JITEmitter.cpp revision 3ed469ccd7b028a030b550d84b7336d146f5d8fa
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "llvm/Constant.h"
18#include "llvm/Module.h"
19#include "llvm/Type.h"
20#include "llvm/CodeGen/MachineCodeEmitter.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineRelocation.h"
25#include "llvm/ExecutionEngine/GenericValue.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetJITInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/MutexGuard.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/System/Memory.h"
32#include <algorithm>
33#include <iostream>
34using namespace llvm;
35
36namespace {
37  Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
38  Statistic<> NumRelos("jit", "Number of relocations applied");
39  JIT *TheJIT = 0;
40}
41
42
43//===----------------------------------------------------------------------===//
44// JITMemoryManager code.
45//
46namespace {
47  /// MemoryRangeHeader - For a range of memory, this is the header that we put
48  /// on the block of memory.  It is carefully crafted to be one word of memory.
49  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
50  /// which starts with this.
51  struct FreeRangeHeader;
52  struct MemoryRangeHeader {
53    /// ThisAllocated - This is true if this block is currently allocated.  If
54    /// not, this can be converted to a FreeRangeHeader.
55    intptr_t ThisAllocated : 1;
56
57    /// PrevAllocated - Keep track of whether the block immediately before us is
58    /// allocated.  If not, the word immediately before this header is the size
59    /// of the previous block.
60    intptr_t PrevAllocated : 1;
61
62    /// BlockSize - This is the size in bytes of this memory block,
63    /// including this header.
64    uintptr_t BlockSize : (sizeof(intptr_t)*8 - 2);
65
66
67    /// getBlockAfter - Return the memory block immediately after this one.
68    ///
69    MemoryRangeHeader &getBlockAfter() const {
70      return *(MemoryRangeHeader*)((char*)this+BlockSize);
71    }
72
73    /// getFreeBlockBefore - If the block before this one is free, return it,
74    /// otherwise return null.
75    FreeRangeHeader *getFreeBlockBefore() const {
76      if (PrevAllocated) return 0;
77      intptr_t PrevSize = ((intptr_t *)this)[-1];
78      return (FreeRangeHeader*)((char*)this-PrevSize);
79    }
80
81    /// FreeBlock - Turn an allocated block into a free block, adjusting
82    /// bits in the object headers, and adding an end of region memory block.
83    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
84
85    /// TrimAllocationToSize - If this allocated block is significantly larger
86    /// than NewSize, split it into two pieces (where the former is NewSize
87    /// bytes, including the header), and add the new block to the free list.
88    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
89                                          uint64_t NewSize);
90  };
91
92  /// FreeRangeHeader - For a memory block that isn't already allocated, this
93  /// keeps track of the current block and has a pointer to the next free block.
94  /// Free blocks are kept on a circularly linked list.
95  struct FreeRangeHeader : public MemoryRangeHeader {
96    FreeRangeHeader *Prev;
97    FreeRangeHeader *Next;
98
99    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
100    /// smaller than this size cannot be created.
101    static unsigned getMinBlockSize() {
102      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
103    }
104
105    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
106    /// known to be the size of the free block.  Set it for this block.
107    void SetEndOfBlockSizeMarker() {
108      void *EndOfBlock = (char*)this + BlockSize;
109      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
110    }
111
112    FreeRangeHeader *RemoveFromFreeList() {
113      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
114      Next->Prev = Prev;
115      return Prev->Next = Next;
116    }
117
118    void AddToFreeList(FreeRangeHeader *FreeList) {
119      Next = FreeList;
120      Prev = FreeList->Prev;
121      Prev->Next = this;
122      Next->Prev = this;
123    }
124
125    /// GrowBlock - The block after this block just got deallocated.  Merge it
126    /// into the current block.
127    void GrowBlock(uintptr_t NewSize);
128
129    /// AllocateBlock - Mark this entire block allocated, updating freelists
130    /// etc.  This returns a pointer to the circular free-list.
131    FreeRangeHeader *AllocateBlock();
132  };
133}
134
135
136/// AllocateBlock - Mark this entire block allocated, updating freelists
137/// etc.  This returns a pointer to the circular free-list.
138FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
139  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
140         "Cannot allocate an allocated block!");
141  // Mark this block allocated.
142  ThisAllocated = 1;
143  getBlockAfter().PrevAllocated = 1;
144
145  // Remove it from the free list.
146  return RemoveFromFreeList();
147}
148
149/// FreeBlock - Turn an allocated block into a free block, adjusting
150/// bits in the object headers, and adding an end of region memory block.
151/// If possible, coallesce this block with neighboring blocks.  Return the
152/// FreeRangeHeader to allocate from.
153FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
154  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
155  assert(ThisAllocated && "This block is already allocated!");
156  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
157
158  FreeRangeHeader *FreeListToReturn = FreeList;
159
160  // If the block after this one is free, merge it into this block.
161  if (!FollowingBlock->ThisAllocated) {
162    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
163    // "FreeList" always needs to be a valid free block.  If we're about to
164    // coallesce with it, update our notion of what the free list is.
165    if (&FollowingFreeBlock == FreeList) {
166      FreeList = FollowingFreeBlock.Next;
167      FreeListToReturn = 0;
168      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
169    }
170    FollowingFreeBlock.RemoveFromFreeList();
171
172    // Include the following block into this one.
173    BlockSize += FollowingFreeBlock.BlockSize;
174    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
175
176    // Tell the block after the block we are coallescing that this block is
177    // allocated.
178    FollowingBlock->PrevAllocated = 1;
179  }
180
181  assert(FollowingBlock->ThisAllocated && "Missed coallescing?");
182
183  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
184    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
185    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
186  }
187
188  // Otherwise, mark this block free.
189  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
190  FollowingBlock->PrevAllocated = 0;
191  FreeBlock.ThisAllocated = 0;
192
193  // Link this into the linked list of free blocks.
194  FreeBlock.AddToFreeList(FreeList);
195
196  // Add a marker at the end of the block, indicating the size of this free
197  // block.
198  FreeBlock.SetEndOfBlockSizeMarker();
199  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
200}
201
202/// GrowBlock - The block after this block just got deallocated.  Merge it
203/// into the current block.
204void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
205  assert(NewSize > BlockSize && "Not growing block?");
206  BlockSize = NewSize;
207  SetEndOfBlockSizeMarker();
208  getBlockAfter().PrevAllocated = 0;
209}
210
211/// TrimAllocationToSize - If this allocated block is significantly larger
212/// than NewSize, split it into two pieces (where the former is NewSize
213/// bytes, including the header), and add the new block to the free list.
214FreeRangeHeader *MemoryRangeHeader::
215TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
216  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
217         "Cannot deallocate part of an allocated block!");
218
219  // Round up size for alignment of header.
220  unsigned HeaderAlign = __alignof(FreeRangeHeader);
221  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
222
223  // Size is now the size of the block we will remove from the start of the
224  // current block.
225  assert(NewSize <= BlockSize &&
226         "Allocating more space from this block than exists!");
227
228  // If splitting this block will cause the remainder to be too small, do not
229  // split the block.
230  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
231    return FreeList;
232
233  // Otherwise, we splice the required number of bytes out of this block, form
234  // a new block immediately after it, then mark this block allocated.
235  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
236
237  // Change the size of this block.
238  BlockSize = NewSize;
239
240  // Get the new block we just sliced out and turn it into a free block.
241  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
242  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
243  NewNextBlock.ThisAllocated = 0;
244  NewNextBlock.PrevAllocated = 1;
245  NewNextBlock.SetEndOfBlockSizeMarker();
246  FormerNextBlock.PrevAllocated = 0;
247  NewNextBlock.AddToFreeList(FreeList);
248  return &NewNextBlock;
249}
250
251
252namespace {
253  /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
254  /// sane way.  This splits a large block of MAP_NORESERVE'd memory into two
255  /// sections, one for function stubs, one for the functions themselves.  We
256  /// have to do this because we may need to emit a function stub while in the
257  /// middle of emitting a function, and we don't know how large the function we
258  /// are emitting is.  This never bothers to release the memory, because when
259  /// we are ready to destroy the JIT, the program exits.
