JITEmitter.cpp revision 1b747ad8a0694b86e8d98a8b9a05ddfe74ec0cd3
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDwarfEmitter.h"
18#include "llvm/Constants.h"
19#include "llvm/Module.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/CodeGen/JITCodeEmitter.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRelocation.h"
27#include "llvm/ExecutionEngine/GenericValue.h"
28#include "llvm/ExecutionEngine/JITEventListener.h"
29#include "llvm/ExecutionEngine/JITMemoryManager.h"
30#include "llvm/CodeGen/MachineCodeInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetJITInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MutexGuard.h"
38#include "llvm/Support/ValueHandle.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/System/Disassembler.h"
41#include "llvm/System/Memory.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include <algorithm>
47#ifndef NDEBUG
48#include <iomanip>
49#endif
50using namespace llvm;
51
52STATISTIC(NumBytes, "Number of bytes of machine code compiled");
53STATISTIC(NumRelos, "Number of relocations applied");
54STATISTIC(NumRetries, "Number of retries with more memory");
55static JIT *TheJIT = 0;
56
57
58//===----------------------------------------------------------------------===//
59// JIT lazy compilation code.
60//
61namespace {
62  class JITResolverState {
63  public:
64    typedef std::map<AssertingVH<Function>, void*> FunctionToStubMapTy;
65    typedef std::map<void*, Function*> StubToFunctionMapTy;
66    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
67  private:
68    /// FunctionToStubMap - Keep track of the stub created for a particular
69    /// function so that we can reuse them if necessary.
70    FunctionToStubMapTy FunctionToStubMap;
71
72    /// StubToFunctionMap - Keep track of the function that each stub
73    /// corresponds to.
74    StubToFunctionMapTy StubToFunctionMap;
75
76    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
77    /// particular GlobalVariable so that we can reuse them if necessary.
78    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
79
80  public:
81    FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) {
82      assert(locked.holds(TheJIT->lock));
83      return FunctionToStubMap;
84    }
85
86    StubToFunctionMapTy& getStubToFunctionMap(const MutexGuard& locked) {
87      assert(locked.holds(TheJIT->lock));
88      return StubToFunctionMap;
89    }
90
91    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
92      assert(locked.holds(TheJIT->lock));
93      return GlobalToIndirectSymMap;
94    }
95  };
96
97  /// JITResolver - Keep track of, and resolve, call sites for functions that
98  /// have not yet been compiled.
99  class JITResolver {
100    typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy;
101    typedef JITResolverState::StubToFunctionMapTy StubToFunctionMapTy;
102    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
103
104    /// LazyResolverFn - The target lazy resolver function that we actually
105    /// rewrite instructions to use.
106    TargetJITInfo::LazyResolverFn LazyResolverFn;
107
108    JITResolverState state;
109
110    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
111    /// external functions.
112    std::map<void*, void*> ExternalFnToStubMap;
113
114    /// revGOTMap - map addresses to indexes in the GOT
115    std::map<void*, unsigned> revGOTMap;
116    unsigned nextGOTIndex;
117
118    static JITResolver *TheJITResolver;
119  public:
120    explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
121      TheJIT = &jit;
122
123      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
124      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
125      TheJITResolver = this;
126    }
127
128    ~JITResolver() {
129      TheJITResolver = 0;
130    }
131
132    /// getFunctionStubIfAvailable - This returns a pointer to a function stub
133    /// if it has already been created.
134    void *getFunctionStubIfAvailable(Function *F);
135
136    /// getFunctionStub - This returns a pointer to a function stub, creating
137    /// one on demand as needed.  If empty is true, create a function stub
138    /// pointing at address 0, to be filled in later.
139    void *getFunctionStub(Function *F);
140
141    /// getExternalFunctionStub - Return a stub for the function at the
142    /// specified address, created lazily on demand.
143    void *getExternalFunctionStub(void *FnAddr);
144
145    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
146    /// specified GV address.
147    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
148
149    /// AddCallbackAtLocation - If the target is capable of rewriting an
150    /// instruction without the use of a stub, record the location of the use so
151    /// we know which function is being used at the location.
152    void *AddCallbackAtLocation(Function *F, void *Location) {
153      MutexGuard locked(TheJIT->lock);
154      /// Get the target-specific JIT resolver function.
155      state.getStubToFunctionMap(locked)[Location] = F;
156      return (void*)(intptr_t)LazyResolverFn;
157    }
158
159    void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
160                           SmallVectorImpl<void*> &Ptrs);
161
162    GlobalValue *invalidateStub(void *Stub);
163
164    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
165    /// an address.  This function only manages slots, it does not manage the
166    /// contents of the slots or the memory associated with the GOT.
167    unsigned getGOTIndexForAddr(void *addr);
168
169    /// JITCompilerFn - This function is called to resolve a stub to a compiled
170    /// address.  If the LLVM Function corresponding to the stub has not yet
171    /// been compiled, this function compiles it first.
172    static void *JITCompilerFn(void *Stub);
173  };
174}
175
176JITResolver *JITResolver::TheJITResolver = 0;
177
178/// getFunctionStubIfAvailable - This returns a pointer to a function stub
179/// if it has already been created.
180void *JITResolver::getFunctionStubIfAvailable(Function *F) {
181  MutexGuard locked(TheJIT->lock);
182
183  // If we already have a stub for this function, recycle it.
184  void *&Stub = state.getFunctionToStubMap(locked)[F];
185  return Stub;
186}
187
188/// getFunctionStub - This returns a pointer to a function stub, creating
189/// one on demand as needed.
190void *JITResolver::getFunctionStub(Function *F) {
191  MutexGuard locked(TheJIT->lock);
192
193  // If we already have a stub for this function, recycle it.
194  void *&Stub = state.getFunctionToStubMap(locked)[F];
195  if (Stub) return Stub;
196
197  // Call the lazy resolver function unless we are JIT'ing non-lazily, in which
198  // case we must resolve the symbol now.
199  void *Actual =  TheJIT->isLazyCompilationDisabled()
200    ? (void *)0 : (void *)(intptr_t)LazyResolverFn;
201
202  // If this is an external declaration, attempt to resolve the address now
203  // to place in the stub.
