TargetLoweringBase.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineJumpTableInfo.h"
23#include "llvm/CodeGen/StackMaps.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Mangler.h"
28#include "llvm/MC/MCAsmInfo.h"
29#include "llvm/MC/MCContext.h"
30#include "llvm/MC/MCExpr.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include <cctype>
38using namespace llvm;
39
40/// InitLibcallNames - Set default libcall names.
41///
42static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
43  Names[RTLIB::SHL_I16] = "__ashlhi3";
44  Names[RTLIB::SHL_I32] = "__ashlsi3";
45  Names[RTLIB::SHL_I64] = "__ashldi3";
46  Names[RTLIB::SHL_I128] = "__ashlti3";
47  Names[RTLIB::SRL_I16] = "__lshrhi3";
48  Names[RTLIB::SRL_I32] = "__lshrsi3";
49  Names[RTLIB::SRL_I64] = "__lshrdi3";
50  Names[RTLIB::SRL_I128] = "__lshrti3";
51  Names[RTLIB::SRA_I16] = "__ashrhi3";
52  Names[RTLIB::SRA_I32] = "__ashrsi3";
53  Names[RTLIB::SRA_I64] = "__ashrdi3";
54  Names[RTLIB::SRA_I128] = "__ashrti3";
55  Names[RTLIB::MUL_I8] = "__mulqi3";
56  Names[RTLIB::MUL_I16] = "__mulhi3";
57  Names[RTLIB::MUL_I32] = "__mulsi3";
58  Names[RTLIB::MUL_I64] = "__muldi3";
59  Names[RTLIB::MUL_I128] = "__multi3";
60  Names[RTLIB::MULO_I32] = "__mulosi4";
61  Names[RTLIB::MULO_I64] = "__mulodi4";
62  Names[RTLIB::MULO_I128] = "__muloti4";
63  Names[RTLIB::SDIV_I8] = "__divqi3";
64  Names[RTLIB::SDIV_I16] = "__divhi3";
65  Names[RTLIB::SDIV_I32] = "__divsi3";
66  Names[RTLIB::SDIV_I64] = "__divdi3";
67  Names[RTLIB::SDIV_I128] = "__divti3";
68  Names[RTLIB::UDIV_I8] = "__udivqi3";
69  Names[RTLIB::UDIV_I16] = "__udivhi3";
70  Names[RTLIB::UDIV_I32] = "__udivsi3";
71  Names[RTLIB::UDIV_I64] = "__udivdi3";
72  Names[RTLIB::UDIV_I128] = "__udivti3";
73  Names[RTLIB::SREM_I8] = "__modqi3";
74  Names[RTLIB::SREM_I16] = "__modhi3";
75  Names[RTLIB::SREM_I32] = "__modsi3";
76  Names[RTLIB::SREM_I64] = "__moddi3";
77  Names[RTLIB::SREM_I128] = "__modti3";
78  Names[RTLIB::UREM_I8] = "__umodqi3";
79  Names[RTLIB::UREM_I16] = "__umodhi3";
80  Names[RTLIB::UREM_I32] = "__umodsi3";
81  Names[RTLIB::UREM_I64] = "__umoddi3";
82  Names[RTLIB::UREM_I128] = "__umodti3";
83
84  // These are generally not available.
85  Names[RTLIB::SDIVREM_I8] = nullptr;
86  Names[RTLIB::SDIVREM_I16] = nullptr;
87  Names[RTLIB::SDIVREM_I32] = nullptr;
88  Names[RTLIB::SDIVREM_I64] = nullptr;
89  Names[RTLIB::SDIVREM_I128] = nullptr;
90  Names[RTLIB::UDIVREM_I8] = nullptr;
91  Names[RTLIB::UDIVREM_I16] = nullptr;
92  Names[RTLIB::UDIVREM_I32] = nullptr;
93  Names[RTLIB::UDIVREM_I64] = nullptr;
94  Names[RTLIB::UDIVREM_I128] = nullptr;
95
96  Names[RTLIB::NEG_I32] = "__negsi2";
97  Names[RTLIB::NEG_I64] = "__negdi2";
98  Names[RTLIB::ADD_F32] = "__addsf3";
99  Names[RTLIB::ADD_F64] = "__adddf3";
100  Names[RTLIB::ADD_F80] = "__addxf3";
101  Names[RTLIB::ADD_F128] = "__addtf3";
102  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
103  Names[RTLIB::SUB_F32] = "__subsf3";
104  Names[RTLIB::SUB_F64] = "__subdf3";
105  Names[RTLIB::SUB_F80] = "__subxf3";
106  Names[RTLIB::SUB_F128] = "__subtf3";
107  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
108  Names[RTLIB::MUL_F32] = "__mulsf3";
109  Names[RTLIB::MUL_F64] = "__muldf3";
110  Names[RTLIB::MUL_F80] = "__mulxf3";
111  Names[RTLIB::MUL_F128] = "__multf3";
112  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
113  Names[RTLIB::DIV_F32] = "__divsf3";
114  Names[RTLIB::DIV_F64] = "__divdf3";
115  Names[RTLIB::DIV_F80] = "__divxf3";
116  Names[RTLIB::DIV_F128] = "__divtf3";
117  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
118  Names[RTLIB::REM_F32] = "fmodf";
119  Names[RTLIB::REM_F64] = "fmod";
120  Names[RTLIB::REM_F80] = "fmodl";
121  Names[RTLIB::REM_F128] = "fmodl";
122  Names[RTLIB::REM_PPCF128] = "fmodl";
123  Names[RTLIB::FMA_F32] = "fmaf";
124  Names[RTLIB::FMA_F64] = "fma";
125  Names[RTLIB::FMA_F80] = "fmal";
126  Names[RTLIB::FMA_F128] = "fmal";
127  Names[RTLIB::FMA_PPCF128] = "fmal";
128  Names[RTLIB::POWI_F32] = "__powisf2";
129  Names[RTLIB::POWI_F64] = "__powidf2";
130  Names[RTLIB::POWI_F80] = "__powixf2";
131  Names[RTLIB::POWI_F128] = "__powitf2";
132  Names[RTLIB::POWI_PPCF128] = "__powitf2";
133  Names[RTLIB::SQRT_F32] = "sqrtf";
134  Names[RTLIB::SQRT_F64] = "sqrt";
135  Names[RTLIB::SQRT_F80] = "sqrtl";
136  Names[RTLIB::SQRT_F128] = "sqrtl";
137  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
138  Names[RTLIB::LOG_F32] = "logf";
139  Names[RTLIB::LOG_F64] = "log";
140  Names[RTLIB::LOG_F80] = "logl";
141  Names[RTLIB::LOG_F128] = "logl";
142  Names[RTLIB::LOG_PPCF128] = "logl";
143  Names[RTLIB::LOG2_F32] = "log2f";
144  Names[RTLIB::LOG2_F64] = "log2";
145  Names[RTLIB::LOG2_F80] = "log2l";
146  Names[RTLIB::LOG2_F128] = "log2l";
147  Names[RTLIB::LOG2_PPCF128] = "log2l";
148  Names[RTLIB::LOG10_F32] = "log10f";
149  Names[RTLIB::LOG10_F64] = "log10";
150  Names[RTLIB::LOG10_F80] = "log10l";
151  Names[RTLIB::LOG10_F128] = "log10l";
152  Names[RTLIB::LOG10_PPCF128] = "log10l";
153  Names[RTLIB::EXP_F32] = "expf";
154  Names[RTLIB::EXP_F64] = "exp";
155  Names[RTLIB::EXP_F80] = "expl";
156  Names[RTLIB::EXP_F128] = "expl";
157  Names[RTLIB::EXP_PPCF128] = "expl";
158  Names[RTLIB::EXP2_F32] = "exp2f";
159  Names[RTLIB::EXP2_F64] = "exp2";
160  Names[RTLIB::EXP2_F80] = "exp2l";
161  Names[RTLIB::EXP2_F128] = "exp2l";
162  Names[RTLIB::EXP2_PPCF128] = "exp2l";
163  Names[RTLIB::SIN_F32] = "sinf";
164  Names[RTLIB::SIN_F64] = "sin";
165  Names[RTLIB::SIN_F80] = "sinl";
166  Names[RTLIB::SIN_F128] = "sinl";
167  Names[RTLIB::SIN_PPCF128] = "sinl";
168  Names[RTLIB::COS_F32] = "cosf";
169  Names[RTLIB::COS_F64] = "cos";
170  Names[RTLIB::COS_F80] = "cosl";
171  Names[RTLIB::COS_F128] = "cosl";
172  Names[RTLIB::COS_PPCF128] = "cosl";
173  Names[RTLIB::POW_F32] = "powf";
174  Names[RTLIB::POW_F64] = "pow";
175  Names[RTLIB::POW_F80] = "powl";
176  Names[RTLIB::POW_F128] = "powl";
177  Names[RTLIB::POW_PPCF128] = "powl";
178  Names[RTLIB::CEIL_F32] = "ceilf";
179  Names[RTLIB::CEIL_F64] = "ceil";
180  Names[RTLIB::CEIL_F80] = "ceill";
181  Names[RTLIB::CEIL_F128] = "ceill";
182  Names[RTLIB::CEIL_PPCF128] = "ceill";
183  Names[RTLIB::TRUNC_F32] = "truncf";
184  Names[RTLIB::TRUNC_F64] = "trunc";
185  Names[RTLIB::TRUNC_F80] = "truncl";
186  Names[RTLIB::TRUNC_F128] = "truncl";
187  Names[RTLIB::TRUNC_PPCF128] = "truncl";
188  Names[RTLIB::RINT_F32] = "rintf";
189  Names[RTLIB::RINT_F64] = "rint";
190  Names[RTLIB::RINT_F80] = "rintl";
191  Names[RTLIB::RINT_F128] = "rintl";
192  Names[RTLIB::RINT_PPCF128] = "rintl";
193  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
194  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
195  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
196  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
197  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
198  Names[RTLIB::ROUND_F32] = "roundf";
199  Names[RTLIB::ROUND_F64] = "round";
200  Names[RTLIB::ROUND_F80] = "roundl";
201  Names[RTLIB::ROUND_F128] = "roundl";
202  Names[RTLIB::ROUND_PPCF128] = "roundl";
