JITEmitter.cpp revision 75361b69f3f327842b9dad69fa7f28ae3b688412
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDebugRegisterer.h"
18#include "JITDwarfEmitter.h"
19#include "llvm/ADT/OwningPtr.h"
20#include "llvm/Constants.h"
21#include "llvm/Module.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Analysis/DebugInfo.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRelocation.h"
30#include "llvm/ExecutionEngine/GenericValue.h"
31#include "llvm/ExecutionEngine/JITEventListener.h"
32#include "llvm/ExecutionEngine/JITMemoryManager.h"
33#include "llvm/CodeGen/MachineCodeInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetJITInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/ManagedStatic.h"
41#include "llvm/Support/MutexGuard.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Disassembler.h"
45#include "llvm/System/Memory.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm/ADT/ValueMap.h"
52#include <algorithm>
53#ifndef NDEBUG
54#include <iomanip>
55#endif
56using namespace llvm;
57
58STATISTIC(NumBytes, "Number of bytes of machine code compiled");
59STATISTIC(NumRelos, "Number of relocations applied");
60STATISTIC(NumRetries, "Number of retries with more memory");
61
62
63// A declaration may stop being a declaration once it's fully read from bitcode.
64// This function returns true if F is fully read and is still a declaration.
65static bool isNonGhostDeclaration(const Function *F) {
66  return F->isDeclaration() && !F->isMaterializable();
67}
68
69//===----------------------------------------------------------------------===//
70// JIT lazy compilation code.
71//
72namespace {
73  class JITEmitter;
74  class JITResolverState;
75
76  template<typename ValueTy>
77  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
78    typedef JITResolverState *ExtraData;
79    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
80      assert(false && "The JIT doesn't know how to handle a"
81             " RAUW on a value it has emitted.");
82    }
83  };
84
85  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
86    typedef JITResolverState *ExtraData;
87    static void onDelete(JITResolverState *JRS, Function *F);
88  };
89
90  class JITResolverState {
91  public:
92    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
93      FunctionToLazyStubMapTy;
94    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
95    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
96                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
97    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
98  private:
99    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
100    /// particular function so that we can reuse them if necessary.
101    FunctionToLazyStubMapTy FunctionToLazyStubMap;
102
103    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
104    /// site corresponds to, and vice versa.
105    CallSiteToFunctionMapTy CallSiteToFunctionMap;
106    FunctionToCallSitesMapTy FunctionToCallSitesMap;
107
108    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
109    /// particular GlobalVariable so that we can reuse them if necessary.
110    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
111
112    /// Instance of the JIT this ResolverState serves.
113    JIT *TheJIT;
114
115  public:
116    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
117                                 FunctionToCallSitesMap(this),
118                                 TheJIT(jit) {}
119
120    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
121      const MutexGuard& locked) {
122      assert(locked.holds(TheJIT->lock));
123      return FunctionToLazyStubMap;
124    }
125
126    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
127      assert(locked.holds(TheJIT->lock));
128      return GlobalToIndirectSymMap;
129    }
130
131    pair<void *, Function *> LookupFunctionFromCallSite(
132        const MutexGuard &locked, void *CallSite) const {
133      assert(locked.holds(TheJIT->lock));
134
135      // The address given to us for the stub may not be exactly right, it might be
136      // a little bit after the stub.  As such, use upper_bound to find it.
137      CallSiteToFunctionMapTy::const_iterator I =
138        CallSiteToFunctionMap.upper_bound(CallSite);
139      assert(I != CallSiteToFunctionMap.begin() &&
140             "This is not a known call site!");
141      --I;
142      return *I;
143    }
144
145    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
146      assert(locked.holds(TheJIT->lock));
147
148      bool Inserted = CallSiteToFunctionMap.insert(
149          std::make_pair(CallSite, F)).second;
150      (void)Inserted;
151      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
152      FunctionToCallSitesMap[F].insert(CallSite);
153    }
154
155    // Returns the Function of the stub if a stub was erased, or NULL if there
156    // was no stub.  This function uses the call-site->function map to find a
157    // relevant function, but asserts that only stubs and not other call sites
158    // will be passed in.
159    Function *EraseStub(const MutexGuard &locked, void *Stub);
160
161    void EraseAllCallSitesFor(const MutexGuard &locked, Function *F) {
162      assert(locked.holds(TheJIT->lock));
163      EraseAllCallSitesForPrelocked(F);
164    }
165    void EraseAllCallSitesForPrelocked(Function *F);
166
167    // Erases _all_ call sites regardless of their function.  This is used to
168    // unregister the stub addresses from the StubToResolverMap in
169    // ~JITResolver().
170    void EraseAllCallSitesPrelocked();
171  };
172
173  /// JITResolver - Keep track of, and resolve, call sites for functions that
174  /// have not yet been compiled.
175  class JITResolver {
176    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
177    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
178    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
179
180    /// LazyResolverFn - The target lazy resolver function that we actually
181    /// rewrite instructions to use.
182    TargetJITInfo::LazyResolverFn LazyResolverFn;
183
184    JITResolverState state;
185
186    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
187    /// for external functions.  TODO: Of course, external functions don't need
188    /// a lazy stub.  It's actually here to make it more likely that far calls
189    /// succeed, but no single stub can guarantee that.  I'll remove this in a
190    /// subsequent checkin when I actually fix far calls.
191    std::map<void*, void*> ExternalFnToStubMap;
192
193    /// revGOTMap - map addresses to indexes in the GOT
194    std::map<void*, unsigned> revGOTMap;
195    unsigned nextGOTIndex;
196
197    JITEmitter &JE;
198
199    /// Instance of JIT corresponding to this Resolver.
200    JIT *TheJIT;
201
202  public:
203    explicit JITResolver(JIT &jit, JITEmitter &je)
204      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
205      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
206    }
207
208    ~JITResolver();
209
210    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
211    /// lazy-compilation stub if it has already been created.
212    void *getLazyFunctionStubIfAvailable(Function *F);
213
214    /// getLazyFunctionStub - This returns a pointer to a function's
215    /// lazy-compilation stub, creating one on demand as needed.
216    void *getLazyFunctionStub(Function *F);
217
218    /// getExternalFunctionStub - Return a stub for the function at the
219    /// specified address, created lazily on demand.
