JITEmitter.cpp revision 2d274412ed9aab277e070690c574714ec544cf94
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDebugRegisterer.h"
18#include "JITDwarfEmitter.h"
19#include "llvm/ADT/OwningPtr.h"
20#include "llvm/Constants.h"
21#include "llvm/Module.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/JITCodeEmitter.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRelocation.h"
29#include "llvm/ExecutionEngine/GenericValue.h"
30#include "llvm/ExecutionEngine/JITEventListener.h"
31#include "llvm/ExecutionEngine/JITMemoryManager.h"
32#include "llvm/CodeGen/MachineCodeInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetJITInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MutexGuard.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/System/Disassembler.h"
43#include "llvm/System/Memory.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/ADT/DenseMap.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallVector.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/ValueMap.h"
50#include <algorithm>
51#ifndef NDEBUG
52#include <iomanip>
53#endif
54using namespace llvm;
55
56STATISTIC(NumBytes, "Number of bytes of machine code compiled");
57STATISTIC(NumRelos, "Number of relocations applied");
58STATISTIC(NumRetries, "Number of retries with more memory");
59static JIT *TheJIT = 0;
60
61
62//===----------------------------------------------------------------------===//
63// JIT lazy compilation code.
64//
65namespace {
66  class JITEmitter;
67  class JITResolverState;
68
69  template<typename ValueTy>
70  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
71    typedef JITResolverState *ExtraData;
72    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
73      assert(false && "The JIT doesn't know how to handle a"
74             " RAUW on a value it has emitted.");
75    }
76  };
77
78  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
79    typedef JITResolverState *ExtraData;
80    static void onDelete(JITResolverState *JRS, Function *F);
81  };
82
83  class JITResolverState {
84  public:
85    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
86      FunctionToStubMapTy;
87    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
88    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
89                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
90    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
91  private:
92    /// FunctionToStubMap - Keep track of the stub created for a particular
93    /// function so that we can reuse them if necessary.
94    FunctionToStubMapTy FunctionToStubMap;
95
96    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
97    /// site corresponds to, and vice versa.
98    CallSiteToFunctionMapTy CallSiteToFunctionMap;
99    FunctionToCallSitesMapTy FunctionToCallSitesMap;
100
101    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
102    /// particular GlobalVariable so that we can reuse them if necessary.
103    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
104
105  public:
106    JITResolverState() : FunctionToStubMap(this),
107                         FunctionToCallSitesMap(this) {}
108
109    FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) {
110      assert(locked.holds(TheJIT->lock));
111      return FunctionToStubMap;
112    }
113
114    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
115      assert(locked.holds(TheJIT->lock));
116      return GlobalToIndirectSymMap;
117    }
118
119    pair<void *, Function *> LookupFunctionFromCallSite(
120        const MutexGuard &locked, void *CallSite) const {
121      assert(locked.holds(TheJIT->lock));
122
123      // The address given to us for the stub may not be exactly right, it might be
124      // a little bit after the stub.  As such, use upper_bound to find it.
125      CallSiteToFunctionMapTy::const_iterator I =
126        CallSiteToFunctionMap.upper_bound(CallSite);
127      assert(I != CallSiteToFunctionMap.begin() &&
128             "This is not a known call site!");
129      --I;
130      return *I;
131    }
132
133    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
134      assert(locked.holds(TheJIT->lock));
135
136      bool Inserted = CallSiteToFunctionMap.insert(
137          std::make_pair(CallSite, F)).second;
138      (void)Inserted;
139      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
140      FunctionToCallSitesMap[F].insert(CallSite);
141    }
142
143    // Returns the Function of the stub if a stub was erased, or NULL if there
144    // was no stub.  This function uses the call-site->function map to find a
145    // relevant function, but asserts that only stubs and not other call sites
146    // will be passed in.
147    Function *EraseStub(const MutexGuard &locked, void *Stub) {
148      CallSiteToFunctionMapTy::iterator C2F_I =
149        CallSiteToFunctionMap.find(Stub);
150      if (C2F_I == CallSiteToFunctionMap.end()) {
151        // Not a stub.
152        return NULL;
153      }
154
155      Function *const F = C2F_I->second;
156#ifndef NDEBUG
157      void *RealStub = FunctionToStubMap.lookup(F);
158      assert(RealStub == Stub &&
159             "Call-site that wasn't a stub pass in to EraseStub");
160#endif
161      FunctionToStubMap.erase(F);
162      CallSiteToFunctionMap.erase(C2F_I);
163
164      // Remove the stub from the function->call-sites map, and remove the whole
165      // entry from the map if that was the last call site.
166      FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
167      assert(F2C_I != FunctionToCallSitesMap.end() &&
168             "FunctionToCallSitesMap broken");
169      bool Erased = F2C_I->second.erase(Stub);
170      (void)Erased;
171      assert(Erased && "FunctionToCallSitesMap broken");
172      if (F2C_I->second.empty())
173        FunctionToCallSitesMap.erase(F2C_I);
174
175      return F;
176    }
177
178    void EraseAllCallSites(const MutexGuard &locked, Function *F) {
179      assert(locked.holds(TheJIT->lock));
180      EraseAllCallSitesPrelocked(F);
181    }
182    void EraseAllCallSitesPrelocked(Function *F) {
183      FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
184      if (F2C == FunctionToCallSitesMap.end())
185        return;
186      for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
187             E = F2C->second.end(); I != E; ++I) {
188        bool Erased = CallSiteToFunctionMap.erase(*I);
189        (void)Erased;
190        assert(Erased && "Missing call site->function mapping");
191      }
192      FunctionToCallSitesMap.erase(F2C);
193    }
194  };
195
196  /// JITResolver - Keep track of, and resolve, call sites for functions that
197  /// have not yet been compiled.
198  class JITResolver {
199    typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy;
200    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
201    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
202
203    /// LazyResolverFn - The target lazy resolver function that we actually
204    /// rewrite instructions to use.
205    TargetJITInfo::LazyResolverFn LazyResolverFn;
206
207    JITResolverState state;
208
209    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
210    /// external functions.
211    std::map<void*, void*> ExternalFnToStubMap;
212
213    /// revGOTMap - map addresses to indexes in the GOT
214    std::map<void*, unsigned> revGOTMap;
215    unsigned nextGOTIndex;
216
217    JITEmitter &JE;
218
219    static JITResolver *TheJITResolver;
220  public:
221    explicit JITResolver(JIT &jit, JITEmitter &je) : nextGOTIndex(0), JE(je) {
222      TheJIT = &jit;
223
224      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
225      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
226      TheJITResolver = this;
227    }
228
229    ~JITResolver() {
230      TheJITResolver = 0;
231    }
232
233    /// getFunctionStubIfAvailable - This returns a pointer to a function stub
234    /// if it has already been created.