203  Names[RTLIB::FLOOR_F32] = "floorf";
204  Names[RTLIB::FLOOR_F64] = "floor";
205  Names[RTLIB::FLOOR_F80] = "floorl";
206  Names[RTLIB::FLOOR_F128] = "floorl";
207  Names[RTLIB::FLOOR_PPCF128] = "floorl";
208  Names[RTLIB::ROUND_F32] = "roundf";
209  Names[RTLIB::ROUND_F64] = "round";
210  Names[RTLIB::ROUND_F80] = "roundl";
211  Names[RTLIB::ROUND_F128] = "roundl";
212  Names[RTLIB::ROUND_PPCF128] = "roundl";
213  Names[RTLIB::COPYSIGN_F32] = "copysignf";
214  Names[RTLIB::COPYSIGN_F64] = "copysign";
215  Names[RTLIB::COPYSIGN_F80] = "copysignl";
216  Names[RTLIB::COPYSIGN_F128] = "copysignl";
217  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
218  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
219  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
220  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
221  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
222  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
223  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
224  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
225  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
226  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
227  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
228  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
229  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
230  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
231  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
232  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
233  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
234  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
235  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
236  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
237  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
238  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
239  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
240  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
241  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
242  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
243  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
244  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
245  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
246  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
247  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
248  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
249  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
250  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
251  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
252  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
253  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
254  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
255  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
256  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
257  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
258  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
259  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
260  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
261  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
262  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
263  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
264  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
265  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
266  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
267  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
268  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
269  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
270  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
271  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
272  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
273  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
274  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
275  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
276  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
277  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
278  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
279  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
280  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
281  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
282  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
283  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
284  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
285  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
286  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
287  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
288  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
289  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
290  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
291  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
292  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
293  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
294  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
295  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
296  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
297  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
298  Names[RTLIB::OEQ_F32] = "__eqsf2";
299  Names[RTLIB::OEQ_F64] = "__eqdf2";
300  Names[RTLIB::OEQ_F128] = "__eqtf2";
301  Names[RTLIB::UNE_F32] = "__nesf2";
302  Names[RTLIB::UNE_F64] = "__nedf2";
303  Names[RTLIB::UNE_F128] = "__netf2";
304  Names[RTLIB::OGE_F32] = "__gesf2";
305  Names[RTLIB::OGE_F64] = "__gedf2";
306  Names[RTLIB::OGE_F128] = "__getf2";
307  Names[RTLIB::OLT_F32] = "__ltsf2";
308  Names[RTLIB::OLT_F64] = "__ltdf2";
309  Names[RTLIB::OLT_F128] = "__lttf2";
310  Names[RTLIB::OLE_F32] = "__lesf2";
311  Names[RTLIB::OLE_F64] = "__ledf2";
312  Names[RTLIB::OLE_F128] = "__letf2";
313  Names[RTLIB::OGT_F32] = "__gtsf2";
314  Names[RTLIB::OGT_F64] = "__gtdf2";
315  Names[RTLIB::OGT_F128] = "__gttf2";
316  Names[RTLIB::UO_F32] = "__unordsf2";
317  Names[RTLIB::UO_F64] = "__unorddf2";
318  Names[RTLIB::UO_F128] = "__unordtf2";
319  Names[RTLIB::O_F32] = "__unordsf2";
320  Names[RTLIB::O_F64] = "__unorddf2";
321  Names[RTLIB::O_F128] = "__unordtf2";
322  Names[RTLIB::MEMCPY] = "memcpy";
323  Names[RTLIB::MEMMOVE] = "memmove";
324  Names[RTLIB::MEMSET] = "memset";
325  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
326  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
327  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
328  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
329  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
330  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
331  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
332  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
333  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
334  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
