TargetRegisterInfo.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TargetRegisterInfo interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetRegisterInfo.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/CodeGen/VirtRegMap.h"
19#include "llvm/Support/raw_ostream.h"
20
21using namespace llvm;
22
23TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
24                             regclass_iterator RCB, regclass_iterator RCE,
25                             const char *const *SRINames,
26                             const unsigned *SRILaneMasks,
27                             unsigned SRICoveringLanes)
28  : InfoDesc(ID), SubRegIndexNames(SRINames),
29    SubRegIndexLaneMasks(SRILaneMasks),
30    RegClassBegin(RCB), RegClassEnd(RCE),
31    CoveringLanes(SRICoveringLanes) {
32}
33
34TargetRegisterInfo::~TargetRegisterInfo() {}
35
36void PrintReg::print(raw_ostream &OS) const {
37  if (!Reg)
38    OS << "%noreg";
39  else if (TargetRegisterInfo::isStackSlot(Reg))
40    OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
41  else if (TargetRegisterInfo::isVirtualRegister(Reg))
42    OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
43  else if (TRI && Reg < TRI->getNumRegs())
44    OS << '%' << TRI->getName(Reg);
45  else
46    OS << "%physreg" << Reg;
47  if (SubIdx) {
48    if (TRI)
49      OS << ':' << TRI->getSubRegIndexName(SubIdx);
50    else
51      OS << ":sub(" << SubIdx << ')';
52  }
53}
54
55void PrintRegUnit::print(raw_ostream &OS) const {
56  // Generic printout when TRI is missing.
57  if (!TRI) {
58    OS << "Unit~" << Unit;
59    return;
60  }
61
62  // Check for invalid register units.
63  if (Unit >= TRI->getNumRegUnits()) {
64    OS << "BadUnit~" << Unit;
65    return;
66  }
67
68  // Normal units have at least one root.
69  MCRegUnitRootIterator Roots(Unit, TRI);
70  assert(Roots.isValid() && "Unit has no roots.");
71  OS << TRI->getName(*Roots);
72  for (++Roots; Roots.isValid(); ++Roots)
73    OS << '~' << TRI->getName(*Roots);
74}
75
76void PrintVRegOrUnit::print(raw_ostream &OS) const {
77  if (TRI && TRI->isVirtualRegister(Unit)) {
78    OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
79    return;
80  }
81  PrintRegUnit::print(OS);
82}
83
84/// getAllocatableClass - Return the maximal subclass of the given register
85/// class that is alloctable, or NULL.
86const TargetRegisterClass *
87TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
88  if (!RC || RC->isAllocatable())
89    return RC;
90
91  const unsigned *SubClass = RC->getSubClassMask();
92  for (unsigned Base = 0, BaseE = getNumRegClasses();
93       Base < BaseE; Base += 32) {
94    unsigned Idx = Base;
95    for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
96      unsigned Offset = countTrailingZeros(Mask);
97      const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
98      if (SubRC->isAllocatable())
99        return SubRC;
100      Mask >>= Offset;
101      Idx += Offset + 1;
102    }
103  }
104  return nullptr;
105}
106
107/// getMinimalPhysRegClass - Returns the Register Class of a physical
108/// register of the given type, picking the most sub register class of
109/// the right type that contains this physreg.
110const TargetRegisterClass *
111TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
112  assert(isPhysicalRegister(reg) && "reg must be a physical register");
113
114  // Pick the most sub register class of the right type that contains
115  // this physreg.
116  const TargetRegisterClass* BestRC = nullptr;
117  for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
118    const TargetRegisterClass* RC = *I;
119    if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
120        (!BestRC || BestRC->hasSubClass(RC)))
121      BestRC = RC;
122  }
123
124  assert(BestRC && "Couldn't find the register class");
125  return BestRC;
126}
127
128/// getAllocatableSetForRC - Toggle the bits that represent allocatable
129/// registers for the specific register class.
130static void getAllocatableSetForRC(const MachineFunction &MF,
131                                   const TargetRegisterClass *RC, BitVector &R){
132  assert(RC->isAllocatable() && "invalid for nonallocatable sets");
133  ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
134  for (unsigned i = 0; i != Order.size(); ++i)
135    R.set(Order[i]);
136}
137
138BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
139                                          const TargetRegisterClass *RC) const {
140  BitVector Allocatable(getNumRegs());
141  if (RC) {
142    // A register class with no allocatable subclass returns an empty set.