235    void *getFunctionStubIfAvailable(Function *F);
236
237    /// getFunctionStub - This returns a pointer to a function stub, creating
238    /// one on demand as needed.  If empty is true, create a function stub
239    /// pointing at address 0, to be filled in later.
240    void *getFunctionStub(Function *F);
241
242    /// getExternalFunctionStub - Return a stub for the function at the
243    /// specified address, created lazily on demand.
244    void *getExternalFunctionStub(void *FnAddr);
245
246    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
247    /// specified GV address.
248    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
249
250    /// AddCallbackAtLocation - If the target is capable of rewriting an
251    /// instruction without the use of a stub, record the location of the use so
252    /// we know which function is being used at the location.
253    void *AddCallbackAtLocation(Function *F, void *Location) {
254      MutexGuard locked(TheJIT->lock);
255      /// Get the target-specific JIT resolver function.
256      state.AddCallSite(locked, Location, F);
257      return (void*)(intptr_t)LazyResolverFn;
258    }
259
260    void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
261                           SmallVectorImpl<void*> &Ptrs);
262
263    GlobalValue *invalidateStub(void *Stub);
264
265    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
266    /// an address.  This function only manages slots, it does not manage the
267    /// contents of the slots or the memory associated with the GOT.
268    unsigned getGOTIndexForAddr(void *addr);
269
270    /// JITCompilerFn - This function is called to resolve a stub to a compiled
271    /// address.  If the LLVM Function corresponding to the stub has not yet
272    /// been compiled, this function compiles it first.
273    static void *JITCompilerFn(void *Stub);
274  };
275
276  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
277  /// used to output functions to memory for execution.
278  class JITEmitter : public JITCodeEmitter {
279    JITMemoryManager *MemMgr;
280
281    // When outputting a function stub in the context of some other function, we
282    // save BufferBegin/BufferEnd/CurBufferPtr here.
283    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
284
285    // When reattempting to JIT a function after running out of space, we store
286    // the estimated size of the function we're trying to JIT here, so we can
287    // ask the memory manager for at least this much space.  When we
288    // successfully emit the function, we reset this back to zero.
289    uintptr_t SizeEstimate;
290
291    /// Relocations - These are the relocations that the function needs, as
292    /// emitted.
293    std::vector<MachineRelocation> Relocations;
294
295    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
296    /// It is filled in by the StartMachineBasicBlock callback and queried by
297    /// the getMachineBasicBlockAddress callback.
298    std::vector<uintptr_t> MBBLocations;
299
300    /// ConstantPool - The constant pool for the current function.
301    ///
302    MachineConstantPool *ConstantPool;
303
304    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
305    ///
306    void *ConstantPoolBase;
307
308    /// ConstPoolAddresses - Addresses of individual constant pool entries.
309    ///
310    SmallVector<uintptr_t, 8> ConstPoolAddresses;
311
312    /// JumpTable - The jump tables for the current function.
313    ///
314    MachineJumpTableInfo *JumpTable;
315
316    /// JumpTableBase - A pointer to the first entry in the jump table.
317    ///
318    void *JumpTableBase;
319
320    /// Resolver - This contains info about the currently resolved functions.
321    JITResolver Resolver;
322
323    /// DE - The dwarf emitter for the jit.
324    OwningPtr<JITDwarfEmitter> DE;
325
326    /// DR - The debug registerer for the jit.
327    OwningPtr<JITDebugRegisterer> DR;
328
329    /// LabelLocations - This vector is a mapping from Label ID's to their
330    /// address.
331    std::vector<uintptr_t> LabelLocations;
332
333    /// MMI - Machine module info for exception informations
334    MachineModuleInfo* MMI;
335
336    // GVSet - a set to keep track of which globals have been seen
337    SmallPtrSet<const GlobalVariable*, 8> GVSet;
338
339    // CurFn - The llvm function being emitted.  Only valid during
340    // finishFunction().
341    const Function *CurFn;
342
343    /// Information about emitted code, which is passed to the
344    /// JITEventListeners.  This is reset in startFunction and used in
345    /// finishFunction.
346    JITEvent_EmittedFunctionDetails EmissionDetails;
347
348    struct EmittedCode {
349      void *FunctionBody;  // Beginning of the function's allocation.
350      void *Code;  // The address the function's code actually starts at.
351      void *ExceptionTable;
352      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
353    };
354    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
355      typedef JITEmitter *ExtraData;
356      static void onDelete(JITEmitter *, const Function*);
357      static void onRAUW(JITEmitter *, const Function*, const Function*);
358    };
359    ValueMap<const Function *, EmittedCode,
360             EmittedFunctionConfig> EmittedFunctions;
361
362    // CurFnStubUses - For a given Function, a vector of stubs that it
363    // references.  This facilitates the JIT detecting that a stub is no
364    // longer used, so that it may be deallocated.
365    DenseMap<AssertingVH<const Function>, SmallVector<void*, 1> > CurFnStubUses;
366
367    // StubFnRefs - For a given pointer to a stub, a set of Functions which
368    // reference the stub.  When the count of a stub's references drops to zero,
369    // the stub is unused.
370    DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
371
372    // ExtFnStubs - A map of external function names to stubs which have entries
373    // in the JITResolver's ExternalFnToStubMap.
374    StringMap<void *> ExtFnStubs;
375
376    DebugLocTuple PrevDLT;
377
378  public:
379    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
380      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
381          EmittedFunctions(this) {
382      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
383      if (jit.getJITInfo().needsGOT()) {
384        MemMgr->AllocateGOT();
385        DEBUG(errs() << "JIT is managing a GOT\n");
386      }
387
388      if (DwarfExceptionHandling || JITEmitDebugInfo) {
389        DE.reset(new JITDwarfEmitter(jit));
390      }
391      if (JITEmitDebugInfo) {
392        DR.reset(new JITDebugRegisterer(TM));
393      }
394    }
395    ~JITEmitter() {
396      delete MemMgr;
397    }
398
399    /// classof - Methods for support type inquiry through isa, cast, and
400    /// dyn_cast:
401    ///
402    static inline bool classof(const JITEmitter*) { return true; }
403    static inline bool classof(const MachineCodeEmitter*) { return true; }
404
405    JITResolver &getJITResolver() { return Resolver; }
406
407    virtual void startFunction(MachineFunction &F);
408    virtual bool finishFunction(MachineFunction &F);
409
410    void emitConstantPool(MachineConstantPool *MCP);
411    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
412    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
413
414    virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
415                                   unsigned Alignment = 1);
416    virtual void startGVStub(const GlobalValue* GV, void *Buffer,
417                             unsigned StubSize);
418    virtual void* finishGVStub(const GlobalValue *GV);
419
420    /// allocateSpace - Reserves space in the current block if any, or
421    /// allocate a new one of the given size.