260  class JITMemoryManager {
261    std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
262    FreeRangeHeader *FreeMemoryList;      // Circular list of free blocks.
263
264    // When emitting code into a memory block, this is the block.
265    MemoryRangeHeader *CurBlock;
266
267    unsigned char *CurStubPtr, *StubBase;
268    unsigned char *GOTBase;      // Target Specific reserved memory
269
270    // Centralize memory block allocation.
271    sys::MemoryBlock getNewMemoryBlock(unsigned size);
272
273    std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
274  public:
275    JITMemoryManager(bool useGOT);
276    ~JITMemoryManager();
277
278    inline unsigned char *allocateStub(unsigned StubSize);
279
280    /// startFunctionBody - When a function starts, allocate a block of free
281    /// executable memory, returning a pointer to it and its actual size.
282    unsigned char *startFunctionBody(uintptr_t &ActualSize) {
283      CurBlock = FreeMemoryList;
284
285      // Allocate the entire memory block.
286      FreeMemoryList = FreeMemoryList->AllocateBlock();
287      ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader);
288      return (unsigned char *)(CurBlock+1);
289    }
290
291    /// endFunctionBody - The function F is now allocated, and takes the memory
292    /// in the range [FunctionStart,FunctionEnd).
293    void endFunctionBody(const Function *F, unsigned char *FunctionStart,
294                         unsigned char *FunctionEnd) {
295      assert(FunctionEnd > FunctionStart);
296      assert(FunctionStart == (unsigned char *)(CurBlock+1) &&
297             "Mismatched function start/end!");
298
299      uintptr_t BlockSize = FunctionEnd - (unsigned char *)CurBlock;
300      FunctionBlocks[F] = CurBlock;
301
302      // Release the memory at the end of this block that isn't needed.
303      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
304    }
305
306    unsigned char *getGOTBase() const {
307      return GOTBase;
308    }
309    bool isManagingGOT() const {
310      return GOTBase != NULL;
311    }
312
313    /// deallocateMemForFunction - Deallocate all memory for the specified
314    /// function body.
315    void deallocateMemForFunction(const Function *F) {
316      std::map<const Function*, MemoryRangeHeader*>::iterator
317        I = FunctionBlocks.find(F);
318      if (I == FunctionBlocks.end()) return;
319
320      // Find the block that is allocated for this function.
321      MemoryRangeHeader *MemRange = I->second;
322      assert(MemRange->ThisAllocated && "Block isn't allocated!");
323
324      // Fill the buffer with garbage!
325      DEBUG(memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)));
326
327      // Free the memory.
328      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
329
330      // Finally, remove this entry from FunctionBlocks.
331      FunctionBlocks.erase(I);
332    }
333  };
334}
335
336JITMemoryManager::JITMemoryManager(bool useGOT) {
337  // Allocate a 16M block of memory for functions.
338  sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20);
339
340  unsigned char *MemBase = reinterpret_cast<unsigned char*>(MemBlock.base());
341
342  // Allocate stubs backwards from the base, allocate functions forward
343  // from the base.
344  StubBase   = MemBase;
345  CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards.
346
347  // We set up the memory chunk with 4 mem regions, like this:
348  //  [ START
349  //    [ Free      #0 ] -> Large space to allocate functions from.
350  //    [ Allocated #1 ] -> Tiny space to separate regions.
351  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
352  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
353  //  END ]
354  //
355  // The last three blocks are never deallocated or touched.
356
357  // Add MemoryRangeHeader to the end of the memory region, indicating that
358  // the space after the block of memory is allocated.  This is block #3.
359  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
360  Mem3->ThisAllocated = 1;
361  Mem3->PrevAllocated = 0;
362  Mem3->BlockSize     = 0;
363
364  /// Add a tiny free region so that the free list always has one entry.
365  FreeRangeHeader *Mem2 =
366    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
367  Mem2->ThisAllocated = 0;
368  Mem2->PrevAllocated = 1;
369  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
370  Mem2->SetEndOfBlockSizeMarker();
371  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
372  Mem2->Next = Mem2;
373
374  /// Add a tiny allocated region so that Mem2 is never coallesced away.