335  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
336  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
337  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
338  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
339  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
340  Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
341  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
342  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
343  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
344  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
345  Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
346  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
347  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
348  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
349  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
350  Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
351  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
352  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
353  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
354  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
355  Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
356  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
357  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
358  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
359  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
360  Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
361  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
362  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
363  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
364  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
365  Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
366  Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
367  Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
368  Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
369  Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
370  Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
371  Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
372  Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
373  Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
374  Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
375  Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
376  Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
377  Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
378  Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
379  Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
380  Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
381  Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
382  Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
383  Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
384  Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
385  Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
386
387  if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
388    Names[RTLIB::SINCOS_F32] = "sincosf";
389    Names[RTLIB::SINCOS_F64] = "sincos";
390    Names[RTLIB::SINCOS_F80] = "sincosl";
391    Names[RTLIB::SINCOS_F128] = "sincosl";
392    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
393  } else {
394    // These are generally not available.
395    Names[RTLIB::SINCOS_F32] = nullptr;
396    Names[RTLIB::SINCOS_F64] = nullptr;
397    Names[RTLIB::SINCOS_F80] = nullptr;
398    Names[RTLIB::SINCOS_F128] = nullptr;
399    Names[RTLIB::SINCOS_PPCF128] = nullptr;
400  }
401
402  if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) {
403    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
404  } else {
405    // These are generally not available.
406    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
407  }
408}
409
410/// InitLibcallCallingConvs - Set default libcall CallingConvs.
411///
412static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
413  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
414    CCs[i] = CallingConv::C;
415  }
416}
417
418/// getFPEXT - Return the FPEXT_*_* value for the given types, or
419/// UNKNOWN_LIBCALL if there is none.
420RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
421  if (OpVT == MVT::f32) {
422    if (RetVT == MVT::f64)
423      return FPEXT_F32_F64;
424    if (RetVT == MVT::f128)
425      return FPEXT_F32_F128;
426  } else if (OpVT == MVT::f64) {
427    if (RetVT == MVT::f128)
428      return FPEXT_F64_F128;
429  }
430
431  return UNKNOWN_LIBCALL;
432}
433
434/// getFPROUND - Return the FPROUND_*_* value for the given types, or
435/// UNKNOWN_LIBCALL if there is none.
436RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
437  if (RetVT == MVT::f32) {
438    if (OpVT == MVT::f64)
439      return FPROUND_F64_F32;
440    if (OpVT == MVT::f80)
441      return FPROUND_F80_F32;
442    if (OpVT == MVT::f128)
443      return FPROUND_F128_F32;
444    if (OpVT == MVT::ppcf128)
445      return FPROUND_PPCF128_F32;
446  } else if (RetVT == MVT::f64) {
447    if (OpVT == MVT::f80)
448      return FPROUND_F80_F64;
449    if (OpVT == MVT::f128)
450      return FPROUND_F128_F64;
451    if (OpVT == MVT::ppcf128)
452      return FPROUND_PPCF128_F64;
453  }
454
455  return UNKNOWN_LIBCALL;
456}
457
458/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
459/// UNKNOWN_LIBCALL if there is none.
460RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
461  if (OpVT == MVT::f32) {
462    if (RetVT == MVT::i8)
463      return FPTOSINT_F32_I8;
464    if (RetVT == MVT::i16)
465      return FPTOSINT_F32_I16;
466    if (RetVT == MVT::i32)
467      return FPTOSINT_F32_I32;
468    if (RetVT == MVT::i64)
469      return FPTOSINT_F32_I64;
470    if (RetVT == MVT::i128)
471      return FPTOSINT_F32_I128;
472  } else if (OpVT == MVT::f64) {
473    if (RetVT == MVT::i8)
474      return FPTOSINT_F64_I8;
475    if (RetVT == MVT::i16)
476      return FPTOSINT_F64_I16;
477    if (RetVT == MVT::i32)
478      return FPTOSINT_F64_I32;
479    if (RetVT == MVT::i64)
480      return FPTOSINT_F64_I64;
481    if (RetVT == MVT::i128)
482      return FPTOSINT_F64_I128;
483  } else if (OpVT == MVT::f80) {
484    if (RetVT == MVT::i32)
485      return FPTOSINT_F80_I32;
486    if (RetVT == MVT::i64)
487      return FPTOSINT_F80_I64;
488    if (RetVT == MVT::i128)
489      return FPTOSINT_F80_I128;
490  } else if (OpVT == MVT::f128) {
491    if (RetVT == MVT::i32)
492      return FPTOSINT_F128_I32;
493    if (RetVT == MVT::i64)
494      return FPTOSINT_F128_I64;
495    if (RetVT == MVT::i128)
496      return FPTOSINT_F128_I128;
497  } else if (OpVT == MVT::ppcf128) {
498    if (RetVT == MVT::i32)
499      return FPTOSINT_PPCF128_I32;
500    if (RetVT == MVT::i64)
501      return FPTOSINT_PPCF128_I64;
502    if (RetVT == MVT::i128)
503      return FPTOSINT_PPCF128_I128;
504  }
505  return UNKNOWN_LIBCALL;
506}
507
508/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
509/// UNKNOWN_LIBCALL if there is none.
510RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
511  if (OpVT == MVT::f32) {
512    if (RetVT == MVT::i8)
513      return FPTOUINT_F32_I8;
514    if (RetVT == MVT::i16)
515      return FPTOUINT_F32_I16;
516    if (RetVT == MVT::i32)
517      return FPTOUINT_F32_I32;
518    if (RetVT == MVT::i64)
519      return FPTOUINT_F32_I64;
520    if (RetVT == MVT::i128)
521      return FPTOUINT_F32_I128;
522  } else if (OpVT == MVT::f64) {
523    if (RetVT == MVT::i8)
524      return FPTOUINT_F64_I8;
525    if (RetVT == MVT::i16)
526      return FPTOUINT_F64_I16;
527    if (RetVT == MVT::i32)
528      return FPTOUINT_F64_I32;
529    if (RetVT == MVT::i64)
530      return FPTOUINT_F64_I64;
531    if (RetVT == MVT::i128)
532      return FPTOUINT_F64_I128;
533  } else if (OpVT == MVT::f80) {
534    if (RetVT == MVT::i32)
535      return FPTOUINT_F80_I32;
536    if (RetVT == MVT::i64)
537      return FPTOUINT_F80_I64;
538    if (RetVT == MVT::i128)
539      return FPTOUINT_F80_I128;
540  } else if (OpVT == MVT::f128) {
541    if (RetVT == MVT::i32)
542      return FPTOUINT_F128_I32;
543    if (RetVT == MVT::i64)
544      return FPTOUINT_F128_I64;
545    if (RetVT == MVT::i128)
546      return FPTOUINT_F128_I128;
547  } else if (OpVT == MVT::ppcf128) {
548    if (RetVT == MVT::i32)
549      return FPTOUINT_PPCF128_I32;
550    if (RetVT == MVT::i64)
551      return FPTOUINT_PPCF128_I64;
552    if (RetVT == MVT::i128)
553      return FPTOUINT_PPCF128_I128;
554  }
555  return UNKNOWN_LIBCALL;
556}
557
558/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
559/// UNKNOWN_LIBCALL if there is none.
560RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
561  if (OpVT == MVT::i32) {
562    if (RetVT == MVT::f32)
563      return SINTTOFP_I32_F32;
564    if (RetVT == MVT::f64)
565      return SINTTOFP_I32_F64;
566    if (RetVT == MVT::f80)
567      return SINTTOFP_I32_F80;
568    if (RetVT == MVT::f128)
569      return SINTTOFP_I32_F128;
570    if (RetVT == MVT::ppcf128)
571      return SINTTOFP_I32_PPCF128;
572  } else if (OpVT == MVT::i64) {
573    if (RetVT == MVT::f32)
574      return SINTTOFP_I64_F32;
575    if (RetVT == MVT::f64)
576      return SINTTOFP_I64_F64;
577    if (RetVT == MVT::f80)
578      return SINTTOFP_I64_F80;
579    if (RetVT == MVT::f128)
580      return SINTTOFP_I64_F128;
581    if (RetVT == MVT::ppcf128)
582      return SINTTOFP_I64_PPCF128;
583  } else if (OpVT == MVT::i128) {
584    if (RetVT == MVT::f32)
585      return SINTTOFP_I128_F32;
586    if (RetVT == MVT::f64)
587      return SINTTOFP_I128_F64;
588    if (RetVT == MVT::f80)
589      return SINTTOFP_I128_F80;
590    if (RetVT == MVT::f128)
591      return SINTTOFP_I128_F128;
592    if (RetVT == MVT::ppcf128)
593      return SINTTOFP_I128_PPCF128;
594  }
595  return UNKNOWN_LIBCALL;
596}
597
598/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
599/// UNKNOWN_LIBCALL if there is none.
600RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
601  if (OpVT == MVT::i32) {
602    if (RetVT == MVT::f32)
603      return UINTTOFP_I32_F32;
604    if (RetVT == MVT::f64)
605      return UINTTOFP_I32_F64;
606    if (RetVT == MVT::f80)
607      return UINTTOFP_I32_F80;
608    if (RetVT == MVT::f128)
609      return UINTTOFP_I32_F128;
610    if (RetVT == MVT::ppcf128)
611      return UINTTOFP_I32_PPCF128;
612  } else if (OpVT == MVT::i64) {
613    if (RetVT == MVT::f32)
614      return UINTTOFP_I64_F32;
615    if (RetVT == MVT::f64)
616      return UINTTOFP_I64_F64;
617    if (RetVT == MVT::f80)
618      return UINTTOFP_I64_F80;
619    if (RetVT == MVT::f128)
620      return UINTTOFP_I64_F128;
621    if (RetVT == MVT::ppcf128)
622      return UINTTOFP_I64_PPCF128;
623  } else if (OpVT == MVT::i128) {
624    if (RetVT == MVT::f32)
625      return UINTTOFP_I128_F32;
626    if (RetVT == MVT::f64)
627      return UINTTOFP_I128_F64;
628    if (RetVT == MVT::f80)
629      return UINTTOFP_I128_F80;
630    if (RetVT == MVT::f128)
631      return UINTTOFP_I128_F128;
632    if (RetVT == MVT::ppcf128)
633      return UINTTOFP_I128_PPCF128;
634  }
635  return UNKNOWN_LIBCALL;
636}
637
638/// InitCmpLibcallCCs - Set default comparison libcall CC.
639///
640static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
641  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
642  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
643  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
644  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
645  CCs[RTLIB::UNE_F32] = ISD::SETNE;
646  CCs[RTLIB::UNE_F64] = ISD::SETNE;
647  CCs[RTLIB::UNE_F128] = ISD::SETNE;
648  CCs[RTLIB::OGE_F32] = ISD::SETGE;
649  CCs[RTLIB::OGE_F64] = ISD::SETGE;
650  CCs[RTLIB::OGE_F128] = ISD::SETGE;
651  CCs[RTLIB::OLT_F32] = ISD::SETLT;
652  CCs[RTLIB::OLT_F64] = ISD::SETLT;
653  CCs[RTLIB::OLT_F128] = ISD::SETLT;
654  CCs[RTLIB::OLE_F32] = ISD::SETLE;
655  CCs[RTLIB::OLE_F64] = ISD::SETLE;
656  CCs[RTLIB::OLE_F128] = ISD::SETLE;
657  CCs[RTLIB::OGT_F32] = ISD::SETGT;
658  CCs[RTLIB::OGT_F64] = ISD::SETGT;
659  CCs[RTLIB::OGT_F128] = ISD::SETGT;
660  CCs[RTLIB::UO_F32] = ISD::SETNE;
661  CCs[RTLIB::UO_F64] = ISD::SETNE;
662  CCs[RTLIB::UO_F128] = ISD::SETNE;
663  CCs[RTLIB::O_F32] = ISD::SETEQ;
664  CCs[RTLIB::O_F64] = ISD::SETEQ;
665  CCs[RTLIB::O_F128] = ISD::SETEQ;
666}
667
668/// NOTE: The constructor takes ownership of TLOF.
669TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
670                                       const TargetLoweringObjectFile *tlof)
671  : TM(tm), DL(TM.getDataLayout()), TLOF(*tlof) {
672  initActions();
673
674  // Perform these initializations only once.
675  IsLittleEndian = DL->isLittleEndian();
676  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
677  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
678    = MaxStoresPerMemmoveOptSize = 4;
679  UseUnderscoreSetJmp = false;
680  UseUnderscoreLongJmp = false;
681  SelectIsExpensive = false;
682  HasMultipleConditionRegisters = false;
683  HasExtractBitsInsn = false;
684  IntDivIsCheap = false;
685  Pow2DivIsCheap = false;
686  JumpIsExpensive = false;
687  PredictableSelectIsExpensive = false;
688  MaskAndBranchFoldingIsLegal = false;
689  StackPointerRegisterToSaveRestore = 0;
690  ExceptionPointerRegister = 0;
691  ExceptionSelectorRegister = 0;
692  BooleanContents = UndefinedBooleanContent;
693  BooleanVectorContents = UndefinedBooleanContent;
694  SchedPreferenceInfo = Sched::ILP;
695  JumpBufSize = 0;
696  JumpBufAlignment = 0;
697  MinFunctionAlignment = 0;
698  PrefFunctionAlignment = 0;
699  PrefLoopAlignment = 0;
700  MinStackArgumentAlignment = 1;
701  InsertFencesForAtomic = false;
702  SupportJumpTables = true;
703  MinimumJumpTableEntries = 4;
704
705  InitLibcallNames(LibcallRoutineNames, TM);
706  InitCmpLibcallCCs(CmpLibcallCCs);
707  InitLibcallCallingConvs(LibcallCallingConvs);
708}
709
710TargetLoweringBase::~TargetLoweringBase() {
711  delete &TLOF;
712}
713
714void TargetLoweringBase::initActions() {
715  // All operations default to being supported.
716  memset(OpActions, 0, sizeof(OpActions));
717  memset(LoadExtActions, 0, sizeof(LoadExtActions));
718  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
719  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
720  memset(CondCodeActions, 0, sizeof(CondCodeActions));
721  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
722  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
723
724  // Set default actions for various operations.
725  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
726    // Default all indexed load / store to expand.
727    for (unsigned IM = (unsigned)ISD::PRE_INC;
728         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
729      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
730      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
731    }
732
733    // These operations default to expand.
734    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
736
737    // These library functions default to expand.
738    setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
739
740    // These operations default to expand for vector types.
741    if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
742        VT <= MVT::LAST_VECTOR_VALUETYPE)
743      setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
744  }
745
746  // Most targets ignore the @llvm.prefetch intrinsic.
747  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
748
749  // ConstantFP nodes default to expand.  Targets can either change this to
750  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
751  // to optimize expansions for certain constants.
752  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
753  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
754  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
755  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
756  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
757
758  // These library functions default to expand.
759  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
760  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
761  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
762  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
763  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
764  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
765  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
766  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
767  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
768  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
769  setOperationAction(ISD::FROUND, MVT::f16, Expand);
770  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
771  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
772  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
773  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
774  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
775  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
776  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
777  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
778  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
779  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
780  setOperationAction(ISD::FROUND, MVT::f32, Expand);
781  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
782  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
783  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
784  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
785  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
786  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
787  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
788  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
789  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
790  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
791  setOperationAction(ISD::FROUND, MVT::f64, Expand);
792  setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
793  setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
794  setOperationAction(ISD::FLOG10, MVT::f128, Expand);
795  setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
796  setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
797  setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
798  setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
799  setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
800  setOperationAction(ISD::FRINT,  MVT::f128, Expand);
801  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
802  setOperationAction(ISD::FROUND, MVT::f128, Expand);
803
804  // Default ISD::TRAP to expand (which turns it into abort).
805  setOperationAction(ISD::TRAP, MVT::Other, Expand);
806
807  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
808  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
809  //
810  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
811}
812
813MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
814  return MVT::getIntegerVT(getPointerSizeInBits(AS));
815}
816
817unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
818  return DL->getPointerSizeInBits(AS);
819}
820
821unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
822  assert(Ty->isPointerTy());
823  return getPointerSizeInBits(Ty->getPointerAddressSpace());
824}
825
826MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
827  return MVT::getIntegerVT(8*DL->getPointerSize(0));
828}
829
830EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
831  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
832  if (LHSTy.isVector())
833    return LHSTy;
834  return getScalarShiftAmountTy(LHSTy);
835}
836
837/// canOpTrap - Returns true if the operation can trap for the value type.
838/// VT must be a legal type.
839bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
840  assert(isTypeLegal(VT));
841  switch (Op) {
842  default:
843    return false;
844  case ISD::FDIV:
845  case ISD::FREM:
846  case ISD::SDIV:
847  case ISD::UDIV:
848  case ISD::SREM:
849  case ISD::UREM:
850    return true;
851  }
852}
853
854
855static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
856                                          unsigned &NumIntermediates,
857                                          MVT &RegisterVT,
858                                          TargetLoweringBase *TLI) {
859  // Figure out the right, legal destination reg to copy into.
860  unsigned NumElts = VT.getVectorNumElements();
861  MVT EltTy = VT.getVectorElementType();
862
863  unsigned NumVectorRegs = 1;
864
865  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
866  // could break down into LHS/RHS like LegalizeDAG does.
867  if (!isPowerOf2_32(NumElts)) {
868    NumVectorRegs = NumElts;
869    NumElts = 1;
870  }
871
872  // Divide the input until we get to a supported size.  This will always
873  // end with a scalar if the target doesn't support vectors.