422    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
423
424    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
425    /// this method does not allocate memory in the current output buffer,
426    /// because a global may live longer than the current function.
427    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
428
429    virtual void addRelocation(const MachineRelocation &MR) {
430      Relocations.push_back(MR);
431    }
432
433    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
434      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
435        MBBLocations.resize((MBB->getNumber()+1)*2);
436      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
437      DEBUG(errs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
438                   << (void*) getCurrentPCValue() << "]\n");
439    }
440
441    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
442    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
443
444    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
445      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
446             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
447      return MBBLocations[MBB->getNumber()];
448    }
449
450    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
451    /// given function.  Increase the minimum allocation size so that we get
452    /// more memory next time.
453    void retryWithMoreMemory(MachineFunction &F);
454
455    /// deallocateMemForFunction - Deallocate all memory for the specified
456    /// function body.
457    void deallocateMemForFunction(const Function *F);
458
459    /// AddStubToCurrentFunction - Mark the current function being JIT'd as
460    /// using the stub at the specified address. Allows
461    /// deallocateMemForFunction to also remove stubs no longer referenced.
462    void AddStubToCurrentFunction(void *Stub);
463
464    /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for
465    /// MachineRelocations that reference external functions by name.
466    const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
467
468    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
469
470    virtual void emitLabel(uint64_t LabelID) {
471      if (LabelLocations.size() <= LabelID)
472        LabelLocations.resize((LabelID+1)*2);
473      LabelLocations[LabelID] = getCurrentPCValue();
474    }
475
476    virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
477      assert(LabelLocations.size() > (unsigned)LabelID &&
478             LabelLocations[LabelID] && "Label not emitted!");
479      return LabelLocations[LabelID];
480    }
481
482    virtual void setModuleInfo(MachineModuleInfo* Info) {
483      MMI = Info;
484      if (DE.get()) DE->setModuleInfo(Info);
485    }
486
487    void setMemoryExecutable() {
488      MemMgr->setMemoryExecutable();
489    }
490
491    JITMemoryManager *getMemMgr() const { return MemMgr; }
492
493  private:
494    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
495                             bool MayNeedFarStub);
496    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
497    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
498    unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
499    unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
500    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
501  };
502}
503
504JITResolver *JITResolver::TheJITResolver = 0;
505
506void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
507  JRS->EraseAllCallSitesPrelocked(F);
508}
509
510/// getFunctionStubIfAvailable - This returns a pointer to a function stub
511/// if it has already been created.
512void *JITResolver::getFunctionStubIfAvailable(Function *F) {
513  MutexGuard locked(TheJIT->lock);
514
515  // If we already have a stub for this function, recycle it.
516  return state.getFunctionToStubMap(locked).lookup(F);
517}
518
519/// getFunctionStub - This returns a pointer to a function stub, creating
520/// one on demand as needed.
521void *JITResolver::getFunctionStub(Function *F) {
522  MutexGuard locked(TheJIT->lock);
523
524  // If we already have a stub for this function, recycle it.
525  void *&Stub = state.getFunctionToStubMap(locked)[F];
526  if (Stub) return Stub;
527
528  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
529  // must resolve the symbol now.
530  void *Actual = TheJIT->isCompilingLazily()
531    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
532
533  // If this is an external declaration, attempt to resolve the address now
534  // to place in the stub.
535  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
536    Actual = TheJIT->getPointerToFunction(F);
537
538    // If we resolved the symbol to a null address (eg. a weak external)
539    // don't emit a stub. Return a null pointer to the application.  If dlsym
540    // stubs are enabled, not being able to resolve the address is not
541    // meaningful.
542    if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0;
543  }
544
545  // Codegen a new stub, calling the lazy resolver or the actual address of the
546  // external function, if it was resolved.
547  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
548
549  if (Actual != (void*)(intptr_t)LazyResolverFn) {
550    // If we are getting the stub for an external function, we really want the
551    // address of the stub in the GlobalAddressMap for the JIT, not the address
552    // of the external function.
553    TheJIT->updateGlobalMapping(F, Stub);
554  }
555
556  DEBUG(errs() << "JIT: Stub emitted at [" << Stub << "] for function '"
557        << F->getName() << "'\n");
558
559  // Finally, keep track of the stub-to-Function mapping so that the
560  // JITCompilerFn knows which function to compile!
561  state.AddCallSite(locked, Stub, F);
562
563  // If we are JIT'ing non-lazily but need to call a function that does not
564  // exist yet, add it to the JIT's work list so that we can fill in the stub
565  // address later.
566  if (!Actual && !TheJIT->isCompilingLazily())
567    if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
568      TheJIT->addPendingFunction(F);
569
570  return Stub;
571}
572
573/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
574/// GV address.
575void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
576  MutexGuard locked(TheJIT->lock);
577
578  // If we already have a stub for this global variable, recycle it.
579  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
580  if (IndirectSym) return IndirectSym;
581
582  // Otherwise, codegen a new indirect symbol.
583  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
584                                                                JE);
585
586  DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
587        << "] for GV '" << GV->getName() << "'\n");
588
589  return IndirectSym;
590}
591
592/// getExternalFunctionStub - Return a stub for the function at the
593/// specified address, created lazily on demand.
594void *JITResolver::getExternalFunctionStub(void *FnAddr) {
595  // If we already have a stub for this function, recycle it.
596  void *&Stub = ExternalFnToStubMap[FnAddr];
597  if (Stub) return Stub;
598
599  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
600
601  DEBUG(errs() << "JIT: Stub emitted at [" << Stub
602               << "] for external function at '" << FnAddr << "'\n");
603  return Stub;
604}
605
606unsigned JITResolver::getGOTIndexForAddr(void* addr) {
607  unsigned idx = revGOTMap[addr];
608  if (!idx) {
609    idx = ++nextGOTIndex;
610    revGOTMap[addr] = idx;
611    DEBUG(errs() << "JIT: Adding GOT entry " << idx << " for addr ["
612                 << addr << "]\n");
613  }
614  return idx;
615}
616
617void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
618                                    SmallVectorImpl<void*> &Ptrs) {
619  MutexGuard locked(TheJIT->lock);
620
621  const FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
622  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
623
624  for (FunctionToStubMapTy::const_iterator i = FM.begin(), e = FM.end();
625       i != e; ++i){
626    Function *F = i->first;
627    if (F->isDeclaration() && F->hasExternalLinkage()) {
628      GVs.push_back(i->first);
629      Ptrs.push_back(i->second);
630    }
631  }
632  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
633       i != e; ++i) {
634    GVs.push_back(i->first);
635    Ptrs.push_back(i->second);
636  }
637}
638
639GlobalValue *JITResolver::invalidateStub(void *Stub) {
640  MutexGuard locked(TheJIT->lock);
641
642  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
643
644  // Look up the cheap way first, to see if it's a function stub we are
645  // invalidating.  If so, remove it from both the forward and reverse maps.
