TwoAddressInstructionPass.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/CodeGen/LiveIntervalAnalysis.h"
38#include "llvm/CodeGen/LiveVariables.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstr.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/IR/Function.h"
44#include "llvm/MC/MCInstrItineraries.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetMachine.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51using namespace llvm;
52
53#define DEBUG_TYPE "twoaddrinstr"
54
55STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
56STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
57STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
58STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
59STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63// Temporary flag to disable rescheduling.
64static cl::opt<bool>
65EnableRescheduling("twoaddr-reschedule",
66                   cl::desc("Coalesce copies by rescheduling (default=true)"),
67                   cl::init(true), cl::Hidden);
68
69namespace {
70class TwoAddressInstructionPass : public MachineFunctionPass {
71  MachineFunction *MF;
72  const TargetInstrInfo *TII;
73  const TargetRegisterInfo *TRI;
74  const InstrItineraryData *InstrItins;
75  MachineRegisterInfo *MRI;
76  LiveVariables *LV;
77  LiveIntervals *LIS;
78  AliasAnalysis *AA;
79  CodeGenOpt::Level OptLevel;
80
81  // The current basic block being processed.
82  MachineBasicBlock *MBB;
83
84  // DistanceMap - Keep track the distance of a MI from the start of the
85  // current basic block.
86  DenseMap<MachineInstr*, unsigned> DistanceMap;
87
88  // Set of already processed instructions in the current block.
89  SmallPtrSet<MachineInstr*, 8> Processed;
90
91  // SrcRegMap - A map from virtual registers to physical registers which are
92  // likely targets to be coalesced to due to copies from physical registers to
93  // virtual registers. e.g. v1024 = move r0.
94  DenseMap<unsigned, unsigned> SrcRegMap;
95
96  // DstRegMap - A map from virtual registers to physical registers which are
97  // likely targets to be coalesced to due to copies to physical registers from
98  // virtual registers. e.g. r1 = move v1024.
99  DenseMap<unsigned, unsigned> DstRegMap;
100
101  bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
102                            MachineBasicBlock::iterator OldPos);
103
104  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
105
106  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
107                             MachineInstr *MI, unsigned Dist);
108
109  bool commuteInstruction(MachineBasicBlock::iterator &mi,
110                          unsigned RegB, unsigned RegC, unsigned Dist);
111
112  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
113
114  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
115                          MachineBasicBlock::iterator &nmi,
116                          unsigned RegA, unsigned RegB, unsigned Dist);
117
118  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
119
120  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
121                             MachineBasicBlock::iterator &nmi,
122                             unsigned Reg);
123  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
124                             MachineBasicBlock::iterator &nmi,
125                             unsigned Reg);
126
127  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
128                               MachineBasicBlock::iterator &nmi,
129                               unsigned SrcIdx, unsigned DstIdx,
130                               unsigned Dist, bool shouldOnlyCommute);
131
132  void scanUses(unsigned DstReg);
133
134  void processCopy(MachineInstr *MI);
135
136  typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
137  typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
138  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
139  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
140  void eliminateRegSequence(MachineBasicBlock::iterator&);
141
142public:
143  static char ID; // Pass identification, replacement for typeid
144  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
145    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
146  }
147
148  void getAnalysisUsage(AnalysisUsage &AU) const override {
149    AU.setPreservesCFG();
150    AU.addRequired<AliasAnalysis>();
151    AU.addPreserved<LiveVariables>();
152    AU.addPreserved<SlotIndexes>();
153    AU.addPreserved<LiveIntervals>();
154    AU.addPreservedID(MachineLoopInfoID);
155    AU.addPreservedID(MachineDominatorsID);
156    MachineFunctionPass::getAnalysisUsage(AU);
157  }
158
159  /// runOnMachineFunction - Pass entry point.
160  bool runOnMachineFunction(MachineFunction&) override;
161};
162} // end anonymous namespace
163
164char TwoAddressInstructionPass::ID = 0;
165INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
166                "Two-Address instruction pass", false, false)
167INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
168INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
169                "Two-Address instruction pass", false, false)
170
171char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
172
173static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
174
175/// sink3AddrInstruction - A two-address instruction has been converted to a
176/// three-address instruction to avoid clobbering a register. Try to sink it
177/// past the instruction that would kill the above mentioned register to reduce
178/// register pressure.
179bool TwoAddressInstructionPass::
180sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
181                     MachineBasicBlock::iterator OldPos) {
182  // FIXME: Shouldn't we be trying to do this before we three-addressify the
183  // instruction?  After this transformation is done, we no longer need
184  // the instruction to be in three-address form.
185
186  // Check if it's safe to move this instruction.
187  bool SeenStore = true; // Be conservative.
188  if (!MI->isSafeToMove(TII, AA, SeenStore))
189    return false;
190
191  unsigned DefReg = 0;
192  SmallSet<unsigned, 4> UseRegs;
193
194  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
195    const MachineOperand &MO = MI->getOperand(i);
196    if (!MO.isReg())
197      continue;
198    unsigned MOReg = MO.getReg();
199    if (!MOReg)
200      continue;
201    if (MO.isUse() && MOReg != SavedReg)
202      UseRegs.insert(MO.getReg());
203    if (!MO.isDef())
204      continue;
205    if (MO.isImplicit())
206      // Don't try to move it if it implicitly defines a register.
207      return false;
208    if (DefReg)
209      // For now, don't move any instructions that define multiple registers.
210      return false;
211    DefReg = MO.getReg();
212  }
213
214  // Find the instruction that kills SavedReg.
215  MachineInstr *KillMI = nullptr;
216  if (LIS) {
217    LiveInterval &LI = LIS->getInterval(SavedReg);
218    assert(LI.end() != LI.begin() &&
219           "Reg should not have empty live interval.");
220
221    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
222    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
223    if (I != LI.end() && I->start < MBBEndIdx)
224      return false;
225
226    --I;
227    KillMI = LIS->getInstructionFromIndex(I->end);
228  }
229  if (!KillMI) {
230    for (MachineRegisterInfo::use_nodbg_iterator
231           UI = MRI->use_nodbg_begin(SavedReg),
232           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233      MachineOperand &UseMO = *UI;
234      if (!UseMO.isKill())
235        continue;
236      KillMI = UseMO.getParent();
237      break;
238    }
239  }
240
241  // If we find the instruction that kills SavedReg, and it is in an
242  // appropriate location, we can try to sink the current instruction
243  // past it.
244  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
245      KillMI == OldPos || KillMI->isTerminator())
246    return false;
247
248  // If any of the definitions are used by another instruction between the
249  // position and the kill use, then it's not safe to sink it.