143    const TargetRegisterClass *SubClass = getAllocatableClass(RC);
144    if (SubClass)
145      getAllocatableSetForRC(MF, SubClass, Allocatable);
146  } else {
147    for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
148         E = regclass_end(); I != E; ++I)
149      if ((*I)->isAllocatable())
150        getAllocatableSetForRC(MF, *I, Allocatable);
151  }
152
153  // Mask out the reserved registers
154  BitVector Reserved = getReservedRegs(MF);
155  Allocatable &= Reserved.flip();
156
157  return Allocatable;
158}
159
160static inline
161const TargetRegisterClass *firstCommonClass(const uint32_t *A,
162                                            const uint32_t *B,
163                                            const TargetRegisterInfo *TRI) {
164  for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
165    if (unsigned Common = *A++ & *B++)
166      return TRI->getRegClass(I + countTrailingZeros(Common));
167  return nullptr;
168}
169
170const TargetRegisterClass *
171TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
172                                      const TargetRegisterClass *B) const {
173  // First take care of the trivial cases.
174  if (A == B)
175    return A;
176  if (!A || !B)
177    return nullptr;
178
179  // Register classes are ordered topologically, so the largest common
180  // sub-class it the common sub-class with the smallest ID.
181  return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
182}
183
184const TargetRegisterClass *
185TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
186                                             const TargetRegisterClass *B,
187                                             unsigned Idx) const {
188  assert(A && B && "Missing register class");
189  assert(Idx && "Bad sub-register index");
190
191  // Find Idx in the list of super-register indices.
192  for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
193    if (RCI.getSubReg() == Idx)
194      // The bit mask contains all register classes that are projected into B
195      // by Idx. Find a class that is also a sub-class of A.
196      return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
197  return nullptr;
198}
199
200const TargetRegisterClass *TargetRegisterInfo::
201getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
202                       const TargetRegisterClass *RCB, unsigned SubB,
203                       unsigned &PreA, unsigned &PreB) const {
204  assert(RCA && SubA && RCB && SubB && "Invalid arguments");
205
206  // Search all pairs of sub-register indices that project into RCA and RCB
207  // respectively. This is quadratic, but usually the sets are very small. On
208  // most targets like X86, there will only be a single sub-register index
209  // (e.g., sub_16bit projecting into GR16).
210  //
211  // The worst case is a register class like DPR on ARM.
212  // We have indices dsub_0..dsub_7 projecting into that class.
213  //
214  // It is very common that one register class is a sub-register of the other.
215  // Arrange for RCA to be the larger register so the answer will be found in
216  // the first iteration. This makes the search linear for the most common
217  // case.
218  const TargetRegisterClass *BestRC = nullptr;
219  unsigned *BestPreA = &PreA;
220  unsigned *BestPreB = &PreB;
221  if (RCA->getSize() < RCB->getSize()) {
222    std::swap(RCA, RCB);
223    std::swap(SubA, SubB);
224    std::swap(BestPreA, BestPreB);
225  }
226
227  // Also terminate the search one we have found a register class as small as
228  // RCA.
229  unsigned MinSize = RCA->getSize();
230
231  for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
232    unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
233    for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
234      // Check if a common super-register class exists for this index pair.
235      const TargetRegisterClass *RC =
236        firstCommonClass(IA.getMask(), IB.getMask(), this);
237      if (!RC || RC->getSize() < MinSize)
238        continue;
239
240      // The indexes must compose identically: PreA+SubA == PreB+SubB.
241      unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
242      if (FinalA != FinalB)
243        continue;
244
245      // Is RC a better candidate than BestRC?
246      if (BestRC && RC->getSize() >= BestRC->getSize())
247        continue;
248
249      // Yes, RC is the smallest super-register seen so far.
250      BestRC = RC;
251      *BestPreA = IA.getSubReg();
252      *BestPreB = IB.getSubReg();
253
254      // Bail early if we reached MinSize. We won't find a better candidate.
255      if (BestRC->getSize() == MinSize)
256        return BestRC;
257    }
258  }
259  return BestRC;
260}
261
262// Compute target-independent register allocator hints to help eliminate copies.
263void
264TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
265                                          ArrayRef<MCPhysReg> Order,
266                                          SmallVectorImpl<MCPhysReg> &Hints,
267                                          const MachineFunction &MF,
268                                          const VirtRegMap *VRM) const {
269  const MachineRegisterInfo &MRI = MF.getRegInfo();
270  std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
271
272  // Hints with HintType != 0 were set by target-dependent code.
273  // Such targets must provide their own implementation of
274  // TRI::getRegAllocationHints to interpret those hint types.
275  assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
276
277  // Target-independent hints are either a physical or a virtual register.
278  unsigned Phys = Hint.second;
279  if (VRM && isVirtualRegister(Phys))
280    Phys = VRM->getPhys(Phys);
281
282  // Check that Phys is a valid hint in VirtReg's register class.
283  if (!isPhysicalRegister(Phys))
284    return;
285  if (MRI.isReserved(Phys))
286    return;
287  // Check that Phys is in the allocation order. We shouldn't heed hints
288  // from VirtReg's register class if they aren't in the allocation order. The
289  // target probably has a reason for removing the register.
290  if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
291    return;
292
293  // All clear, tell the register allocator to prefer this register.
294  Hints.push_back(Phys);
295}
296