204  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
205    Actual = TheJIT->getPointerToFunction(F);
206
207    // If we resolved the symbol to a null address (eg. a weak external)
208    // don't emit a stub. Return a null pointer to the application.  If dlsym
209    // stubs are enabled, not being able to resolve the address is not
210    // meaningful.
211    if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0;
212  }
213
214  // Codegen a new stub, calling the lazy resolver or the actual address of the
215  // external function, if it was resolved.
216  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
217                                               *TheJIT->getCodeEmitter());
218
219  if (Actual != (void*)(intptr_t)LazyResolverFn) {
220    // If we are getting the stub for an external function, we really want the
221    // address of the stub in the GlobalAddressMap for the JIT, not the address
222    // of the external function.
223    TheJIT->updateGlobalMapping(F, Stub);
224  }
225
226  DEBUG(errs() << "JIT: Stub emitted at [" << Stub << "] for function '"
227        << F->getName() << "'\n");
228
229  // Finally, keep track of the stub-to-Function mapping so that the
230  // JITCompilerFn knows which function to compile!
231  state.getStubToFunctionMap(locked)[Stub] = F;
232
233  // If we are JIT'ing non-lazily but need to call a function that does not
234  // exist yet, add it to the JIT's work list so that we can fill in the stub
235  // address later.
236  if (!Actual && TheJIT->isLazyCompilationDisabled())
237    if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
238      TheJIT->addPendingFunction(F);
239
240  return Stub;
241}
242
243/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
244/// GV address.
245void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
246  MutexGuard locked(TheJIT->lock);
247
248  // If we already have a stub for this global variable, recycle it.
249  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
250  if (IndirectSym) return IndirectSym;
251
252  // Otherwise, codegen a new indirect symbol.
253  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
254                                                     *TheJIT->getCodeEmitter());
255
256  DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
257        << "] for GV '" << GV->getName() << "'\n");
258
259  return IndirectSym;
260}
261
262/// getExternalFunctionStub - Return a stub for the function at the
263/// specified address, created lazily on demand.
264void *JITResolver::getExternalFunctionStub(void *FnAddr) {
265  // If we already have a stub for this function, recycle it.
266  void *&Stub = ExternalFnToStubMap[FnAddr];
267  if (Stub) return Stub;
268
269  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
270                                               *TheJIT->getCodeEmitter());
271
272  DOUT << "JIT: Stub emitted at [" << Stub
273       << "] for external function at '" << FnAddr << "'\n";
274  return Stub;
275}
276
277unsigned JITResolver::getGOTIndexForAddr(void* addr) {
278  unsigned idx = revGOTMap[addr];
279  if (!idx) {
280    idx = ++nextGOTIndex;
281    revGOTMap[addr] = idx;
282    DOUT << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n";
283  }
284  return idx;
285}
286
287void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
288                                    SmallVectorImpl<void*> &Ptrs) {
289  MutexGuard locked(TheJIT->lock);
290
291  FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
292  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
293
294  for (FunctionToStubMapTy::iterator i = FM.begin(), e = FM.end(); i != e; ++i){
295    Function *F = i->first;
296    if (F->isDeclaration() && F->hasExternalLinkage()) {
297      GVs.push_back(i->first);
298      Ptrs.push_back(i->second);
299    }
300  }
301  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
302       i != e; ++i) {
303    GVs.push_back(i->first);
304    Ptrs.push_back(i->second);
305  }
306}
307
308GlobalValue *JITResolver::invalidateStub(void *Stub) {
309  MutexGuard locked(TheJIT->lock);
310
311  FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
312  StubToFunctionMapTy &SM = state.getStubToFunctionMap(locked);
313  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
314
315  // Look up the cheap way first, to see if it's a function stub we are
316  // invalidating.  If so, remove it from both the forward and reverse maps.
317  if (SM.find(Stub) != SM.end()) {
318    Function *F = SM[Stub];
319    SM.erase(Stub);
320    FM.erase(F);
321    return F;
322  }
323
324  // Otherwise, it might be an indirect symbol stub.  Find it and remove it.
325  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
326       i != e; ++i) {
327    if (i->second != Stub)
328      continue;
329    GlobalValue *GV = i->first;
330    GM.erase(i);
331    return GV;
332  }
333
334  // Lastly, check to see if it's in the ExternalFnToStubMap.
335  for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
336       e = ExternalFnToStubMap.end(); i != e; ++i) {
337    if (i->second != Stub)
338      continue;
339    ExternalFnToStubMap.erase(i);
340    break;
341  }
342
343  return 0;
344}
345
346/// JITCompilerFn - This function is called when a lazy compilation stub has
347/// been entered.  It looks up which function this stub corresponds to, compiles
348/// it if necessary, then returns the resultant function pointer.
349void *JITResolver::JITCompilerFn(void *Stub) {
350  JITResolver &JR = *TheJITResolver;
351
352  Function* F = 0;
353  void* ActualPtr = 0;
354
355  {
356    // Only lock for getting the Function. The call getPointerToFunction made
357    // in this function might trigger function materializing, which requires
358    // JIT lock to be unlocked.
359    MutexGuard locked(TheJIT->lock);
360
361    // The address given to us for the stub may not be exactly right, it might be
362    // a little bit after the stub.  As such, use upper_bound to find it.
363    StubToFunctionMapTy::iterator I =
364      JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
365    assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
366           "This is not a known stub!");
367    F = (--I)->second;
368    ActualPtr = I->first;
369  }
370
371  // If we have already code generated the function, just return the address.
372  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
373
374  if (!Result) {
375    // Otherwise we don't have it, do lazy compilation now.
376
377    // If lazy compilation is disabled, emit a useful error message and abort.
378    if (TheJIT->isLazyCompilationDisabled()) {
379      llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
380                        + F->getName() + "' when lazy compiles are disabled!");
381    }
382
383    // We might like to remove the stub from the StubToFunction map.
384    // We can't do that! Multiple threads could be stuck, waiting to acquire the
385    // lock above. As soon as the 1st function finishes compiling the function,
386    // the next one will be released, and needs to be able to find the function
387    // it needs to call.
388    //JR.state.getStubToFunctionMap(locked).erase(I);
389
390    DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
391          << "' In stub ptr = " << Stub << " actual ptr = "
392          << ActualPtr << "\n");
393
394    Result = TheJIT->getPointerToFunction(F);
395  }
396
397  // Reacquire the lock to erase the stub in the map.