220    void *getExternalFunctionStub(void *FnAddr);
221
222    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
223    /// specified GV address.
224    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
225
226    void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
227                           SmallVectorImpl<void*> &Ptrs);
228
229    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
230    /// an address.  This function only manages slots, it does not manage the
231    /// contents of the slots or the memory associated with the GOT.
232    unsigned getGOTIndexForAddr(void *addr);
233
234    /// JITCompilerFn - This function is called to resolve a stub to a compiled
235    /// address.  If the LLVM Function corresponding to the stub has not yet
236    /// been compiled, this function compiles it first.
237    static void *JITCompilerFn(void *Stub);
238  };
239
240  class StubToResolverMapTy {
241    /// Map a stub address to a specific instance of a JITResolver so that
242    /// lazily-compiled functions can find the right resolver to use.
243    ///
244    /// Guarded by Lock.
245    std::map<void*, JITResolver*> Map;
246
247    /// Guards Map from concurrent accesses.
248    mutable sys::Mutex Lock;
249
250  public:
251    /// Registers a Stub to be resolved by Resolver.
252    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
253      MutexGuard guard(Lock);
254      Map.insert(std::make_pair(Stub, Resolver));
255    }
256    /// Unregisters the Stub when it's invalidated.
257    void UnregisterStubResolver(void *Stub) {
258      MutexGuard guard(Lock);
259      Map.erase(Stub);
260    }
261    /// Returns the JITResolver instance that owns the Stub.
262    JITResolver *getResolverFromStub(void *Stub) const {
263      MutexGuard guard(Lock);
264      // The address given to us for the stub may not be exactly right, it might
265      // be a little bit after the stub.  As such, use upper_bound to find it.
266      // This is the same trick as in LookupFunctionFromCallSite from
267      // JITResolverState.
268      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
269      assert(I != Map.begin() && "This is not a known stub!");
270      --I;
271      return I->second;
272    }
273    /// True if any stubs refer to the given resolver. Only used in an assert().
274    /// O(N)
275    bool ResolverHasStubs(JITResolver* Resolver) const {
276      MutexGuard guard(Lock);
277      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
278             E = Map.end(); I != E; ++I) {
279        if (I->second == Resolver)
280          return true;
281      }
282      return false;
283    }
284  };
285  /// This needs to be static so that a lazy call stub can access it with no
286  /// context except the address of the stub.
287  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
288
289  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
290  /// used to output functions to memory for execution.
291  class JITEmitter : public JITCodeEmitter {
292    JITMemoryManager *MemMgr;
293
294    // When outputting a function stub in the context of some other function, we
295    // save BufferBegin/BufferEnd/CurBufferPtr here.
296    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
297
298    // When reattempting to JIT a function after running out of space, we store
299    // the estimated size of the function we're trying to JIT here, so we can
300    // ask the memory manager for at least this much space.  When we
301    // successfully emit the function, we reset this back to zero.
302    uintptr_t SizeEstimate;
303
304    /// Relocations - These are the relocations that the function needs, as
305    /// emitted.
306    std::vector<MachineRelocation> Relocations;
307
308    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
309    /// It is filled in by the StartMachineBasicBlock callback and queried by
310    /// the getMachineBasicBlockAddress callback.
311    std::vector<uintptr_t> MBBLocations;
312
313    /// ConstantPool - The constant pool for the current function.
314    ///
315    MachineConstantPool *ConstantPool;
316
317    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
318    ///
319    void *ConstantPoolBase;
320
321    /// ConstPoolAddresses - Addresses of individual constant pool entries.
322    ///
323    SmallVector<uintptr_t, 8> ConstPoolAddresses;
324
325    /// JumpTable - The jump tables for the current function.
326    ///
327    MachineJumpTableInfo *JumpTable;
328
329    /// JumpTableBase - A pointer to the first entry in the jump table.
330    ///
331    void *JumpTableBase;
332
333    /// Resolver - This contains info about the currently resolved functions.
334    JITResolver Resolver;
335
336    /// DE - The dwarf emitter for the jit.
337    OwningPtr<JITDwarfEmitter> DE;
338
339    /// DR - The debug registerer for the jit.
340    OwningPtr<JITDebugRegisterer> DR;
341
342    /// LabelLocations - This vector is a mapping from Label ID's to their
343    /// address.
344    DenseMap<MCSymbol*, uintptr_t> LabelLocations;
345
346    /// MMI - Machine module info for exception informations
347    MachineModuleInfo* MMI;
348
349    // CurFn - The llvm function being emitted.  Only valid during
350    // finishFunction().
351    const Function *CurFn;
352
353    /// Information about emitted code, which is passed to the
354    /// JITEventListeners.  This is reset in startFunction and used in
355    /// finishFunction.
356    JITEvent_EmittedFunctionDetails EmissionDetails;
357
358    struct EmittedCode {
359      void *FunctionBody;  // Beginning of the function's allocation.
360      void *Code;  // The address the function's code actually starts at.
361      void *ExceptionTable;
362      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
363    };
364    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
365      typedef JITEmitter *ExtraData;
366      static void onDelete(JITEmitter *, const Function*);
367      static void onRAUW(JITEmitter *, const Function*, const Function*);
368    };
369    ValueMap<const Function *, EmittedCode,
370             EmittedFunctionConfig> EmittedFunctions;
371
372    DILocation PrevDLT;
373
374    /// Instance of the JIT
375    JIT *TheJIT;
376
377  public:
378    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
379      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
380        EmittedFunctions(this), PrevDLT(NULL), TheJIT(&jit) {
381      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
382      if (jit.getJITInfo().needsGOT()) {
383        MemMgr->AllocateGOT();
384        DEBUG(dbgs() << "JIT is managing a GOT\n");
385      }
386
387      if (DwarfExceptionHandling || JITEmitDebugInfo) {
388        DE.reset(new JITDwarfEmitter(jit));
389      }
390      if (JITEmitDebugInfo) {
391        DR.reset(new JITDebugRegisterer(TM));
392      }
393    }
394    ~JITEmitter() {
395      delete MemMgr;
396    }
397
398    /// classof - Methods for support type inquiry through isa, cast, and
399    /// dyn_cast:
400    ///
401    static inline bool classof(const JITEmitter*) { return true; }
402    static inline bool classof(const MachineCodeEmitter*) { return true; }
403
404    JITResolver &getJITResolver() { return Resolver; }
405
406    virtual void startFunction(MachineFunction &F);
407    virtual bool finishFunction(MachineFunction &F);
408
409    void emitConstantPool(MachineConstantPool *MCP);
410    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
411    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
412
413    void startGVStub(const GlobalValue* GV,
414                     unsigned StubSize, unsigned Alignment = 1);
415    void startGVStub(void *Buffer, unsigned StubSize);
416    void finishGVStub();
417    virtual void *allocIndirectGV(const GlobalValue *GV,
418                                  const uint8_t *Buffer, size_t Size,
419                                  unsigned Alignment);
420
421    /// allocateSpace - Reserves space in the current block if any, or
422    /// allocate a new one of the given size.