646  if (Function *F = state.EraseStub(locked, Stub)) {
647    return F;
648  }
649
650  // Otherwise, it might be an indirect symbol stub.  Find it and remove it.
651  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
652       i != e; ++i) {
653    if (i->second != Stub)
654      continue;
655    GlobalValue *GV = i->first;
656    GM.erase(i);
657    return GV;
658  }
659
660  // Lastly, check to see if it's in the ExternalFnToStubMap.
661  for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
662       e = ExternalFnToStubMap.end(); i != e; ++i) {
663    if (i->second != Stub)
664      continue;
665    ExternalFnToStubMap.erase(i);
666    break;
667  }
668
669  return 0;
670}
671
672/// JITCompilerFn - This function is called when a lazy compilation stub has
673/// been entered.  It looks up which function this stub corresponds to, compiles
674/// it if necessary, then returns the resultant function pointer.
675void *JITResolver::JITCompilerFn(void *Stub) {
676  JITResolver &JR = *TheJITResolver;
677
678  Function* F = 0;
679  void* ActualPtr = 0;
680
681  {
682    // Only lock for getting the Function. The call getPointerToFunction made
683    // in this function might trigger function materializing, which requires
684    // JIT lock to be unlocked.
685    MutexGuard locked(TheJIT->lock);
686
687    // The address given to us for the stub may not be exactly right, it might
688    // be a little bit after the stub.  As such, use upper_bound to find it.
689    pair<void*, Function*> I =
690      JR.state.LookupFunctionFromCallSite(locked, Stub);
691    F = I.second;
692    ActualPtr = I.first;
693  }
694
695  // If we have already code generated the function, just return the address.
696  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
697
698  if (!Result) {
699    // Otherwise we don't have it, do lazy compilation now.
700
701    // If lazy compilation is disabled, emit a useful error message and abort.
702    if (!TheJIT->isCompilingLazily()) {
703      llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
704                        + F->getName() + "' when lazy compiles are disabled!");
705    }
706
707    DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
708          << "' In stub ptr = " << Stub << " actual ptr = "
709          << ActualPtr << "\n");
710
711    Result = TheJIT->getPointerToFunction(F);
712  }
713
714  // Reacquire the lock to update the GOT map.
715  MutexGuard locked(TheJIT->lock);
716
717  // We might like to remove the call site from the CallSiteToFunction map, but
718  // we can't do that! Multiple threads could be stuck, waiting to acquire the
719  // lock above. As soon as the 1st function finishes compiling the function,
720  // the next one will be released, and needs to be able to find the function it
721  // needs to call.
722
723  // FIXME: We could rewrite all references to this stub if we knew them.
724
725  // What we will do is set the compiled function address to map to the
726  // same GOT entry as the stub so that later clients may update the GOT
727  // if they see it still using the stub address.
728  // Note: this is done so the Resolver doesn't have to manage GOT memory
729  // Do this without allocating map space if the target isn't using a GOT
730  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
731    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
732
733  return Result;
734}
735
736//===----------------------------------------------------------------------===//
737// JITEmitter code.
738//
739void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
740                                     bool MayNeedFarStub) {
741  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
742    return TheJIT->getOrEmitGlobalVariable(GV);
743
744  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
745    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
746
747  // If we have already compiled the function, return a pointer to its body.
748  Function *F = cast<Function>(V);
749  void *ResultPtr;
750  if (MayNeedFarStub) {
751    // Return the function stub if it's already created.
752    ResultPtr = Resolver.getFunctionStubIfAvailable(F);
753    if (ResultPtr)
754      AddStubToCurrentFunction(ResultPtr);
755  } else {
756    ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
757  }
758  if (ResultPtr) return ResultPtr;
759
760  // If this is an external function pointer, we can force the JIT to
761  // 'compile' it, which really just adds it to the map.  In dlsym mode,
762  // external functions are forced through a stub, regardless of reloc type.
763  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() &&
764      !MayNeedFarStub && !TheJIT->areDlsymStubsEnabled())
765    return TheJIT->getPointerToFunction(F);
766
767  // Okay, the function has not been compiled yet, if the target callback
768  // mechanism is capable of rewriting the instruction directly, prefer to do
769  // that instead of emitting a stub.  This uses the lazy resolver, so is not
770  // legal if lazy compilation is disabled.
771  if (!MayNeedFarStub && TheJIT->isCompilingLazily())
772    return Resolver.AddCallbackAtLocation(F, Reference);
773
774  // Otherwise, we have to emit a stub.
775  void *StubAddr = Resolver.getFunctionStub(F);
776
777  // Add the stub to the current function's list of referenced stubs, so we can
778  // deallocate them if the current function is ever freed.  It's possible to
779  // return null from getFunctionStub in the case of a weak extern that fails
780  // to resolve.
781  if (StubAddr)
782    AddStubToCurrentFunction(StubAddr);
783
784  return StubAddr;
785}
786
787void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
788  // Make sure GV is emitted first, and create a stub containing the fully
789  // resolved address.
790  void *GVAddress = getPointerToGlobal(V, Reference, false);
791  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
792
793  // Add the stub to the current function's list of referenced stubs, so we can
794  // deallocate them if the current function is ever freed.
795  AddStubToCurrentFunction(StubAddr);
796
797  return StubAddr;
798}
799
800void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
801  assert(CurFn && "Stub added to current function, but current function is 0!");
802
803  SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
804  StubsUsed.push_back(StubAddr);
805
806  SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
807  FnRefs.insert(CurFn);
808}
809
810void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
811  if (!DL.isUnknown()) {
812    DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL);
813
814    if (BeforePrintingInsn) {
815      if (CurDLT.Scope != 0 && PrevDLT != CurDLT) {
816        JITEvent_EmittedFunctionDetails::LineStart NextLine;
817        NextLine.Address = getCurrentPCValue();
818        NextLine.Loc = DL;
819        EmissionDetails.LineStarts.push_back(NextLine);
820      }
821
822      PrevDLT = CurDLT;
823    }
824  }
825}
826
827static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
828                                           const TargetData *TD) {
829  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
830  if (Constants.empty()) return 0;
831
832  unsigned Size = 0;
833  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
834    MachineConstantPoolEntry CPE = Constants[i];
835    unsigned AlignMask = CPE.getAlignment() - 1;
836    Size = (Size + AlignMask) & ~AlignMask;
837    const Type *Ty = CPE.getType();
838    Size += TD->getTypeAllocSize(Ty);
839  }
840  return Size;
841}
842
843static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
844  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
845  if (JT.empty()) return 0;
846
847  unsigned NumEntries = 0;
848  for (unsigned i = 0, e = JT.size(); i != e; ++i)
849    NumEntries += JT[i].MBBs.size();
850
851  unsigned EntrySize = MJTI->getEntrySize();
852
853  return NumEntries * EntrySize;
854}
855
856static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
857  if (Alignment == 0) Alignment = 1;
858  // Since we do not know where the buffer will be allocated, be pessimistic.