250  //
251  // FIXME: This can be sped up if there is an easy way to query whether an
252  // instruction is before or after another instruction. Then we can use
253  // MachineRegisterInfo def / use instead.
254  MachineOperand *KillMO = nullptr;
255  MachineBasicBlock::iterator KillPos = KillMI;
256  ++KillPos;
257
258  unsigned NumVisited = 0;
259  for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
260    MachineInstr *OtherMI = I;
261    // DBG_VALUE cannot be counted against the limit.
262    if (OtherMI->isDebugValue())
263      continue;
264    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
265      return false;
266    ++NumVisited;
267    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
268      MachineOperand &MO = OtherMI->getOperand(i);
269      if (!MO.isReg())
270        continue;
271      unsigned MOReg = MO.getReg();
272      if (!MOReg)
273        continue;
274      if (DefReg == MOReg)
275        return false;
276
277      if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
278        if (OtherMI == KillMI && MOReg == SavedReg)
279          // Save the operand that kills the register. We want to unset the kill
280          // marker if we can sink MI past it.
281          KillMO = &MO;
282        else if (UseRegs.count(MOReg))
283          // One of the uses is killed before the destination.
284          return false;
285      }
286    }
287  }
288  assert(KillMO && "Didn't find kill");
289
290  if (!LIS) {
291    // Update kill and LV information.
292    KillMO->setIsKill(false);
293    KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
294    KillMO->setIsKill(true);
295
296    if (LV)
297      LV->replaceKillInstruction(SavedReg, KillMI, MI);
298  }
299
300  // Move instruction to its destination.
301  MBB->remove(MI);
302  MBB->insert(KillPos, MI);
303
304  if (LIS)
305    LIS->handleMove(MI);
306
307  ++Num3AddrSunk;
308  return true;
309}
310
311/// noUseAfterLastDef - Return true if there are no intervening uses between the
312/// last instruction in the MBB that defines the specified register and the
313/// two-address instruction which is being processed. It also returns the last
314/// def location by reference
315bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
316                                                  unsigned &LastDef) {
317  LastDef = 0;
318  unsigned LastUse = Dist;
319  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
320    MachineInstr *MI = MO.getParent();
321    if (MI->getParent() != MBB || MI->isDebugValue())
322      continue;
323    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
324    if (DI == DistanceMap.end())
325      continue;
326    if (MO.isUse() && DI->second < LastUse)
327      LastUse = DI->second;
328    if (MO.isDef() && DI->second > LastDef)
329      LastDef = DI->second;
330  }
331
332  return !(LastUse > LastDef && LastUse < Dist);
333}
334
335/// isCopyToReg - Return true if the specified MI is a copy instruction or
336/// a extract_subreg instruction. It also returns the source and destination
337/// registers and whether they are physical registers by reference.
338static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
339                        unsigned &SrcReg, unsigned &DstReg,
340                        bool &IsSrcPhys, bool &IsDstPhys) {
341  SrcReg = 0;
342  DstReg = 0;
343  if (MI.isCopy()) {
344    DstReg = MI.getOperand(0).getReg();
345    SrcReg = MI.getOperand(1).getReg();
346  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
347    DstReg = MI.getOperand(0).getReg();
348    SrcReg = MI.getOperand(2).getReg();
349  } else
350    return false;
351
352  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
353  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
354  return true;
355}
356
357/// isPLainlyKilled - Test if the given register value, which is used by the
358// given instruction, is killed by the given instruction.
359static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
360                            LiveIntervals *LIS) {
361  if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
362      !LIS->isNotInMIMap(MI)) {
363    // FIXME: Sometimes tryInstructionTransform() will add instructions and
364    // test whether they can be folded before keeping them. In this case it
365    // sets a kill before recursively calling tryInstructionTransform() again.
366    // If there is no interval available, we assume that this instruction is
367    // one of those. A kill flag is manually inserted on the operand so the
368    // check below will handle it.
369    LiveInterval &LI = LIS->getInterval(Reg);
370    // This is to match the kill flag version where undefs don't have kill
371    // flags.
372    if (!LI.hasAtLeastOneValue())
373      return false;
374
375    SlotIndex useIdx = LIS->getInstructionIndex(MI);
376    LiveInterval::const_iterator I = LI.find(useIdx);
377    assert(I != LI.end() && "Reg must be live-in to use.");
378    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
379  }
380
381  return MI->killsRegister(Reg);
382}
383
384/// isKilled - Test if the given register value, which is used by the given
385/// instruction, is killed by the given instruction. This looks through
386/// coalescable copies to see if the original value is potentially not killed.
387///
388/// For example, in this code:
389///
390///   %reg1034 = copy %reg1024
391///   %reg1035 = copy %reg1025<kill>
392///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
393///
394/// %reg1034 is not considered to be killed, since it is copied from a
395/// register which is not killed. Treating it as not killed lets the
396/// normal heuristics commute the (two-address) add, which lets
397/// coalescing eliminate the extra copy.
398///
399/// If allowFalsePositives is true then likely kills are treated as kills even
400/// if it can't be proven that they are kills.
401static bool isKilled(MachineInstr &MI, unsigned Reg,
402                     const MachineRegisterInfo *MRI,
403                     const TargetInstrInfo *TII,
404                     LiveIntervals *LIS,
405                     bool allowFalsePositives) {
406  MachineInstr *DefMI = &MI;
407  for (;;) {
408    // All uses of physical registers are likely to be kills.
409    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
410        (allowFalsePositives || MRI->hasOneUse(Reg)))
411      return true;
412    if (!isPlainlyKilled(DefMI, Reg, LIS))
413      return false;
414    if (TargetRegisterInfo::isPhysicalRegister(Reg))
415      return true;
416    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
417    // If there are multiple defs, we can't do a simple analysis, so just
418    // go with what the kill flag says.
419    if (std::next(Begin) != MRI->def_end())
420      return true;
421    DefMI = Begin->getParent();
422    bool IsSrcPhys, IsDstPhys;
423    unsigned SrcReg,  DstReg;
424    // If the def is something other than a copy, then it isn't going to
425    // be coalesced, so follow the kill flag.
426    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
427      return true;
428    Reg = SrcReg;
429  }
430}
431
432/// isTwoAddrUse - Return true if the specified MI uses the specified register
433/// as a two-address use. If so, return the destination register by reference.
434static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
435  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
436    const MachineOperand &MO = MI.getOperand(i);
437    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
438      continue;
439    unsigned ti;
440    if (MI.isRegTiedToDefOperand(i, &ti)) {
441      DstReg = MI.getOperand(ti).getReg();
442      return true;
443    }
444  }
445  return false;
446}
447
448/// findOnlyInterestingUse - Given a register, if has a single in-basic block
449/// use, return the use instruction if it's a copy or a two-address use.
