JITEmitter.cpp revision 13af11acbf23664d61f73ddac54bc05a9733c051
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDebugRegisterer.h"
18#include "JITDwarfEmitter.h"
19#include "llvm/ADT/OwningPtr.h"
20#include "llvm/Constants.h"
21#include "llvm/Module.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Analysis/DebugInfo.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRelocation.h"
30#include "llvm/ExecutionEngine/GenericValue.h"
31#include "llvm/ExecutionEngine/JITEventListener.h"
32#include "llvm/ExecutionEngine/JITMemoryManager.h"
33#include "llvm/CodeGen/MachineCodeInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetJITInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/MutexGuard.h"
41#include "llvm/Support/ValueHandle.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/System/Disassembler.h"
44#include "llvm/System/Memory.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/ValueMap.h"
51#include <algorithm>
52#ifndef NDEBUG
53#include <iomanip>
54#endif
55using namespace llvm;
56
57STATISTIC(NumBytes, "Number of bytes of machine code compiled");
58STATISTIC(NumRelos, "Number of relocations applied");
59STATISTIC(NumRetries, "Number of retries with more memory");
60static JIT *TheJIT = 0;
61
62
63// A declaration may stop being a declaration once it's fully read from bitcode.
64// This function returns true if F is fully read and is still a declaration.
65static bool isNonGhostDeclaration(const Function *F) {
66  return F->isDeclaration() && !F->hasNotBeenReadFromBitcode();
67}
68
69//===----------------------------------------------------------------------===//
70// JIT lazy compilation code.
71//
72namespace {
73  class JITEmitter;
74  class JITResolverState;
75
76  template<typename ValueTy>
77  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
78    typedef JITResolverState *ExtraData;
79    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
80      assert(false && "The JIT doesn't know how to handle a"
81             " RAUW on a value it has emitted.");
82    }
83  };
84
85  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
86    typedef JITResolverState *ExtraData;
87    static void onDelete(JITResolverState *JRS, Function *F);
88  };
89
90  class JITResolverState {
91  public:
92    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
93      FunctionToLazyStubMapTy;
94    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
95    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
96                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
97    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
98  private:
99    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
100    /// particular function so that we can reuse them if necessary.
101    FunctionToLazyStubMapTy FunctionToLazyStubMap;
102
103    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
104    /// site corresponds to, and vice versa.
105    CallSiteToFunctionMapTy CallSiteToFunctionMap;
106    FunctionToCallSitesMapTy FunctionToCallSitesMap;
107
108    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
109    /// particular GlobalVariable so that we can reuse them if necessary.
110    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
111
112  public:
113    JITResolverState() : FunctionToLazyStubMap(this),
114                         FunctionToCallSitesMap(this) {}
115
116    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
117      const MutexGuard& locked) {
118      assert(locked.holds(TheJIT->lock));
119      return FunctionToLazyStubMap;
120    }
121
122    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
123      assert(locked.holds(TheJIT->lock));
124      return GlobalToIndirectSymMap;
125    }
126
127    pair<void *, Function *> LookupFunctionFromCallSite(
128        const MutexGuard &locked, void *CallSite) const {
129      assert(locked.holds(TheJIT->lock));
130
131      // The address given to us for the stub may not be exactly right, it might be
132      // a little bit after the stub.  As such, use upper_bound to find it.
133      CallSiteToFunctionMapTy::const_iterator I =
134        CallSiteToFunctionMap.upper_bound(CallSite);
135      assert(I != CallSiteToFunctionMap.begin() &&
136             "This is not a known call site!");
137      --I;
138      return *I;
139    }
140
141    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
142      assert(locked.holds(TheJIT->lock));
143
144      bool Inserted = CallSiteToFunctionMap.insert(
145          std::make_pair(CallSite, F)).second;
146      (void)Inserted;
147      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
148      FunctionToCallSitesMap[F].insert(CallSite);
149    }
150
151    // Returns the Function of the stub if a stub was erased, or NULL if there
152    // was no stub.  This function uses the call-site->function map to find a
153    // relevant function, but asserts that only stubs and not other call sites
154    // will be passed in.
155    Function *EraseStub(const MutexGuard &locked, void *Stub) {
156      CallSiteToFunctionMapTy::iterator C2F_I =
157        CallSiteToFunctionMap.find(Stub);
158      if (C2F_I == CallSiteToFunctionMap.end()) {
159        // Not a stub.
160        return NULL;
161      }
162
163      Function *const F = C2F_I->second;
164#ifndef NDEBUG
165      void *RealStub = FunctionToLazyStubMap.lookup(F);
166      assert(RealStub == Stub &&
167             "Call-site that wasn't a stub pass in to EraseStub");
168#endif
169      FunctionToLazyStubMap.erase(F);
170      CallSiteToFunctionMap.erase(C2F_I);
171
172      // Remove the stub from the function->call-sites map, and remove the whole
173      // entry from the map if that was the last call site.
174      FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
175      assert(F2C_I != FunctionToCallSitesMap.end() &&
176             "FunctionToCallSitesMap broken");
177      bool Erased = F2C_I->second.erase(Stub);
178      (void)Erased;
179      assert(Erased && "FunctionToCallSitesMap broken");
180      if (F2C_I->second.empty())
181        FunctionToCallSitesMap.erase(F2C_I);
182
183      return F;
184    }
185
186    void EraseAllCallSites(const MutexGuard &locked, Function *F) {
187      assert(locked.holds(TheJIT->lock));
188      EraseAllCallSitesPrelocked(F);
189    }
190    void EraseAllCallSitesPrelocked(Function *F) {
191      FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
192      if (F2C == FunctionToCallSitesMap.end())
193        return;
194      for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
195             E = F2C->second.end(); I != E; ++I) {
196        bool Erased = CallSiteToFunctionMap.erase(*I);
197        (void)Erased;
198        assert(Erased && "Missing call site->function mapping");
199      }
200      FunctionToCallSitesMap.erase(F2C);
201    }
202  };
203
204  /// JITResolver - Keep track of, and resolve, call sites for functions that
205  /// have not yet been compiled.
206  class JITResolver {
207    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
208    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
209    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
210
211    /// LazyResolverFn - The target lazy resolver function that we actually
212    /// rewrite instructions to use.