859  return Size + Alignment;
860}
861
862/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
863/// into the running total Size.
864
865unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
866  const Type *ElTy = GV->getType()->getElementType();
867  size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
868  size_t GVAlign =
869      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
870  DEBUG(errs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
871  DEBUG(GV->dump());
872  // Assume code section ends with worst possible alignment, so first
873  // variable needs maximal padding.
874  if (Size==0)
875    Size = 1;
876  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
877  Size += GVSize;
878  return Size;
879}
880
881/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
882/// but are referenced from the constant; put them in GVSet and add their
883/// size into the running total Size.
884
885unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
886                                              unsigned Size) {
887  // If its undefined, return the garbage.
888  if (isa<UndefValue>(C))
889    return Size;
890
891  // If the value is a ConstantExpr
892  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
893    Constant *Op0 = CE->getOperand(0);
894    switch (CE->getOpcode()) {
895    case Instruction::GetElementPtr:
896    case Instruction::Trunc:
897    case Instruction::ZExt:
898    case Instruction::SExt:
899    case Instruction::FPTrunc:
900    case Instruction::FPExt:
901    case Instruction::UIToFP:
902    case Instruction::SIToFP:
903    case Instruction::FPToUI:
904    case Instruction::FPToSI:
905    case Instruction::PtrToInt:
906    case Instruction::IntToPtr:
907    case Instruction::BitCast: {
908      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
909      break;
910    }
911    case Instruction::Add:
912    case Instruction::FAdd:
913    case Instruction::Sub:
914    case Instruction::FSub:
915    case Instruction::Mul:
916    case Instruction::FMul:
917    case Instruction::UDiv:
918    case Instruction::SDiv:
919    case Instruction::URem:
920    case Instruction::SRem:
921    case Instruction::And:
922    case Instruction::Or:
923    case Instruction::Xor: {
924      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
925      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
926      break;
927    }
928    default: {
929       std::string msg;
930       raw_string_ostream Msg(msg);
931       Msg << "ConstantExpr not handled: " << *CE;
932       llvm_report_error(Msg.str());
933    }
934    }
935  }
936
937  if (C->getType()->getTypeID() == Type::PointerTyID)
938    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
939      if (GVSet.insert(GV))
940        Size = addSizeOfGlobal(GV, Size);
941
942  return Size;
943}
944
945/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
946/// but are referenced from the given initializer.
947
948unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
949                                              unsigned Size) {
950  if (!isa<UndefValue>(Init) &&
951      !isa<ConstantVector>(Init) &&
952      !isa<ConstantAggregateZero>(Init) &&
953      !isa<ConstantArray>(Init) &&
954      !isa<ConstantStruct>(Init) &&
955      Init->getType()->isFirstClassType())
956    Size = addSizeOfGlobalsInConstantVal(Init, Size);
957  return Size;
958}
959
960/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
961/// globals; then walk the initializers of those globals looking for more.
962/// If their size has not been considered yet, add it into the running total
963/// Size.
964
965unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
966  unsigned Size = 0;
967  GVSet.clear();
968
969  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
970       MBB != E; ++MBB) {
971    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
972         I != E; ++I) {
973      const TargetInstrDesc &Desc = I->getDesc();
974      const MachineInstr &MI = *I;
975      unsigned NumOps = Desc.getNumOperands();
976      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
977        const MachineOperand &MO = MI.getOperand(CurOp);
978        if (MO.isGlobal()) {
979          GlobalValue* V = MO.getGlobal();
980          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
981          if (!GV)
982            continue;
983          // If seen in previous function, it will have an entry here.
984          if (TheJIT->getPointerToGlobalIfAvailable(GV))
985            continue;
986          // If seen earlier in this function, it will have an entry here.
987          // FIXME: it should be possible to combine these tables, by
988          // assuming the addresses of the new globals in this module
989          // start at 0 (or something) and adjusting them after codegen
990          // complete.  Another possibility is to grab a marker bit in GV.
991          if (GVSet.insert(GV))
992            // A variable as yet unseen.  Add in its size.
993            Size = addSizeOfGlobal(GV, Size);
994        }
995      }
996    }
997  }
998  DEBUG(errs() << "JIT: About to look through initializers\n");
999  // Look for more globals that are referenced only from initializers.
1000  // GVSet.end is computed each time because the set can grow as we go.
1001  for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
1002       I != GVSet.end(); I++) {
1003    const GlobalVariable* GV = *I;
1004    if (GV->hasInitializer())
1005      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
1006  }
1007
1008  return Size;
1009}
1010
1011void JITEmitter::startFunction(MachineFunction &F) {
1012  DEBUG(errs() << "JIT: Starting CodeGen of Function "
1013        << F.getFunction()->getName() << "\n");
1014
1015  uintptr_t ActualSize = 0;
1016  // Set the memory writable, if it's not already
1017  MemMgr->setMemoryWritable();
1018  if (MemMgr->NeedsExactSize()) {
1019    DEBUG(errs() << "JIT: ExactSize\n");
1020    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
1021    MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
1022    MachineConstantPool *MCP = F.getConstantPool();
1023
1024    // Ensure the constant pool/jump table info is at least 4-byte aligned.
1025    ActualSize = RoundUpToAlign(ActualSize, 16);
1026
1027    // Add the alignment of the constant pool
1028    ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
1029
1030    // Add the constant pool size
1031    ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1032
1033    // Add the aligment of the jump table info
1034    ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
1035
1036    // Add the jump table size
1037    ActualSize += GetJumpTableSizeInBytes(MJTI);
1038
1039    // Add the alignment for the function
1040    ActualSize = RoundUpToAlign(ActualSize,
1041                                std::max(F.getFunction()->getAlignment(), 8U));
1042
1043    // Add the function size
1044    ActualSize += TII->GetFunctionSizeInBytes(F);
1045
1046    DEBUG(errs() << "JIT: ActualSize before globals " << ActualSize << "\n");
1047    // Add the size of the globals that will be allocated after this function.
1048    // These are all the ones referenced from this function that were not
1049    // previously allocated.
1050    ActualSize += GetSizeOfGlobalsInBytes(F);
1051    DEBUG(errs() << "JIT: ActualSize after globals " << ActualSize << "\n");
1052  } else if (SizeEstimate > 0) {
1053    // SizeEstimate will be non-zero on reallocation attempts.
1054    ActualSize = SizeEstimate;
1055  }
1056
1057  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
1058                                                         ActualSize);
1059  BufferEnd = BufferBegin+ActualSize;
1060  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
1061
1062  // Ensure the constant pool/jump table info is at least 4-byte aligned.
