JITEmitter.cpp revision 7a9034c4db248fe8b8cb82762881b51b221988d3
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDebugRegisterer.h"
18#include "JITDwarfEmitter.h"
19#include "llvm/ADT/OwningPtr.h"
20#include "llvm/Constants.h"
21#include "llvm/Module.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/JITCodeEmitter.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRelocation.h"
29#include "llvm/ExecutionEngine/GenericValue.h"
30#include "llvm/ExecutionEngine/JITEventListener.h"
31#include "llvm/ExecutionEngine/JITMemoryManager.h"
32#include "llvm/CodeGen/MachineCodeInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetJITInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MutexGuard.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/System/Disassembler.h"
43#include "llvm/System/Memory.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/ADT/DenseMap.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallVector.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/ValueMap.h"
50#include <algorithm>
51#ifndef NDEBUG
52#include <iomanip>
53#endif
54using namespace llvm;
55
56STATISTIC(NumBytes, "Number of bytes of machine code compiled");
57STATISTIC(NumRelos, "Number of relocations applied");
58STATISTIC(NumRetries, "Number of retries with more memory");
59static JIT *TheJIT = 0;
60
61
62//===----------------------------------------------------------------------===//
63// JIT lazy compilation code.
64//
65namespace {
66  class JITResolverState;
67
68  template<typename ValueTy>
69  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
70    typedef JITResolverState *ExtraData;
71    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
72      assert(false && "The JIT doesn't know how to handle a"
73             " RAUW on a value it has emitted.");
74    }
75  };
76
77  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
78    typedef JITResolverState *ExtraData;
79    static void onDelete(JITResolverState *JRS, Function *F);
80  };
81
82  class JITResolverState {
83  public:
84    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
85      FunctionToStubMapTy;
86    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
87    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
88                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
89    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
90  private:
91    /// FunctionToStubMap - Keep track of the stub created for a particular
92    /// function so that we can reuse them if necessary.
93    FunctionToStubMapTy FunctionToStubMap;
94
95    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
96    /// site corresponds to, and vice versa.
97    CallSiteToFunctionMapTy CallSiteToFunctionMap;
98    FunctionToCallSitesMapTy FunctionToCallSitesMap;
99
100    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
101    /// particular GlobalVariable so that we can reuse them if necessary.
102    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
103
104  public:
105    JITResolverState() : FunctionToStubMap(this),
106                         FunctionToCallSitesMap(this) {}
107
108    FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) {
109      assert(locked.holds(TheJIT->lock));
110      return FunctionToStubMap;
111    }
112
113    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
114      assert(locked.holds(TheJIT->lock));
115      return GlobalToIndirectSymMap;
116    }
117
118    pair<void *, Function *> LookupFunctionFromCallSite(
119        const MutexGuard &locked, void *CallSite) const {
120      assert(locked.holds(TheJIT->lock));
121
122      // The address given to us for the stub may not be exactly right, it might be
123      // a little bit after the stub.  As such, use upper_bound to find it.
124      CallSiteToFunctionMapTy::const_iterator I =
125        CallSiteToFunctionMap.upper_bound(CallSite);
126      assert(I != CallSiteToFunctionMap.begin() &&
127             "This is not a known call site!");
128      --I;
129      return *I;
130    }
131
132    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
133      assert(locked.holds(TheJIT->lock));
134
135      bool Inserted = CallSiteToFunctionMap.insert(
136          std::make_pair(CallSite, F)).second;
137      (void)Inserted;
138      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
139      FunctionToCallSitesMap[F].insert(CallSite);
140    }
141
142    // Returns the Function of the stub if a stub was erased, or NULL if there
143    // was no stub.  This function uses the call-site->function map to find a
144    // relevant function, but asserts that only stubs and not other call sites
145    // will be passed in.
146    Function *EraseStub(const MutexGuard &locked, void *Stub) {
147      CallSiteToFunctionMapTy::iterator C2F_I =
148        CallSiteToFunctionMap.find(Stub);
149      if (C2F_I == CallSiteToFunctionMap.end()) {
150        // Not a stub.
151        return NULL;
152      }
153
154      Function *const F = C2F_I->second;
155#ifndef NDEBUG
156      void *RealStub = FunctionToStubMap.lookup(F);
157      assert(RealStub == Stub &&
158             "Call-site that wasn't a stub pass in to EraseStub");
159#endif
160      FunctionToStubMap.erase(F);
161      CallSiteToFunctionMap.erase(C2F_I);
162
163      // Remove the stub from the function->call-sites map, and remove the whole
164      // entry from the map if that was the last call site.