450static
451MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
452                                     MachineRegisterInfo *MRI,
453                                     const TargetInstrInfo *TII,
454                                     bool &IsCopy,
455                                     unsigned &DstReg, bool &IsDstPhys) {
456  if (!MRI->hasOneNonDBGUse(Reg))
457    // None or more than one use.
458    return nullptr;
459  MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
460  if (UseMI.getParent() != MBB)
461    return nullptr;
462  unsigned SrcReg;
463  bool IsSrcPhys;
464  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
465    IsCopy = true;
466    return &UseMI;
467  }
468  IsDstPhys = false;
469  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
470    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
471    return &UseMI;
472  }
473  return nullptr;
474}
475
476/// getMappedReg - Return the physical register the specified virtual register
477/// might be mapped to.
478static unsigned
479getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
480  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
481    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
482    if (SI == RegMap.end())
483      return 0;
484    Reg = SI->second;
485  }
486  if (TargetRegisterInfo::isPhysicalRegister(Reg))
487    return Reg;
488  return 0;
489}
490
491/// regsAreCompatible - Return true if the two registers are equal or aliased.
492///
493static bool
494regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
495  if (RegA == RegB)
496    return true;
497  if (!RegA || !RegB)
498    return false;
499  return TRI->regsOverlap(RegA, RegB);
500}
501
502
503/// isProfitableToCommute - Return true if it's potentially profitable to commute
504/// the two-address instruction that's being processed.
505bool
506TwoAddressInstructionPass::
507isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
508                      MachineInstr *MI, unsigned Dist) {
509  if (OptLevel == CodeGenOpt::None)
510    return false;
511
512  // Determine if it's profitable to commute this two address instruction. In
513  // general, we want no uses between this instruction and the definition of
514  // the two-address register.
515  // e.g.
516  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
517  // %reg1029<def> = MOV8rr %reg1028
518  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
519  // insert => %reg1030<def> = MOV8rr %reg1028
520  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
521  // In this case, it might not be possible to coalesce the second MOV8rr
522  // instruction if the first one is coalesced. So it would be profitable to
523  // commute it:
524  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
525  // %reg1029<def> = MOV8rr %reg1028
526  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
527  // insert => %reg1030<def> = MOV8rr %reg1029
528  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
529
530  if (!isPlainlyKilled(MI, regC, LIS))
531    return false;
532
533  // Ok, we have something like:
534  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
535  // let's see if it's worth commuting it.
536
537  // Look for situations like this:
538  // %reg1024<def> = MOV r1
539  // %reg1025<def> = MOV r0
540  // %reg1026<def> = ADD %reg1024, %reg1025
541  // r0            = MOV %reg1026
542  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
543  unsigned ToRegA = getMappedReg(regA, DstRegMap);
544  if (ToRegA) {
545    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
546    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
547    bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
548    bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
549    if (BComp != CComp)
550      return !BComp && CComp;
551  }
552
553  // If there is a use of regC between its last def (could be livein) and this
554  // instruction, then bail.
555  unsigned LastDefC = 0;
556  if (!noUseAfterLastDef(regC, Dist, LastDefC))
557    return false;
558
559  // If there is a use of regB between its last def (could be livein) and this
560  // instruction, then go ahead and make this transformation.
561  unsigned LastDefB = 0;
562  if (!noUseAfterLastDef(regB, Dist, LastDefB))
563    return true;
564
565  // Since there are no intervening uses for both registers, then commute
566  // if the def of regC is closer. Its live interval is shorter.
567  return LastDefB && LastDefC && LastDefC > LastDefB;
568}
569
570/// commuteInstruction - Commute a two-address instruction and update the basic
571/// block, distance map, and live variables if needed. Return true if it is
572/// successful.
573bool TwoAddressInstructionPass::
574commuteInstruction(MachineBasicBlock::iterator &mi,
575                   unsigned RegB, unsigned RegC, unsigned Dist) {
576  MachineInstr *MI = mi;
577  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
578  MachineInstr *NewMI = TII->commuteInstruction(MI);
579
580  if (NewMI == nullptr) {
581    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
582    return false;
583  }
584
585  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
586  assert(NewMI == MI &&
587         "TargetInstrInfo::commuteInstruction() should not return a new "
588         "instruction unless it was requested.");
589
590  // Update source register map.
591  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
592  if (FromRegC) {
593    unsigned RegA = MI->getOperand(0).getReg();
594    SrcRegMap[RegA] = FromRegC;
595  }
596
597  return true;
598}
599
600/// isProfitableToConv3Addr - Return true if it is profitable to convert the
601/// given 2-address instruction to a 3-address one.
602bool
603TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
604  // Look for situations like this:
605  // %reg1024<def> = MOV r1
606  // %reg1025<def> = MOV r0
607  // %reg1026<def> = ADD %reg1024, %reg1025
608  // r2            = MOV %reg1026
609  // Turn ADD into a 3-address instruction to avoid a copy.
610  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
611  if (!FromRegB)
612    return false;
613  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
614  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
615}
616
617/// convertInstTo3Addr - Convert the specified two-address instruction into a
618/// three address one. Return true if this transformation was successful.
619bool
620TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
621                                              MachineBasicBlock::iterator &nmi,
622                                              unsigned RegA, unsigned RegB,
623                                              unsigned Dist) {
624  // FIXME: Why does convertToThreeAddress() need an iterator reference?
625  MachineFunction::iterator MFI = MBB;
626  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
627  assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
628  if (!NewMI)
629    return false;
630
631  DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
632  DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
633  bool Sunk = false;
634
635  if (LIS)
636    LIS->ReplaceMachineInstrInMaps(mi, NewMI);
637
638  if (NewMI->findRegisterUseOperand(RegB, false, TRI))
639    // FIXME: Temporary workaround. If the new instruction doesn't
640    // uses RegB, convertToThreeAddress must have created more
641    // then one instruction.
642    Sunk = sink3AddrInstruction(NewMI, RegB, mi);
643
644  MBB->erase(mi); // Nuke the old inst.
645
646  if (!Sunk) {
647    DistanceMap.insert(std::make_pair(NewMI, Dist));
648    mi = NewMI;
649    nmi = std::next(mi);
650  }
651
652  // Update source and destination register maps.
653  SrcRegMap.erase(RegA);
654  DstRegMap.erase(RegB);
655  return true;
656}
657
658/// scanUses - Scan forward recursively for only uses, update maps if the use
659/// is a copy or a two-address instruction.
660void
661TwoAddressInstructionPass::scanUses(unsigned DstReg) {
662  SmallVector<unsigned, 4> VirtRegPairs;
663  bool IsDstPhys;
664  bool IsCopy = false;
665  unsigned NewReg = 0;
666  unsigned Reg = DstReg;
667  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
668                                                      NewReg, IsDstPhys)) {
669    if (IsCopy && !Processed.insert(UseMI))
670      break;
671
672    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
673    if (DI != DistanceMap.end())
674      // Earlier in the same MBB.Reached via a back edge.