398  MutexGuard locked(TheJIT->lock);
399
400  // We don't need to reuse this stub in the future, as F is now compiled.
401  JR.state.getFunctionToStubMap(locked).erase(F);
402
403  // FIXME: We could rewrite all references to this stub if we knew them.
404
405  // What we will do is set the compiled function address to map to the
406  // same GOT entry as the stub so that later clients may update the GOT
407  // if they see it still using the stub address.
408  // Note: this is done so the Resolver doesn't have to manage GOT memory
409  // Do this without allocating map space if the target isn't using a GOT
410  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
411    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
412
413  return Result;
414}
415
416//===----------------------------------------------------------------------===//
417// JITEmitter code.
418//
419namespace {
420  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
421  /// used to output functions to memory for execution.
422  class JITEmitter : public JITCodeEmitter {
423    JITMemoryManager *MemMgr;
424
425    // When outputting a function stub in the context of some other function, we
426    // save BufferBegin/BufferEnd/CurBufferPtr here.
427    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
428
429    // When reattempting to JIT a function after running out of space, we store
430    // the estimated size of the function we're trying to JIT here, so we can
431    // ask the memory manager for at least this much space.  When we
432    // successfully emit the function, we reset this back to zero.
433    uintptr_t SizeEstimate;
434
435    /// Relocations - These are the relocations that the function needs, as
436    /// emitted.
437    std::vector<MachineRelocation> Relocations;
438
439    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
440    /// It is filled in by the StartMachineBasicBlock callback and queried by
441    /// the getMachineBasicBlockAddress callback.
442    std::vector<uintptr_t> MBBLocations;
443
444    /// ConstantPool - The constant pool for the current function.
445    ///
446    MachineConstantPool *ConstantPool;
447
448    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
449    ///
450    void *ConstantPoolBase;
451
452    /// ConstPoolAddresses - Addresses of individual constant pool entries.
453    ///
454    SmallVector<uintptr_t, 8> ConstPoolAddresses;
455
456    /// JumpTable - The jump tables for the current function.
457    ///
458    MachineJumpTableInfo *JumpTable;
459
460    /// JumpTableBase - A pointer to the first entry in the jump table.
461    ///
462    void *JumpTableBase;
463
464    /// Resolver - This contains info about the currently resolved functions.
465    JITResolver Resolver;
466
467    /// DE - The dwarf emitter for the jit.
468    JITDwarfEmitter *DE;
469
470    /// LabelLocations - This vector is a mapping from Label ID's to their
471    /// address.
472    std::vector<uintptr_t> LabelLocations;
473
474    /// MMI - Machine module info for exception informations
475    MachineModuleInfo* MMI;
476
477    // GVSet - a set to keep track of which globals have been seen
478    SmallPtrSet<const GlobalVariable*, 8> GVSet;
479
480    // CurFn - The llvm function being emitted.  Only valid during
481    // finishFunction().
482    const Function *CurFn;
483
484    /// Information about emitted code, which is passed to the
485    /// JITEventListeners.  This is reset in startFunction and used in
486    /// finishFunction.
487    JITEvent_EmittedFunctionDetails EmissionDetails;
488
489    // CurFnStubUses - For a given Function, a vector of stubs that it
490    // references.  This facilitates the JIT detecting that a stub is no
491    // longer used, so that it may be deallocated.
492    DenseMap<const Function *, SmallVector<void*, 1> > CurFnStubUses;
493
494    // StubFnRefs - For a given pointer to a stub, a set of Functions which
495    // reference the stub.  When the count of a stub's references drops to zero,
496    // the stub is unused.
497    DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
498
499    // ExtFnStubs - A map of external function names to stubs which have entries
500    // in the JITResolver's ExternalFnToStubMap.
501    StringMap<void *> ExtFnStubs;
502
503    DebugLocTuple PrevDLT;
504
505  public:
506    JITEmitter(JIT &jit, JITMemoryManager *JMM)
507        : SizeEstimate(0), Resolver(jit), CurFn(0) {
508      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
509      if (jit.getJITInfo().needsGOT()) {
510        MemMgr->AllocateGOT();
511        DOUT << "JIT is managing a GOT\n";
512      }
513
514      if (DwarfExceptionHandling) DE = new JITDwarfEmitter(jit);
515    }
516    ~JITEmitter() {
517      delete MemMgr;
518      if (DwarfExceptionHandling) delete DE;
519    }
520
521    /// classof - Methods for support type inquiry through isa, cast, and
522    /// dyn_cast:
523    ///
524    static inline bool classof(const JITEmitter*) { return true; }
525    static inline bool classof(const MachineCodeEmitter*) { return true; }
526
527    JITResolver &getJITResolver() { return Resolver; }
528
529    virtual void startFunction(MachineFunction &F);
530    virtual bool finishFunction(MachineFunction &F);
531
532    void emitConstantPool(MachineConstantPool *MCP);
533    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
534    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
535
536    virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
537                                   unsigned Alignment = 1);
538    virtual void startGVStub(const GlobalValue* GV, void *Buffer,
539                             unsigned StubSize);
540    virtual void* finishGVStub(const GlobalValue *GV);
541
542    /// allocateSpace - Reserves space in the current block if any, or
543    /// allocate a new one of the given size.
544    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
545
546    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
547    /// this method does not allocate memory in the current output buffer,
548    /// because a global may live longer than the current function.
549    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
550
551    virtual void addRelocation(const MachineRelocation &MR) {
552      Relocations.push_back(MR);
553    }
554
555    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
556      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
557        MBBLocations.resize((MBB->getNumber()+1)*2);
558      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
559      DOUT << "JIT: Emitting BB" << MBB->getNumber() << " at ["
560           << (void*) getCurrentPCValue() << "]\n";
561    }
562
563    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
564    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
565
566    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
567      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
568             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
569      return MBBLocations[MBB->getNumber()];
570    }
571
572    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
573    /// given function.  Increase the minimum allocation size so that we get
574    /// more memory next time.
575    void retryWithMoreMemory(MachineFunction &F);
576
577    /// deallocateMemForFunction - Deallocate all memory for the specified
578    /// function body.