213    TargetJITInfo::LazyResolverFn LazyResolverFn;
214
215    JITResolverState state;
216
217    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
218    /// for external functions.  TODO: Of course, external functions don't need
219    /// a lazy stub.  It's actually here to make it more likely that far calls
220    /// succeed, but no single stub can guarantee that.  I'll remove this in a
221    /// subsequent checkin when I actually fix far calls.
222    std::map<void*, void*> ExternalFnToStubMap;
223
224    /// revGOTMap - map addresses to indexes in the GOT
225    std::map<void*, unsigned> revGOTMap;
226    unsigned nextGOTIndex;
227
228    JITEmitter &JE;
229
230    static JITResolver *TheJITResolver;
231  public:
232    explicit JITResolver(JIT &jit, JITEmitter &je) : nextGOTIndex(0), JE(je) {
233      TheJIT = &jit;
234
235      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
236      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
237      TheJITResolver = this;
238    }
239
240    ~JITResolver() {
241      TheJITResolver = 0;
242    }
243
244    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
245    /// lazy-compilation stub if it has already been created.
246    void *getLazyFunctionStubIfAvailable(Function *F);
247
248    /// getLazyFunctionStub - This returns a pointer to a function's
249    /// lazy-compilation stub, creating one on demand as needed.
250    void *getLazyFunctionStub(Function *F);
251
252    /// getExternalFunctionStub - Return a stub for the function at the
253    /// specified address, created lazily on demand.
254    void *getExternalFunctionStub(void *FnAddr);
255
256    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
257    /// specified GV address.
258    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
259
260    void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
261                           SmallVectorImpl<void*> &Ptrs);
262
263    GlobalValue *invalidateStub(void *Stub);
264
265    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
266    /// an address.  This function only manages slots, it does not manage the
267    /// contents of the slots or the memory associated with the GOT.
268    unsigned getGOTIndexForAddr(void *addr);
269
270    /// JITCompilerFn - This function is called to resolve a stub to a compiled
271    /// address.  If the LLVM Function corresponding to the stub has not yet
272    /// been compiled, this function compiles it first.
273    static void *JITCompilerFn(void *Stub);
274  };
275
276  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
277  /// used to output functions to memory for execution.
278  class JITEmitter : public JITCodeEmitter {
279    JITMemoryManager *MemMgr;
280
281    // When outputting a function stub in the context of some other function, we
282    // save BufferBegin/BufferEnd/CurBufferPtr here.
283    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
284
285    // When reattempting to JIT a function after running out of space, we store
286    // the estimated size of the function we're trying to JIT here, so we can
287    // ask the memory manager for at least this much space.  When we
288    // successfully emit the function, we reset this back to zero.
289    uintptr_t SizeEstimate;
290
291    /// Relocations - These are the relocations that the function needs, as
292    /// emitted.
293    std::vector<MachineRelocation> Relocations;
294
295    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
296    /// It is filled in by the StartMachineBasicBlock callback and queried by
297    /// the getMachineBasicBlockAddress callback.
298    std::vector<uintptr_t> MBBLocations;
299
300    /// ConstantPool - The constant pool for the current function.
301    ///
302    MachineConstantPool *ConstantPool;
303
304    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
305    ///
306    void *ConstantPoolBase;
307
308    /// ConstPoolAddresses - Addresses of individual constant pool entries.
309    ///
310    SmallVector<uintptr_t, 8> ConstPoolAddresses;
311
312    /// JumpTable - The jump tables for the current function.
313    ///
314    MachineJumpTableInfo *JumpTable;
315
316    /// JumpTableBase - A pointer to the first entry in the jump table.
317    ///
318    void *JumpTableBase;
319
320    /// Resolver - This contains info about the currently resolved functions.
321    JITResolver Resolver;
322
323    /// DE - The dwarf emitter for the jit.
324    OwningPtr<JITDwarfEmitter> DE;
325
326    /// DR - The debug registerer for the jit.
327    OwningPtr<JITDebugRegisterer> DR;
328
329    /// LabelLocations - This vector is a mapping from Label ID's to their
330    /// address.
331    std::vector<uintptr_t> LabelLocations;
332
333    /// MMI - Machine module info for exception informations
334    MachineModuleInfo* MMI;
335
336    // GVSet - a set to keep track of which globals have been seen
337    SmallPtrSet<const GlobalVariable*, 8> GVSet;
338
339    // CurFn - The llvm function being emitted.  Only valid during
340    // finishFunction().
341    const Function *CurFn;
342
343    /// Information about emitted code, which is passed to the
344    /// JITEventListeners.  This is reset in startFunction and used in
345    /// finishFunction.
346    JITEvent_EmittedFunctionDetails EmissionDetails;
347
348    struct EmittedCode {
349      void *FunctionBody;  // Beginning of the function's allocation.
350      void *Code;  // The address the function's code actually starts at.
351      void *ExceptionTable;
352      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
353    };
354    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
355      typedef JITEmitter *ExtraData;
356      static void onDelete(JITEmitter *, const Function*);
357      static void onRAUW(JITEmitter *, const Function*, const Function*);
358    };
359    ValueMap<const Function *, EmittedCode,
360             EmittedFunctionConfig> EmittedFunctions;
361
362    // CurFnStubUses - For a given Function, a vector of stubs that it
363    // references.  This facilitates the JIT detecting that a stub is no
364    // longer used, so that it may be deallocated.
365    DenseMap<AssertingVH<const Function>, SmallVector<void*, 1> > CurFnStubUses;
366
367    // StubFnRefs - For a given pointer to a stub, a set of Functions which
368    // reference the stub.  When the count of a stub's references drops to zero,
369    // the stub is unused.