1063  emitAlignment(16);
1064
1065  emitConstantPool(F.getConstantPool());
1066  initJumpTableInfo(F.getJumpTableInfo());
1067
1068  // About to start emitting the machine code for the function.
1069  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
1070  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
1071  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
1072
1073  MBBLocations.clear();
1074
1075  EmissionDetails.MF = &F;
1076  EmissionDetails.LineStarts.clear();
1077}
1078
1079bool JITEmitter::finishFunction(MachineFunction &F) {
1080  if (CurBufferPtr == BufferEnd) {
1081    // We must call endFunctionBody before retrying, because
1082    // deallocateMemForFunction requires it.
1083    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1084    retryWithMoreMemory(F);
1085    return true;
1086  }
1087
1088  emitJumpTableInfo(F.getJumpTableInfo());
1089
1090  // FnStart is the start of the text, not the start of the constant pool and
1091  // other per-function data.
1092  uint8_t *FnStart =
1093    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
1094
1095  // FnEnd is the end of the function's machine code.
1096  uint8_t *FnEnd = CurBufferPtr;
1097
1098  if (!Relocations.empty()) {
1099    CurFn = F.getFunction();
1100    NumRelos += Relocations.size();
1101
1102    // Resolve the relocations to concrete pointers.
1103    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
1104      MachineRelocation &MR = Relocations[i];
1105      void *ResultPtr = 0;
1106      if (!MR.letTargetResolve()) {
1107        if (MR.isExternalSymbol()) {
1108          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
1109                                                        false);
1110          DEBUG(errs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
1111                       << ResultPtr << "]\n");
1112
1113          // If the target REALLY wants a stub for this function, emit it now.
1114          if (MR.mayNeedFarStub()) {
1115            if (!TheJIT->areDlsymStubsEnabled()) {
1116              ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1117            } else {
1118              void *&Stub = ExtFnStubs[MR.getExternalSymbol()];
1119              if (!Stub) {
1120                Stub = Resolver.getExternalFunctionStub((void *)&Stub);
1121                AddStubToCurrentFunction(Stub);
1122              }
1123              ResultPtr = Stub;
1124            }
1125          }
1126        } else if (MR.isGlobalValue()) {
1127          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1128                                         BufferBegin+MR.getMachineCodeOffset(),
1129                                         MR.mayNeedFarStub());
1130        } else if (MR.isIndirectSymbol()) {
1131          ResultPtr = getPointerToGVIndirectSym(
1132              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
1133        } else if (MR.isBasicBlock()) {
1134          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1135        } else if (MR.isConstantPoolIndex()) {
1136          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1137        } else {
1138          assert(MR.isJumpTableIndex());
1139          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1140        }
1141
1142        MR.setResultPointer(ResultPtr);
1143      }
1144
1145      // if we are managing the GOT and the relocation wants an index,
1146      // give it one
1147      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1148        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1149        MR.setGOTIndex(idx);
1150        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1151          DEBUG(errs() << "JIT: GOT was out of date for " << ResultPtr
1152                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1153                       << "\n");
1154          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1155        }
1156      }
1157    }
1158
1159    CurFn = 0;
1160    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1161                                  Relocations.size(), MemMgr->getGOTBase());
1162  }
1163
1164  // Update the GOT entry for F to point to the new code.
1165  if (MemMgr->isManagingGOT()) {
1166    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1167    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1168      DEBUG(errs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1169                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1170                   << "\n");
1171      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1172    }
1173  }
1174
1175  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1176  // global variables that were referenced in the relocations.
1177  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1178
1179  if (CurBufferPtr == BufferEnd) {
1180    retryWithMoreMemory(F);
1181    return true;
1182  } else {
1183    // Now that we've succeeded in emitting the function, reset the
1184    // SizeEstimate back down to zero.
1185    SizeEstimate = 0;
1186  }
1187
1188  BufferBegin = CurBufferPtr = 0;
1189  NumBytes += FnEnd-FnStart;
1190
1191  // Invalidate the icache if necessary.
1192  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1193
1194  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1195                                EmissionDetails);
1196
1197  DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1198        << "] Function: " << F.getFunction()->getName()
1199        << ": " << (FnEnd-FnStart) << " bytes of text, "
1200        << Relocations.size() << " relocations\n");
1201
1202  Relocations.clear();
1203  ConstPoolAddresses.clear();
1204
1205  // Mark code region readable and executable if it's not so already.
1206  MemMgr->setMemoryExecutable();
1207
1208  DEBUG(
1209    if (sys::hasDisassembler()) {
1210      errs() << "JIT: Disassembled code:\n";
1211      errs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1212                                       (uintptr_t)FnStart);
1213    } else {
1214      errs() << "JIT: Binary code:\n";
1215      uint8_t* q = FnStart;
1216      for (int i = 0; q < FnEnd; q += 4, ++i) {
1217        if (i == 4)
1218          i = 0;
1219        if (i == 0)
1220          errs() << "JIT: " << (long)(q - FnStart) << ": ";
1221        bool Done = false;
1222        for (int j = 3; j >= 0; --j) {
1223          if (q + j >= FnEnd)
1224            Done = true;
1225          else
1226            errs() << (unsigned short)q[j];
1227        }
1228        if (Done)
1229          break;
1230        errs() << ' ';
1231        if (i == 3)
1232          errs() << '\n';
1233      }
1234      errs()<< '\n';
1235    }
1236        );
1237
1238  if (DwarfExceptionHandling || JITEmitDebugInfo) {
1239    uintptr_t ActualSize = 0;
1240    SavedBufferBegin = BufferBegin;
1241    SavedBufferEnd = BufferEnd;
1242    SavedCurBufferPtr = CurBufferPtr;
1243
1244    if (MemMgr->NeedsExactSize()) {
1245      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1246    }
1247
1248    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1249                                                             ActualSize);
1250    BufferEnd = BufferBegin+ActualSize;
1251    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
1252    uint8_t *EhStart;
1253    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
1254                                                EhStart);
1255    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1256                              FrameRegister);
1257    uint8_t *EhEnd = CurBufferPtr;
1258    BufferBegin = SavedBufferBegin;
1259    BufferEnd = SavedBufferEnd;
1260    CurBufferPtr = SavedCurBufferPtr;
1261
1262    if (DwarfExceptionHandling) {
1263      TheJIT->RegisterTable(FrameRegister);
1264    }
1265
1266    if (JITEmitDebugInfo) {
1267      DebugInfo I;
1268      I.FnStart = FnStart;
1269      I.FnEnd = FnEnd;
1270      I.EhStart = EhStart;
1271      I.EhEnd = EhEnd;
1272      DR->RegisterFunction(F.getFunction(), I);
1273    }
1274  }
1275
1276  if (MMI)
1277    MMI->EndFunction();
1278
1279  return false;
1280}
1281
1282void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1283  DEBUG(errs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1284  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1285  ConstPoolAddresses.clear();
1286  ++NumRetries;
1287  deallocateMemForFunction(F.getFunction());
1288  // Try again with at least twice as much free space.