579    void deallocateMemForFunction(const Function *F);
580
581    /// AddStubToCurrentFunction - Mark the current function being JIT'd as
582    /// using the stub at the specified address. Allows
583    /// deallocateMemForFunction to also remove stubs no longer referenced.
584    void AddStubToCurrentFunction(void *Stub);
585
586    /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for
587    /// MachineRelocations that reference external functions by name.
588    const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
589
590    virtual void processDebugLoc(DebugLoc DL);
591
592    virtual void emitLabel(uint64_t LabelID) {
593      if (LabelLocations.size() <= LabelID)
594        LabelLocations.resize((LabelID+1)*2);
595      LabelLocations[LabelID] = getCurrentPCValue();
596    }
597
598    virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
599      assert(LabelLocations.size() > (unsigned)LabelID &&
600             LabelLocations[LabelID] && "Label not emitted!");
601      return LabelLocations[LabelID];
602    }
603
604    virtual void setModuleInfo(MachineModuleInfo* Info) {
605      MMI = Info;
606      if (DwarfExceptionHandling) DE->setModuleInfo(Info);
607    }
608
609    void setMemoryExecutable(void) {
610      MemMgr->setMemoryExecutable();
611    }
612
613    JITMemoryManager *getMemMgr(void) const { return MemMgr; }
614
615  private:
616    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
617    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
618                                    bool NoNeedStub);
619    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
620    unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
621    unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
622    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
623  };
624}
625
626void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
627                                     bool DoesntNeedStub) {
628  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
629    return TheJIT->getOrEmitGlobalVariable(GV);
630
631  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
632    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
633
634  // If we have already compiled the function, return a pointer to its body.
635  Function *F = cast<Function>(V);
636  void *ResultPtr;
637  if (!DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) {
638    // Return the function stub if it's already created.
639    ResultPtr = Resolver.getFunctionStubIfAvailable(F);
640    if (ResultPtr)
641      AddStubToCurrentFunction(ResultPtr);
642  } else {
643    ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
644  }
645  if (ResultPtr) return ResultPtr;
646
647  // If this is an external function pointer, we can force the JIT to
648  // 'compile' it, which really just adds it to the map.  In dlsym mode,
649  // external functions are forced through a stub, regardless of reloc type.
650  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() &&
651      DoesntNeedStub && !TheJIT->areDlsymStubsEnabled())
652    return TheJIT->getPointerToFunction(F);
653
654  // Okay, the function has not been compiled yet, if the target callback
655  // mechanism is capable of rewriting the instruction directly, prefer to do
656  // that instead of emitting a stub.  This uses the lazy resolver, so is not
657  // legal if lazy compilation is disabled.
658  if (DoesntNeedStub && !TheJIT->isLazyCompilationDisabled())
659    return Resolver.AddCallbackAtLocation(F, Reference);
660
661  // Otherwise, we have to emit a stub.
662  void *StubAddr = Resolver.getFunctionStub(F);
663
664  // Add the stub to the current function's list of referenced stubs, so we can
665  // deallocate them if the current function is ever freed.  It's possible to
666  // return null from getFunctionStub in the case of a weak extern that fails
667  // to resolve.
668  if (StubAddr)
669    AddStubToCurrentFunction(StubAddr);
670
671  return StubAddr;
672}
673
674void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
675                                            bool NoNeedStub) {
676  // Make sure GV is emitted first, and create a stub containing the fully
677  // resolved address.
678  void *GVAddress = getPointerToGlobal(V, Reference, true);
679  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
680
681  // Add the stub to the current function's list of referenced stubs, so we can
682  // deallocate them if the current function is ever freed.
683  AddStubToCurrentFunction(StubAddr);
684
685  return StubAddr;
686}
687
688void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
689  if (!TheJIT->areDlsymStubsEnabled())
690    return;
691
692  assert(CurFn && "Stub added to current function, but current function is 0!");
693
694  SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
695  StubsUsed.push_back(StubAddr);
696
697  SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
698  FnRefs.insert(CurFn);
699}
700
701void JITEmitter::processDebugLoc(DebugLoc DL) {
702  if (!DL.isUnknown()) {
703    DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL);
704
705    if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) {
706      JITEvent_EmittedFunctionDetails::LineStart NextLine;
707      NextLine.Address = getCurrentPCValue();
708      NextLine.Loc = DL;
709      EmissionDetails.LineStarts.push_back(NextLine);
710    }
711
712    PrevDLT = CurDLT;
713  }
714}
715
716static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
717                                           const TargetData *TD) {
718  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
719  if (Constants.empty()) return 0;
720
721  unsigned Size = 0;
722  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
723    MachineConstantPoolEntry CPE = Constants[i];
724    unsigned AlignMask = CPE.getAlignment() - 1;
725    Size = (Size + AlignMask) & ~AlignMask;
726    const Type *Ty = CPE.getType();
727    Size += TD->getTypeAllocSize(Ty);
728  }
729  return Size;
730}
731
732static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
733  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
734  if (JT.empty()) return 0;
735
736  unsigned NumEntries = 0;
737  for (unsigned i = 0, e = JT.size(); i != e; ++i)
738    NumEntries += JT[i].MBBs.size();
739
740  unsigned EntrySize = MJTI->getEntrySize();
741
742  return NumEntries * EntrySize;
743}
744
745static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
746  if (Alignment == 0) Alignment = 1;
747  // Since we do not know where the buffer will be allocated, be pessimistic.
748  return Size + Alignment;
749}
750
751/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
752/// into the running total Size.
753
754unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
755  const Type *ElTy = GV->getType()->getElementType();
756  size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
757  size_t GVAlign =
758      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
759  DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign;
760  DEBUG(GV->dump());
761  // Assume code section ends with worst possible alignment, so first
762  // variable needs maximal padding.
763  if (Size==0)
764    Size = 1;
765  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
766  Size += GVSize;
767  return Size;
768}
769
770/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
771/// but are referenced from the constant; put them in GVSet and add their
772/// size into the running total Size.
773
774unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
775                                              unsigned Size) {
776  // If its undefined, return the garbage.