423    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
424
425    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
426    /// this method does not allocate memory in the current output buffer,
427    /// because a global may live longer than the current function.
428    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
429
430    virtual void addRelocation(const MachineRelocation &MR) {
431      Relocations.push_back(MR);
432    }
433
434    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
435      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
436        MBBLocations.resize((MBB->getNumber()+1)*2);
437      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
438      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
439                   << (void*) getCurrentPCValue() << "]\n");
440    }
441
442    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
443    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
444
445    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
446      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
447             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
448      return MBBLocations[MBB->getNumber()];
449    }
450
451    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
452    /// given function.  Increase the minimum allocation size so that we get
453    /// more memory next time.
454    void retryWithMoreMemory(MachineFunction &F);
455
456    /// deallocateMemForFunction - Deallocate all memory for the specified
457    /// function body.
458    void deallocateMemForFunction(const Function *F);
459
460    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
461
462    virtual void emitLabel(MCSymbol *Label) {
463      LabelLocations[Label] = getCurrentPCValue();
464    }
465
466    virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
467      assert(LabelLocations.count(Label) && "Label not emitted!");
468      return LabelLocations.find(Label)->second;
469    }
470
471    virtual void setModuleInfo(MachineModuleInfo* Info) {
472      MMI = Info;
473      if (DE.get()) DE->setModuleInfo(Info);
474    }
475
476    void setMemoryExecutable() {
477      MemMgr->setMemoryExecutable();
478    }
479
480    JITMemoryManager *getMemMgr() const { return MemMgr; }
481
482  private:
483    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
484                             bool MayNeedFarStub);
485    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
486    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
487    unsigned addSizeOfGlobalsInConstantVal(
488      const Constant *C, unsigned Size,
489      SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
490      SmallVectorImpl<const GlobalVariable*> &Worklist);
491    unsigned addSizeOfGlobalsInInitializer(
492      const Constant *Init, unsigned Size,
493      SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
494      SmallVectorImpl<const GlobalVariable*> &Worklist);
495    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
496  };
497}
498
499void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
500  JRS->EraseAllCallSitesForPrelocked(F);
501}
502
503Function *JITResolverState::EraseStub(const MutexGuard &locked, void *Stub) {
504  CallSiteToFunctionMapTy::iterator C2F_I =
505    CallSiteToFunctionMap.find(Stub);
506  if (C2F_I == CallSiteToFunctionMap.end()) {
507    // Not a stub.
508    return NULL;
509  }
510
511  StubToResolverMap->UnregisterStubResolver(Stub);
512
513  Function *const F = C2F_I->second;
514#ifndef NDEBUG
515  void *RealStub = FunctionToLazyStubMap.lookup(F);
516  assert(RealStub == Stub &&
517         "Call-site that wasn't a stub passed in to EraseStub");
518#endif
519  FunctionToLazyStubMap.erase(F);
520  CallSiteToFunctionMap.erase(C2F_I);
521
522  // Remove the stub from the function->call-sites map, and remove the whole
523  // entry from the map if that was the last call site.
524  FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
525  assert(F2C_I != FunctionToCallSitesMap.end() &&
526         "FunctionToCallSitesMap broken");
527  bool Erased = F2C_I->second.erase(Stub);
528  (void)Erased;
529  assert(Erased && "FunctionToCallSitesMap broken");
530  if (F2C_I->second.empty())
531    FunctionToCallSitesMap.erase(F2C_I);
532
533  return F;
534}
535
536void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
537  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
538  if (F2C == FunctionToCallSitesMap.end())
539    return;
540  StubToResolverMapTy &S2RMap = *StubToResolverMap;
541  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
542         E = F2C->second.end(); I != E; ++I) {
543    S2RMap.UnregisterStubResolver(*I);
544    bool Erased = CallSiteToFunctionMap.erase(*I);
545    (void)Erased;
546    assert(Erased && "Missing call site->function mapping");
547  }
548  FunctionToCallSitesMap.erase(F2C);
549}
550
551void JITResolverState::EraseAllCallSitesPrelocked() {
552  StubToResolverMapTy &S2RMap = *StubToResolverMap;
553  for (CallSiteToFunctionMapTy::const_iterator
554         I = CallSiteToFunctionMap.begin(),
555         E = CallSiteToFunctionMap.end(); I != E; ++I) {
556    S2RMap.UnregisterStubResolver(I->first);
557  }
558  CallSiteToFunctionMap.clear();
559  FunctionToCallSitesMap.clear();
560}
561
562JITResolver::~JITResolver() {
563  // No need to lock because we're in the destructor, and state isn't shared.
564  state.EraseAllCallSitesPrelocked();
565  assert(!StubToResolverMap->ResolverHasStubs(this) &&
566         "Resolver destroyed with stubs still alive.");
567}
568
569/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
570/// if it has already been created.
571void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
572  MutexGuard locked(TheJIT->lock);
573
574  // If we already have a stub for this function, recycle it.
575  return state.getFunctionToLazyStubMap(locked).lookup(F);
576}
577
578/// getFunctionStub - This returns a pointer to a function stub, creating
579/// one on demand as needed.
580void *JITResolver::getLazyFunctionStub(Function *F) {
581  MutexGuard locked(TheJIT->lock);
582
583  // If we already have a lazy stub for this function, recycle it.
584  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
585  if (Stub) return Stub;
586
587  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
588  // must resolve the symbol now.
589  void *Actual = TheJIT->isCompilingLazily()
590    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
591
592  // If this is an external declaration, attempt to resolve the address now
593  // to place in the stub.