1289  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1290}
1291
1292/// deallocateMemForFunction - Deallocate all memory for the specified
1293/// function body.  Also drop any references the function has to stubs.
1294/// May be called while the Function is being destroyed inside ~Value().
1295void JITEmitter::deallocateMemForFunction(const Function *F) {
1296  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1297    Emitted = EmittedFunctions.find(F);
1298  if (Emitted != EmittedFunctions.end()) {
1299    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1300    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1301    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1302
1303    EmittedFunctions.erase(Emitted);
1304  }
1305
1306  // TODO: Do we need to unregister exception handling information from libgcc
1307  // here?
1308
1309  if (JITEmitDebugInfo) {
1310    DR->UnregisterFunction(F);
1311  }
1312
1313  // If the function did not reference any stubs, return.
1314  if (CurFnStubUses.find(F) == CurFnStubUses.end())
1315    return;
1316
1317  // For each referenced stub, erase the reference to this function, and then
1318  // erase the list of referenced stubs.
1319  SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
1320  for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
1321    void *Stub = StubList[i];
1322
1323    // If we already invalidated this stub for this function, continue.
1324    if (StubFnRefs.count(Stub) == 0)
1325      continue;
1326
1327    SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
1328    FnRefs.erase(F);
1329
1330    // If this function was the last reference to the stub, invalidate the stub
1331    // in the JITResolver.  Were there a memory manager deallocateStub routine,
1332    // we could call that at this point too.
1333    if (FnRefs.empty()) {
1334      DEBUG(errs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
1335      StubFnRefs.erase(Stub);
1336
1337      // Invalidate the stub.  If it is a GV stub, update the JIT's global
1338      // mapping for that GV to zero, otherwise, search the string map of
1339      // external function names to stubs and remove the entry for this stub.
1340      GlobalValue *GV = Resolver.invalidateStub(Stub);
1341      if (GV) {
1342        TheJIT->updateGlobalMapping(GV, 0);
1343      } else {
1344        for (StringMapIterator<void*> i = ExtFnStubs.begin(),
1345             e = ExtFnStubs.end(); i != e; ++i) {
1346          if (i->second == Stub) {
1347            ExtFnStubs.erase(i);
1348            break;
1349          }
1350        }
1351      }
1352    }
1353  }
1354  CurFnStubUses.erase(F);
1355}
1356
1357
1358void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1359  if (BufferBegin)
1360    return JITCodeEmitter::allocateSpace(Size, Alignment);
1361
1362  // create a new memory block if there is no active one.
1363  // care must be taken so that BufferBegin is invalidated when a
1364  // block is trimmed
1365  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1366  BufferEnd = BufferBegin+Size;
1367  return CurBufferPtr;
1368}
1369
1370void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1371  // Delegate this call through the memory manager.
1372  return MemMgr->allocateGlobal(Size, Alignment);
1373}
1374
1375void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1376  if (TheJIT->getJITInfo().hasCustomConstantPool())
1377    return;
1378
1379  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1380  if (Constants.empty()) return;
1381
1382  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1383  unsigned Align = MCP->getConstantPoolAlignment();
1384  ConstantPoolBase = allocateSpace(Size, Align);
1385  ConstantPool = MCP;
1386
1387  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1388
1389  DEBUG(errs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1390               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1391
1392  // Initialize the memory for all of the constant pool entries.
1393  unsigned Offset = 0;
1394  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1395    MachineConstantPoolEntry CPE = Constants[i];
1396    unsigned AlignMask = CPE.getAlignment() - 1;
1397    Offset = (Offset + AlignMask) & ~AlignMask;
1398
1399    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1400    ConstPoolAddresses.push_back(CAddr);
1401    if (CPE.isMachineConstantPoolEntry()) {
1402      // FIXME: add support to lower machine constant pool values into bytes!
1403      llvm_report_error("Initialize memory with machine specific constant pool"
1404                        "entry has not been implemented!");
1405    }
1406    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1407    DEBUG(errs() << "JIT:   CP" << i << " at [0x";
1408          errs().write_hex(CAddr) << "]\n");
1409
1410    const Type *Ty = CPE.Val.ConstVal->getType();
1411    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1412  }
1413}
1414
1415void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1416  if (TheJIT->getJITInfo().hasCustomJumpTables())
1417    return;
1418
1419  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1420  if (JT.empty()) return;
1421
1422  unsigned NumEntries = 0;
1423  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1424    NumEntries += JT[i].MBBs.size();
1425
1426  unsigned EntrySize = MJTI->getEntrySize();
1427
1428  // Just allocate space for all the jump tables now.  We will fix up the actual
1429  // MBB entries in the tables after we emit the code for each block, since then
1430  // we will know the final locations of the MBBs in memory.
1431  JumpTable = MJTI;
1432  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
1433}
1434
1435void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1436  if (TheJIT->getJITInfo().hasCustomJumpTables())
1437    return;
1438
1439  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1440  if (JT.empty() || JumpTableBase == 0) return;
1441
1442  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
1443    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
1444    // For each jump table, place the offset from the beginning of the table
1445    // to the target address.
1446    int *SlotPtr = (int*)JumpTableBase;
1447
1448    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1449      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1450      // Store the offset of the basic block for this jump table slot in the
1451      // memory we allocated for the jump table in 'initJumpTableInfo'
1452      uintptr_t Base = (uintptr_t)SlotPtr;
1453      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1454        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1455        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1456      }
1457    }
1458  } else {
1459    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
1460
1461    // For each jump table, map each target in the jump table to the address of
1462    // an emitted MachineBasicBlock.
1463    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1464
1465    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1466      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1467      // Store the address of the basic block for this jump table slot in the
1468      // memory we allocated for the jump table in 'initJumpTableInfo'
1469      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1470        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1471    }
1472  }
1473}
1474
1475void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize,
1476                             unsigned Alignment) {
1477  SavedBufferBegin = BufferBegin;
1478  SavedBufferEnd = BufferEnd;
1479  SavedCurBufferPtr = CurBufferPtr;
1480
1481  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1482  BufferEnd = BufferBegin+StubSize+1;
1483}
1484
1485void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer,
1486                             unsigned StubSize) {
1487  SavedBufferBegin = BufferBegin;
1488  SavedBufferEnd = BufferEnd;
1489  SavedCurBufferPtr = CurBufferPtr;
1490
1491  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1492  BufferEnd = BufferBegin+StubSize+1;
1493}
1494
1495void *JITEmitter::finishGVStub(const GlobalValue* GV) {
1496  NumBytes += getCurrentPCOffset();
1497  std::swap(SavedBufferBegin, BufferBegin);
1498  BufferEnd = SavedBufferEnd;
1499  CurBufferPtr = SavedCurBufferPtr;
1500  return SavedBufferBegin;
1501}
1502
1503// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1504// in the constant pool that was last emitted with the 'emitConstantPool'
1505// method.