777  if (isa<UndefValue>(C))
778    return Size;
779
780  // If the value is a ConstantExpr
781  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
782    Constant *Op0 = CE->getOperand(0);
783    switch (CE->getOpcode()) {
784    case Instruction::GetElementPtr:
785    case Instruction::Trunc:
786    case Instruction::ZExt:
787    case Instruction::SExt:
788    case Instruction::FPTrunc:
789    case Instruction::FPExt:
790    case Instruction::UIToFP:
791    case Instruction::SIToFP:
792    case Instruction::FPToUI:
793    case Instruction::FPToSI:
794    case Instruction::PtrToInt:
795    case Instruction::IntToPtr:
796    case Instruction::BitCast: {
797      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
798      break;
799    }
800    case Instruction::Add:
801    case Instruction::FAdd:
802    case Instruction::Sub:
803    case Instruction::FSub:
804    case Instruction::Mul:
805    case Instruction::FMul:
806    case Instruction::UDiv:
807    case Instruction::SDiv:
808    case Instruction::URem:
809    case Instruction::SRem:
810    case Instruction::And:
811    case Instruction::Or:
812    case Instruction::Xor: {
813      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
814      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
815      break;
816    }
817    default: {
818       std::string msg;
819       raw_string_ostream Msg(msg);
820       Msg << "ConstantExpr not handled: " << *CE;
821       llvm_report_error(Msg.str());
822    }
823    }
824  }
825
826  if (C->getType()->getTypeID() == Type::PointerTyID)
827    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
828      if (GVSet.insert(GV))
829        Size = addSizeOfGlobal(GV, Size);
830
831  return Size;
832}
833
834/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
835/// but are referenced from the given initializer.
836
837unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
838                                              unsigned Size) {
839  if (!isa<UndefValue>(Init) &&
840      !isa<ConstantVector>(Init) &&
841      !isa<ConstantAggregateZero>(Init) &&
842      !isa<ConstantArray>(Init) &&
843      !isa<ConstantStruct>(Init) &&
844      Init->getType()->isFirstClassType())
845    Size = addSizeOfGlobalsInConstantVal(Init, Size);
846  return Size;
847}
848
849/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
850/// globals; then walk the initializers of those globals looking for more.
851/// If their size has not been considered yet, add it into the running total
852/// Size.
853
854unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
855  unsigned Size = 0;
856  GVSet.clear();
857
858  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
859       MBB != E; ++MBB) {
860    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
861         I != E; ++I) {
862      const TargetInstrDesc &Desc = I->getDesc();
863      const MachineInstr &MI = *I;
864      unsigned NumOps = Desc.getNumOperands();
865      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
866        const MachineOperand &MO = MI.getOperand(CurOp);
867        if (MO.isGlobal()) {
868          GlobalValue* V = MO.getGlobal();
869          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
870          if (!GV)
871            continue;
872          // If seen in previous function, it will have an entry here.
873          if (TheJIT->getPointerToGlobalIfAvailable(GV))
874            continue;
875          // If seen earlier in this function, it will have an entry here.
876          // FIXME: it should be possible to combine these tables, by
877          // assuming the addresses of the new globals in this module
878          // start at 0 (or something) and adjusting them after codegen
879          // complete.  Another possibility is to grab a marker bit in GV.
880          if (GVSet.insert(GV))
881            // A variable as yet unseen.  Add in its size.
882            Size = addSizeOfGlobal(GV, Size);
883        }
884      }
885    }
886  }
887  DOUT << "JIT: About to look through initializers\n";
888  // Look for more globals that are referenced only from initializers.
889  // GVSet.end is computed each time because the set can grow as we go.
890  for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
891       I != GVSet.end(); I++) {
892    const GlobalVariable* GV = *I;
893    if (GV->hasInitializer())
894      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
895  }
896
897  return Size;
898}
899
900void JITEmitter::startFunction(MachineFunction &F) {
901  DEBUG(errs() << "JIT: Starting CodeGen of Function "
902        << F.getFunction()->getName() << "\n");
903
904  uintptr_t ActualSize = 0;
905  // Set the memory writable, if it's not already
906  MemMgr->setMemoryWritable();
907  if (MemMgr->NeedsExactSize()) {
908    DOUT << "JIT: ExactSize\n";
909    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
910    MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
911    MachineConstantPool *MCP = F.getConstantPool();
912
913    // Ensure the constant pool/jump table info is at least 4-byte aligned.
914    ActualSize = RoundUpToAlign(ActualSize, 16);
915
916    // Add the alignment of the constant pool
917    ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
918
919    // Add the constant pool size
920    ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
921
922    // Add the aligment of the jump table info
923    ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
924
925    // Add the jump table size
926    ActualSize += GetJumpTableSizeInBytes(MJTI);
927
928    // Add the alignment for the function
929    ActualSize = RoundUpToAlign(ActualSize,
930                                std::max(F.getFunction()->getAlignment(), 8U));
931
932    // Add the function size
933    ActualSize += TII->GetFunctionSizeInBytes(F);
934
935    DOUT << "JIT: ActualSize before globals " << ActualSize << "\n";
936    // Add the size of the globals that will be allocated after this function.
937    // These are all the ones referenced from this function that were not
938    // previously allocated.
939    ActualSize += GetSizeOfGlobalsInBytes(F);
940    DOUT << "JIT: ActualSize after globals " << ActualSize << "\n";
941  } else if (SizeEstimate > 0) {
942    // SizeEstimate will be non-zero on reallocation attempts.
943    ActualSize = SizeEstimate;
944  }
945
946  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
947                                                         ActualSize);
948  BufferEnd = BufferBegin+ActualSize;
949
950  // Ensure the constant pool/jump table info is at least 4-byte aligned.
951  emitAlignment(16);
952
953  emitConstantPool(F.getConstantPool());
954  initJumpTableInfo(F.getJumpTableInfo());
955
956  // About to start emitting the machine code for the function.
957  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
958  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
959
960  MBBLocations.clear();
961
962  EmissionDetails.MF = &F;
963  EmissionDetails.LineStarts.clear();
964}
965
966bool JITEmitter::finishFunction(MachineFunction &F) {
967  if (CurBufferPtr == BufferEnd) {
968    // We must call endFunctionBody before retrying, because
969    // deallocateMemForFunction requires it.
970    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
971    retryWithMoreMemory(F);
972    return true;
973  }
974
975  emitJumpTableInfo(F.getJumpTableInfo());
976
977  // FnStart is the start of the text, not the start of the constant pool and
978  // other per-function data.