874  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
875    NumElts >>= 1;
876    NumVectorRegs <<= 1;
877  }
878
879  NumIntermediates = NumVectorRegs;
880
881  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
882  if (!TLI->isTypeLegal(NewVT))
883    NewVT = EltTy;
884  IntermediateVT = NewVT;
885
886  unsigned NewVTSize = NewVT.getSizeInBits();
887
888  // Convert sizes such as i33 to i64.
889  if (!isPowerOf2_32(NewVTSize))
890    NewVTSize = NextPowerOf2(NewVTSize);
891
892  MVT DestVT = TLI->getRegisterType(NewVT);
893  RegisterVT = DestVT;
894  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
895    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
896
897  // Otherwise, promotion or legal types use the same number of registers as
898  // the vector decimated to the appropriate level.
899  return NumVectorRegs;
900}
901
902/// isLegalRC - Return true if the value types that can be represented by the
903/// specified register class are all legal.
904bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
905  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
906       I != E; ++I) {
907    if (isTypeLegal(*I))
908      return true;
909  }
910  return false;
911}
912
913/// Replace/modify any TargetFrameIndex operands with a targte-dependent
914/// sequence of memory operands that is recognized by PrologEpilogInserter.
915MachineBasicBlock*
916TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
917                                   MachineBasicBlock *MBB) const {
918  MachineFunction &MF = *MI->getParent()->getParent();
919
920  // MI changes inside this loop as we grow operands.
921  for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
922    MachineOperand &MO = MI->getOperand(OperIdx);
923    if (!MO.isFI())
924      continue;
925
926    // foldMemoryOperand builds a new MI after replacing a single FI operand
927    // with the canonical set of five x86 addressing-mode operands.
928    int FI = MO.getIndex();
929    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
930
931    // Copy operands before the frame-index.
932    for (unsigned i = 0; i < OperIdx; ++i)
933      MIB.addOperand(MI->getOperand(i));
934    // Add frame index operands: direct-mem-ref tag, #FI, offset.
935    MIB.addImm(StackMaps::DirectMemRefOp);
936    MIB.addOperand(MI->getOperand(OperIdx));
937    MIB.addImm(0);
938    // Copy the operands after the frame index.
939    for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
940      MIB.addOperand(MI->getOperand(i));
941
942    // Inherit previous memory operands.
943    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
944    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
945
946    // Add a new memory operand for this FI.
947    const MachineFrameInfo &MFI = *MF.getFrameInfo();
948    assert(MFI.getObjectOffset(FI) != -1);
949    MachineMemOperand *MMO =
950      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
951                              MachineMemOperand::MOLoad,
952                              TM.getDataLayout()->getPointerSize(),
953                              MFI.getObjectAlignment(FI));
954    MIB->addMemOperand(MF, MMO);
955
956    // Replace the instruction and update the operand index.
957    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
958    OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
959    MI->eraseFromParent();
960    MI = MIB;
961  }
962  return MBB;
963}
964
965/// findRepresentativeClass - Return the largest legal super-reg register class
966/// of the register class for the specified type and its associated "cost".
967std::pair<const TargetRegisterClass*, uint8_t>
968TargetLoweringBase::findRepresentativeClass(MVT VT) const {
969  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
970  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
971  if (!RC)
972    return std::make_pair(RC, 0);
973
974  // Compute the set of all super-register classes.
975  BitVector SuperRegRC(TRI->getNumRegClasses());
976  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
977    SuperRegRC.setBitsInMask(RCI.getMask());
978
979  // Find the first legal register class with the largest spill size.
980  const TargetRegisterClass *BestRC = RC;
981  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
982    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
983    // We want the largest possible spill size.
984    if (SuperRC->getSize() <= BestRC->getSize())
985      continue;
986    if (!isLegalRC(SuperRC))
987      continue;
988    BestRC = SuperRC;
989  }
990  return std::make_pair(BestRC, 1);
991}
992
993/// computeRegisterProperties - Once all of the register classes are added,
994/// this allows us to compute derived properties we expose.
995void TargetLoweringBase::computeRegisterProperties() {
996  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
997         "Too many value types for ValueTypeActions to hold!");
998
999  // Everything defaults to needing one register.
1000  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1001    NumRegistersForVT[i] = 1;
1002    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1003  }
1004  // ...except isVoid, which doesn't need any registers.
1005  NumRegistersForVT[MVT::isVoid] = 0;
1006
1007  // Find the largest integer register class.
1008  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1009  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1010    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1011
1012  // Every integer value type larger than this largest register takes twice as
1013  // many registers to represent as the previous ValueType.
1014  for (unsigned ExpandedReg = LargestIntReg + 1;
1015       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1016    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1017    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1018    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1019    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1020                                   TypeExpandInteger);
1021  }
1022
1023  // Inspect all of the ValueType's smaller than the largest integer
1024  // register to see which ones need promotion.
1025  unsigned LegalIntReg = LargestIntReg;
1026  for (unsigned IntReg = LargestIntReg - 1;
1027       IntReg >= (unsigned)MVT::i1; --IntReg) {
1028    MVT IVT = (MVT::SimpleValueType)IntReg;
1029    if (isTypeLegal(IVT)) {
1030      LegalIntReg = IntReg;
1031    } else {
1032      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1033        (const MVT::SimpleValueType)LegalIntReg;
1034      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1035    }
1036  }
1037
1038  // ppcf128 type is really two f64's.
1039  if (!isTypeLegal(MVT::ppcf128)) {
1040    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1041    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1042    TransformToType[MVT::ppcf128] = MVT::f64;
1043    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1044  }
1045
1046  // Decide how to handle f128. If the target does not have native f128 support,
1047  // expand it to i128 and we will be generating soft float library calls.
1048  if (!isTypeLegal(MVT::f128)) {
1049    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1050    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1051    TransformToType[MVT::f128] = MVT::i128;
1052    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1053  }
1054
1055  // Decide how to handle f64. If the target does not have native f64 support,
1056  // expand it to i64 and we will be generating soft float library calls.
1057  if (!isTypeLegal(MVT::f64)) {
1058    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1059    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1060    TransformToType[MVT::f64] = MVT::i64;
1061    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1062  }
1063
1064  // Decide how to handle f32. If the target does not have native support for
1065  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
1066  if (!isTypeLegal(MVT::f32)) {
1067    if (isTypeLegal(MVT::f64)) {
1068      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
1069      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
1070      TransformToType[MVT::f32] = MVT::f64;
1071      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
1072    } else {
1073      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1074      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1075      TransformToType[MVT::f32] = MVT::i32;
1076      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1077    }
1078  }
1079
1080  // Loop over all of the vector value types to see which need transformations.