675      break;
676
677    if (IsDstPhys) {
678      VirtRegPairs.push_back(NewReg);
679      break;
680    }
681    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
682    if (!isNew)
683      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
684    VirtRegPairs.push_back(NewReg);
685    Reg = NewReg;
686  }
687
688  if (!VirtRegPairs.empty()) {
689    unsigned ToReg = VirtRegPairs.back();
690    VirtRegPairs.pop_back();
691    while (!VirtRegPairs.empty()) {
692      unsigned FromReg = VirtRegPairs.back();
693      VirtRegPairs.pop_back();
694      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
695      if (!isNew)
696        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
697      ToReg = FromReg;
698    }
699    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
700    if (!isNew)
701      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
702  }
703}
704
705/// processCopy - If the specified instruction is not yet processed, process it
706/// if it's a copy. For a copy instruction, we find the physical registers the
707/// source and destination registers might be mapped to. These are kept in
708/// point-to maps used to determine future optimizations. e.g.
709/// v1024 = mov r0
710/// v1025 = mov r1
711/// v1026 = add v1024, v1025
712/// r1    = mov r1026
713/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
714/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
715/// potentially joined with r1 on the output side. It's worthwhile to commute
716/// 'add' to eliminate a copy.
717void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
718  if (Processed.count(MI))
719    return;
720
721  bool IsSrcPhys, IsDstPhys;
722  unsigned SrcReg, DstReg;
723  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
724    return;
725
726  if (IsDstPhys && !IsSrcPhys)
727    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
728  else if (!IsDstPhys && IsSrcPhys) {
729    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
730    if (!isNew)
731      assert(SrcRegMap[DstReg] == SrcReg &&
732             "Can't map to two src physical registers!");
733
734    scanUses(DstReg);
735  }
736
737  Processed.insert(MI);
738  return;
739}
740
741/// rescheduleMIBelowKill - If there is one more local instruction that reads
742/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
743/// instruction in order to eliminate the need for the copy.
744bool TwoAddressInstructionPass::
745rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
746                      MachineBasicBlock::iterator &nmi,
747                      unsigned Reg) {
748  // Bail immediately if we don't have LV or LIS available. We use them to find
749  // kills efficiently.
750  if (!LV && !LIS)
751    return false;
752
753  MachineInstr *MI = &*mi;
754  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
755  if (DI == DistanceMap.end())
756    // Must be created from unfolded load. Don't waste time trying this.
757    return false;
758
759  MachineInstr *KillMI = nullptr;
760  if (LIS) {
761    LiveInterval &LI = LIS->getInterval(Reg);
762    assert(LI.end() != LI.begin() &&
763           "Reg should not have empty live interval.");
764
765    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
766    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
767    if (I != LI.end() && I->start < MBBEndIdx)
768      return false;
769
770    --I;
771    KillMI = LIS->getInstructionFromIndex(I->end);
772  } else {
773    KillMI = LV->getVarInfo(Reg).findKill(MBB);
774  }
775  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
776    // Don't mess with copies, they may be coalesced later.
777    return false;
778
779  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
780      KillMI->isBranch() || KillMI->isTerminator())
781    // Don't move pass calls, etc.
782    return false;
783
784  unsigned DstReg;
785  if (isTwoAddrUse(*KillMI, Reg, DstReg))
786    return false;
787
788  bool SeenStore = true;
789  if (!MI->isSafeToMove(TII, AA, SeenStore))
790    return false;
791
792  if (TII->getInstrLatency(InstrItins, MI) > 1)
793    // FIXME: Needs more sophisticated heuristics.
794    return false;
795
796  SmallSet<unsigned, 2> Uses;
797  SmallSet<unsigned, 2> Kills;
798  SmallSet<unsigned, 2> Defs;
799  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
800    const MachineOperand &MO = MI->getOperand(i);
801    if (!MO.isReg())
802      continue;
803    unsigned MOReg = MO.getReg();
804    if (!MOReg)
805      continue;
806    if (MO.isDef())
807      Defs.insert(MOReg);
808    else {
809      Uses.insert(MOReg);
810      if (MOReg != Reg && (MO.isKill() ||
811                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
812        Kills.insert(MOReg);
813    }
814  }
815
816  // Move the copies connected to MI down as well.
817  MachineBasicBlock::iterator Begin = MI;
818  MachineBasicBlock::iterator AfterMI = std::next(Begin);
819
820  MachineBasicBlock::iterator End = AfterMI;
821  while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
822    Defs.insert(End->getOperand(0).getReg());
823    ++End;
824  }
825
826  // Check if the reschedule will not break depedencies.
827  unsigned NumVisited = 0;
828  MachineBasicBlock::iterator KillPos = KillMI;
829  ++KillPos;
830  for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
831    MachineInstr *OtherMI = I;
832    // DBG_VALUE cannot be counted against the limit.
833    if (OtherMI->isDebugValue())
834      continue;
835    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
836      return false;
837    ++NumVisited;
838    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
839        OtherMI->isBranch() || OtherMI->isTerminator())
840      // Don't move pass calls, etc.
841      return false;
842    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
843      const MachineOperand &MO = OtherMI->getOperand(i);
844      if (!MO.isReg())
845        continue;
846      unsigned MOReg = MO.getReg();
847      if (!MOReg)
848        continue;
849      if (MO.isDef()) {
850        if (Uses.count(MOReg))
851          // Physical register use would be clobbered.
852          return false;
853        if (!MO.isDead() && Defs.count(MOReg))
854          // May clobber a physical register def.
855          // FIXME: This may be too conservative. It's ok if the instruction
856          // is sunken completely below the use.
857          return false;
858      } else {
859        if (Defs.count(MOReg))
860          return false;
861        bool isKill = MO.isKill() ||
862                      (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
863        if (MOReg != Reg &&
864            ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
865          // Don't want to extend other live ranges and update kills.
866          return false;
867        if (MOReg == Reg && !isKill)
868          // We can't schedule across a use of the register in question.
869          return false;
870        // Ensure that if this is register in question, its the kill we expect.
871        assert((MOReg != Reg || OtherMI == KillMI) &&
872               "Found multiple kills of a register in a basic block");
873      }
874    }
875  }
876
877  // Move debug info as well.
878  while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
879    --Begin;
880
881  nmi = End;
882  MachineBasicBlock::iterator InsertPos = KillPos;
883  if (LIS) {
884    // We have to move the copies first so that the MBB is still well-formed
885    // when calling handleMove().