979  uint8_t *FnStart =
980    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
981
982  // FnEnd is the end of the function's machine code.
983  uint8_t *FnEnd = CurBufferPtr;
984
985  if (!Relocations.empty()) {
986    CurFn = F.getFunction();
987    NumRelos += Relocations.size();
988
989    // Resolve the relocations to concrete pointers.
990    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
991      MachineRelocation &MR = Relocations[i];
992      void *ResultPtr = 0;
993      if (!MR.letTargetResolve()) {
994        if (MR.isExternalSymbol()) {
995          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
996                                                        false);
997          DOUT << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
998               << ResultPtr << "]\n";
999
1000          // If the target REALLY wants a stub for this function, emit it now.
1001          if (!MR.doesntNeedStub()) {
1002            if (!TheJIT->areDlsymStubsEnabled()) {
1003              ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1004            } else {
1005              void *&Stub = ExtFnStubs[MR.getExternalSymbol()];
1006              if (!Stub) {
1007                Stub = Resolver.getExternalFunctionStub((void *)&Stub);
1008                AddStubToCurrentFunction(Stub);
1009              }
1010              ResultPtr = Stub;
1011            }
1012          }
1013        } else if (MR.isGlobalValue()) {
1014          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1015                                         BufferBegin+MR.getMachineCodeOffset(),
1016                                         MR.doesntNeedStub());
1017        } else if (MR.isIndirectSymbol()) {
1018          ResultPtr = getPointerToGVIndirectSym(MR.getGlobalValue(),
1019                                          BufferBegin+MR.getMachineCodeOffset(),
1020                                          MR.doesntNeedStub());
1021        } else if (MR.isBasicBlock()) {
1022          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1023        } else if (MR.isConstantPoolIndex()) {
1024          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1025        } else {
1026          assert(MR.isJumpTableIndex());
1027          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1028        }
1029
1030        MR.setResultPointer(ResultPtr);
1031      }
1032
1033      // if we are managing the GOT and the relocation wants an index,
1034      // give it one
1035      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1036        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1037        MR.setGOTIndex(idx);
1038        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1039          DOUT << "JIT: GOT was out of date for " << ResultPtr
1040               << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1041               << "\n";
1042          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1043        }
1044      }
1045    }
1046
1047    CurFn = 0;
1048    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1049                                  Relocations.size(), MemMgr->getGOTBase());
1050  }
1051
1052  // Update the GOT entry for F to point to the new code.
1053  if (MemMgr->isManagingGOT()) {
1054    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1055    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1056      DOUT << "JIT: GOT was out of date for " << (void*)BufferBegin
1057           << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
1058      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1059    }
1060  }
1061
1062  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1063  // global variables that were referenced in the relocations.
1064  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1065
1066  if (CurBufferPtr == BufferEnd) {
1067    retryWithMoreMemory(F);
1068    return true;
1069  } else {
1070    // Now that we've succeeded in emitting the function, reset the
1071    // SizeEstimate back down to zero.
1072    SizeEstimate = 0;
1073  }
1074
1075  BufferBegin = CurBufferPtr = 0;
1076  NumBytes += FnEnd-FnStart;
1077
1078  // Invalidate the icache if necessary.
1079  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1080
1081  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1082                                EmissionDetails);
1083
1084  DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1085        << "] Function: " << F.getFunction()->getName()
1086        << ": " << (FnEnd-FnStart) << " bytes of text, "
1087        << Relocations.size() << " relocations\n");
1088
1089  Relocations.clear();
1090  ConstPoolAddresses.clear();
1091
1092  // Mark code region readable and executable if it's not so already.
1093  MemMgr->setMemoryExecutable();
1094
1095#ifndef NDEBUG
1096  {
1097    if (sys::hasDisassembler()) {
1098      DOUT << "JIT: Disassembled code:\n";
1099      DOUT << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
1100    } else {
1101      DOUT << "JIT: Binary code:\n";
1102      DOUT << std::hex;
1103      uint8_t* q = FnStart;
1104      for (int i = 0; q < FnEnd; q += 4, ++i) {
1105        if (i == 4)
1106          i = 0;
1107        if (i == 0)
1108          DOUT << "JIT: " << std::setw(8) << std::setfill('0')
1109               << (long)(q - FnStart) << ": ";
1110        bool Done = false;
1111        for (int j = 3; j >= 0; --j) {
1112          if (q + j >= FnEnd)
1113            Done = true;
1114          else
1115            DOUT << std::setw(2) << std::setfill('0') << (unsigned short)q[j];
1116        }
1117        if (Done)
1118          break;
1119        DOUT << ' ';
1120        if (i == 3)
1121          DOUT << '\n';
1122      }
1123      DOUT << std::dec;
1124      DOUT<< '\n';
1125    }
1126  }
1127#endif
1128  if (DwarfExceptionHandling) {
1129    uintptr_t ActualSize = 0;
1130    SavedBufferBegin = BufferBegin;
1131    SavedBufferEnd = BufferEnd;
1132    SavedCurBufferPtr = CurBufferPtr;
1133
1134    if (MemMgr->NeedsExactSize()) {
1135      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1136    }
1137
1138    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1139                                                             ActualSize);
1140    BufferEnd = BufferBegin+ActualSize;
1141    uint8_t* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
1142    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1143                              FrameRegister);
1144    BufferBegin = SavedBufferBegin;
1145    BufferEnd = SavedBufferEnd;
1146    CurBufferPtr = SavedCurBufferPtr;
1147
1148    TheJIT->RegisterTable(FrameRegister);
1149  }
1150
1151  if (MMI)
1152    MMI->EndFunction();
1153
1154  return false;
1155}
1156
1157void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1158  DOUT << "JIT: Ran out of space for native code.  Reattempting.\n";
1159  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1160  ConstPoolAddresses.clear();
1161  ++NumRetries;
1162  deallocateMemForFunction(F.getFunction());
1163  // Try again with at least twice as much free space.
1164  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1165}
1166
1167/// deallocateMemForFunction - Deallocate all memory for the specified
1168/// function body.  Also drop any references the function has to stubs.