165      FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
166      assert(F2C_I != FunctionToCallSitesMap.end() &&
167             "FunctionToCallSitesMap broken");
168      bool Erased = F2C_I->second.erase(Stub);
169      (void)Erased;
170      assert(Erased && "FunctionToCallSitesMap broken");
171      if (F2C_I->second.empty())
172        FunctionToCallSitesMap.erase(F2C_I);
173
174      return F;
175    }
176
177    void EraseAllCallSites(const MutexGuard &locked, Function *F) {
178      assert(locked.holds(TheJIT->lock));
179      EraseAllCallSitesPrelocked(F);
180    }
181    void EraseAllCallSitesPrelocked(Function *F) {
182      FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
183      if (F2C == FunctionToCallSitesMap.end())
184        return;
185      for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
186             E = F2C->second.end(); I != E; ++I) {
187        bool Erased = CallSiteToFunctionMap.erase(*I);
188        (void)Erased;
189        assert(Erased && "Missing call site->function mapping");
190      }
191      FunctionToCallSitesMap.erase(F2C);
192    }
193  };
194
195  /// JITResolver - Keep track of, and resolve, call sites for functions that
196  /// have not yet been compiled.
197  class JITResolver {
198    typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy;
199    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
200    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
201
202    /// LazyResolverFn - The target lazy resolver function that we actually
203    /// rewrite instructions to use.
204    TargetJITInfo::LazyResolverFn LazyResolverFn;
205
206    JITResolverState state;
207
208    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
209    /// external functions.
210    std::map<void*, void*> ExternalFnToStubMap;
211
212    /// revGOTMap - map addresses to indexes in the GOT
213    std::map<void*, unsigned> revGOTMap;
214    unsigned nextGOTIndex;
215
216    static JITResolver *TheJITResolver;
217  public:
218    explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
219      TheJIT = &jit;
220
221      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
222      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
223      TheJITResolver = this;
224    }
225
226    ~JITResolver() {
227      TheJITResolver = 0;
228    }
229
230    /// getFunctionStubIfAvailable - This returns a pointer to a function stub
231    /// if it has already been created.
232    void *getFunctionStubIfAvailable(Function *F);
233
234    /// getFunctionStub - This returns a pointer to a function stub, creating
235    /// one on demand as needed.  If empty is true, create a function stub
236    /// pointing at address 0, to be filled in later.
237    void *getFunctionStub(Function *F);
238
239    /// getExternalFunctionStub - Return a stub for the function at the
240    /// specified address, created lazily on demand.
241    void *getExternalFunctionStub(void *FnAddr);
242
243    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
244    /// specified GV address.
245    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
246
247    /// AddCallbackAtLocation - If the target is capable of rewriting an
248    /// instruction without the use of a stub, record the location of the use so
249    /// we know which function is being used at the location.
250    void *AddCallbackAtLocation(Function *F, void *Location) {
251      MutexGuard locked(TheJIT->lock);
252      /// Get the target-specific JIT resolver function.
253      state.AddCallSite(locked, Location, F);
254      return (void*)(intptr_t)LazyResolverFn;
255    }
256
257    void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
258                           SmallVectorImpl<void*> &Ptrs);
259
260    GlobalValue *invalidateStub(void *Stub);
261
262    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
263    /// an address.  This function only manages slots, it does not manage the
264    /// contents of the slots or the memory associated with the GOT.
265    unsigned getGOTIndexForAddr(void *addr);
266
267    /// JITCompilerFn - This function is called to resolve a stub to a compiled
268    /// address.  If the LLVM Function corresponding to the stub has not yet
269    /// been compiled, this function compiles it first.
270    static void *JITCompilerFn(void *Stub);
271  };
272}
273
274JITResolver *JITResolver::TheJITResolver = 0;
275
276void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
277  JRS->EraseAllCallSitesPrelocked(F);
278}
279
280/// getFunctionStubIfAvailable - This returns a pointer to a function stub
281/// if it has already been created.
282void *JITResolver::getFunctionStubIfAvailable(Function *F) {
283  MutexGuard locked(TheJIT->lock);
284
285  // If we already have a stub for this function, recycle it.