1506//
1507uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1508  assert(ConstantNum < ConstantPool->getConstants().size() &&
1509         "Invalid ConstantPoolIndex!");
1510  return ConstPoolAddresses[ConstantNum];
1511}
1512
1513// getJumpTableEntryAddress - Return the address of the JumpTable with index
1514// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1515//
1516uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1517  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1518  assert(Index < JT.size() && "Invalid jump table index!");
1519
1520  unsigned Offset = 0;
1521  unsigned EntrySize = JumpTable->getEntrySize();
1522
1523  for (unsigned i = 0; i < Index; ++i)
1524    Offset += JT[i].MBBs.size();
1525
1526   Offset *= EntrySize;
1527
1528  return (uintptr_t)((char *)JumpTableBase + Offset);
1529}
1530
1531void JITEmitter::EmittedFunctionConfig::onDelete(
1532  JITEmitter *Emitter, const Function *F) {
1533  Emitter->deallocateMemForFunction(F);
1534}
1535void JITEmitter::EmittedFunctionConfig::onRAUW(
1536  JITEmitter *, const Function*, const Function*) {
1537  llvm_unreachable("The JIT doesn't know how to handle a"
1538                   " RAUW on a value it has emitted.");
1539}
1540
1541
1542//===----------------------------------------------------------------------===//
1543//  Public interface to this file
1544//===----------------------------------------------------------------------===//
1545
1546JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1547                                   TargetMachine &tm) {
1548  return new JITEmitter(jit, JMM, tm);
1549}
1550
1551// getPointerToNamedFunction - This function is used as a global wrapper to
1552// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1553// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1554// need to resolve function(s) that are being mis-codegenerated, so we need to
1555// resolve their addresses at runtime, and this is the way to do it.
1556extern "C" {
1557  void *getPointerToNamedFunction(const char *Name) {
1558    if (Function *F = TheJIT->FindFunctionNamed(Name))
1559      return TheJIT->getPointerToFunction(F);
1560    return TheJIT->getPointerToNamedFunction(Name);
1561  }
1562}
1563
1564// getPointerToFunctionOrStub - If the specified function has been
1565// code-gen'd, return a pointer to the function.  If not, compile it, or use
1566// a stub to implement lazy compilation if available.
1567//
1568void *JIT::getPointerToFunctionOrStub(Function *F) {
1569  // If we have already code generated the function, just return the address.
1570  if (void *Addr = getPointerToGlobalIfAvailable(F))
1571    return Addr;
1572
1573  // Get a stub if the target supports it.
1574  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1575  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1576  return JE->getJITResolver().getFunctionStub(F);
1577}
1578
1579void JIT::updateFunctionStub(Function *F) {
1580  // Get the empty stub we generated earlier.
1581  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1582  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1583  void *Stub = JE->getJITResolver().getFunctionStub(F);
1584
1585  // Tell the target jit info to rewrite the stub at the specified address,
1586  // rather than creating a new one.
1587  void *Addr = getPointerToGlobalIfAvailable(F);
1588  getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter());
1589}
1590
1591/// updateDlsymStubTable - Emit the data necessary to relocate the stubs
1592/// that were emitted during code generation.
1593///
1594void JIT::updateDlsymStubTable() {
1595  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1596  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1597
1598  SmallVector<GlobalValue*, 8> GVs;
1599  SmallVector<void*, 8> Ptrs;
1600  const StringMap<void *> &ExtFns = JE->getExternalFnStubs();
1601
1602  JE->getJITResolver().getRelocatableGVs(GVs, Ptrs);
1603
1604  unsigned nStubs = GVs.size() + ExtFns.size();
1605
1606  // If there are no relocatable stubs, return.
1607  if (nStubs == 0)
1608    return;
1609
1610  // If there are no new relocatable stubs, return.
1611  void *CurTable = JE->getMemMgr()->getDlsymTable();
1612  if (CurTable && (*(unsigned *)CurTable == nStubs))
1613    return;
1614
1615  // Calculate the size of the stub info
1616  unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs;
1617
1618  SmallVector<unsigned, 8> Offsets;
1619  for (unsigned i = 0; i != GVs.size(); ++i) {
1620    Offsets.push_back(offset);
1621    offset += GVs[i]->getName().size() + 1;
1622  }
1623  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1624       i != e; ++i) {
1625    Offsets.push_back(offset);
1626    offset += strlen(i->first()) + 1;
1627  }
1628
1629  // Allocate space for the new "stub", which contains the dlsym table.
1630  JE->startGVStub(0, offset, 4);
1631
1632  // Emit the number of records
1633  JE->emitInt32(nStubs);
1634
1635  // Emit the string offsets
1636  for (unsigned i = 0; i != nStubs; ++i)
1637    JE->emitInt32(Offsets[i]);
1638
1639  // Emit the pointers.  Verify that they are at least 2-byte aligned, and set
1640  // the low bit to 0 == GV, 1 == Function, so that the client code doing the
1641  // relocation can write the relocated pointer at the appropriate place in
1642  // the stub.
1643  for (unsigned i = 0; i != GVs.size(); ++i) {
1644    intptr_t Ptr = (intptr_t)Ptrs[i];
1645    assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!");
1646
1647    if (isa<Function>(GVs[i]))
1648      Ptr |= (intptr_t)1;
1649
1650    if (sizeof(Ptr) == 8)
1651      JE->emitInt64(Ptr);
1652    else
1653      JE->emitInt32(Ptr);
1654  }
1655  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1656       i != e; ++i) {
1657    intptr_t Ptr = (intptr_t)i->second | 1;
1658
1659    if (sizeof(Ptr) == 8)
1660      JE->emitInt64(Ptr);
1661    else
1662      JE->emitInt32(Ptr);
1663  }
1664
1665  // Emit the strings.
1666  for (unsigned i = 0; i != GVs.size(); ++i)
1667    JE->emitString(GVs[i]->getName());
1668  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1669       i != e; ++i)
1670    JE->emitString(i->first());
1671
1672  // Tell the JIT memory manager where it is.  The JIT Memory Manager will
1673  // deallocate space for the old one, if one existed.
1674  JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0));
1675}
1676
1677/// freeMachineCodeForFunction - release machine code memory for given Function.
1678///
1679void JIT::freeMachineCodeForFunction(Function *F) {
1680  // Delete translation for this from the ExecutionEngine, so it will get
1681  // retranslated next time it is used.
1682  updateGlobalMapping(F, 0);
1683
1684  // Free the actual memory for the function body and related stuff.
1685  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1686  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1687}
1688