370    DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
371
372    DILocation PrevDLT;
373
374  public:
375    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
376      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
377        EmittedFunctions(this), PrevDLT(NULL) {
378      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
379      if (jit.getJITInfo().needsGOT()) {
380        MemMgr->AllocateGOT();
381        DEBUG(dbgs() << "JIT is managing a GOT\n");
382      }
383
384      if (DwarfExceptionHandling || JITEmitDebugInfo) {
385        DE.reset(new JITDwarfEmitter(jit));
386      }
387      if (JITEmitDebugInfo) {
388        DR.reset(new JITDebugRegisterer(TM));
389      }
390    }
391    ~JITEmitter() {
392      delete MemMgr;
393    }
394
395    /// classof - Methods for support type inquiry through isa, cast, and
396    /// dyn_cast:
397    ///
398    static inline bool classof(const JITEmitter*) { return true; }
399    static inline bool classof(const MachineCodeEmitter*) { return true; }
400
401    JITResolver &getJITResolver() { return Resolver; }
402
403    virtual void startFunction(MachineFunction &F);
404    virtual bool finishFunction(MachineFunction &F);
405
406    void emitConstantPool(MachineConstantPool *MCP);
407    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
408    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
409
410    void startGVStub(const GlobalValue* GV,
411                     unsigned StubSize, unsigned Alignment = 1);
412    void startGVStub(void *Buffer, unsigned StubSize);
413    void finishGVStub();
414    virtual void *allocIndirectGV(const GlobalValue *GV,
415                                  const uint8_t *Buffer, size_t Size,
416                                  unsigned Alignment);
417
418    /// allocateSpace - Reserves space in the current block if any, or
419    /// allocate a new one of the given size.
420    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
421
422    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
423    /// this method does not allocate memory in the current output buffer,
424    /// because a global may live longer than the current function.
425    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
426
427    virtual void addRelocation(const MachineRelocation &MR) {
428      Relocations.push_back(MR);
429    }
430
431    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
432      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
433        MBBLocations.resize((MBB->getNumber()+1)*2);
434      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
435      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
436                   << (void*) getCurrentPCValue() << "]\n");
437    }
438
439    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
440    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
441
442    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
443      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
444             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
445      return MBBLocations[MBB->getNumber()];
446    }
447
448    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
449    /// given function.  Increase the minimum allocation size so that we get
450    /// more memory next time.
451    void retryWithMoreMemory(MachineFunction &F);
452
453    /// deallocateMemForFunction - Deallocate all memory for the specified
454    /// function body.
455    void deallocateMemForFunction(const Function *F);
456
457    /// AddStubToCurrentFunction - Mark the current function being JIT'd as
458    /// using the stub at the specified address. Allows
459    /// deallocateMemForFunction to also remove stubs no longer referenced.
460    void AddStubToCurrentFunction(void *Stub);
461
462    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
463
464    virtual void emitLabel(uint64_t LabelID) {
465      if (LabelLocations.size() <= LabelID)
466        LabelLocations.resize((LabelID+1)*2);
467      LabelLocations[LabelID] = getCurrentPCValue();
468    }
469
470    virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
471      assert(LabelLocations.size() > (unsigned)LabelID &&
472             LabelLocations[LabelID] && "Label not emitted!");
473      return LabelLocations[LabelID];
474    }
475
476    virtual void setModuleInfo(MachineModuleInfo* Info) {
477      MMI = Info;
478      if (DE.get()) DE->setModuleInfo(Info);
479    }
480
481    void setMemoryExecutable() {
482      MemMgr->setMemoryExecutable();
483    }
484
485    JITMemoryManager *getMemMgr() const { return MemMgr; }
486
487  private:
488    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
489                             bool MayNeedFarStub);
490    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
491    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
492    unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
493    unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
494    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
495  };
496}
497
498JITResolver *JITResolver::TheJITResolver = 0;
499
500void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
501  JRS->EraseAllCallSitesPrelocked(F);
502}
503
504/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
505/// if it has already been created.
506void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
507  MutexGuard locked(TheJIT->lock);
508
509  // If we already have a stub for this function, recycle it.
510  return state.getFunctionToLazyStubMap(locked).lookup(F);
511}
512
513/// getFunctionStub - This returns a pointer to a function stub, creating
514/// one on demand as needed.
515void *JITResolver::getLazyFunctionStub(Function *F) {
516  MutexGuard locked(TheJIT->lock);
517
518  // If we already have a lazy stub for this function, recycle it.
519  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
520  if (Stub) return Stub;
521
522  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
523  // must resolve the symbol now.
524  void *Actual = TheJIT->isCompilingLazily()
525    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
526
527  // If this is an external declaration, attempt to resolve the address now
528  // to place in the stub.
529  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
530    Actual = TheJIT->getPointerToFunction(F);
531
532    // If we resolved the symbol to a null address (eg. a weak external)
533    // don't emit a stub. Return a null pointer to the application.
534    if (!Actual) return 0;
535  }
536
537  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
538  JE.startGVStub(F, SL.Size, SL.Alignment);
539  // Codegen a new stub, calling the lazy resolver or the actual address of the
540  // external function, if it was resolved.
541  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
542  JE.finishGVStub();
543
544  if (Actual != (void*)(intptr_t)LazyResolverFn) {
545    // If we are getting the stub for an external function, we really want the
546    // address of the stub in the GlobalAddressMap for the JIT, not the address
547    // of the external function.
548    TheJIT->updateGlobalMapping(F, Stub);
549  }
550
551  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
552        << F->getName() << "'\n");
553
554  // Finally, keep track of the stub-to-Function mapping so that the
555  // JITCompilerFn knows which function to compile!
556  state.AddCallSite(locked, Stub, F);
557
558  // If we are JIT'ing non-lazily but need to call a function that does not
559  // exist yet, add it to the JIT's work list so that we can fill in the stub
560  // address later.
561  if (!Actual && !TheJIT->isCompilingLazily())
562    if (!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage())
563      TheJIT->addPendingFunction(F);
564
565  return Stub;
566}
567
568/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
569/// GV address.
570void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
571  MutexGuard locked(TheJIT->lock);
572
573  // If we already have a stub for this global variable, recycle it.
574  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
575  if (IndirectSym) return IndirectSym;
576
577  // Otherwise, codegen a new indirect symbol.
578  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
579                                                                JE);
580
581  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
582        << "] for GV '" << GV->getName() << "'\n");
583
584  return IndirectSym;
585}
586
587/// getExternalFunctionStub - Return a stub for the function at the
588/// specified address, created lazily on demand.
589void *JITResolver::getExternalFunctionStub(void *FnAddr) {
590  // If we already have a stub for this function, recycle it.