286  return state.getFunctionToStubMap(locked).lookup(F);
287}
288
289/// getFunctionStub - This returns a pointer to a function stub, creating
290/// one on demand as needed.
291void *JITResolver::getFunctionStub(Function *F) {
292  MutexGuard locked(TheJIT->lock);
293
294  // If we already have a stub for this function, recycle it.
295  void *&Stub = state.getFunctionToStubMap(locked)[F];
296  if (Stub) return Stub;
297
298  // Call the lazy resolver function unless we are JIT'ing non-lazily, in which
299  // case we must resolve the symbol now.
300  void *Actual = TheJIT->isLazyCompilationDisabled()
301    ? (void *)0 : (void *)(intptr_t)LazyResolverFn;
302
303  // If this is an external declaration, attempt to resolve the address now
304  // to place in the stub.
305  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
306    Actual = TheJIT->getPointerToFunction(F);
307
308    // If we resolved the symbol to a null address (eg. a weak external)
309    // don't emit a stub. Return a null pointer to the application.  If dlsym
310    // stubs are enabled, not being able to resolve the address is not
311    // meaningful.
312    if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0;
313  }
314
315  // Codegen a new stub, calling the lazy resolver or the actual address of the
316  // external function, if it was resolved.
317  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
318                                               *TheJIT->getCodeEmitter());
319
320  if (Actual != (void*)(intptr_t)LazyResolverFn) {
321    // If we are getting the stub for an external function, we really want the
322    // address of the stub in the GlobalAddressMap for the JIT, not the address
323    // of the external function.
324    TheJIT->updateGlobalMapping(F, Stub);
325  }
326
327  DEBUG(errs() << "JIT: Stub emitted at [" << Stub << "] for function '"
328        << F->getName() << "'\n");
329
330  // Finally, keep track of the stub-to-Function mapping so that the
331  // JITCompilerFn knows which function to compile!
332  state.AddCallSite(locked, Stub, F);
333
334  // If we are JIT'ing non-lazily but need to call a function that does not
335  // exist yet, add it to the JIT's work list so that we can fill in the stub
336  // address later.
337  if (!Actual && TheJIT->isLazyCompilationDisabled())
338    if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
339      TheJIT->addPendingFunction(F);
340
341  return Stub;
342}
343
344/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
345/// GV address.
346void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
347  MutexGuard locked(TheJIT->lock);
348
349  // If we already have a stub for this global variable, recycle it.
350  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
351  if (IndirectSym) return IndirectSym;
352
353  // Otherwise, codegen a new indirect symbol.
354  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
355                                                     *TheJIT->getCodeEmitter());
356
357  DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
358        << "] for GV '" << GV->getName() << "'\n");
359
360  return IndirectSym;
361}
362
363/// getExternalFunctionStub - Return a stub for the function at the
364/// specified address, created lazily on demand.
365void *JITResolver::getExternalFunctionStub(void *FnAddr) {
366  // If we already have a stub for this function, recycle it.
367  void *&Stub = ExternalFnToStubMap[FnAddr];
368  if (Stub) return Stub;
369
370  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
371                                               *TheJIT->getCodeEmitter());
372
373  DEBUG(errs() << "JIT: Stub emitted at [" << Stub
374               << "] for external function at '" << FnAddr << "'\n");
375  return Stub;
376}
377
378unsigned JITResolver::getGOTIndexForAddr(void* addr) {
379  unsigned idx = revGOTMap[addr];
380  if (!idx) {
381    idx = ++nextGOTIndex;
382    revGOTMap[addr] = idx;
383    DEBUG(errs() << "JIT: Adding GOT entry " << idx << " for addr ["
384                 << addr << "]\n");
385  }
386  return idx;
387}
388
389void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
390                                    SmallVectorImpl<void*> &Ptrs) {
391  MutexGuard locked(TheJIT->lock);
392
393  const FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
394  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
395
396  for (FunctionToStubMapTy::const_iterator i = FM.begin(), e = FM.end();
397       i != e; ++i){
398    Function *F = i->first;
399    if (F->isDeclaration() && F->hasExternalLinkage()) {
400      GVs.push_back(i->first);
401      Ptrs.push_back(i->second);
402    }
403  }
404  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
405       i != e; ++i) {
406    GVs.push_back(i->first);
407    Ptrs.push_back(i->second);
408  }
409}
410
411GlobalValue *JITResolver::invalidateStub(void *Stub) {
412  MutexGuard locked(TheJIT->lock);
413
414  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
415
416  // Look up the cheap way first, to see if it's a function stub we are
417  // invalidating.  If so, remove it from both the forward and reverse maps.