1081  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1082       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1083    MVT VT = (MVT::SimpleValueType)i;
1084    if (isTypeLegal(VT)) continue;
1085
1086    // Determine if there is a legal wider type.  If so, we should promote to
1087    // that wider vector type.
1088    MVT EltVT = VT.getVectorElementType();
1089    unsigned NElts = VT.getVectorNumElements();
1090    if (NElts != 1 && !shouldSplitVectorType(VT)) {
1091      bool IsLegalWiderType = false;
1092      // First try to promote the elements of integer vectors. If no legal
1093      // promotion was found, fallback to the widen-vector method.
1094      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1095        MVT SVT = (MVT::SimpleValueType)nVT;
1096        // Promote vectors of integers to vectors with the same number
1097        // of elements, with a wider element type.
1098        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1099            && SVT.getVectorNumElements() == NElts &&
1100            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
1101          TransformToType[i] = SVT;
1102          RegisterTypeForVT[i] = SVT;
1103          NumRegistersForVT[i] = 1;
1104          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1105          IsLegalWiderType = true;
1106          break;
1107        }
1108      }
1109
1110      if (IsLegalWiderType) continue;
1111
1112      // Try to widen the vector.
1113      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1114        MVT SVT = (MVT::SimpleValueType)nVT;
1115        if (SVT.getVectorElementType() == EltVT &&
1116            SVT.getVectorNumElements() > NElts &&
1117            isTypeLegal(SVT)) {
1118          TransformToType[i] = SVT;
1119          RegisterTypeForVT[i] = SVT;
1120          NumRegistersForVT[i] = 1;
1121          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1122          IsLegalWiderType = true;
1123          break;
1124        }
1125      }
1126      if (IsLegalWiderType) continue;
1127    }
1128
1129    MVT IntermediateVT;
1130    MVT RegisterVT;
1131    unsigned NumIntermediates;
1132    NumRegistersForVT[i] =
1133      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
1134                                RegisterVT, this);
1135    RegisterTypeForVT[i] = RegisterVT;
1136
1137    MVT NVT = VT.getPow2VectorType();
1138    if (NVT == VT) {
1139      // Type is already a power of 2.  The default action is to split.
1140      TransformToType[i] = MVT::Other;
1141      unsigned NumElts = VT.getVectorNumElements();
1142      ValueTypeActions.setTypeAction(VT,
1143            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
1144    } else {
1145      TransformToType[i] = NVT;
1146      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1147    }
1148  }
1149
1150  // Determine the 'representative' register class for each value type.
1151  // An representative register class is the largest (meaning one which is
1152  // not a sub-register class / subreg register class) legal register class for
1153  // a group of value types. For example, on i386, i8, i16, and i32
1154  // representative would be GR32; while on x86_64 it's GR64.
1155  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1156    const TargetRegisterClass* RRC;
1157    uint8_t Cost;
1158    std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
1159    RepRegClassForVT[i] = RRC;
1160    RepRegClassCostForVT[i] = Cost;
1161  }
1162}
1163
1164EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1165  assert(!VT.isVector() && "No default SetCC type for vectors!");
1166  return getPointerTy(0).SimpleTy;
1167}
1168
1169MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1170  return MVT::i32; // return the default value
1171}
1172
1173/// getVectorTypeBreakdown - Vector types are broken down into some number of
1174/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1175/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1176/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1177///
1178/// This method returns the number of registers needed, and the VT for each
1179/// register.  It also returns the VT and quantity of the intermediate values
1180/// before they are promoted/expanded.
1181///
1182unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1183                                                EVT &IntermediateVT,
1184                                                unsigned &NumIntermediates,
1185                                                MVT &RegisterVT) const {
1186  unsigned NumElts = VT.getVectorNumElements();
1187
1188  // If there is a wider vector type with the same element type as this one,
1189  // or a promoted vector type that has the same number of elements which
1190  // are wider, then we should convert to that legal vector type.
1191  // This handles things like <2 x float> -> <4 x float> and
1192  // <4 x i1> -> <4 x i32>.
1193  LegalizeTypeAction TA = getTypeAction(Context, VT);
1194  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1195    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1196    if (isTypeLegal(RegisterEVT)) {
1197      IntermediateVT = RegisterEVT;
1198      RegisterVT = RegisterEVT.getSimpleVT();
1199      NumIntermediates = 1;
1200      return 1;
1201    }
1202  }
1203
1204  // Figure out the right, legal destination reg to copy into.
1205  EVT EltTy = VT.getVectorElementType();
1206
1207  unsigned NumVectorRegs = 1;
1208
1209  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1210  // could break down into LHS/RHS like LegalizeDAG does.
1211  if (!isPowerOf2_32(NumElts)) {
1212    NumVectorRegs = NumElts;
1213    NumElts = 1;
1214  }
1215
1216  // Divide the input until we get to a supported size.  This will always
1217  // end with a scalar if the target doesn't support vectors.
1218  while (NumElts > 1 && !isTypeLegal(
1219                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1220    NumElts >>= 1;
1221    NumVectorRegs <<= 1;
1222  }
1223
1224  NumIntermediates = NumVectorRegs;
1225
1226  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1227  if (!isTypeLegal(NewVT))
1228    NewVT = EltTy;
1229  IntermediateVT = NewVT;
1230
1231  MVT DestVT = getRegisterType(Context, NewVT);
1232  RegisterVT = DestVT;
1233  unsigned NewVTSize = NewVT.getSizeInBits();
1234
1235  // Convert sizes such as i33 to i64.
1236  if (!isPowerOf2_32(NewVTSize))
1237    NewVTSize = NextPowerOf2(NewVTSize);
1238
1239  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1240    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1241
1242  // Otherwise, promotion or legal types use the same number of registers as
1243  // the vector decimated to the appropriate level.
1244  return NumVectorRegs;
1245}
1246
1247/// Get the EVTs and ArgFlags collections that represent the legalized return
1248/// type of the given function.  This does not require a DAG or a return value,
1249/// and is suitable for use before any DAGs for the function are constructed.
1250/// TODO: Move this out of TargetLowering.cpp.