886    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
887      MachineInstr *CopyMI = MBBI;
888      ++MBBI;
889      MBB->splice(InsertPos, MBB, CopyMI);
890      LIS->handleMove(CopyMI);
891      InsertPos = CopyMI;
892    }
893    End = std::next(MachineBasicBlock::iterator(MI));
894  }
895
896  // Copies following MI may have been moved as well.
897  MBB->splice(InsertPos, MBB, Begin, End);
898  DistanceMap.erase(DI);
899
900  // Update live variables
901  if (LIS) {
902    LIS->handleMove(MI);
903  } else {
904    LV->removeVirtualRegisterKilled(Reg, KillMI);
905    LV->addVirtualRegisterKilled(Reg, MI);
906  }
907
908  DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
909  return true;
910}
911
912/// isDefTooClose - Return true if the re-scheduling will put the given
913/// instruction too close to the defs of its register dependencies.
914bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
915                                              MachineInstr *MI) {
916  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
917    if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
918      continue;
919    if (&DefMI == MI)
920      return true; // MI is defining something KillMI uses
921    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
922    if (DDI == DistanceMap.end())
923      return true;  // Below MI
924    unsigned DefDist = DDI->second;
925    assert(Dist > DefDist && "Visited def already?");
926    if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
927      return true;
928  }
929  return false;
930}
931
932/// rescheduleKillAboveMI - If there is one more local instruction that reads
933/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
934/// current two-address instruction in order to eliminate the need for the
935/// copy.
936bool TwoAddressInstructionPass::
937rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
938                      MachineBasicBlock::iterator &nmi,
939                      unsigned Reg) {
940  // Bail immediately if we don't have LV or LIS available. We use them to find
941  // kills efficiently.
942  if (!LV && !LIS)
943    return false;
944
945  MachineInstr *MI = &*mi;
946  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
947  if (DI == DistanceMap.end())
948    // Must be created from unfolded load. Don't waste time trying this.
949    return false;
950
951  MachineInstr *KillMI = nullptr;
952  if (LIS) {
953    LiveInterval &LI = LIS->getInterval(Reg);
954    assert(LI.end() != LI.begin() &&
955           "Reg should not have empty live interval.");
956
957    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
958    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
959    if (I != LI.end() && I->start < MBBEndIdx)
960      return false;
961
962    --I;
963    KillMI = LIS->getInstructionFromIndex(I->end);
964  } else {
965    KillMI = LV->getVarInfo(Reg).findKill(MBB);
966  }
967  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
968    // Don't mess with copies, they may be coalesced later.
969    return false;
970
971  unsigned DstReg;
972  if (isTwoAddrUse(*KillMI, Reg, DstReg))
973    return false;
974
975  bool SeenStore = true;
976  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
977    return false;
978
979  SmallSet<unsigned, 2> Uses;
980  SmallSet<unsigned, 2> Kills;
981  SmallSet<unsigned, 2> Defs;
982  SmallSet<unsigned, 2> LiveDefs;
983  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
984    const MachineOperand &MO = KillMI->getOperand(i);
985    if (!MO.isReg())
986      continue;
987    unsigned MOReg = MO.getReg();
988    if (MO.isUse()) {
989      if (!MOReg)
990        continue;
991      if (isDefTooClose(MOReg, DI->second, MI))
992        return false;
993      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
994      if (MOReg == Reg && !isKill)
995        return false;
996      Uses.insert(MOReg);
997      if (isKill && MOReg != Reg)
998        Kills.insert(MOReg);
999    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1000      Defs.insert(MOReg);
1001      if (!MO.isDead())
1002        LiveDefs.insert(MOReg);
1003    }
1004  }
1005
1006  // Check if the reschedule will not break depedencies.
1007  unsigned NumVisited = 0;
1008  MachineBasicBlock::iterator KillPos = KillMI;
1009  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1010    MachineInstr *OtherMI = I;
1011    // DBG_VALUE cannot be counted against the limit.
1012    if (OtherMI->isDebugValue())
1013      continue;
1014    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1015      return false;
1016    ++NumVisited;
1017    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1018        OtherMI->isBranch() || OtherMI->isTerminator())
1019      // Don't move pass calls, etc.
1020      return false;
1021    SmallVector<unsigned, 2> OtherDefs;
1022    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1023      const MachineOperand &MO = OtherMI->getOperand(i);
1024      if (!MO.isReg())
1025        continue;
1026      unsigned MOReg = MO.getReg();
1027      if (!MOReg)
1028        continue;
1029      if (MO.isUse()) {
1030        if (Defs.count(MOReg))
1031          // Moving KillMI can clobber the physical register if the def has
1032          // not been seen.
1033          return false;
1034        if (Kills.count(MOReg))
1035          // Don't want to extend other live ranges and update kills.
1036          return false;
1037        if (OtherMI != MI && MOReg == Reg &&
1038            !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1039          // We can't schedule across a use of the register in question.
1040          return false;
1041      } else {
1042        OtherDefs.push_back(MOReg);
1043      }
1044    }
1045
1046    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1047      unsigned MOReg = OtherDefs[i];
1048      if (Uses.count(MOReg))
1049        return false;
1050      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1051          LiveDefs.count(MOReg))
1052        return false;
1053      // Physical register def is seen.
1054      Defs.erase(MOReg);
1055    }
1056  }
1057
1058  // Move the old kill above MI, don't forget to move debug info as well.
1059  MachineBasicBlock::iterator InsertPos = mi;
1060  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
1061    --InsertPos;
1062  MachineBasicBlock::iterator From = KillMI;
1063  MachineBasicBlock::iterator To = std::next(From);
1064  while (std::prev(From)->isDebugValue())
1065    --From;
1066  MBB->splice(InsertPos, MBB, From, To);
1067
1068  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1069  DistanceMap.erase(DI);
1070
1071  // Update live variables
1072  if (LIS) {
1073    LIS->handleMove(KillMI);
1074  } else {
1075    LV->removeVirtualRegisterKilled(Reg, KillMI);
1076    LV->addVirtualRegisterKilled(Reg, MI);
1077  }
1078
1079  DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1080  return true;
1081}
1082
1083/// tryInstructionTransform - For the case where an instruction has a single
1084/// pair of tied register operands, attempt some transformations that may
1085/// either eliminate the tied operands or improve the opportunities for
1086/// coalescing away the register copy.  Returns true if no copy needs to be
1087/// inserted to untie mi's operands (either because they were untied, or
1088/// because mi was rescheduled, and will be visited again later). If the
1089/// shouldOnlyCommute flag is true, only instruction commutation is attempted.