418  if (Function *F = state.EraseStub(locked, Stub)) {
419    return F;
420  }
421
422  // Otherwise, it might be an indirect symbol stub.  Find it and remove it.
423  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
424       i != e; ++i) {
425    if (i->second != Stub)
426      continue;
427    GlobalValue *GV = i->first;
428    GM.erase(i);
429    return GV;
430  }
431
432  // Lastly, check to see if it's in the ExternalFnToStubMap.
433  for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
434       e = ExternalFnToStubMap.end(); i != e; ++i) {
435    if (i->second != Stub)
436      continue;
437    ExternalFnToStubMap.erase(i);
438    break;
439  }
440
441  return 0;
442}
443
444/// JITCompilerFn - This function is called when a lazy compilation stub has
445/// been entered.  It looks up which function this stub corresponds to, compiles
446/// it if necessary, then returns the resultant function pointer.
447void *JITResolver::JITCompilerFn(void *Stub) {
448  JITResolver &JR = *TheJITResolver;
449
450  Function* F = 0;
451  void* ActualPtr = 0;
452
453  {
454    // Only lock for getting the Function. The call getPointerToFunction made
455    // in this function might trigger function materializing, which requires
456    // JIT lock to be unlocked.
457    MutexGuard locked(TheJIT->lock);
458
459    // The address given to us for the stub may not be exactly right, it might
460    // be a little bit after the stub.  As such, use upper_bound to find it.
461    pair<void*, Function*> I =
462      JR.state.LookupFunctionFromCallSite(locked, Stub);
463    F = I.second;
464    ActualPtr = I.first;
465  }
466
467  // If we have already code generated the function, just return the address.
468  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
469
470  if (!Result) {
471    // Otherwise we don't have it, do lazy compilation now.
472
473    // If lazy compilation is disabled, emit a useful error message and abort.
474    if (TheJIT->isLazyCompilationDisabled()) {
475      llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
476                        + F->getName() + "' when lazy compiles are disabled!");
477    }
478
479    DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
480          << "' In stub ptr = " << Stub << " actual ptr = "
481          << ActualPtr << "\n");
482
483    Result = TheJIT->getPointerToFunction(F);
484  }
485
486  // Reacquire the lock to update the GOT map.
487  MutexGuard locked(TheJIT->lock);
488
489  // We might like to remove the call site from the CallSiteToFunction map, but
490  // we can't do that! Multiple threads could be stuck, waiting to acquire the
491  // lock above. As soon as the 1st function finishes compiling the function,
492  // the next one will be released, and needs to be able to find the function it
493  // needs to call.
494
495  // FIXME: We could rewrite all references to this stub if we knew them.
496
497  // What we will do is set the compiled function address to map to the
498  // same GOT entry as the stub so that later clients may update the GOT
499  // if they see it still using the stub address.
500  // Note: this is done so the Resolver doesn't have to manage GOT memory
501  // Do this without allocating map space if the target isn't using a GOT
502  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
503    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
504
505  return Result;
506}
507
508//===----------------------------------------------------------------------===//
509// JITEmitter code.
510//
511namespace {
512  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
513  /// used to output functions to memory for execution.
514  class JITEmitter : public JITCodeEmitter {
515    JITMemoryManager *MemMgr;
516
517    // When outputting a function stub in the context of some other function, we
518    // save BufferBegin/BufferEnd/CurBufferPtr here.
519    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
520
521    // When reattempting to JIT a function after running out of space, we store
522    // the estimated size of the function we're trying to JIT here, so we can
523    // ask the memory manager for at least this much space.  When we
524    // successfully emit the function, we reset this back to zero.
525    uintptr_t SizeEstimate;
526
527    /// Relocations - These are the relocations that the function needs, as
528    /// emitted.
529    std::vector<MachineRelocation> Relocations;
530
531    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
532    /// It is filled in by the StartMachineBasicBlock callback and queried by
533    /// the getMachineBasicBlockAddress callback.
534    std::vector<uintptr_t> MBBLocations;
535
536    /// ConstantPool - The constant pool for the current function.