1169void JITEmitter::deallocateMemForFunction(const Function *F) {
1170  MemMgr->deallocateMemForFunction(F);
1171
1172  // If the function did not reference any stubs, return.
1173  if (CurFnStubUses.find(F) == CurFnStubUses.end())
1174    return;
1175
1176  // For each referenced stub, erase the reference to this function, and then
1177  // erase the list of referenced stubs.
1178  SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
1179  for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
1180    void *Stub = StubList[i];
1181
1182    // If we already invalidated this stub for this function, continue.
1183    if (StubFnRefs.count(Stub) == 0)
1184      continue;
1185
1186    SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
1187    FnRefs.erase(F);
1188
1189    // If this function was the last reference to the stub, invalidate the stub
1190    // in the JITResolver.  Were there a memory manager deallocateStub routine,
1191    // we could call that at this point too.
1192    if (FnRefs.empty()) {
1193      DOUT << "\nJIT: Invalidated Stub at [" << Stub << "]\n";
1194      StubFnRefs.erase(Stub);
1195
1196      // Invalidate the stub.  If it is a GV stub, update the JIT's global
1197      // mapping for that GV to zero, otherwise, search the string map of
1198      // external function names to stubs and remove the entry for this stub.
1199      GlobalValue *GV = Resolver.invalidateStub(Stub);
1200      if (GV) {
1201        TheJIT->updateGlobalMapping(GV, 0);
1202      } else {
1203        for (StringMapIterator<void*> i = ExtFnStubs.begin(),
1204             e = ExtFnStubs.end(); i != e; ++i) {
1205          if (i->second == Stub) {
1206            ExtFnStubs.erase(i);
1207            break;
1208          }
1209        }
1210      }
1211    }
1212  }
1213  CurFnStubUses.erase(F);
1214}
1215
1216
1217void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1218  if (BufferBegin)
1219    return JITCodeEmitter::allocateSpace(Size, Alignment);
1220
1221  // create a new memory block if there is no active one.
1222  // care must be taken so that BufferBegin is invalidated when a
1223  // block is trimmed
1224  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1225  BufferEnd = BufferBegin+Size;
1226  return CurBufferPtr;
1227}
1228
1229void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1230  // Delegate this call through the memory manager.
1231  return MemMgr->allocateGlobal(Size, Alignment);
1232}
1233
1234void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1235  if (TheJIT->getJITInfo().hasCustomConstantPool())
1236    return;
1237
1238  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1239  if (Constants.empty()) return;
1240
1241  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1242  unsigned Align = MCP->getConstantPoolAlignment();
1243  ConstantPoolBase = allocateSpace(Size, Align);
1244  ConstantPool = MCP;
1245
1246  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1247
1248  DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
1249       << "] (size: " << Size << ", alignment: " << Align << ")\n";
1250
1251  // Initialize the memory for all of the constant pool entries.
1252  unsigned Offset = 0;
1253  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1254    MachineConstantPoolEntry CPE = Constants[i];
1255    unsigned AlignMask = CPE.getAlignment() - 1;
1256    Offset = (Offset + AlignMask) & ~AlignMask;
1257
1258    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1259    ConstPoolAddresses.push_back(CAddr);
1260    if (CPE.isMachineConstantPoolEntry()) {
1261      // FIXME: add support to lower machine constant pool values into bytes!
1262      llvm_report_error("Initialize memory with machine specific constant pool"
1263                        "entry has not been implemented!");
1264    }
1265    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1266    DOUT << "JIT:   CP" << i << " at [0x"
1267         << std::hex << CAddr << std::dec << "]\n";
1268
1269    const Type *Ty = CPE.Val.ConstVal->getType();
1270    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1271  }
1272}
1273
1274void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1275  if (TheJIT->getJITInfo().hasCustomJumpTables())
1276    return;
1277
1278  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1279  if (JT.empty()) return;
1280
1281  unsigned NumEntries = 0;
1282  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1283    NumEntries += JT[i].MBBs.size();
1284
1285  unsigned EntrySize = MJTI->getEntrySize();
1286
1287  // Just allocate space for all the jump tables now.  We will fix up the actual
1288  // MBB entries in the tables after we emit the code for each block, since then
1289  // we will know the final locations of the MBBs in memory.
1290  JumpTable = MJTI;
1291  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
1292}
1293
1294void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1295  if (TheJIT->getJITInfo().hasCustomJumpTables())
1296    return;
1297
1298  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1299  if (JT.empty() || JumpTableBase == 0) return;
1300
1301  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
1302    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
1303    // For each jump table, place the offset from the beginning of the table
1304    // to the target address.
1305    int *SlotPtr = (int*)JumpTableBase;
1306
1307    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1308      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1309      // Store the offset of the basic block for this jump table slot in the
1310      // memory we allocated for the jump table in 'initJumpTableInfo'
1311      uintptr_t Base = (uintptr_t)SlotPtr;
1312      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1313        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1314        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1315      }
1316    }
1317  } else {
1318    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
1319
1320    // For each jump table, map each target in the jump table to the address of
1321    // an emitted MachineBasicBlock.
1322    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1323
1324    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1325      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1326      // Store the address of the basic block for this jump table slot in the
1327      // memory we allocated for the jump table in 'initJumpTableInfo'
1328      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1329        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1330    }
1331  }
1332}
1333
1334void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize,
1335                             unsigned Alignment) {
1336  SavedBufferBegin = BufferBegin;
1337  SavedBufferEnd = BufferEnd;
1338  SavedCurBufferPtr = CurBufferPtr;
1339
1340  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1341  BufferEnd = BufferBegin+StubSize+1;
1342}
1343
1344void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer,
1345                             unsigned StubSize) {
1346  SavedBufferBegin = BufferBegin;
1347  SavedBufferEnd = BufferEnd;
1348  SavedCurBufferPtr = CurBufferPtr;
1349
1350  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1351  BufferEnd = BufferBegin+StubSize+1;
1352}
1353
1354void *JITEmitter::finishGVStub(const GlobalValue* GV) {
1355  NumBytes += getCurrentPCOffset();
1356  std::swap(SavedBufferBegin, BufferBegin);
1357  BufferEnd = SavedBufferEnd;
1358  CurBufferPtr = SavedCurBufferPtr;
1359  return SavedBufferBegin;
1360}
1361
1362// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1363// in the constant pool that was last emitted with the 'emitConstantPool'
1364// method.