1090bool TwoAddressInstructionPass::
1091tryInstructionTransform(MachineBasicBlock::iterator &mi,
1092                        MachineBasicBlock::iterator &nmi,
1093                        unsigned SrcIdx, unsigned DstIdx,
1094                        unsigned Dist, bool shouldOnlyCommute) {
1095  if (OptLevel == CodeGenOpt::None)
1096    return false;
1097
1098  MachineInstr &MI = *mi;
1099  unsigned regA = MI.getOperand(DstIdx).getReg();
1100  unsigned regB = MI.getOperand(SrcIdx).getReg();
1101
1102  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1103         "cannot make instruction into two-address form");
1104  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1105
1106  if (TargetRegisterInfo::isVirtualRegister(regA))
1107    scanUses(regA);
1108
1109  // Check if it is profitable to commute the operands.
1110  unsigned SrcOp1, SrcOp2;
1111  unsigned regC = 0;
1112  unsigned regCIdx = ~0U;
1113  bool TryCommute = false;
1114  bool AggressiveCommute = false;
1115  if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1116      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1117    if (SrcIdx == SrcOp1)
1118      regCIdx = SrcOp2;
1119    else if (SrcIdx == SrcOp2)
1120      regCIdx = SrcOp1;
1121
1122    if (regCIdx != ~0U) {
1123      regC = MI.getOperand(regCIdx).getReg();
1124      if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
1125        // If C dies but B does not, swap the B and C operands.
1126        // This makes the live ranges of A and C joinable.
1127        TryCommute = true;
1128      else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
1129        TryCommute = true;
1130        AggressiveCommute = true;
1131      }
1132    }
1133  }
1134
1135  // If it's profitable to commute, try to do so.
1136  if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
1137    ++NumCommuted;
1138    if (AggressiveCommute)
1139      ++NumAggrCommuted;
1140    return false;
1141  }
1142
1143  if (shouldOnlyCommute)
1144    return false;
1145
1146  // If there is one more use of regB later in the same MBB, consider
1147  // re-schedule this MI below it.
1148  if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1149    ++NumReSchedDowns;
1150    return true;
1151  }
1152
1153  if (MI.isConvertibleTo3Addr()) {
1154    // This instruction is potentially convertible to a true
1155    // three-address instruction.  Check if it is profitable.
1156    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1157      // Try to convert it.
1158      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1159        ++NumConvertedTo3Addr;
1160        return true; // Done with this instruction.
1161      }
1162    }
1163  }
1164
1165  // If there is one more use of regB later in the same MBB, consider
1166  // re-schedule it before this MI if it's legal.
1167  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1168    ++NumReSchedUps;
1169    return true;
1170  }
1171
1172  // If this is an instruction with a load folded into it, try unfolding
1173  // the load, e.g. avoid this:
1174  //   movq %rdx, %rcx
1175  //   addq (%rax), %rcx
1176  // in favor of this:
1177  //   movq (%rax), %rcx
1178  //   addq %rdx, %rcx
1179  // because it's preferable to schedule a load than a register copy.
1180  if (MI.mayLoad() && !regBKilled) {
1181    // Determine if a load can be unfolded.
1182    unsigned LoadRegIndex;
1183    unsigned NewOpc =
1184      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1185                                      /*UnfoldLoad=*/true,
1186                                      /*UnfoldStore=*/false,
1187                                      &LoadRegIndex);
1188    if (NewOpc != 0) {
1189      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1190      if (UnfoldMCID.getNumDefs() == 1) {
1191        // Unfold the load.
1192        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1193        const TargetRegisterClass *RC =
1194          TRI->getAllocatableClass(
1195            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1196        unsigned Reg = MRI->createVirtualRegister(RC);
1197        SmallVector<MachineInstr *, 2> NewMIs;
1198        if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1199                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1200                                      NewMIs)) {
1201          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1202          return false;
1203        }
1204        assert(NewMIs.size() == 2 &&
1205               "Unfolded a load into multiple instructions!");
1206        // The load was previously folded, so this is the only use.
1207        NewMIs[1]->addRegisterKilled(Reg, TRI);
1208
1209        // Tentatively insert the instructions into the block so that they
1210        // look "normal" to the transformation logic.
1211        MBB->insert(mi, NewMIs[0]);
1212        MBB->insert(mi, NewMIs[1]);
1213
1214        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1215                     << "2addr:    NEW INST: " << *NewMIs[1]);
1216
1217        // Transform the instruction, now that it no longer has a load.
1218        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1219        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1220        MachineBasicBlock::iterator NewMI = NewMIs[1];
1221        bool TransformResult =
1222          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1223        (void)TransformResult;
1224        assert(!TransformResult &&
1225               "tryInstructionTransform() should return false.");
1226        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1227          // Success, or at least we made an improvement. Keep the unfolded
1228          // instructions and discard the original.
1229          if (LV) {
1230            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1231              MachineOperand &MO = MI.getOperand(i);
1232              if (MO.isReg() &&
1233                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1234                if (MO.isUse()) {
1235                  if (MO.isKill()) {
1236                    if (NewMIs[0]->killsRegister(MO.getReg()))
1237                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1238                    else {
1239                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1240                             "Kill missing after load unfold!");
1241                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1242                    }
1243                  }
1244                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1245                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1246                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1247                  else {
1248                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1249                           "Dead flag missing after load unfold!");
1250                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1251                  }
1252                }
1253              }
1254            }
1255            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1256          }
1257
1258          SmallVector<unsigned, 4> OrigRegs;
1259          if (LIS) {
1260            for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1261                 MOE = MI.operands_end(); MOI != MOE; ++MOI) {
1262              if (MOI->isReg())
1263                OrigRegs.push_back(MOI->getReg());
1264            }
1265          }
1266
1267          MI.eraseFromParent();
1268
1269          // Update LiveIntervals.
1270          if (LIS) {
1271            MachineBasicBlock::iterator Begin(NewMIs[0]);
1272            MachineBasicBlock::iterator End(NewMIs[1]);
1273            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1274          }
1275
1276          mi = NewMIs[1];
1277        } else {
1278          // Transforming didn't eliminate the tie and didn't lead to an
1279          // improvement. Clean up the unfolded instructions and keep the
1280          // original.
1281          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1282          NewMIs[0]->eraseFromParent();
1283          NewMIs[1]->eraseFromParent();
1284        }
1285      }
1286    }
1287  }
1288
1289  return false;
1290}
1291
1292// Collect tied operands of MI that need to be handled.
1293// Rewrite trivial cases immediately.
1294// Return true if any tied operands where found, including the trivial ones.
1295bool TwoAddressInstructionPass::
1296collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1297  const MCInstrDesc &MCID = MI->getDesc();
1298  bool AnyOps = false;
1299  unsigned NumOps = MI->getNumOperands();
1300
1301  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1302    unsigned DstIdx = 0;
1303    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1304      continue;
1305    AnyOps = true;
1306    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1307    MachineOperand &DstMO = MI->getOperand(DstIdx);
1308    unsigned SrcReg = SrcMO.getReg();
1309    unsigned DstReg = DstMO.getReg();
1310    // Tied constraint already satisfied?