537    ///
538    MachineConstantPool *ConstantPool;
539
540    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
541    ///
542    void *ConstantPoolBase;
543
544    /// ConstPoolAddresses - Addresses of individual constant pool entries.
545    ///
546    SmallVector<uintptr_t, 8> ConstPoolAddresses;
547
548    /// JumpTable - The jump tables for the current function.
549    ///
550    MachineJumpTableInfo *JumpTable;
551
552    /// JumpTableBase - A pointer to the first entry in the jump table.
553    ///
554    void *JumpTableBase;
555
556    /// Resolver - This contains info about the currently resolved functions.
557    JITResolver Resolver;
558
559    /// DE - The dwarf emitter for the jit.
560    OwningPtr<JITDwarfEmitter> DE;
561
562    /// DR - The debug registerer for the jit.
563    OwningPtr<JITDebugRegisterer> DR;
564
565    /// LabelLocations - This vector is a mapping from Label ID's to their
566    /// address.
567    std::vector<uintptr_t> LabelLocations;
568
569    /// MMI - Machine module info for exception informations
570    MachineModuleInfo* MMI;
571
572    // GVSet - a set to keep track of which globals have been seen
573    SmallPtrSet<const GlobalVariable*, 8> GVSet;
574
575    // CurFn - The llvm function being emitted.  Only valid during
576    // finishFunction().
577    const Function *CurFn;
578
579    /// Information about emitted code, which is passed to the
580    /// JITEventListeners.  This is reset in startFunction and used in
581    /// finishFunction.
582    JITEvent_EmittedFunctionDetails EmissionDetails;
583
584    struct EmittedCode {
585      void *FunctionBody;  // Beginning of the function's allocation.
586      void *Code;  // The address the function's code actually starts at.
587      void *ExceptionTable;
588      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
589    };
590    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
591      typedef JITEmitter *ExtraData;
592      static void onDelete(JITEmitter *, const Function*);
593      static void onRAUW(JITEmitter *, const Function*, const Function*);
594    };
595    ValueMap<const Function *, EmittedCode,
596             EmittedFunctionConfig> EmittedFunctions;
597
598    // CurFnStubUses - For a given Function, a vector of stubs that it
599    // references.  This facilitates the JIT detecting that a stub is no
600    // longer used, so that it may be deallocated.
601    DenseMap<AssertingVH<const Function>, SmallVector<void*, 1> > CurFnStubUses;
602
603    // StubFnRefs - For a given pointer to a stub, a set of Functions which
604    // reference the stub.  When the count of a stub's references drops to zero,
605    // the stub is unused.
606    DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
607
608    // ExtFnStubs - A map of external function names to stubs which have entries
609    // in the JITResolver's ExternalFnToStubMap.
610    StringMap<void *> ExtFnStubs;
611
612    DebugLocTuple PrevDLT;
613
614  public:
615    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
616        : SizeEstimate(0), Resolver(jit), MMI(0), CurFn(0),
617          EmittedFunctions(this) {
618      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
619      if (jit.getJITInfo().needsGOT()) {
620        MemMgr->AllocateGOT();
621        DEBUG(errs() << "JIT is managing a GOT\n");
622      }
623
624      if (DwarfExceptionHandling || JITEmitDebugInfo) {
625        DE.reset(new JITDwarfEmitter(jit));
626      }
627      if (JITEmitDebugInfo) {
628        DR.reset(new JITDebugRegisterer(TM));
629      }
630    }
631    ~JITEmitter() {
632      delete MemMgr;
633    }
634
635    /// classof - Methods for support type inquiry through isa, cast, and
636    /// dyn_cast:
637    ///
638    static inline bool classof(const JITEmitter*) { return true; }
639    static inline bool classof(const MachineCodeEmitter*) { return true; }
640
641    JITResolver &getJITResolver() { return Resolver; }
642
643    virtual void startFunction(MachineFunction &F);
644    virtual bool finishFunction(MachineFunction &F);
645
646    void emitConstantPool(MachineConstantPool *MCP);
647    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
648    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
649
650    virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
651                                   unsigned Alignment = 1);
652    virtual void startGVStub(const GlobalValue* GV, void *Buffer,
653                             unsigned StubSize);
654    virtual void* finishGVStub(const GlobalValue *GV);
655
656    /// allocateSpace - Reserves space in the current block if any, or
657    /// allocate a new one of the given size.
658    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
659
660    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
661    /// this method does not allocate memory in the current output buffer,
662    /// because a global may live longer than the current function.