591  void *&Stub = ExternalFnToStubMap[FnAddr];
592  if (Stub) return Stub;
593
594  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
595  JE.startGVStub(0, SL.Size, SL.Alignment);
596  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
597  JE.finishGVStub();
598
599  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
600               << "] for external function at '" << FnAddr << "'\n");
601  return Stub;
602}
603
604unsigned JITResolver::getGOTIndexForAddr(void* addr) {
605  unsigned idx = revGOTMap[addr];
606  if (!idx) {
607    idx = ++nextGOTIndex;
608    revGOTMap[addr] = idx;
609    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
610                 << addr << "]\n");
611  }
612  return idx;
613}
614
615void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
616                                    SmallVectorImpl<void*> &Ptrs) {
617  MutexGuard locked(TheJIT->lock);
618
619  const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked);
620  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
621
622  for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end();
623       i != e; ++i){
624    Function *F = i->first;
625    if (F->isDeclaration() && F->hasExternalLinkage()) {
626      GVs.push_back(i->first);
627      Ptrs.push_back(i->second);
628    }
629  }
630  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
631       i != e; ++i) {
632    GVs.push_back(i->first);
633    Ptrs.push_back(i->second);
634  }
635}
636
637GlobalValue *JITResolver::invalidateStub(void *Stub) {
638  MutexGuard locked(TheJIT->lock);
639
640  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
641
642  // Look up the cheap way first, to see if it's a function stub we are
643  // invalidating.  If so, remove it from both the forward and reverse maps.
644  if (Function *F = state.EraseStub(locked, Stub)) {
645    return F;
646  }
647
648  // Otherwise, it might be an indirect symbol stub.  Find it and remove it.
649  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
650       i != e; ++i) {
651    if (i->second != Stub)
652      continue;
653    GlobalValue *GV = i->first;
654    GM.erase(i);
655    return GV;
656  }
657
658  // Lastly, check to see if it's in the ExternalFnToStubMap.
659  for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
660       e = ExternalFnToStubMap.end(); i != e; ++i) {
661    if (i->second != Stub)
662      continue;
663    ExternalFnToStubMap.erase(i);
664    break;
665  }
666
667  return 0;
668}
669
670/// JITCompilerFn - This function is called when a lazy compilation stub has
671/// been entered.  It looks up which function this stub corresponds to, compiles
672/// it if necessary, then returns the resultant function pointer.
673void *JITResolver::JITCompilerFn(void *Stub) {
674  JITResolver &JR = *TheJITResolver;
675
676  Function* F = 0;
677  void* ActualPtr = 0;
678
679  {
680    // Only lock for getting the Function. The call getPointerToFunction made
681    // in this function might trigger function materializing, which requires
682    // JIT lock to be unlocked.
683    MutexGuard locked(TheJIT->lock);
684
685    // The address given to us for the stub may not be exactly right, it might
686    // be a little bit after the stub.  As such, use upper_bound to find it.
687    pair<void*, Function*> I =
688      JR.state.LookupFunctionFromCallSite(locked, Stub);
689    F = I.second;
690    ActualPtr = I.first;
691  }
692
693  // If we have already code generated the function, just return the address.
694  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
695
696  if (!Result) {
697    // Otherwise we don't have it, do lazy compilation now.
698
699    // If lazy compilation is disabled, emit a useful error message and abort.
700    if (!TheJIT->isCompilingLazily()) {
701      llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
702                        + F->getName() + "' when lazy compiles are disabled!");
703    }
704
705    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
706          << "' In stub ptr = " << Stub << " actual ptr = "
707          << ActualPtr << "\n");
708
709    Result = TheJIT->getPointerToFunction(F);
710  }
711
712  // Reacquire the lock to update the GOT map.
713  MutexGuard locked(TheJIT->lock);
714
715  // We might like to remove the call site from the CallSiteToFunction map, but
716  // we can't do that! Multiple threads could be stuck, waiting to acquire the
717  // lock above. As soon as the 1st function finishes compiling the function,
718  // the next one will be released, and needs to be able to find the function it
719  // needs to call.
720
721  // FIXME: We could rewrite all references to this stub if we knew them.
722
723  // What we will do is set the compiled function address to map to the
724  // same GOT entry as the stub so that later clients may update the GOT
725  // if they see it still using the stub address.
726  // Note: this is done so the Resolver doesn't have to manage GOT memory
727  // Do this without allocating map space if the target isn't using a GOT
728  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
729    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
730
731  return Result;
732}
733
734//===----------------------------------------------------------------------===//
735// JITEmitter code.
736//
737void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
738                                     bool MayNeedFarStub) {
739  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
740    return TheJIT->getOrEmitGlobalVariable(GV);
741
742  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
743    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
744
745  // If we have already compiled the function, return a pointer to its body.
746  Function *F = cast<Function>(V);
747
748  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
749  if (FnStub) {
750    // Return the function stub if it's already created.  We do this first so
751    // that we're returning the same address for the function as any previous
752    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
753    // close enough to call.
754    AddStubToCurrentFunction(FnStub);
755    return FnStub;
756  }
757
758  // If we know the target can handle arbitrary-distance calls, try to
759  // return a direct pointer.
760  if (!MayNeedFarStub) {
761    // If we have code, go ahead and return that.
762    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
763    if (ResultPtr) return ResultPtr;
764
765    // If this is an external function pointer, we can force the JIT to
766    // 'compile' it, which really just adds it to the map.
767    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
768      return TheJIT->getPointerToFunction(F);
769  }
770
771  // Otherwise, we may need a to emit a stub, and, conservatively, we
772  // always do so.
773  void *StubAddr = Resolver.getLazyFunctionStub(F);
774
775  // Add the stub to the current function's list of referenced stubs, so we can
776  // deallocate them if the current function is ever freed.  It's possible to
777  // return null from getLazyFunctionStub in the case of a weak extern that
778  // fails to resolve.
779  if (StubAddr)
780    AddStubToCurrentFunction(StubAddr);
781
782  return StubAddr;
783}
784
785void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
786  // Make sure GV is emitted first, and create a stub containing the fully
787  // resolved address.
788  void *GVAddress = getPointerToGlobal(V, Reference, false);
789  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
790
791  // Add the stub to the current function's list of referenced stubs, so we can
792  // deallocate them if the current function is ever freed.