1365//
1366uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1367  assert(ConstantNum < ConstantPool->getConstants().size() &&
1368         "Invalid ConstantPoolIndex!");
1369  return ConstPoolAddresses[ConstantNum];
1370}
1371
1372// getJumpTableEntryAddress - Return the address of the JumpTable with index
1373// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1374//
1375uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1376  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1377  assert(Index < JT.size() && "Invalid jump table index!");
1378
1379  unsigned Offset = 0;
1380  unsigned EntrySize = JumpTable->getEntrySize();
1381
1382  for (unsigned i = 0; i < Index; ++i)
1383    Offset += JT[i].MBBs.size();
1384
1385   Offset *= EntrySize;
1386
1387  return (uintptr_t)((char *)JumpTableBase + Offset);
1388}
1389
1390//===----------------------------------------------------------------------===//
1391//  Public interface to this file
1392//===----------------------------------------------------------------------===//
1393
1394JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
1395  return new JITEmitter(jit, JMM);
1396}
1397
1398// getPointerToNamedFunction - This function is used as a global wrapper to
1399// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1400// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1401// need to resolve function(s) that are being mis-codegenerated, so we need to
1402// resolve their addresses at runtime, and this is the way to do it.
1403extern "C" {
1404  void *getPointerToNamedFunction(const char *Name) {
1405    if (Function *F = TheJIT->FindFunctionNamed(Name))
1406      return TheJIT->getPointerToFunction(F);
1407    return TheJIT->getPointerToNamedFunction(Name);
1408  }
1409}
1410
1411// getPointerToFunctionOrStub - If the specified function has been
1412// code-gen'd, return a pointer to the function.  If not, compile it, or use
1413// a stub to implement lazy compilation if available.
1414//
1415void *JIT::getPointerToFunctionOrStub(Function *F) {
1416  // If we have already code generated the function, just return the address.
1417  if (void *Addr = getPointerToGlobalIfAvailable(F))
1418    return Addr;
1419
1420  // Get a stub if the target supports it.
1421  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1422  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1423  return JE->getJITResolver().getFunctionStub(F);
1424}
1425
1426void JIT::updateFunctionStub(Function *F) {
1427  // Get the empty stub we generated earlier.
1428  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1429  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1430  void *Stub = JE->getJITResolver().getFunctionStub(F);
1431
1432  // Tell the target jit info to rewrite the stub at the specified address,
1433  // rather than creating a new one.
1434  void *Addr = getPointerToGlobalIfAvailable(F);
1435  getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter());
1436}
1437
1438/// updateDlsymStubTable - Emit the data necessary to relocate the stubs
1439/// that were emitted during code generation.
1440///
1441void JIT::updateDlsymStubTable() {
1442  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1443  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1444
1445  SmallVector<GlobalValue*, 8> GVs;
1446  SmallVector<void*, 8> Ptrs;
1447  const StringMap<void *> &ExtFns = JE->getExternalFnStubs();
1448
1449  JE->getJITResolver().getRelocatableGVs(GVs, Ptrs);
1450
1451  unsigned nStubs = GVs.size() + ExtFns.size();
1452
1453  // If there are no relocatable stubs, return.
1454  if (nStubs == 0)
1455    return;
1456
1457  // If there are no new relocatable stubs, return.
1458  void *CurTable = JE->getMemMgr()->getDlsymTable();
1459  if (CurTable && (*(unsigned *)CurTable == nStubs))
1460    return;
1461
1462  // Calculate the size of the stub info
1463  unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs;
1464
1465  SmallVector<unsigned, 8> Offsets;
1466  for (unsigned i = 0; i != GVs.size(); ++i) {
1467    Offsets.push_back(offset);
1468    offset += GVs[i]->getName().size() + 1;
1469  }
1470  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1471       i != e; ++i) {
1472    Offsets.push_back(offset);
1473    offset += strlen(i->first()) + 1;
1474  }
1475
1476  // Allocate space for the new "stub", which contains the dlsym table.
1477  JE->startGVStub(0, offset, 4);
1478
1479  // Emit the number of records
1480  JE->emitInt32(nStubs);
1481
1482  // Emit the string offsets
1483  for (unsigned i = 0; i != nStubs; ++i)
1484    JE->emitInt32(Offsets[i]);
1485
1486  // Emit the pointers.  Verify that they are at least 2-byte aligned, and set
1487  // the low bit to 0 == GV, 1 == Function, so that the client code doing the
1488  // relocation can write the relocated pointer at the appropriate place in
1489  // the stub.
1490  for (unsigned i = 0; i != GVs.size(); ++i) {
1491    intptr_t Ptr = (intptr_t)Ptrs[i];
1492    assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!");
1493
1494    if (isa<Function>(GVs[i]))
1495      Ptr |= (intptr_t)1;
1496
1497    if (sizeof(Ptr) == 8)
1498      JE->emitInt64(Ptr);
1499    else
1500      JE->emitInt32(Ptr);
1501  }
1502  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1503       i != e; ++i) {
1504    intptr_t Ptr = (intptr_t)i->second | 1;
1505
1506    if (sizeof(Ptr) == 8)
1507      JE->emitInt64(Ptr);
1508    else
1509      JE->emitInt32(Ptr);
1510  }
1511
1512  // Emit the strings.
1513  for (unsigned i = 0; i != GVs.size(); ++i)
1514    JE->emitString(GVs[i]->getName());
1515  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1516       i != e; ++i)
1517    JE->emitString(i->first());
1518
1519  // Tell the JIT memory manager where it is.  The JIT Memory Manager will
1520  // deallocate space for the old one, if one existed.
1521  JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0));
1522}
1523
1524/// freeMachineCodeForFunction - release machine code memory for given Function.
1525///
1526void JIT::freeMachineCodeForFunction(Function *F) {
1527
1528  // Delete translation for this from the ExecutionEngine, so it will get
1529  // retranslated next time it is used.
1530  void *OldPtr = updateGlobalMapping(F, 0);
1531
1532  if (OldPtr)
1533    TheJIT->NotifyFreeingMachineCode(*F, OldPtr);
1534
1535  // Free the actual memory for the function body and related stuff.
1536  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1537  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1538}
1539