375  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
376  Mem1->ThisAllocated = 1;
377  Mem1->PrevAllocated = 0;
378  Mem1->BlockSize     = (char*)Mem2 - (char*)Mem1;
379
380  // Add a FreeRangeHeader to the start of the function body region, indicating
381  // that the space is free.  Mark the previous block allocated so we never look
382  // at it.
383  FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr;
384  Mem0->ThisAllocated = 0;
385  Mem0->PrevAllocated = 1;
386  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
387  Mem0->SetEndOfBlockSizeMarker();
388  Mem0->AddToFreeList(Mem2);
389
390  // Start out with the freelist pointing to Mem0.
391  FreeMemoryList = Mem0;
392
393  // Allocate the GOT.
394  GOTBase = NULL;
395  if (useGOT) GOTBase = new unsigned char[sizeof(void*) * 8192];
396}
397
398JITMemoryManager::~JITMemoryManager() {
399  for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
400    sys::Memory::ReleaseRWX(Blocks[i]);
401
402  delete[] GOTBase;
403  Blocks.clear();
404}
405
406unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
407  CurStubPtr -= StubSize;
408  if (CurStubPtr < StubBase) {
409    // FIXME: allocate a new block
410    std::cerr << "JIT ran out of memory for function stubs!\n";
411    abort();
412  }
413  return CurStubPtr;
414}
415
416sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
417  // Allocate a new block close to the last one.
418  const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
419  std::string ErrMsg;
420  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg);
421  if (B.base() == 0) {
422    std::cerr << "Allocation failed when allocating new memory in the JIT\n";
423    std::cerr << ErrMsg << "\n";
424    abort();
425  }
426  Blocks.push_back(B);
427  return B;
428}
429
430//===----------------------------------------------------------------------===//
431// JIT lazy compilation code.
432//
433namespace {
434  class JITResolverState {
435  private:
436    /// FunctionToStubMap - Keep track of the stub created for a particular
437    /// function so that we can reuse them if necessary.
438    std::map<Function*, void*> FunctionToStubMap;
439
440    /// StubToFunctionMap - Keep track of the function that each stub
441    /// corresponds to.
442    std::map<void*, Function*> StubToFunctionMap;
443
444  public:
445    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
446      assert(locked.holds(TheJIT->lock));
447      return FunctionToStubMap;
448    }
449
450    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
451      assert(locked.holds(TheJIT->lock));
452      return StubToFunctionMap;
453    }
454  };
455
456  /// JITResolver - Keep track of, and resolve, call sites for functions that
457  /// have not yet been compiled.
458  class JITResolver {
459    /// MCE - The MachineCodeEmitter to use to emit stubs with.
460    MachineCodeEmitter &MCE;
461
462    /// LazyResolverFn - The target lazy resolver function that we actually
463    /// rewrite instructions to use.
464    TargetJITInfo::LazyResolverFn LazyResolverFn;
465
466    JITResolverState state;
467
468    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
469    /// external functions.
470    std::map<void*, void*> ExternalFnToStubMap;
471
472    //map addresses to indexes in the GOT
473    std::map<void*, unsigned> revGOTMap;
474    unsigned nextGOTIndex;
475
476  public:
477    JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) {
478      LazyResolverFn =
479        TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
480    }
481
482    /// getFunctionStub - This returns a pointer to a function stub, creating
483    /// one on demand as needed.
484    void *getFunctionStub(Function *F);
485
486    /// getExternalFunctionStub - Return a stub for the function at the
487    /// specified address, created lazily on demand.
488    void *getExternalFunctionStub(void *FnAddr);
489
490    /// AddCallbackAtLocation - If the target is capable of rewriting an
491    /// instruction without the use of a stub, record the location of the use so
492    /// we know which function is being used at the location.
493    void *AddCallbackAtLocation(Function *F, void *Location) {
494      MutexGuard locked(TheJIT->lock);
495      /// Get the target-specific JIT resolver function.
496      state.getStubToFunctionMap(locked)[Location] = F;
497      return (void*)(intptr_t)LazyResolverFn;
498    }
499
500    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
501    /// and address.  This function only manages slots, it does not manage the
502    /// contents of the slots or the memory associated with the GOT.