793  AddStubToCurrentFunction(StubAddr);
794
795  return StubAddr;
796}
797
798void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
799  assert(CurFn && "Stub added to current function, but current function is 0!");
800
801  SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
802  StubsUsed.push_back(StubAddr);
803
804  SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
805  FnRefs.insert(CurFn);
806}
807
808void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
809  if (!DL.isUnknown()) {
810    DILocation CurDLT = EmissionDetails.MF->getDILocation(DL);
811
812    if (BeforePrintingInsn) {
813      if (CurDLT.getScope().getNode() != 0
814          && PrevDLT.getNode() != CurDLT.getNode()) {
815        JITEvent_EmittedFunctionDetails::LineStart NextLine;
816        NextLine.Address = getCurrentPCValue();
817        NextLine.Loc = DL;
818        EmissionDetails.LineStarts.push_back(NextLine);
819      }
820
821      PrevDLT = CurDLT;
822    }
823  }
824}
825
826static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
827                                           const TargetData *TD) {
828  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
829  if (Constants.empty()) return 0;
830
831  unsigned Size = 0;
832  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
833    MachineConstantPoolEntry CPE = Constants[i];
834    unsigned AlignMask = CPE.getAlignment() - 1;
835    Size = (Size + AlignMask) & ~AlignMask;
836    const Type *Ty = CPE.getType();
837    Size += TD->getTypeAllocSize(Ty);
838  }
839  return Size;
840}
841
842static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
843  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
844  if (JT.empty()) return 0;
845
846  unsigned NumEntries = 0;
847  for (unsigned i = 0, e = JT.size(); i != e; ++i)
848    NumEntries += JT[i].MBBs.size();
849
850  return NumEntries * MJTI->getEntrySize(*TheJIT->getTargetData());
851}
852
853static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
854  if (Alignment == 0) Alignment = 1;
855  // Since we do not know where the buffer will be allocated, be pessimistic.
856  return Size + Alignment;
857}
858
859/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
860/// into the running total Size.
861
862unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
863  const Type *ElTy = GV->getType()->getElementType();
864  size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
865  size_t GVAlign =
866      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
867  DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
868  DEBUG(GV->dump());
869  // Assume code section ends with worst possible alignment, so first
870  // variable needs maximal padding.
871  if (Size==0)
872    Size = 1;
873  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
874  Size += GVSize;
875  return Size;
876}
877
878/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
879/// but are referenced from the constant; put them in GVSet and add their
880/// size into the running total Size.
881
882unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
883                                              unsigned Size) {
884  // If its undefined, return the garbage.
885  if (isa<UndefValue>(C))
886    return Size;
887
888  // If the value is a ConstantExpr
889  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
890    Constant *Op0 = CE->getOperand(0);
891    switch (CE->getOpcode()) {
892    case Instruction::GetElementPtr:
893    case Instruction::Trunc:
894    case Instruction::ZExt:
895    case Instruction::SExt:
896    case Instruction::FPTrunc:
897    case Instruction::FPExt:
898    case Instruction::UIToFP:
899    case Instruction::SIToFP:
900    case Instruction::FPToUI:
901    case Instruction::FPToSI:
902    case Instruction::PtrToInt:
903    case Instruction::IntToPtr:
904    case Instruction::BitCast: {
905      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
906      break;
907    }
908    case Instruction::Add:
909    case Instruction::FAdd:
910    case Instruction::Sub:
911    case Instruction::FSub:
912    case Instruction::Mul:
913    case Instruction::FMul:
914    case Instruction::UDiv:
915    case Instruction::SDiv:
916    case Instruction::URem:
917    case Instruction::SRem:
918    case Instruction::And:
919    case Instruction::Or:
920    case Instruction::Xor: {
921      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
922      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
923      break;
924    }
925    default: {
926       std::string msg;
927       raw_string_ostream Msg(msg);
928       Msg << "ConstantExpr not handled: " << *CE;
929       llvm_report_error(Msg.str());
930    }
931    }
932  }
933
934  if (C->getType()->getTypeID() == Type::PointerTyID)
935    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
936      if (GVSet.insert(GV))
937        Size = addSizeOfGlobal(GV, Size);
938
939  return Size;
940}
941
942/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
943/// but are referenced from the given initializer.
944
945unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
946                                              unsigned Size) {
947  if (!isa<UndefValue>(Init) &&
948      !isa<ConstantVector>(Init) &&
949      !isa<ConstantAggregateZero>(Init) &&
950      !isa<ConstantArray>(Init) &&
951      !isa<ConstantStruct>(Init) &&
952      Init->getType()->isFirstClassType())
953    Size = addSizeOfGlobalsInConstantVal(Init, Size);
954  return Size;
955}
956
957/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
958/// globals; then walk the initializers of those globals looking for more.
959/// If their size has not been considered yet, add it into the running total
960/// Size.
961
962unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
963  unsigned Size = 0;
964  GVSet.clear();
965
966  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
967       MBB != E; ++MBB) {
968    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
969         I != E; ++I) {
970      const TargetInstrDesc &Desc = I->getDesc();
971      const MachineInstr &MI = *I;
972      unsigned NumOps = Desc.getNumOperands();
973      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
974        const MachineOperand &MO = MI.getOperand(CurOp);
975        if (MO.isGlobal()) {
976          GlobalValue* V = MO.getGlobal();
977          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
978          if (!GV)
979            continue;
980          // If seen in previous function, it will have an entry here.
981          if (TheJIT->getPointerToGlobalIfAvailable(GV))
982            continue;
983          // If seen earlier in this function, it will have an entry here.
984          // FIXME: it should be possible to combine these tables, by
985          // assuming the addresses of the new globals in this module
986          // start at 0 (or something) and adjusting them after codegen
987          // complete.  Another possibility is to grab a marker bit in GV.
988          if (GVSet.insert(GV))
989            // A variable as yet unseen.  Add in its size.
990            Size = addSizeOfGlobal(GV, Size);
991        }
992      }
993    }
994  }
995  DEBUG(dbgs() << "JIT: About to look through initializers\n");
996  // Look for more globals that are referenced only from initializers.
997  // GVSet.end is computed each time because the set can grow as we go.