1311    if (SrcReg == DstReg)
1312      continue;
1313
1314    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1315
1316    // Deal with <undef> uses immediately - simply rewrite the src operand.
1317    if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1318      // Constrain the DstReg register class if required.
1319      if (TargetRegisterInfo::isVirtualRegister(DstReg))
1320        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1321                                                             TRI, *MF))
1322          MRI->constrainRegClass(DstReg, RC);
1323      SrcMO.setReg(DstReg);
1324      SrcMO.setSubReg(0);
1325      DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1326      continue;
1327    }
1328    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1329  }
1330  return AnyOps;
1331}
1332
1333// Process a list of tied MI operands that all use the same source register.
1334// The tied pairs are of the form (SrcIdx, DstIdx).
1335void
1336TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1337                                            TiedPairList &TiedPairs,
1338                                            unsigned &Dist) {
1339  bool IsEarlyClobber = false;
1340  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1341    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1342    IsEarlyClobber |= DstMO.isEarlyClobber();
1343  }
1344
1345  bool RemovedKillFlag = false;
1346  bool AllUsesCopied = true;
1347  unsigned LastCopiedReg = 0;
1348  SlotIndex LastCopyIdx;
1349  unsigned RegB = 0;
1350  unsigned SubRegB = 0;
1351  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1352    unsigned SrcIdx = TiedPairs[tpi].first;
1353    unsigned DstIdx = TiedPairs[tpi].second;
1354
1355    const MachineOperand &DstMO = MI->getOperand(DstIdx);
1356    unsigned RegA = DstMO.getReg();
1357
1358    // Grab RegB from the instruction because it may have changed if the
1359    // instruction was commuted.
1360    RegB = MI->getOperand(SrcIdx).getReg();
1361    SubRegB = MI->getOperand(SrcIdx).getSubReg();
1362
1363    if (RegA == RegB) {
1364      // The register is tied to multiple destinations (or else we would
1365      // not have continued this far), but this use of the register
1366      // already matches the tied destination.  Leave it.
1367      AllUsesCopied = false;
1368      continue;
1369    }
1370    LastCopiedReg = RegA;
1371
1372    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1373           "cannot make instruction into two-address form");
1374
1375#ifndef NDEBUG
1376    // First, verify that we don't have a use of "a" in the instruction
1377    // (a = b + a for example) because our transformation will not
1378    // work. This should never occur because we are in SSA form.
1379    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1380      assert(i == DstIdx ||
1381             !MI->getOperand(i).isReg() ||
1382             MI->getOperand(i).getReg() != RegA);
1383#endif
1384
1385    // Emit a copy.
1386    MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1387                                      TII->get(TargetOpcode::COPY), RegA);
1388    // If this operand is folding a truncation, the truncation now moves to the
1389    // copy so that the register classes remain valid for the operands.
1390    MIB.addReg(RegB, 0, SubRegB);
1391    const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1392    if (SubRegB) {
1393      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1394        assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1395                                             SubRegB) &&
1396               "tied subregister must be a truncation");
1397        // The superreg class will not be used to constrain the subreg class.
1398        RC = nullptr;
1399      }
1400      else {
1401        assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1402               && "tied subregister must be a truncation");
1403      }
1404    }
1405
1406    // Update DistanceMap.
1407    MachineBasicBlock::iterator PrevMI = MI;
1408    --PrevMI;
1409    DistanceMap.insert(std::make_pair(PrevMI, Dist));
1410    DistanceMap[MI] = ++Dist;
1411
1412    if (LIS) {
1413      LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1414
1415      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1416        LiveInterval &LI = LIS->getInterval(RegA);
1417        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1418        SlotIndex endIdx =
1419          LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1420        LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1421      }
1422    }
1423
1424    DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1425
1426    MachineOperand &MO = MI->getOperand(SrcIdx);
1427    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1428           "inconsistent operand info for 2-reg pass");
1429    if (MO.isKill()) {
1430      MO.setIsKill(false);
1431      RemovedKillFlag = true;
1432    }
1433
1434    // Make sure regA is a legal regclass for the SrcIdx operand.
1435    if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1436        TargetRegisterInfo::isVirtualRegister(RegB))
1437      MRI->constrainRegClass(RegA, RC);
1438    MO.setReg(RegA);
1439    // The getMatchingSuper asserts guarantee that the register class projected
1440    // by SubRegB is compatible with RegA with no subregister. So regardless of
1441    // whether the dest oper writes a subreg, the source oper should not.
1442    MO.setSubReg(0);
1443
1444    // Propagate SrcRegMap.
1445    SrcRegMap[RegA] = RegB;
1446  }
1447
1448
1449  if (AllUsesCopied) {
1450    if (!IsEarlyClobber) {
1451      // Replace other (un-tied) uses of regB with LastCopiedReg.
1452      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1453        MachineOperand &MO = MI->getOperand(i);
1454        if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
1455            MO.isUse()) {
1456          if (MO.isKill()) {
1457            MO.setIsKill(false);
1458            RemovedKillFlag = true;
1459          }
1460          MO.setReg(LastCopiedReg);
1461          MO.setSubReg(0);
1462        }
1463      }
1464    }
1465
1466    // Update live variables for regB.
1467    if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1468      MachineBasicBlock::iterator PrevMI = MI;
1469      --PrevMI;
1470      LV->addVirtualRegisterKilled(RegB, PrevMI);
1471    }
1472
1473    // Update LiveIntervals.
1474    if (LIS) {
1475      LiveInterval &LI = LIS->getInterval(RegB);
1476      SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1477      LiveInterval::const_iterator I = LI.find(MIIdx);
1478      assert(I != LI.end() && "RegB must be live-in to use.");
1479
1480      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1481      if (I->end == UseIdx)
1482        LI.removeSegment(LastCopyIdx, UseIdx);
1483    }
1484
1485  } else if (RemovedKillFlag) {
1486    // Some tied uses of regB matched their destination registers, so
1487    // regB is still used in this instruction, but a kill flag was
1488    // removed from a different tied use of regB, so now we need to add
1489    // a kill flag to one of the remaining uses of regB.
1490    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1491      MachineOperand &MO = MI->getOperand(i);
1492      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1493        MO.setIsKill(true);
1494        break;
1495      }
1496    }
1497  }
1498}
1499
1500/// runOnMachineFunction - Reduce two-address instructions to two operands.