503    unsigned getGOTIndexForAddr(void* addr);
504
505    /// JITCompilerFn - This function is called to resolve a stub to a compiled
506    /// address.  If the LLVM Function corresponding to the stub has not yet
507    /// been compiled, this function compiles it first.
508    static void *JITCompilerFn(void *Stub);
509  };
510}
511
512/// getJITResolver - This function returns the one instance of the JIT resolver.
513///
514static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
515  static JITResolver TheJITResolver(*MCE);
516  return TheJITResolver;
517}
518
519#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
520    defined(__APPLE__)
521extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
522#endif
523
524/// synchronizeICache - On some targets, the JIT emitted code must be
525/// explicitly refetched to ensure correct execution.
526static void synchronizeICache(const void *Addr, size_t len) {
527#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
528    defined(__APPLE__)
529  sys_icache_invalidate(Addr, len);
530#endif
531}
532
533/// getFunctionStub - This returns a pointer to a function stub, creating
534/// one on demand as needed.
535void *JITResolver::getFunctionStub(Function *F) {
536  MutexGuard locked(TheJIT->lock);
537
538  // If we already have a stub for this function, recycle it.
539  void *&Stub = state.getFunctionToStubMap(locked)[F];
540  if (Stub) return Stub;
541
542  // Call the lazy resolver function unless we already KNOW it is an external
543  // function, in which case we just skip the lazy resolution step.
544  void *Actual = (void*)(intptr_t)LazyResolverFn;
545  if (F->isExternal() && !F->hasNotBeenReadFromBytecode())
546    Actual = TheJIT->getPointerToFunction(F);
547
548  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
549  // resolver function.
550  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);
551
552  if (Actual != (void*)(intptr_t)LazyResolverFn) {
553    // If we are getting the stub for an external function, we really want the
554    // address of the stub in the GlobalAddressMap for the JIT, not the address
555    // of the external function.
556    TheJIT->updateGlobalMapping(F, Stub);
557  }
558
559  // Invalidate the icache if necessary.
560  synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub);
561
562  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
563                  << F->getName() << "'\n");
564
565  // Finally, keep track of the stub-to-Function mapping so that the
566  // JITCompilerFn knows which function to compile!
567  state.getStubToFunctionMap(locked)[Stub] = F;
568  return Stub;
569}
570
571/// getExternalFunctionStub - Return a stub for the function at the
572/// specified address, created lazily on demand.
573void *JITResolver::getExternalFunctionStub(void *FnAddr) {
574  // If we already have a stub for this function, recycle it.
575  void *&Stub = ExternalFnToStubMap[FnAddr];
576  if (Stub) return Stub;
577
578  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE);
579
580  // Invalidate the icache if necessary.
581  synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub);
582
583  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub
584        << "] for external function at '" << FnAddr << "'\n");
585  return Stub;
586}
587
588unsigned JITResolver::getGOTIndexForAddr(void* addr) {
589  unsigned idx = revGOTMap[addr];
590  if (!idx) {
591    idx = ++nextGOTIndex;
592    revGOTMap[addr] = idx;
593    DEBUG(std::cerr << "Adding GOT entry " << idx
594          << " for addr " << addr << "\n");
595    //    ((void**)MemMgr.getGOTBase())[idx] = addr;
596  }
597  return idx;
598}
599
600/// JITCompilerFn - This function is called when a lazy compilation stub has
601/// been entered.  It looks up which function this stub corresponds to, compiles
602/// it if necessary, then returns the resultant function pointer.
603void *JITResolver::JITCompilerFn(void *Stub) {
604  JITResolver &JR = getJITResolver();
605
606  MutexGuard locked(TheJIT->lock);
607
608  // The address given to us for the stub may not be exactly right, it might be
609  // a little bit after the stub.  As such, use upper_bound to find it.
610  std::map<void*, Function*>::iterator I =
611    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
612  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
613         "This is not a known stub!");
614  Function *F = (--I)->second;
615
616  // We might like to remove the stub from the StubToFunction map.