998  for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
999       I != GVSet.end(); I++) {
1000    const GlobalVariable* GV = *I;
1001    if (GV->hasInitializer())
1002      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
1003  }
1004
1005  return Size;
1006}
1007
1008void JITEmitter::startFunction(MachineFunction &F) {
1009  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
1010        << F.getFunction()->getName() << "\n");
1011
1012  uintptr_t ActualSize = 0;
1013  // Set the memory writable, if it's not already
1014  MemMgr->setMemoryWritable();
1015  if (MemMgr->NeedsExactSize()) {
1016    DEBUG(dbgs() << "JIT: ExactSize\n");
1017    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
1018    MachineConstantPool *MCP = F.getConstantPool();
1019
1020    // Ensure the constant pool/jump table info is at least 4-byte aligned.
1021    ActualSize = RoundUpToAlign(ActualSize, 16);
1022
1023    // Add the alignment of the constant pool
1024    ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
1025
1026    // Add the constant pool size
1027    ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1028
1029    if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) {
1030      // Add the aligment of the jump table info
1031      ActualSize = RoundUpToAlign(ActualSize,
1032                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1033
1034      // Add the jump table size
1035      ActualSize += GetJumpTableSizeInBytes(MJTI);
1036    }
1037
1038    // Add the alignment for the function
1039    ActualSize = RoundUpToAlign(ActualSize,
1040                                std::max(F.getFunction()->getAlignment(), 8U));
1041
1042    // Add the function size
1043    ActualSize += TII->GetFunctionSizeInBytes(F);
1044
1045    DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n");
1046    // Add the size of the globals that will be allocated after this function.
1047    // These are all the ones referenced from this function that were not
1048    // previously allocated.
1049    ActualSize += GetSizeOfGlobalsInBytes(F);
1050    DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n");
1051  } else if (SizeEstimate > 0) {
1052    // SizeEstimate will be non-zero on reallocation attempts.
1053    ActualSize = SizeEstimate;
1054  }
1055
1056  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
1057                                                         ActualSize);
1058  BufferEnd = BufferBegin+ActualSize;
1059  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
1060
1061  // Ensure the constant pool/jump table info is at least 4-byte aligned.
1062  emitAlignment(16);
1063
1064  emitConstantPool(F.getConstantPool());
1065  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1066    initJumpTableInfo(MJTI);
1067
1068  // About to start emitting the machine code for the function.
1069  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
1070  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
1071  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
1072
1073  MBBLocations.clear();
1074
1075  EmissionDetails.MF = &F;
1076  EmissionDetails.LineStarts.clear();
1077}
1078
1079bool JITEmitter::finishFunction(MachineFunction &F) {
1080  if (CurBufferPtr == BufferEnd) {
1081    // We must call endFunctionBody before retrying, because
1082    // deallocateMemForFunction requires it.
1083    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1084    retryWithMoreMemory(F);
1085    return true;
1086  }
1087
1088  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1089    emitJumpTableInfo(MJTI);
1090
1091  // FnStart is the start of the text, not the start of the constant pool and
1092  // other per-function data.
1093  uint8_t *FnStart =
1094    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
1095
1096  // FnEnd is the end of the function's machine code.
1097  uint8_t *FnEnd = CurBufferPtr;
1098
1099  if (!Relocations.empty()) {
1100    CurFn = F.getFunction();
1101    NumRelos += Relocations.size();
1102
1103    // Resolve the relocations to concrete pointers.
1104    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
1105      MachineRelocation &MR = Relocations[i];
1106      void *ResultPtr = 0;
1107      if (!MR.letTargetResolve()) {
1108        if (MR.isExternalSymbol()) {
1109          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
1110                                                        false);
1111          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
1112                       << ResultPtr << "]\n");
1113
1114          // If the target REALLY wants a stub for this function, emit it now.
1115          if (MR.mayNeedFarStub()) {
1116            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1117          }
1118        } else if (MR.isGlobalValue()) {
1119          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1120                                         BufferBegin+MR.getMachineCodeOffset(),
1121                                         MR.mayNeedFarStub());
1122        } else if (MR.isIndirectSymbol()) {
1123          ResultPtr = getPointerToGVIndirectSym(
1124              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
1125        } else if (MR.isBasicBlock()) {
1126          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1127        } else if (MR.isConstantPoolIndex()) {
1128          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1129        } else {
1130          assert(MR.isJumpTableIndex());
1131          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1132        }
1133
1134        MR.setResultPointer(ResultPtr);
1135      }
1136
1137      // if we are managing the GOT and the relocation wants an index,
1138      // give it one
1139      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1140        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1141        MR.setGOTIndex(idx);
1142        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1143          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
1144                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1145                       << "\n");
1146          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1147        }
1148      }
1149    }
1150
1151    CurFn = 0;
1152    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1153                                  Relocations.size(), MemMgr->getGOTBase());
1154  }
1155
1156  // Update the GOT entry for F to point to the new code.
1157  if (MemMgr->isManagingGOT()) {
1158    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1159    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1160      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1161                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1162                   << "\n");
1163      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1164    }
1165  }
1166
1167  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1168  // global variables that were referenced in the relocations.
1169  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1170
1171  if (CurBufferPtr == BufferEnd) {
1172    retryWithMoreMemory(F);
1173    return true;
1174  } else {
1175    // Now that we've succeeded in emitting the function, reset the
1176    // SizeEstimate back down to zero.
1177    SizeEstimate = 0;
1178  }
1179
1180  BufferBegin = CurBufferPtr = 0;
1181  NumBytes += FnEnd-FnStart;
1182
1183  // Invalidate the icache if necessary.
1184  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1185
1186  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1187                                EmissionDetails);
1188
1189  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1190        << "] Function: " << F.getFunction()->getName()
1191        << ": " << (FnEnd-FnStart) << " bytes of text, "
1192        << Relocations.size() << " relocations\n");
1193
1194  Relocations.clear();
1195  ConstPoolAddresses.clear();
1196
1197  // Mark code region readable and executable if it's not so already.