594  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
595    Actual = TheJIT->getPointerToFunction(F);
596
597    // If we resolved the symbol to a null address (eg. a weak external)
598    // don't emit a stub. Return a null pointer to the application.
599    if (!Actual) return 0;
600  }
601
602  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
603  JE.startGVStub(F, SL.Size, SL.Alignment);
604  // Codegen a new stub, calling the lazy resolver or the actual address of the
605  // external function, if it was resolved.
606  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
607  JE.finishGVStub();
608
609  if (Actual != (void*)(intptr_t)LazyResolverFn) {
610    // If we are getting the stub for an external function, we really want the
611    // address of the stub in the GlobalAddressMap for the JIT, not the address
612    // of the external function.
613    TheJIT->updateGlobalMapping(F, Stub);
614  }
615
616  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
617        << F->getName() << "'\n");
618
619  if (TheJIT->isCompilingLazily()) {
620    // Register this JITResolver as the one corresponding to this call site so
621    // JITCompilerFn will be able to find it.
622    StubToResolverMap->RegisterStubResolver(Stub, this);
623
624    // Finally, keep track of the stub-to-Function mapping so that the
625    // JITCompilerFn knows which function to compile!
626    state.AddCallSite(locked, Stub, F);
627  } else if (!Actual) {
628    // If we are JIT'ing non-lazily but need to call a function that does not
629    // exist yet, add it to the JIT's work list so that we can fill in the
630    // stub address later.
631    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
632           "'Actual' should have been set above.");
633    TheJIT->addPendingFunction(F);
634  }
635
636  return Stub;
637}
638
639/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
640/// GV address.
641void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
642  MutexGuard locked(TheJIT->lock);
643
644  // If we already have a stub for this global variable, recycle it.
645  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
646  if (IndirectSym) return IndirectSym;
647
648  // Otherwise, codegen a new indirect symbol.
649  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
650                                                                JE);
651
652  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
653        << "] for GV '" << GV->getName() << "'\n");
654
655  return IndirectSym;
656}
657
658/// getExternalFunctionStub - Return a stub for the function at the
659/// specified address, created lazily on demand.
660void *JITResolver::getExternalFunctionStub(void *FnAddr) {
661  // If we already have a stub for this function, recycle it.
662  void *&Stub = ExternalFnToStubMap[FnAddr];
663  if (Stub) return Stub;
664
665  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
666  JE.startGVStub(0, SL.Size, SL.Alignment);
667  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
668  JE.finishGVStub();
669
670  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
671               << "] for external function at '" << FnAddr << "'\n");
672  return Stub;
673}
674
675unsigned JITResolver::getGOTIndexForAddr(void* addr) {
676  unsigned idx = revGOTMap[addr];
677  if (!idx) {
678    idx = ++nextGOTIndex;
679    revGOTMap[addr] = idx;
680    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
681                 << addr << "]\n");
682  }
683  return idx;
684}
685
686void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
687                                    SmallVectorImpl<void*> &Ptrs) {
688  MutexGuard locked(TheJIT->lock);
689
690  const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked);
691  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
692
693  for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end();
694       i != e; ++i){
695    Function *F = i->first;
696    if (F->isDeclaration() && F->hasExternalLinkage()) {
697      GVs.push_back(i->first);
698      Ptrs.push_back(i->second);
699    }
700  }
701  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
702       i != e; ++i) {
703    GVs.push_back(i->first);
704    Ptrs.push_back(i->second);
705  }
706}
707
708/// JITCompilerFn - This function is called when a lazy compilation stub has
709/// been entered.  It looks up which function this stub corresponds to, compiles
710/// it if necessary, then returns the resultant function pointer.
711void *JITResolver::JITCompilerFn(void *Stub) {
712  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
713  assert(JR && "Unable to find the corresponding JITResolver to the call site");
714
715  Function* F = 0;
716  void* ActualPtr = 0;
717
718  {
719    // Only lock for getting the Function. The call getPointerToFunction made
720    // in this function might trigger function materializing, which requires
721    // JIT lock to be unlocked.
722    MutexGuard locked(JR->TheJIT->lock);
723
724    // The address given to us for the stub may not be exactly right, it might
725    // be a little bit after the stub.  As such, use upper_bound to find it.
726    pair<void*, Function*> I =
727      JR->state.LookupFunctionFromCallSite(locked, Stub);
728    F = I.second;
729    ActualPtr = I.first;
730  }
731
732  // If we have already code generated the function, just return the address.
733  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
734
735  if (!Result) {
736    // Otherwise we don't have it, do lazy compilation now.
737
738    // If lazy compilation is disabled, emit a useful error message and abort.
739    if (!JR->TheJIT->isCompilingLazily()) {
740      report_fatal_error("LLVM JIT requested to do lazy compilation of function '"
741                        + F->getName() + "' when lazy compiles are disabled!");
742    }
743
744    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
745          << "' In stub ptr = " << Stub << " actual ptr = "
746          << ActualPtr << "\n");
747
748    Result = JR->TheJIT->getPointerToFunction(F);
749  }
750
751  // Reacquire the lock to update the GOT map.
752  MutexGuard locked(JR->TheJIT->lock);
753
754  // We might like to remove the call site from the CallSiteToFunction map, but
755  // we can't do that! Multiple threads could be stuck, waiting to acquire the
756  // lock above. As soon as the 1st function finishes compiling the function,
757  // the next one will be released, and needs to be able to find the function it
758  // needs to call.
759
760  // FIXME: We could rewrite all references to this stub if we knew them.
761
762  // What we will do is set the compiled function address to map to the
763  // same GOT entry as the stub so that later clients may update the GOT
764  // if they see it still using the stub address.
765  // Note: this is done so the Resolver doesn't have to manage GOT memory
766  // Do this without allocating map space if the target isn't using a GOT
767  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
768    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
769
770  return Result;
771}
772
773//===----------------------------------------------------------------------===//
774// JITEmitter code.
775//
776void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
777                                     bool MayNeedFarStub) {
778  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
779    return TheJIT->getOrEmitGlobalVariable(GV);
780
781  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
782    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
783
784  // If we have already compiled the function, return a pointer to its body.