617  // We can't do that! Multiple threads could be stuck, waiting to acquire the
618  // lock above. As soon as the 1st function finishes compiling the function,
619  // the next one will be released, and needs to be able to find the function it
620  // needs to call.
621  //JR.state.getStubToFunctionMap(locked).erase(I);
622
623  DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
624                  << "' In stub ptr = " << Stub << " actual ptr = "
625                  << I->first << "\n");
626
627  void *Result = TheJIT->getPointerToFunction(F);
628
629  // We don't need to reuse this stub in the future, as F is now compiled.
630  JR.state.getFunctionToStubMap(locked).erase(F);
631
632  // FIXME: We could rewrite all references to this stub if we knew them.
633
634  // What we will do is set the compiled function address to map to the
635  // same GOT entry as the stub so that later clients may update the GOT
636  // if they see it still using the stub address.
637  // Note: this is done so the Resolver doesn't have to manage GOT memory
638  // Do this without allocating map space if the target isn't using a GOT
639  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
640    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
641
642  return Result;
643}
644
645
646//===----------------------------------------------------------------------===//
647// JITEmitter code.
648//
649namespace {
650  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
651  /// used to output functions to memory for execution.
652  class JITEmitter : public MachineCodeEmitter {
653    JITMemoryManager MemMgr;
654
655    // When outputting a function stub in the context of some other function, we
656    // save BufferBegin/BufferEnd/CurBufferPtr here.
657    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
658
659    /// Relocations - These are the relocations that the function needs, as
660    /// emitted.
661    std::vector<MachineRelocation> Relocations;
662
663    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
664    /// It is filled in by the StartMachineBasicBlock callback and queried by
665    /// the getMachineBasicBlockAddress callback.
666    std::vector<intptr_t> MBBLocations;
667
668    /// ConstantPool - The constant pool for the current function.
669    ///
670    MachineConstantPool *ConstantPool;
671
672    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
673    ///
674    void *ConstantPoolBase;
675
676    /// JumpTable - The jump tables for the current function.
677    ///
678    MachineJumpTableInfo *JumpTable;
679
680    /// JumpTableBase - A pointer to the first entry in the jump table.
681    ///
682    void *JumpTableBase;
683public:
684    JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) {
685      TheJIT = &jit;
686      DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n");
687    }
688
689    virtual void startFunction(MachineFunction &F);
690    virtual bool finishFunction(MachineFunction &F);
691
692    void emitConstantPool(MachineConstantPool *MCP);
693    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
694    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
695
696    virtual void startFunctionStub(unsigned StubSize);
697    virtual void* finishFunctionStub(const Function *F);
698
699    virtual void addRelocation(const MachineRelocation &MR) {
700      Relocations.push_back(MR);
701    }
702
703    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
704      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
705        MBBLocations.resize((MBB->getNumber()+1)*2);
706      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
707    }
708
709    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
710    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
711
712    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
713      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
714             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
715      return MBBLocations[MBB->getNumber()];
716    }
717
718    /// deallocateMemForFunction - Deallocate all memory for the specified
719    /// function body.
720    void deallocateMemForFunction(Function *F) {
721      MemMgr.deallocateMemForFunction(F);
722    }
723  private:
724    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
725  };
726}
727
728void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
729                                     bool DoesntNeedStub) {
730  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
731    /// FIXME: If we straightened things out, this could actually emit the
732    /// global immediately instead of queuing it for codegen later!
733    return TheJIT->getOrEmitGlobalVariable(GV);
734  }
735
736  // If we have already compiled the function, return a pointer to its body.
737  Function *F = cast<Function>(V);
738  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
739  if (ResultPtr) return ResultPtr;
740
741  if (F->isExternal() && !F->hasNotBeenReadFromBytecode()) {
742    // If this is an external function pointer, we can force the JIT to
743    // 'compile' it, which really just adds it to the map.
744    if (DoesntNeedStub)
745      return TheJIT->getPointerToFunction(F);
746
747    return getJITResolver(this).getFunctionStub(F);
748  }
749
750  // Okay, the function has not been compiled yet, if the target callback
751  // mechanism is capable of rewriting the instruction directly, prefer to do
752  // that instead of emitting a stub.