1198  MemMgr->setMemoryExecutable();
1199
1200  DEBUG(
1201    if (sys::hasDisassembler()) {
1202      dbgs() << "JIT: Disassembled code:\n";
1203      dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1204                                       (uintptr_t)FnStart);
1205    } else {
1206      dbgs() << "JIT: Binary code:\n";
1207      uint8_t* q = FnStart;
1208      for (int i = 0; q < FnEnd; q += 4, ++i) {
1209        if (i == 4)
1210          i = 0;
1211        if (i == 0)
1212          dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
1213        bool Done = false;
1214        for (int j = 3; j >= 0; --j) {
1215          if (q + j >= FnEnd)
1216            Done = true;
1217          else
1218            dbgs() << (unsigned short)q[j];
1219        }
1220        if (Done)
1221          break;
1222        dbgs() << ' ';
1223        if (i == 3)
1224          dbgs() << '\n';
1225      }
1226      dbgs()<< '\n';
1227    }
1228        );
1229
1230  if (DwarfExceptionHandling || JITEmitDebugInfo) {
1231    uintptr_t ActualSize = 0;
1232    SavedBufferBegin = BufferBegin;
1233    SavedBufferEnd = BufferEnd;
1234    SavedCurBufferPtr = CurBufferPtr;
1235
1236    if (MemMgr->NeedsExactSize()) {
1237      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1238    }
1239
1240    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1241                                                             ActualSize);
1242    BufferEnd = BufferBegin+ActualSize;
1243    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
1244    uint8_t *EhStart;
1245    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
1246                                                EhStart);
1247    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1248                              FrameRegister);
1249    uint8_t *EhEnd = CurBufferPtr;
1250    BufferBegin = SavedBufferBegin;
1251    BufferEnd = SavedBufferEnd;
1252    CurBufferPtr = SavedCurBufferPtr;
1253
1254    if (DwarfExceptionHandling) {
1255      TheJIT->RegisterTable(FrameRegister);
1256    }
1257
1258    if (JITEmitDebugInfo) {
1259      DebugInfo I;
1260      I.FnStart = FnStart;
1261      I.FnEnd = FnEnd;
1262      I.EhStart = EhStart;
1263      I.EhEnd = EhEnd;
1264      DR->RegisterFunction(F.getFunction(), I);
1265    }
1266  }
1267
1268  if (MMI)
1269    MMI->EndFunction();
1270
1271  return false;
1272}
1273
1274void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1275  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1276  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1277  ConstPoolAddresses.clear();
1278  ++NumRetries;
1279  deallocateMemForFunction(F.getFunction());
1280  // Try again with at least twice as much free space.
1281  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1282}
1283
1284/// deallocateMemForFunction - Deallocate all memory for the specified
1285/// function body.  Also drop any references the function has to stubs.
1286/// May be called while the Function is being destroyed inside ~Value().
1287void JITEmitter::deallocateMemForFunction(const Function *F) {
1288  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1289    Emitted = EmittedFunctions.find(F);
1290  if (Emitted != EmittedFunctions.end()) {
1291    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1292    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1293    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1294
1295    EmittedFunctions.erase(Emitted);
1296  }
1297
1298  // TODO: Do we need to unregister exception handling information from libgcc
1299  // here?
1300
1301  if (JITEmitDebugInfo) {
1302    DR->UnregisterFunction(F);
1303  }
1304
1305  // If the function did not reference any stubs, return.
1306  if (CurFnStubUses.find(F) == CurFnStubUses.end())
1307    return;
1308
1309  // For each referenced stub, erase the reference to this function, and then
1310  // erase the list of referenced stubs.
1311  SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
1312  for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
1313    void *Stub = StubList[i];
1314
1315    // If we already invalidated this stub for this function, continue.
1316    if (StubFnRefs.count(Stub) == 0)
1317      continue;
1318
1319    SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
1320    FnRefs.erase(F);
1321
1322    // If this function was the last reference to the stub, invalidate the stub
1323    // in the JITResolver.  Were there a memory manager deallocateStub routine,
1324    // we could call that at this point too.
1325    if (FnRefs.empty()) {
1326      DEBUG(dbgs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
1327      StubFnRefs.erase(Stub);
1328
1329      // Invalidate the stub.  If it is a GV stub, update the JIT's global
1330      // mapping for that GV to zero.
1331      GlobalValue *GV = Resolver.invalidateStub(Stub);
1332      if (GV) {
1333        TheJIT->updateGlobalMapping(GV, 0);
1334      }
1335    }
1336  }
1337  CurFnStubUses.erase(F);
1338}
1339
1340
1341void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1342  if (BufferBegin)
1343    return JITCodeEmitter::allocateSpace(Size, Alignment);
1344
1345  // create a new memory block if there is no active one.
1346  // care must be taken so that BufferBegin is invalidated when a
1347  // block is trimmed
1348  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1349  BufferEnd = BufferBegin+Size;
1350  return CurBufferPtr;
1351}
1352
1353void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1354  // Delegate this call through the memory manager.
1355  return MemMgr->allocateGlobal(Size, Alignment);
1356}
1357
1358void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1359  if (TheJIT->getJITInfo().hasCustomConstantPool())
1360    return;
1361
1362  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1363  if (Constants.empty()) return;
1364
1365  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1366  unsigned Align = MCP->getConstantPoolAlignment();
1367  ConstantPoolBase = allocateSpace(Size, Align);
1368  ConstantPool = MCP;
1369
1370  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1371
1372  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1373               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1374
1375  // Initialize the memory for all of the constant pool entries.
1376  unsigned Offset = 0;
1377  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1378    MachineConstantPoolEntry CPE = Constants[i];
1379    unsigned AlignMask = CPE.getAlignment() - 1;
1380    Offset = (Offset + AlignMask) & ~AlignMask;
1381
1382    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1383    ConstPoolAddresses.push_back(CAddr);
1384    if (CPE.isMachineConstantPoolEntry()) {
1385      // FIXME: add support to lower machine constant pool values into bytes!
1386      llvm_report_error("Initialize memory with machine specific constant pool"
1387                        "entry has not been implemented!");
1388    }
1389    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1390    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1391          dbgs().write_hex(CAddr) << "]\n");
1392
1393    const Type *Ty = CPE.Val.ConstVal->getType();
1394    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1395  }
1396}
1397
1398void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1399  if (TheJIT->getJITInfo().hasCustomJumpTables())
1400    return;
1401
1402  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1403  if (JT.empty()) return;
1404
1405  unsigned NumEntries = 0;
1406  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1407    NumEntries += JT[i].MBBs.size();
1408
1409  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1410
1411  // Just allocate space for all the jump tables now.  We will fix up the actual
1412  // MBB entries in the tables after we emit the code for each block, since then
1413  // we will know the final locations of the MBBs in memory.