785  Function *F = cast<Function>(V);
786
787  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
788  if (FnStub) {
789    // Return the function stub if it's already created.  We do this first so
790    // that we're returning the same address for the function as any previous
791    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
792    // close enough to call.
793    return FnStub;
794  }
795
796  // If we know the target can handle arbitrary-distance calls, try to
797  // return a direct pointer.
798  if (!MayNeedFarStub) {
799    // If we have code, go ahead and return that.
800    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
801    if (ResultPtr) return ResultPtr;
802
803    // If this is an external function pointer, we can force the JIT to
804    // 'compile' it, which really just adds it to the map.
805    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
806      return TheJIT->getPointerToFunction(F);
807  }
808
809  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
810  // so.  Note that it's possible to return null from getLazyFunctionStub in the
811  // case of a weak extern that fails to resolve.
812  return Resolver.getLazyFunctionStub(F);
813}
814
815void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
816  // Make sure GV is emitted first, and create a stub containing the fully
817  // resolved address.
818  void *GVAddress = getPointerToGlobal(V, Reference, false);
819  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
820  return StubAddr;
821}
822
823void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
824  if (DL.isUnknown()) return;
825  if (!BeforePrintingInsn) return;
826
827  // FIXME: This is horribly inefficient.
828  DILocation CurDLT(DL.getAsMDNode(
829    EmissionDetails.MF->getFunction()->getContext()));
830
831  if (CurDLT.getScope().getNode() != 0 && PrevDLT.getNode() !=CurDLT.getNode()){
832    JITEvent_EmittedFunctionDetails::LineStart NextLine;
833    NextLine.Address = getCurrentPCValue();
834    NextLine.Loc = DL;
835    EmissionDetails.LineStarts.push_back(NextLine);
836  }
837
838  PrevDLT = CurDLT;
839}
840
841static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
842                                           const TargetData *TD) {
843  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
844  if (Constants.empty()) return 0;
845
846  unsigned Size = 0;
847  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
848    MachineConstantPoolEntry CPE = Constants[i];
849    unsigned AlignMask = CPE.getAlignment() - 1;
850    Size = (Size + AlignMask) & ~AlignMask;
851    const Type *Ty = CPE.getType();
852    Size += TD->getTypeAllocSize(Ty);
853  }
854  return Size;
855}
856
857static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI, JIT *jit) {
858  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
859  if (JT.empty()) return 0;
860
861  unsigned NumEntries = 0;
862  for (unsigned i = 0, e = JT.size(); i != e; ++i)
863    NumEntries += JT[i].MBBs.size();
864
865  return NumEntries * MJTI->getEntrySize(*jit->getTargetData());
866}
867
868static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
869  if (Alignment == 0) Alignment = 1;
870  // Since we do not know where the buffer will be allocated, be pessimistic.
871  return Size + Alignment;
872}
873
874/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
875/// into the running total Size.
876
877unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
878  const Type *ElTy = GV->getType()->getElementType();
879  size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
880  size_t GVAlign =
881      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
882  DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
883  DEBUG(GV->dump());
884  // Assume code section ends with worst possible alignment, so first
885  // variable needs maximal padding.
886  if (Size==0)
887    Size = 1;
888  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
889  Size += GVSize;
890  return Size;
891}
892
893/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
894/// but are referenced from the constant; put them in SeenGlobals and the
895/// Worklist, and add their size into the running total Size.
896
897unsigned JITEmitter::addSizeOfGlobalsInConstantVal(
898    const Constant *C,
899    unsigned Size,
900    SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
901    SmallVectorImpl<const GlobalVariable*> &Worklist) {
902  // If its undefined, return the garbage.
903  if (isa<UndefValue>(C))
904    return Size;
905
906  // If the value is a ConstantExpr
907  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
908    Constant *Op0 = CE->getOperand(0);
909    switch (CE->getOpcode()) {
910    case Instruction::GetElementPtr:
911    case Instruction::Trunc:
912    case Instruction::ZExt:
913    case Instruction::SExt:
914    case Instruction::FPTrunc:
915    case Instruction::FPExt:
916    case Instruction::UIToFP:
917    case Instruction::SIToFP:
918    case Instruction::FPToUI:
919    case Instruction::FPToSI:
920    case Instruction::PtrToInt:
921    case Instruction::IntToPtr:
922    case Instruction::BitCast: {
923      Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist);
924      break;
925    }
926    case Instruction::Add:
927    case Instruction::FAdd:
928    case Instruction::Sub:
929    case Instruction::FSub:
930    case Instruction::Mul:
931    case Instruction::FMul:
932    case Instruction::UDiv:
933    case Instruction::SDiv:
934    case Instruction::URem:
935    case Instruction::SRem:
936    case Instruction::And:
937    case Instruction::Or:
938    case Instruction::Xor: {
939      Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist);
940      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size,
941                                           SeenGlobals, Worklist);
942      break;
943    }
944    default: {
945       std::string msg;
946       raw_string_ostream Msg(msg);
947       Msg << "ConstantExpr not handled: " << *CE;
948       report_fatal_error(Msg.str());
949    }
950    }
951  }
952
953  if (C->getType()->getTypeID() == Type::PointerTyID)
954    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
955      if (SeenGlobals.insert(GV)) {
956        Worklist.push_back(GV);
957        Size = addSizeOfGlobal(GV, Size);
958      }
959
960  return Size;
961}
962
963/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
964/// but are referenced from the given initializer.
965
966unsigned JITEmitter::addSizeOfGlobalsInInitializer(
967    const Constant *Init,
968    unsigned Size,
969    SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
970    SmallVectorImpl<const GlobalVariable*> &Worklist) {
971  if (!isa<UndefValue>(Init) &&
972      !isa<ConstantVector>(Init) &&
973      !isa<ConstantAggregateZero>(Init) &&
974      !isa<ConstantArray>(Init) &&
975      !isa<ConstantStruct>(Init) &&
976      Init->getType()->isFirstClassType())
977    Size = addSizeOfGlobalsInConstantVal(Init, Size, SeenGlobals, Worklist);
978  return Size;
979}
980
981/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
982/// globals; then walk the initializers of those globals looking for more.
983/// If their size has not been considered yet, add it into the running total
984/// Size.
