesc().getSchedClass();
698  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
699  return (DefCycle != -1 && DefCycle <= 1);
700}
701
702/// Both DefMI and UseMI must be valid.  By default, call directly to the
703/// itinerary. This may be overriden by the target.
704int TargetInstrInfo::
705getOperandLatency(const InstrItineraryData *ItinData,
706                  const MachineInstr *DefMI, unsigned DefIdx,
707                  const MachineInstr *UseMI, unsigned UseIdx) const {
708  unsigned DefClass = DefMI->getDesc().getSchedClass();
709  unsigned UseClass = UseMI->getDesc().getSchedClass();
710  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
711}
712
713/// If we can determine the operand latency from the def only, without itinerary
714/// lookup, do so. Otherwise return -1.
715int TargetInstrInfo::computeDefOperandLatency(
716  const InstrItineraryData *ItinData,
717  const MachineInstr *DefMI) const {
718
719  // Let the target hook getInstrLatency handle missing itineraries.
720  if (!ItinData)
721    return getInstrLatency(ItinData, DefMI);
722
723  if(ItinData->isEmpty())
724    return defaultDefLatency(ItinData->SchedModel, DefMI);
725
726  // ...operand lookup required
727  return -1;
728}
729
730/// computeOperandLatency - Compute and return the latency of the given data
731/// dependent def and use when the operand indices are already known. UseMI may
732/// be NULL for an unknown use.
733///
734/// FindMin may be set to get the minimum vs. expected latency. Minimum
735/// latency is used for scheduling groups, while expected latency is for
736/// instruction cost and critical path.
737///
738/// Depending on the subtarget's itinerary properties, this may or may not need
739/// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
740/// UseIdx to compute min latency.
741unsigned TargetInstrInfo::
742computeOperandLatency(const InstrItineraryData *ItinData,
743                      const MachineInstr *DefMI, unsigned DefIdx,
744                      const MachineInstr *UseMI, unsigned UseIdx) const {
745
746  int DefLatency = computeDefOperandLatency(ItinData, DefMI);
747  if (DefLatency >= 0)
748    return DefLatency;
749
750  assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
751
752  int OperLatency = 0;
753  if (UseMI)
754    OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
755  else {
756    unsigned DefClass = DefMI->getDesc().getSchedClass();
757    OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
758  }
759  if (OperLatency >= 0)
760    return OperLatency;
761
762  // No operand latency was found.
763  unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
764
765  // Expected latency is the max of the stage latency and itinerary props.
766  InstrLatency = std::max(InstrLatency,
767                          defaultDefLatency(ItinData->SchedModel, DefMI));
768  return InstrLatency;
769}
770