1414  JumpTable = MJTI;
1415  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1416                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1417}
1418
1419void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1420  if (TheJIT->getJITInfo().hasCustomJumpTables())
1421    return;
1422
1423  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1424  if (JT.empty() || JumpTableBase == 0) return;
1425
1426
1427  switch (MJTI->getEntryKind()) {
1428  case MachineJumpTableInfo::EK_BlockAddress: {
1429    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1430    //     .word LBB123
1431    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1432           "Cross JIT'ing?");
1433
1434    // For each jump table, map each target in the jump table to the address of
1435    // an emitted MachineBasicBlock.
1436    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1437
1438    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1439      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1440      // Store the address of the basic block for this jump table slot in the
1441      // memory we allocated for the jump table in 'initJumpTableInfo'
1442      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1443        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1444    }
1445    break;
1446  }
1447
1448  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1449  case MachineJumpTableInfo::EK_LabelDifference32: {
1450    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1451    // For each jump table, place the offset from the beginning of the table
1452    // to the target address.
1453    int *SlotPtr = (int*)JumpTableBase;
1454
1455    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1456      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1457      // Store the offset of the basic block for this jump table slot in the
1458      // memory we allocated for the jump table in 'initJumpTableInfo'
1459      uintptr_t Base = (uintptr_t)SlotPtr;
1460      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1461        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1462        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1463        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1464      }
1465    }
1466    break;
1467  }
1468  }
1469}
1470
1471void JITEmitter::startGVStub(const GlobalValue* GV,
1472                             unsigned StubSize, unsigned Alignment) {
1473  SavedBufferBegin = BufferBegin;
1474  SavedBufferEnd = BufferEnd;
1475  SavedCurBufferPtr = CurBufferPtr;
1476
1477  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1478  BufferEnd = BufferBegin+StubSize+1;
1479}
1480
1481void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1482  SavedBufferBegin = BufferBegin;
1483  SavedBufferEnd = BufferEnd;
1484  SavedCurBufferPtr = CurBufferPtr;
1485
1486  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1487  BufferEnd = BufferBegin+StubSize+1;
1488}
1489
1490void JITEmitter::finishGVStub() {
1491  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1492  NumBytes += getCurrentPCOffset();
1493  BufferBegin = SavedBufferBegin;
1494  BufferEnd = SavedBufferEnd;
1495  CurBufferPtr = SavedCurBufferPtr;
1496}
1497
1498void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1499                                  const uint8_t *Buffer, size_t Size,
1500                                  unsigned Alignment) {
1501  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1502  memcpy(IndGV, Buffer, Size);
1503  return IndGV;
1504}
1505
1506// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1507// in the constant pool that was last emitted with the 'emitConstantPool'
1508// method.
1509//
1510uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1511  assert(ConstantNum < ConstantPool->getConstants().size() &&
1512         "Invalid ConstantPoolIndex!");
1513  return ConstPoolAddresses[ConstantNum];
1514}
1515
1516// getJumpTableEntryAddress - Return the address of the JumpTable with index
1517// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1518//
1519uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1520  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1521  assert(Index < JT.size() && "Invalid jump table index!");
1522
1523  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1524
1525  unsigned Offset = 0;
1526  for (unsigned i = 0; i < Index; ++i)
1527    Offset += JT[i].MBBs.size();
1528
1529   Offset *= EntrySize;
1530
1531  return (uintptr_t)((char *)JumpTableBase + Offset);
1532}
1533
1534void JITEmitter::EmittedFunctionConfig::onDelete(
1535  JITEmitter *Emitter, const Function *F) {
1536  Emitter->deallocateMemForFunction(F);
1537}
1538void JITEmitter::EmittedFunctionConfig::onRAUW(
1539  JITEmitter *, const Function*, const Function*) {
1540  llvm_unreachable("The JIT doesn't know how to handle a"
1541                   " RAUW on a value it has emitted.");
1542}
1543
1544
1545//===----------------------------------------------------------------------===//
1546//  Public interface to this file
1547//===----------------------------------------------------------------------===//
1548
1549JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1550                                   TargetMachine &tm) {
1551  return new JITEmitter(jit, JMM, tm);
1552}
1553
1554// getPointerToNamedFunction - This function is used as a global wrapper to
1555// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1556// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1557// need to resolve function(s) that are being mis-codegenerated, so we need to
1558// resolve their addresses at runtime, and this is the way to do it.
1559extern "C" {
1560  void *getPointerToNamedFunction(const char *Name) {
1561    if (Function *F = TheJIT->FindFunctionNamed(Name))
1562      return TheJIT->getPointerToFunction(F);
1563    return TheJIT->getPointerToNamedFunction(Name);
1564  }
1565}
1566
1567// getPointerToFunctionOrStub - If the specified function has been
1568// code-gen'd, return a pointer to the function.  If not, compile it, or use
1569// a stub to implement lazy compilation if available.
1570//
1571void *JIT::getPointerToFunctionOrStub(Function *F) {
1572  // If we have already code generated the function, just return the address.
1573  if (void *Addr = getPointerToGlobalIfAvailable(F))
1574    return Addr;
1575
1576  // Get a stub if the target supports it.
1577  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1578  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1579  return JE->getJITResolver().getLazyFunctionStub(F);
1580}
1581
1582void JIT::updateFunctionStub(Function *F) {
1583  // Get the empty stub we generated earlier.
1584  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1585  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1586  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1587  void *Addr = getPointerToGlobalIfAvailable(F);
1588  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1589
1590  // Tell the target jit info to rewrite the stub at the specified address,
1591  // rather than creating a new one.
1592  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1593  JE->startGVStub(Stub, layout.Size);
1594  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1595  JE->finishGVStub();
1596}
1597
1598/// freeMachineCodeForFunction - release machine code memory for given Function.
1599///
1600void JIT::freeMachineCodeForFunction(Function *F) {
1601  // Delete translation for this from the ExecutionEngine, so it will get
1602  // retranslated next time it is used.
1603  updateGlobalMapping(F, 0);
1604
1605  // Free the actual memory for the function body and related stuff.
1606  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1607  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1608}
1609