985
986unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
987  unsigned Size = 0;
988  SmallPtrSet<const GlobalVariable*, 8> SeenGlobals;
989
990  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
991       MBB != E; ++MBB) {
992    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
993         I != E; ++I) {
994      const TargetInstrDesc &Desc = I->getDesc();
995      const MachineInstr &MI = *I;
996      unsigned NumOps = Desc.getNumOperands();
997      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
998        const MachineOperand &MO = MI.getOperand(CurOp);
999        if (MO.isGlobal()) {
1000          GlobalValue* V = MO.getGlobal();
1001          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
1002          if (!GV)
1003            continue;
1004          // If seen in previous function, it will have an entry here.
1005          if (TheJIT->getPointerToGlobalIfAvailable(GV))
1006            continue;
1007          // If seen earlier in this function, it will have an entry here.
1008          // FIXME: it should be possible to combine these tables, by
1009          // assuming the addresses of the new globals in this module
1010          // start at 0 (or something) and adjusting them after codegen
1011          // complete.  Another possibility is to grab a marker bit in GV.
1012          if (SeenGlobals.insert(GV))
1013            // A variable as yet unseen.  Add in its size.
1014            Size = addSizeOfGlobal(GV, Size);
1015        }
1016      }
1017    }
1018  }
1019  DEBUG(dbgs() << "JIT: About to look through initializers\n");
1020  // Look for more globals that are referenced only from initializers.
1021  SmallVector<const GlobalVariable*, 8> Worklist(
1022    SeenGlobals.begin(), SeenGlobals.end());
1023  while (!Worklist.empty()) {
1024    const GlobalVariable* GV = Worklist.back();
1025    Worklist.pop_back();
1026    if (GV->hasInitializer())
1027      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size,
1028                                           SeenGlobals, Worklist);
1029  }
1030
1031  return Size;
1032}
1033
1034void JITEmitter::startFunction(MachineFunction &F) {
1035  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
1036        << F.getFunction()->getName() << "\n");
1037
1038  uintptr_t ActualSize = 0;
1039  // Set the memory writable, if it's not already
1040  MemMgr->setMemoryWritable();
1041  if (MemMgr->NeedsExactSize()) {
1042    DEBUG(dbgs() << "JIT: ExactSize\n");
1043    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
1044    MachineConstantPool *MCP = F.getConstantPool();
1045
1046    // Ensure the constant pool/jump table info is at least 4-byte aligned.
1047    ActualSize = RoundUpToAlign(ActualSize, 16);
1048
1049    // Add the alignment of the constant pool
1050    ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
1051
1052    // Add the constant pool size
1053    ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1054
1055    if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) {
1056      // Add the aligment of the jump table info
1057      ActualSize = RoundUpToAlign(ActualSize,
1058                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1059
1060      // Add the jump table size
1061      ActualSize += GetJumpTableSizeInBytes(MJTI, TheJIT);
1062    }
1063
1064    // Add the alignment for the function
1065    ActualSize = RoundUpToAlign(ActualSize,
1066                                std::max(F.getFunction()->getAlignment(), 8U));
1067
1068    // Add the function size
1069    ActualSize += TII->GetFunctionSizeInBytes(F);
1070
1071    DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n");
1072    // Add the size of the globals that will be allocated after this function.
1073    // These are all the ones referenced from this function that were not
1074    // previously allocated.
1075    ActualSize += GetSizeOfGlobalsInBytes(F);
1076    DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n");
1077  } else if (SizeEstimate > 0) {
1078    // SizeEstimate will be non-zero on reallocation attempts.
1079    ActualSize = SizeEstimate;
1080  }
1081
1082  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
1083                                                         ActualSize);
1084  BufferEnd = BufferBegin+ActualSize;
1085  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
1086
1087  // Ensure the constant pool/jump table info is at least 4-byte aligned.
1088  emitAlignment(16);
1089
1090  emitConstantPool(F.getConstantPool());
1091  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1092    initJumpTableInfo(MJTI);
1093
1094  // About to start emitting the machine code for the function.
1095  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
1096  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
1097  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
1098
1099  MBBLocations.clear();
1100
1101  EmissionDetails.MF = &F;
1102  EmissionDetails.LineStarts.clear();
1103}
1104
1105bool JITEmitter::finishFunction(MachineFunction &F) {
1106  if (CurBufferPtr == BufferEnd) {
1107    // We must call endFunctionBody before retrying, because
1108    // deallocateMemForFunction requires it.
1109    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1110    retryWithMoreMemory(F);
1111    return true;
1112  }
1113
1114  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1115    emitJumpTableInfo(MJTI);
1116
1117  // FnStart is the start of the text, not the start of the constant pool and
1118  // other per-function data.
1119  uint8_t *FnStart =
1120    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
1121
1122  // FnEnd is the end of the function's machine code.
1123  uint8_t *FnEnd = CurBufferPtr;
1124
1125  if (!Relocations.empty()) {
1126    CurFn = F.getFunction();
1127    NumRelos += Relocations.size();
1128
1129    // Resolve the relocations to concrete pointers.
1130    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
1131      MachineRelocation &MR = Relocations[i];
1132      void *ResultPtr = 0;
1133      if (!MR.letTargetResolve()) {
1134        if (MR.isExternalSymbol()) {
1135          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
1136                                                        false);
1137          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
1138                       << ResultPtr << "]\n");
1139
1140          // If the target REALLY wants a stub for this function, emit it now.
1141          if (MR.mayNeedFarStub()) {
1142            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1143          }
1144        } else if (MR.isGlobalValue()) {
1145          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1146                                         BufferBegin+MR.getMachineCodeOffset(),
1147                                         MR.mayNeedFarStub());
1148        } else if (MR.isIndirectSymbol()) {
1149          ResultPtr = getPointerToGVIndirectSym(
1150              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
1151        } else if (MR.isBasicBlock()) {
1152          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1153        } else if (MR.isConstantPoolIndex()) {
1154          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1155        } else {
1156          assert(MR.isJumpTableIndex());
1157          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1158        }
1159
1160        MR.setResultPointer(ResultPtr);
1161      }
1162
1163      // if we are managing the GOT and the relocation wants an index,
1164      // give it one
1165      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1166        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1167        MR.setGOTIndex(idx);
1168        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1169          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
1170                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1171                       << "\n");
1172          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1173        }
1174      }
1175    }
1176
1177    CurFn = 0;
1178    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1179                                  Relocations.size(), MemMgr->getGOTBase());
1180  }
1181
1182  // Update the GOT entry for F to point to the new code.