1251void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1252                         SmallVectorImpl<ISD::OutputArg> &Outs,
1253                         const TargetLowering &TLI) {
1254  SmallVector<EVT, 4> ValueVTs;
1255  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1256  unsigned NumValues = ValueVTs.size();
1257  if (NumValues == 0) return;
1258
1259  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1260    EVT VT = ValueVTs[j];
1261    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1262
1263    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1264      ExtendKind = ISD::SIGN_EXTEND;
1265    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1266      ExtendKind = ISD::ZERO_EXTEND;
1267
1268    // FIXME: C calling convention requires the return type to be promoted to
1269    // at least 32-bit. But this is not necessary for non-C calling
1270    // conventions. The frontend should mark functions whose return values
1271    // require promoting with signext or zeroext attributes.
1272    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1273      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1274      if (VT.bitsLT(MinVT))
1275        VT = MinVT;
1276    }
1277
1278    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1279    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1280
1281    // 'inreg' on function refers to return value
1282    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1283    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1284      Flags.setInReg();
1285
1286    // Propagate extension type if any
1287    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1288      Flags.setSExt();
1289    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1290      Flags.setZExt();
1291
1292    for (unsigned i = 0; i < NumParts; ++i)
1293      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1294  }
1295}
1296
1297/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1298/// function arguments in the caller parameter area.  This is the actual
1299/// alignment, not its logarithm.
1300unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1301  return DL->getABITypeAlignment(Ty);
1302}
1303
1304//===----------------------------------------------------------------------===//
1305//  TargetTransformInfo Helpers
1306//===----------------------------------------------------------------------===//
1307
1308int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1309  enum InstructionOpcodes {
1310#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1311#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1312#include "llvm/IR/Instruction.def"
1313  };
1314  switch (static_cast<InstructionOpcodes>(Opcode)) {
1315  case Ret:            return 0;
1316  case Br:             return 0;
1317  case Switch:         return 0;
1318  case IndirectBr:     return 0;
1319  case Invoke:         return 0;
1320  case Resume:         return 0;
1321  case Unreachable:    return 0;
1322  case Add:            return ISD::ADD;
1323  case FAdd:           return ISD::FADD;
1324  case Sub:            return ISD::SUB;
1325  case FSub:           return ISD::FSUB;
1326  case Mul:            return ISD::MUL;
1327  case FMul:           return ISD::FMUL;
1328  case UDiv:           return ISD::UDIV;
1329  case SDiv:           return ISD::SDIV;
1330  case FDiv:           return ISD::FDIV;
1331  case URem:           return ISD::UREM;
1332  case SRem:           return ISD::SREM;
1333  case FRem:           return ISD::FREM;
1334  case Shl:            return ISD::SHL;
1335  case LShr:           return ISD::SRL;
1336  case AShr:           return ISD::SRA;
1337  case And:            return ISD::AND;
1338  case Or:             return ISD::OR;
1339  case Xor:            return ISD::XOR;
1340  case Alloca:         return 0;
1341  case Load:           return ISD::LOAD;
1342  case Store:          return ISD::STORE;
1343  case GetElementPtr:  return 0;
1344  case Fence:          return 0;
1345  case AtomicCmpXchg:  return 0;
1346  case AtomicRMW:      return 0;
1347  case Trunc:          return ISD::TRUNCATE;
1348  case ZExt:           return ISD::ZERO_EXTEND;
1349  case SExt:           return ISD::SIGN_EXTEND;
1350  case FPToUI:         return ISD::FP_TO_UINT;
1351  case FPToSI:         return ISD::FP_TO_SINT;
1352  case UIToFP:         return ISD::UINT_TO_FP;
1353  case SIToFP:         return ISD::SINT_TO_FP;
1354  case FPTrunc:        return ISD::FP_ROUND;
1355  case FPExt:          return ISD::FP_EXTEND;
1356  case PtrToInt:       return ISD::BITCAST;
1357  case IntToPtr:       return ISD::BITCAST;
1358  case BitCast:        return ISD::BITCAST;
1359  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1360  case ICmp:           return ISD::SETCC;
1361  case FCmp:           return ISD::SETCC;
1362  case PHI:            return 0;
1363  case Call:           return 0;
1364  case Select:         return ISD::SELECT;
1365  case UserOp1:        return 0;
1366  case UserOp2:        return 0;
1367  case VAArg:          return 0;
1368  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1369  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1370  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1371  case ExtractValue:   return ISD::MERGE_VALUES;
1372  case InsertValue:    return ISD::MERGE_VALUES;
1373  case LandingPad:     return 0;
1374  }
1375
1376  llvm_unreachable("Unknown instruction type encountered!");
1377}
1378
1379std::pair<unsigned, MVT>
1380TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1381  LLVMContext &C = Ty->getContext();
1382  EVT MTy = getValueType(Ty);
1383
1384  unsigned Cost = 1;
1385  // We keep legalizing the type until we find a legal kind. We assume that
1386  // the only operation that costs anything is the split. After splitting
1387  // we need to handle two types.
1388  while (true) {
1389    LegalizeKind LK = getTypeConversion(C, MTy);
1390
1391    if (LK.first == TypeLegal)
1392      return std::make_pair(Cost, MTy.getSimpleVT());
1393
1394    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1395      Cost *= 2;
1396
1397    // Keep legalizing the type.
1398    MTy = LK.second;
1399  }
1400}
1401
1402//===----------------------------------------------------------------------===//
1403//  Loop Strength Reduction hooks
1404//===----------------------------------------------------------------------===//
1405
1406/// isLegalAddressingMode - Return true if the addressing mode represented
1407/// by AM is legal for this target, for a load/store of the specified type.
1408bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1409                                           Type *Ty) const {
1410  // The default implementation of this implements a conservative RISCy, r+r and
1411  // r+i addr mode.
1412
1413  // Allows a sign-extended 16-bit immediate field.
1414  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1415    return false;
1416
1417  // No global is ever allowed as a base.
1418  if (AM.BaseGV)
1419    return false;
1420
1421  // Only support r+r,
1422  switch (AM.Scale) {
1423  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1424    break;
1425  case 1:
1426    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1427      return false;
1428    // Otherwise we have r+r or r+i.
1429    break;
1430  case 2:
1431    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1432      return false;
1433    // Allow 2*r as r+r.
1434    break;
1435  default: // Don't allow n * r
1436    return false;
1437  }
1438
1439  return true;
1440}
1441