1501///
1502bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1503  MF = &Func;
1504  const TargetMachine &TM = MF->getTarget();
1505  MRI = &MF->getRegInfo();
1506  TII = TM.getInstrInfo();
1507  TRI = TM.getRegisterInfo();
1508  InstrItins = TM.getInstrItineraryData();
1509  LV = getAnalysisIfAvailable<LiveVariables>();
1510  LIS = getAnalysisIfAvailable<LiveIntervals>();
1511  AA = &getAnalysis<AliasAnalysis>();
1512  OptLevel = TM.getOptLevel();
1513
1514  bool MadeChange = false;
1515
1516  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1517  DEBUG(dbgs() << "********** Function: "
1518        << MF->getName() << '\n');
1519
1520  // This pass takes the function out of SSA form.
1521  MRI->leaveSSA();
1522
1523  TiedOperandMap TiedOperands;
1524  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1525       MBBI != MBBE; ++MBBI) {
1526    MBB = MBBI;
1527    unsigned Dist = 0;
1528    DistanceMap.clear();
1529    SrcRegMap.clear();
1530    DstRegMap.clear();
1531    Processed.clear();
1532    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1533         mi != me; ) {
1534      MachineBasicBlock::iterator nmi = std::next(mi);
1535      if (mi->isDebugValue()) {
1536        mi = nmi;
1537        continue;
1538      }
1539
1540      // Expand REG_SEQUENCE instructions. This will position mi at the first
1541      // expanded instruction.
1542      if (mi->isRegSequence())
1543        eliminateRegSequence(mi);
1544
1545      DistanceMap.insert(std::make_pair(mi, ++Dist));
1546
1547      processCopy(&*mi);
1548
1549      // First scan through all the tied register uses in this instruction
1550      // and record a list of pairs of tied operands for each register.
1551      if (!collectTiedOperands(mi, TiedOperands)) {
1552        mi = nmi;
1553        continue;
1554      }
1555
1556      ++NumTwoAddressInstrs;
1557      MadeChange = true;
1558      DEBUG(dbgs() << '\t' << *mi);
1559
1560      // If the instruction has a single pair of tied operands, try some
1561      // transformations that may either eliminate the tied operands or
1562      // improve the opportunities for coalescing away the register copy.
1563      if (TiedOperands.size() == 1) {
1564        SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
1565          = TiedOperands.begin()->second;
1566        if (TiedPairs.size() == 1) {
1567          unsigned SrcIdx = TiedPairs[0].first;
1568          unsigned DstIdx = TiedPairs[0].second;
1569          unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1570          unsigned DstReg = mi->getOperand(DstIdx).getReg();
1571          if (SrcReg != DstReg &&
1572              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1573            // The tied operands have been eliminated or shifted further down the
1574            // block to ease elimination. Continue processing with 'nmi'.
1575            TiedOperands.clear();
1576            mi = nmi;
1577            continue;
1578          }
1579        }
1580      }
1581
1582      // Now iterate over the information collected above.
1583      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1584             OE = TiedOperands.end(); OI != OE; ++OI) {
1585        processTiedPairs(mi, OI->second, Dist);
1586        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1587      }
1588
1589      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1590      if (mi->isInsertSubreg()) {
1591        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1592        // To   %reg:subidx = COPY %subreg
1593        unsigned SubIdx = mi->getOperand(3).getImm();
1594        mi->RemoveOperand(3);
1595        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1596        mi->getOperand(0).setSubReg(SubIdx);
1597        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1598        mi->RemoveOperand(1);
1599        mi->setDesc(TII->get(TargetOpcode::COPY));
1600        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1601      }
1602
1603      // Clear TiedOperands here instead of at the top of the loop
1604      // since most instructions do not have tied operands.
1605      TiedOperands.clear();
1606      mi = nmi;
1607    }
1608  }
1609
1610  if (LIS)
1611    MF->verify(this, "After two-address instruction pass");
1612
1613  return MadeChange;
1614}
1615
1616/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1617///
1618/// The instruction is turned into a sequence of sub-register copies:
1619///
1620///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1621///
1622/// Becomes:
1623///
1624///   %dst:ssub0<def,undef> = COPY %v1
1625///   %dst:ssub1<def> = COPY %v2
1626///
1627void TwoAddressInstructionPass::
1628eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1629  MachineInstr *MI = MBBI;
1630  unsigned DstReg = MI->getOperand(0).getReg();
1631  if (MI->getOperand(0).getSubReg() ||
1632      TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1633      !(MI->getNumOperands() & 1)) {
1634    DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1635    llvm_unreachable(nullptr);
1636  }
1637
1638  SmallVector<unsigned, 4> OrigRegs;
1639  if (LIS) {
1640    OrigRegs.push_back(MI->getOperand(0).getReg());
1641    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1642      OrigRegs.push_back(MI->getOperand(i).getReg());
1643  }
1644
1645  bool DefEmitted = false;
1646  for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1647    MachineOperand &UseMO = MI->getOperand(i);
1648    unsigned SrcReg = UseMO.getReg();
1649    unsigned SubIdx = MI->getOperand(i+1).getImm();
1650    // Nothing needs to be inserted for <undef> operands.
1651    if (UseMO.isUndef())
1652      continue;
1653
1654    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1655    // might insert a COPY that uses SrcReg after is was killed.
1656    bool isKill = UseMO.isKill();
1657    if (isKill)
1658      for (unsigned j = i + 2; j < e; j += 2)
1659        if (MI->getOperand(j).getReg() == SrcReg) {
1660          MI->getOperand(j).setIsKill();
1661          UseMO.setIsKill(false);
1662          isKill = false;
1663          break;
1664        }
1665
1666    // Insert the sub-register copy.
1667    MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1668                                   TII->get(TargetOpcode::COPY))
1669      .addReg(DstReg, RegState::Define, SubIdx)
1670      .addOperand(UseMO);
1671
1672    // The first def needs an <undef> flag because there is no live register
1673    // before it.
1674    if (!DefEmitted) {
1675      CopyMI->getOperand(0).setIsUndef(true);
1676      // Return an iterator pointing to the first inserted instr.
1677      MBBI = CopyMI;
1678    }
1679    DefEmitted = true;
1680
1681    // Update LiveVariables' kill info.
1682    if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1683      LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1684
1685    DEBUG(dbgs() << "Inserted: " << *CopyMI);
1686  }
1687
1688  MachineBasicBlock::iterator EndMBBI =
1689      std::next(MachineBasicBlock::iterator(MI));
1690
1691  if (!DefEmitted) {
1692    DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1693    MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1694    for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1695      MI->RemoveOperand(j);
1696  } else {
1697    DEBUG(dbgs() << "Eliminated: " << *MI);
1698    MI->eraseFromParent();
1699  }
1700
1701  // Udpate LiveIntervals.
1702  if (LIS)
1703    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1704}
1705