1183  if (MemMgr->isManagingGOT()) {
1184    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1185    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1186      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1187                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1188                   << "\n");
1189      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1190    }
1191  }
1192
1193  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1194  // global variables that were referenced in the relocations.
1195  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1196
1197  if (CurBufferPtr == BufferEnd) {
1198    retryWithMoreMemory(F);
1199    return true;
1200  } else {
1201    // Now that we've succeeded in emitting the function, reset the
1202    // SizeEstimate back down to zero.
1203    SizeEstimate = 0;
1204  }
1205
1206  BufferBegin = CurBufferPtr = 0;
1207  NumBytes += FnEnd-FnStart;
1208
1209  // Invalidate the icache if necessary.
1210  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1211
1212  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1213                                EmissionDetails);
1214
1215  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1216        << "] Function: " << F.getFunction()->getName()
1217        << ": " << (FnEnd-FnStart) << " bytes of text, "
1218        << Relocations.size() << " relocations\n");
1219
1220  Relocations.clear();
1221  ConstPoolAddresses.clear();
1222
1223  // Mark code region readable and executable if it's not so already.
1224  MemMgr->setMemoryExecutable();
1225
1226  DEBUG(
1227    if (sys::hasDisassembler()) {
1228      dbgs() << "JIT: Disassembled code:\n";
1229      dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1230                                       (uintptr_t)FnStart);
1231    } else {
1232      dbgs() << "JIT: Binary code:\n";
1233      uint8_t* q = FnStart;
1234      for (int i = 0; q < FnEnd; q += 4, ++i) {
1235        if (i == 4)
1236          i = 0;
1237        if (i == 0)
1238          dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
1239        bool Done = false;
1240        for (int j = 3; j >= 0; --j) {
1241          if (q + j >= FnEnd)
1242            Done = true;
1243          else
1244            dbgs() << (unsigned short)q[j];
1245        }
1246        if (Done)
1247          break;
1248        dbgs() << ' ';
1249        if (i == 3)
1250          dbgs() << '\n';
1251      }
1252      dbgs()<< '\n';
1253    }
1254        );
1255
1256  if (DwarfExceptionHandling || JITEmitDebugInfo) {
1257    uintptr_t ActualSize = 0;
1258    SavedBufferBegin = BufferBegin;
1259    SavedBufferEnd = BufferEnd;
1260    SavedCurBufferPtr = CurBufferPtr;
1261
1262    if (MemMgr->NeedsExactSize()) {
1263      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1264    }
1265
1266    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1267                                                             ActualSize);
1268    BufferEnd = BufferBegin+ActualSize;
1269    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
1270    uint8_t *EhStart;
1271    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
1272                                                EhStart);
1273    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1274                              FrameRegister);
1275    uint8_t *EhEnd = CurBufferPtr;
1276    BufferBegin = SavedBufferBegin;
1277    BufferEnd = SavedBufferEnd;
1278    CurBufferPtr = SavedCurBufferPtr;
1279
1280    if (DwarfExceptionHandling) {
1281      TheJIT->RegisterTable(FrameRegister);
1282    }
1283
1284    if (JITEmitDebugInfo) {
1285      DebugInfo I;
1286      I.FnStart = FnStart;
1287      I.FnEnd = FnEnd;
1288      I.EhStart = EhStart;
1289      I.EhEnd = EhEnd;
1290      DR->RegisterFunction(F.getFunction(), I);
1291    }
1292  }
1293
1294  if (MMI)
1295    MMI->EndFunction();
1296
1297  return false;
1298}
1299
1300void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1301  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1302  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1303  ConstPoolAddresses.clear();
1304  ++NumRetries;
1305  deallocateMemForFunction(F.getFunction());
1306  // Try again with at least twice as much free space.
1307  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1308}
1309
1310/// deallocateMemForFunction - Deallocate all memory for the specified
1311/// function body.  Also drop any references the function has to stubs.
1312/// May be called while the Function is being destroyed inside ~Value().
1313void JITEmitter::deallocateMemForFunction(const Function *F) {
1314  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1315    Emitted = EmittedFunctions.find(F);
1316  if (Emitted != EmittedFunctions.end()) {
1317    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1318    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1319    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1320
1321    EmittedFunctions.erase(Emitted);
1322  }
1323
1324  // TODO: Do we need to unregister exception handling information from libgcc
1325  // here?
1326
1327  if (JITEmitDebugInfo) {
1328    DR->UnregisterFunction(F);
1329  }
1330}
1331
1332
1333void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1334  if (BufferBegin)
1335    return JITCodeEmitter::allocateSpace(Size, Alignment);
1336
1337  // create a new memory block if there is no active one.
1338  // care must be taken so that BufferBegin is invalidated when a
1339  // block is trimmed
1340  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1341  BufferEnd = BufferBegin+Size;
1342  return CurBufferPtr;
1343}
1344
1345void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1346  // Delegate this call through the memory manager.
1347  return MemMgr->allocateGlobal(Size, Alignment);
1348}
1349
1350void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1351  if (TheJIT->getJITInfo().hasCustomConstantPool())
1352    return;
1353
1354  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1355  if (Constants.empty()) return;
1356
1357  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1358  unsigned Align = MCP->getConstantPoolAlignment();
1359  ConstantPoolBase = allocateSpace(Size, Align);
1360  ConstantPool = MCP;
1361
1362  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1363
1364  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1365               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1366
1367  // Initialize the memory for all of the constant pool entries.
1368  unsigned Offset = 0;
1369  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1370    MachineConstantPoolEntry CPE = Constants[i];
1371    unsigned AlignMask = CPE.getAlignment() - 1;
1372    Offset = (Offset + AlignMask) & ~AlignMask;
1373
1374    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1375    ConstPoolAddresses.push_back(CAddr);
1376    if (CPE.isMachineConstantPoolEntry()) {
1377      // FIXME: add support to lower machine constant pool values into bytes!