753  if (DoesntNeedStub)
754    return getJITResolver(this).AddCallbackAtLocation(F, Reference);
755
756  // Otherwise, we have to emit a lazy resolving stub.
757  return getJITResolver(this).getFunctionStub(F);
758}
759
760void JITEmitter::startFunction(MachineFunction &F) {
761  uintptr_t ActualSize;
762  BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(ActualSize);
763  BufferEnd = BufferBegin+ActualSize;
764
765  emitConstantPool(F.getConstantPool());
766  initJumpTableInfo(F.getJumpTableInfo());
767
768  // About to start emitting the machine code for the function.
769  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
770  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
771
772  MBBLocations.clear();
773}
774
775bool JITEmitter::finishFunction(MachineFunction &F) {
776  if (CurBufferPtr == BufferEnd) {
777    // FIXME: Allocate more space, then try again.
778    std::cerr << "JIT: Ran out of space for generated machine code!\n";
779    abort();
780  }
781
782  emitJumpTableInfo(F.getJumpTableInfo());
783
784  // FnStart is the start of the text, not the start of the constant pool and
785  // other per-function data.
786  unsigned char *FnStart =
787    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
788  unsigned char *FnEnd   = CurBufferPtr;
789
790  MemMgr.endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
791  NumBytes += FnEnd-FnStart;
792
793  if (!Relocations.empty()) {
794    NumRelos += Relocations.size();
795
796    // Resolve the relocations to concrete pointers.
797    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
798      MachineRelocation &MR = Relocations[i];
799      void *ResultPtr;
800      if (MR.isString()) {
801        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
802
803        // If the target REALLY wants a stub for this function, emit it now.
804        if (!MR.doesntNeedFunctionStub())
805          ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr);
806      } else if (MR.isGlobalValue()) {
807        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
808                                       BufferBegin+MR.getMachineCodeOffset(),
809                                       MR.doesntNeedFunctionStub());
810      } else if (MR.isBasicBlock()) {
811        ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
812      } else if (MR.isConstantPoolIndex()){
813        ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
814      } else {
815        assert(MR.isJumpTableIndex());
816        ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
817      }
818
819      MR.setResultPointer(ResultPtr);
820
821      // if we are managing the GOT and the relocation wants an index,
822      // give it one
823      if (MemMgr.isManagingGOT() && MR.isGOTRelative()) {
824        unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr);
825        MR.setGOTIndex(idx);
826        if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
827          DEBUG(std::cerr << "GOT was out of date for " << ResultPtr
828                << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
829                << "\n");
830          ((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
831        }
832      }
833    }
834
835    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
836                                  Relocations.size(), MemMgr.getGOTBase());
837  }
838
839  // Update the GOT entry for F to point to the new code.
840  if(MemMgr.isManagingGOT()) {
841    unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin);
842    if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
843      DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin
844            << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n");
845      ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
846    }
847  }
848
849  // Invalidate the icache if necessary.
850  synchronizeICache(FnStart, FnEnd-FnStart);
851
852  DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)FnStart
853                  << "] Function: " << F.getFunction()->getName()
854                  << ": " << (FnEnd-FnStart) << " bytes of text, "
855                  << Relocations.size() << " relocations\n");
856  Relocations.clear();
857  return false;
858}
859
860void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
861  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
862  if (Constants.empty()) return;
863
864  MachineConstantPoolEntry CPE = Constants.back();
865  unsigned Size = CPE.Offset;
866  const Type *Ty = CPE.isMachineConstantPoolEntry()
867    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
868  Size += TheJIT->getTargetData()->getTypeSize(Ty);
869
870  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
871  ConstantPool = MCP;
872
873  if (ConstantPoolBase == 0) return;  // Buffer overflow.
874
875  // Initialize the memory for all of the constant pool entries.
876  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
877    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
878    if (Constants[i].isMachineConstantPoolEntry()) {
879      // FIXME: add support to lower machine constant pool values into bytes!