663    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
664
665    virtual void addRelocation(const MachineRelocation &MR) {
666      Relocations.push_back(MR);
667    }
668
669    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
670      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
671        MBBLocations.resize((MBB->getNumber()+1)*2);
672      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
673      DEBUG(errs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
674                   << (void*) getCurrentPCValue() << "]\n");
675    }
676
677    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
678    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
679
680    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
681      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
682             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
683      return MBBLocations[MBB->getNumber()];
684    }
685
686    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
687    /// given function.  Increase the minimum allocation size so that we get
688    /// more memory next time.
689    void retryWithMoreMemory(MachineFunction &F);
690
691    /// deallocateMemForFunction - Deallocate all memory for the specified
692    /// function body.
693    void deallocateMemForFunction(const Function *F);
694
695    /// AddStubToCurrentFunction - Mark the current function being JIT'd as
696    /// using the stub at the specified address. Allows
697    /// deallocateMemForFunction to also remove stubs no longer referenced.
698    void AddStubToCurrentFunction(void *Stub);
699
700    /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for
701    /// MachineRelocations that reference external functions by name.
702    const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
703
704    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
705
706    virtual void emitLabel(uint64_t LabelID) {
707      if (LabelLocations.size() <= LabelID)
708        LabelLocations.resize((LabelID+1)*2);
709      LabelLocations[LabelID] = getCurrentPCValue();
710    }
711
712    virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
713      assert(LabelLocations.size() > (unsigned)LabelID &&
714             LabelLocations[LabelID] && "Label not emitted!");
715      return LabelLocations[LabelID];
716    }
717
718    virtual void setModuleInfo(MachineModuleInfo* Info) {
719      MMI = Info;
720      if (DE.get()) DE->setModuleInfo(Info);
721    }
722
723    void setMemoryExecutable() {
724      MemMgr->setMemoryExecutable();
725    }
726
727    JITMemoryManager *getMemMgr() const { return MemMgr; }
728
729  private:
730    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
731    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
732                                    bool NoNeedStub);
733    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
734    unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
735    unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
736    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
737  };
738}
739
740void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
741                                     bool DoesntNeedStub) {
742  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
743    return TheJIT->getOrEmitGlobalVariable(GV);
744
745  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
746    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
747
748  // If we have already compiled the function, return a pointer to its body.
749  Function *F = cast<Function>(V);
750  void *ResultPtr;
751  if (!DoesntNeedStub) {
752    // Return the function stub if it's already created.
753    ResultPtr = Resolver.getFunctionStubIfAvailable(F);
754    if (ResultPtr)
755      AddStubToCurrentFunction(ResultPtr);
756  } else {
757    ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
758  }
759  if (ResultPtr) return ResultPtr;
760
761  // If this is an external function pointer, we can force the JIT to
762  // 'compile' it, which really just adds it to the map.  In dlsym mode,
763  // external functions are forced through a stub, regardless of reloc type.
764  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() &&
765      DoesntNeedStub && !TheJIT->areDlsymStubsEnabled())
766    return TheJIT->getPointerToFunction(F);
767
768  // Okay, the function has not been compiled yet, if the target callback
769  // mechanism is capable of rewriting the instruction directly, prefer to do
770  // that instead of emitting a stub.  This uses the lazy resolver, so is not
771  // legal if lazy compilation is disabled.
772  if (DoesntNeedStub && !TheJIT->isLazyCompilationDisabled())
773    return Resolver.AddCallbackAtLocation(F, Reference);
774
775  // Otherwise, we have to emit a stub.
776  void *StubAddr = Resolver.getFunctionStub(F);
777
778  // Add the stub to the current function's list of referenced stubs, so we can
779  // deallocate them if the current function is ever freed.  It's possible to
780  // return null from getFunctionStub in the case of a weak extern that fails
781  // to resolve.
782  if (StubAddr)
783    AddStubToCurrentFunction(StubAddr);
784
785  return StubAddr;
786}
787
788void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
789                                            bool NoNeedStub) {
790  // Make sure GV is emitted first, and create a stub containing the fully
791  // resolved address.
792  void *GVAddress = getPointerToGlobal(V, Reference, true);
793  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
794
795  // Add the stub to the current function's list of referenced stubs, so we can
796  // deallocate them if the current function is ever freed.