1378      report_fatal_error("Initialize memory with machine specific constant pool"
1379                        "entry has not been implemented!");
1380    }
1381    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1382    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1383          dbgs().write_hex(CAddr) << "]\n");
1384
1385    const Type *Ty = CPE.Val.ConstVal->getType();
1386    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1387  }
1388}
1389
1390void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1391  if (TheJIT->getJITInfo().hasCustomJumpTables())
1392    return;
1393  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1394    return;
1395
1396  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1397  if (JT.empty()) return;
1398
1399  unsigned NumEntries = 0;
1400  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1401    NumEntries += JT[i].MBBs.size();
1402
1403  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1404
1405  // Just allocate space for all the jump tables now.  We will fix up the actual
1406  // MBB entries in the tables after we emit the code for each block, since then
1407  // we will know the final locations of the MBBs in memory.
1408  JumpTable = MJTI;
1409  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1410                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1411}
1412
1413void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1414  if (TheJIT->getJITInfo().hasCustomJumpTables())
1415    return;
1416
1417  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1418  if (JT.empty() || JumpTableBase == 0) return;
1419
1420
1421  switch (MJTI->getEntryKind()) {
1422  case MachineJumpTableInfo::EK_Inline:
1423    return;
1424  case MachineJumpTableInfo::EK_BlockAddress: {
1425    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1426    //     .word LBB123
1427    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1428           "Cross JIT'ing?");
1429
1430    // For each jump table, map each target in the jump table to the address of
1431    // an emitted MachineBasicBlock.
1432    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1433
1434    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1435      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1436      // Store the address of the basic block for this jump table slot in the
1437      // memory we allocated for the jump table in 'initJumpTableInfo'
1438      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1439        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1440    }
1441    break;
1442  }
1443
1444  case MachineJumpTableInfo::EK_Custom32:
1445  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1446  case MachineJumpTableInfo::EK_LabelDifference32: {
1447    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1448    // For each jump table, place the offset from the beginning of the table
1449    // to the target address.
1450    int *SlotPtr = (int*)JumpTableBase;
1451
1452    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1453      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1454      // Store the offset of the basic block for this jump table slot in the
1455      // memory we allocated for the jump table in 'initJumpTableInfo'
1456      uintptr_t Base = (uintptr_t)SlotPtr;
1457      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1458        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1459        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1460        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1461      }
1462    }
1463    break;
1464  }
1465  }
1466}
1467
1468void JITEmitter::startGVStub(const GlobalValue* GV,
1469                             unsigned StubSize, unsigned Alignment) {
1470  SavedBufferBegin = BufferBegin;
1471  SavedBufferEnd = BufferEnd;
1472  SavedCurBufferPtr = CurBufferPtr;
1473
1474  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1475  BufferEnd = BufferBegin+StubSize+1;
1476}
1477
1478void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1479  SavedBufferBegin = BufferBegin;
1480  SavedBufferEnd = BufferEnd;
1481  SavedCurBufferPtr = CurBufferPtr;
1482
1483  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1484  BufferEnd = BufferBegin+StubSize+1;
1485}
1486
1487void JITEmitter::finishGVStub() {
1488  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1489  NumBytes += getCurrentPCOffset();
1490  BufferBegin = SavedBufferBegin;
1491  BufferEnd = SavedBufferEnd;
1492  CurBufferPtr = SavedCurBufferPtr;
1493}
1494
1495void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1496                                  const uint8_t *Buffer, size_t Size,
1497                                  unsigned Alignment) {
1498  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1499  memcpy(IndGV, Buffer, Size);
1500  return IndGV;
1501}
1502
1503// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1504// in the constant pool that was last emitted with the 'emitConstantPool'
1505// method.
1506//
1507uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1508  assert(ConstantNum < ConstantPool->getConstants().size() &&
1509         "Invalid ConstantPoolIndex!");
1510  return ConstPoolAddresses[ConstantNum];
1511}
1512
1513// getJumpTableEntryAddress - Return the address of the JumpTable with index
1514// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1515//
1516uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1517  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1518  assert(Index < JT.size() && "Invalid jump table index!");
1519
1520  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1521
1522  unsigned Offset = 0;
1523  for (unsigned i = 0; i < Index; ++i)
1524    Offset += JT[i].MBBs.size();
1525
1526   Offset *= EntrySize;
1527
1528  return (uintptr_t)((char *)JumpTableBase + Offset);
1529}
1530
1531void JITEmitter::EmittedFunctionConfig::onDelete(
1532  JITEmitter *Emitter, const Function *F) {
1533  Emitter->deallocateMemForFunction(F);
1534}
1535void JITEmitter::EmittedFunctionConfig::onRAUW(
1536  JITEmitter *, const Function*, const Function*) {
1537  llvm_unreachable("The JIT doesn't know how to handle a"
1538                   " RAUW on a value it has emitted.");
1539}
1540
1541
1542//===----------------------------------------------------------------------===//
1543//  Public interface to this file
1544//===----------------------------------------------------------------------===//
1545
1546JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1547                                   TargetMachine &tm) {
1548  return new JITEmitter(jit, JMM, tm);
1549}
1550
1551// getPointerToFunctionOrStub - If the specified function has been
1552// code-gen'd, return a pointer to the function.  If not, compile it, or use
1553// a stub to implement lazy compilation if available.
1554//
1555void *JIT::getPointerToFunctionOrStub(Function *F) {
1556  // If we have already code generated the function, just return the address.
1557  if (void *Addr = getPointerToGlobalIfAvailable(F))
1558    return Addr;
1559
1560  // Get a stub if the target supports it.
1561  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1562  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1563  return JE->getJITResolver().getLazyFunctionStub(F);
1564}
1565
1566void JIT::updateFunctionStub(Function *F) {
1567  // Get the empty stub we generated earlier.
1568  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1569  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1570  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1571  void *Addr = getPointerToGlobalIfAvailable(F);
1572  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1573
1574  // Tell the target jit info to rewrite the stub at the specified address,
1575  // rather than creating a new one.
1576  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1577  JE->startGVStub(Stub, layout.Size);
1578  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1579  JE->finishGVStub();
1580}
1581
1582/// freeMachineCodeForFunction - release machine code memory for given Function.
1583///
1584void JIT::freeMachineCodeForFunction(Function *F) {
1585  // Delete translation for this from the ExecutionEngine, so it will get
1586  // retranslated next time it is used.
1587  updateGlobalMapping(F, 0);
1588
1589  // Free the actual memory for the function body and related stuff.
1590  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1591  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1592}
1593