880      std::cerr << "Initialize memory with machine specific constant pool entry"
881                << " has not been implemented!\n";
882      abort();
883    }
884    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
885  }
886}
887
888void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
889  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
890  if (JT.empty()) return;
891
892  unsigned NumEntries = 0;
893  for (unsigned i = 0, e = JT.size(); i != e; ++i)
894    NumEntries += JT[i].MBBs.size();
895
896  unsigned EntrySize = MJTI->getEntrySize();
897
898  // Just allocate space for all the jump tables now.  We will fix up the actual
899  // MBB entries in the tables after we emit the code for each block, since then
900  // we will know the final locations of the MBBs in memory.
901  JumpTable = MJTI;
902  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
903}
904
905void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
906  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
907  if (JT.empty() || JumpTableBase == 0) return;
908
909  assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
910
911  // For each jump table, map each target in the jump table to the address of
912  // an emitted MachineBasicBlock.
913  intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
914
915  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
916    const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
917    // Store the address of the basic block for this jump table slot in the
918    // memory we allocated for the jump table in 'initJumpTableInfo'
919    for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
920      *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
921  }
922}
923
924void JITEmitter::startFunctionStub(unsigned StubSize) {
925  SavedBufferBegin = BufferBegin;
926  SavedBufferEnd = BufferEnd;
927  SavedCurBufferPtr = CurBufferPtr;
928
929  BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize);
930  BufferEnd = BufferBegin+StubSize+1;
931}
932
933void *JITEmitter::finishFunctionStub(const Function *F) {
934  NumBytes += getCurrentPCOffset();
935  std::swap(SavedBufferBegin, BufferBegin);
936  BufferEnd = SavedBufferEnd;
937  CurBufferPtr = SavedCurBufferPtr;
938  return SavedBufferBegin;
939}
940
941// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
942// in the constant pool that was last emitted with the 'emitConstantPool'
943// method.
944//
945intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
946  assert(ConstantNum < ConstantPool->getConstants().size() &&
947         "Invalid ConstantPoolIndex!");
948  return (intptr_t)ConstantPoolBase +
949         ConstantPool->getConstants()[ConstantNum].Offset;
950}
951
952// getJumpTableEntryAddress - Return the address of the JumpTable with index
953// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
954//
955intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
956  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
957  assert(Index < JT.size() && "Invalid jump table index!");
958
959  unsigned Offset = 0;
960  unsigned EntrySize = JumpTable->getEntrySize();
961
962  for (unsigned i = 0; i < Index; ++i)
963    Offset += JT[i].MBBs.size() * EntrySize;
964
965  return (intptr_t)((char *)JumpTableBase + Offset);
966}
967
968//===----------------------------------------------------------------------===//
969//  Public interface to this file
970//===----------------------------------------------------------------------===//
971
972MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
973  return new JITEmitter(jit);
974}
975
976// getPointerToNamedFunction - This function is used as a global wrapper to
977// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
978// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
979// need to resolve function(s) that are being mis-codegenerated, so we need to
980// resolve their addresses at runtime, and this is the way to do it.
981extern "C" {
982  void *getPointerToNamedFunction(const char *Name) {
983    if (Function *F = TheJIT->FindFunctionNamed(Name))
984      return TheJIT->getPointerToFunction(F);
985    return TheJIT->getPointerToNamedFunction(Name);
986  }
987}
988
989// getPointerToFunctionOrStub - If the specified function has been
990// code-gen'd, return a pointer to the function.  If not, compile it, or use
991// a stub to implement lazy compilation if available.
992//
993void *JIT::getPointerToFunctionOrStub(Function *F) {
994  // If we have already code generated the function, just return the address.
995  if (void *Addr = getPointerToGlobalIfAvailable(F))
996    return Addr;
997
998  // Get a stub if the target supports it
999  return getJITResolver(MCE).getFunctionStub(F);
1000}
1001
1002/// freeMachineCodeForFunction - release machine code memory for given Function.
1003///
1004void JIT::freeMachineCodeForFunction(Function *F) {
1005  // Delete translation for this from the ExecutionEngine, so it will get
1006  // retranslated next time it is used.
1007  updateGlobalMapping(F, 0);
1008
1009  // Free the actual memory for the function body and related stuff.
1010  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
1011  dynamic_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
1012}
1013
1014