797  AddStubToCurrentFunction(StubAddr);
798
799  return StubAddr;
800}
801
802void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
803  assert(CurFn && "Stub added to current function, but current function is 0!");
804
805  SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
806  StubsUsed.push_back(StubAddr);
807
808  SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
809  FnRefs.insert(CurFn);
810}
811
812void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
813  if (!DL.isUnknown()) {
814    DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL);
815
816    if (BeforePrintingInsn) {
817      if (CurDLT.Scope != 0 && PrevDLT != CurDLT) {
818        JITEvent_EmittedFunctionDetails::LineStart NextLine;
819        NextLine.Address = getCurrentPCValue();
820        NextLine.Loc = DL;
821        EmissionDetails.LineStarts.push_back(NextLine);
822      }
823
824      PrevDLT = CurDLT;
825    }
826  }
827}
828
829static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
830                                           const TargetData *TD) {
831  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
832  if (Constants.empty()) return 0;
833
834  unsigned Size = 0;
835  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
836    MachineConstantPoolEntry CPE = Constants[i];
837    unsigned AlignMask = CPE.getAlignment() - 1;
838    Size = (Size + AlignMask) & ~AlignMask;
839    const Type *Ty = CPE.getType();
840    Size += TD->getTypeAllocSize(Ty);
841  }
842  return Size;
843}
844
845static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
846  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
847  if (JT.empty()) return 0;
848
849  unsigned NumEntries = 0;
850  for (unsigned i = 0, e = JT.size(); i != e; ++i)
851    NumEntries += JT[i].MBBs.size();
852
853  unsigned EntrySize = MJTI->getEntrySize();
854
855  return NumEntries * EntrySize;
856}
857
858static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
859  if (Alignment == 0) Alignment = 1;
860  // Since we do not know where the buffer will be allocated, be pessimistic.
861  return Size + Alignment;
862}
863
864/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
865/// into the running total Size.
866
867unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
868  const Type *ElTy = GV->getType()->getElementType();
869  size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
870  size_t GVAlign =
871      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
872  DEBUG(errs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
873  DEBUG(GV->dump());
874  // Assume code section ends with worst possible alignment, so first
875  // variable needs maximal padding.
876  if (Size==0)
877    Size = 1;
878  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
879  Size += GVSize;
880  return Size;
881}
882
883/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
884/// but are referenced from the constant; put them in GVSet and add their
885/// size into the running total Size.
886
887unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
888                                              unsigned Size) {
889  // If its undefined, return the garbage.
890  if (isa<UndefValue>(C))
891    return Size;
892
893  // If the value is a ConstantExpr
894  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
895    Constant *Op0 = CE->getOperand(0);
896    switch (CE->getOpcode()) {
897    case Instruction::GetElementPtr:
898    case Instruction::Trunc:
899    case Instruction::ZExt:
900    case Instruction::SExt:
901    case Instruction::FPTrunc:
902    case Instruction::FPExt:
903    case Instruction::UIToFP:
904    case Instruction::SIToFP:
905    case Instruction::FPToUI:
906    case Instruction::FPToSI:
907    case Instruction::PtrToInt:
908    case Instruction::IntToPtr:
909    case Instruction::BitCast: {
910      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
911      break;
912    }
913    case Instruction::Add:
914    case Instruction::FAdd:
915    case Instruction::Sub:
916    case Instruction::FSub:
917    case Instruction::Mul:
918    case Instruction::FMul:
919    case Instruction::UDiv:
920    case Instruction::SDiv:
921    case Instruction::URem:
922    case Instruction::SRem:
923    case Instruction::And:
924    case Instruction::Or:
925    case Instruction::Xor: {
926      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
927      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
928      break;
929    }
930    default: {
931       std::string msg;
932       raw_string_ostream Msg(msg);
933       Msg << "ConstantExpr not handled: " << *CE;
934       llvm_report_error(Msg.str());
935    }
936    }
937  }
938
939  if (C->getType()->getTypeID() == Type::PointerTyID)
940    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
941      if (GVSet.insert(GV))
942        Size = addSizeOfGlobal(GV, Size);
943
944  return Size;
945}
946
947/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
948/// but are referenced from the given initializer.
949
950unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
951                                              unsigned Size) {
952  if (!isa<UndefValue>(Init) &&
953      !isa<ConstantVector>(Init) &&
954      !isa<ConstantAggregateZero>(Init) &&
955      !isa<ConstantArray>(Init) &&
956      !isa<ConstantStruct>(Init) &&
957      Init->getType()->isFirstClassType())
958    Size = addSizeOfGlobalsInConstantVal(Init, Size);
959  return Size;
960}
961
962/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
963/// globals; then walk the initializers of those globals looking for more.
964/// If their size has not been considered yet, add it into the running total
965/// Size.
966
967unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
968  unsigned Size = 0;
969  GVSet.clear();
970
971  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
972       MBB != E; ++MBB) {
973    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
974         I != E; ++I) {
975      const TargetInstrDesc &Desc = I->getDesc();
976      const MachineInstr &MI = *I;
977      unsigned NumOps = Desc.getNumOperands();
978      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
979        const MachineOperand &MO = MI.getOperand(CurOp);
980        if (MO.isGlobal()) {
981          GlobalValue* V = MO.getGlobal();
982          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
983          if (!GV)
984            continue;
985          // If seen in previous function, it will have an entry here.
986          if (TheJIT->getPointerToGlobalIfAvailable(GV))
987            continue;
988          // If seen earlier in this function, it will have an entry here.
989          // FIXME: it should be possible to combine these tables, by
990          // assuming the addresses of the new globals in this module
991          // start at 0 (or something) and adjusting them after codegen
992          // complete.  Another possibility is to grab a marker bit in GV.
993          if (GVSet.insert(GV))
994            // A variable as yet unseen.  Add in its size.
995            Size = addSizeOfGlobal(GV, Size);
996        }
997      }
998    }
999  }
1000  DEBUG(errs() << "JIT: About to look through initializers\n");
1001  // Look for more globals that are referenced only from initializers.
1002  // GVSet.end is computed each time because the set can grow as we go.
1003  for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
1004       I != GVSet.end(); I++) {
1005    const GlobalVariable* GV = *I;
1006    if (GV->hasInitializer())
1007      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
1008  }
1009
1010  return Size;
1011}
1012
1013void JITEmitter::startFunction(MachineFunction &F) {
1014  DEBUG(errs() << "JIT: Starting CodeGen of Function "
1015        << F.getFunction()->getName() << "\n");
1016
1017  uintptr_t ActualSize = 0;
1018  // Set the memory writable, if it's not already
1019  MemMgr->setMemoryWritable();
1020  if (MemMgr->NeedsExactSize()) {
1021    DEBUG(errs() << "JIT: ExactSize\n");
1022    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
1023    MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
1024    MachineConstantPool *MCP = F.getConstantPool();
1025
1026    // Ensure the constant pool/jump table info is at least 4-byte aligned.
1027    ActualSize = RoundUpToAlign(ActualSize, 16);
1028
1029    // Add the alignment of the constant pool
1030    ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
1031
1032    // Add the constant pool size
1033    ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1034
1035    // Add the aligment of the jump table info
1036    ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
1037
1038    // Add the jump table size
1039    ActualSize += GetJumpTableSizeInBytes(MJTI);
1040
1041    // Add the alignment for the function
1042    ActualSize = RoundUpToAlign(ActualSize,
1043                                std::max(F.getFunction()->getAlignment(), 8U));
1044
1045    // Add the function size
1046    ActualSize += TII->GetFunctionSizeInBytes(F);
1047
1048    DEBUG(errs() << "JIT: ActualSize before globals " << ActualSize << "\n");
1049    // Add the size of the globals that will be allocated after this function.
1050    // These are all the ones referenced from this function that were not
1051    // previously allocated.
1052    ActualSize += GetSizeOfGlobalsInBytes(F);
1053    DEBUG(errs() << "JIT: ActualSize after globals " << ActualSize << "\n");
1054  } else if (SizeEstimate > 0) {
1055    // SizeEstimate will be non-zero on reallocation attempts.
1056    ActualSize = SizeEstimate;
1057  }
1058
1059  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
1060                                                         ActualSize);
1061  BufferEnd = BufferBegin+ActualSize;
1062  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
1063
1064  // Ensure the constant pool/jump table info is at least 4-byte aligned.
1065  emitAlignment(16);
1066
1067  emitConstantPool(F.getConstantPool());
1068  initJumpTableInfo(F.getJumpTableInfo());
1069
1070  // About to start emitting the machine code for the function.
1071  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
1072  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
1073  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
1074
1075  MBBLocations.clear();
1076
1077  EmissionDetails.MF = &F;
1078  EmissionDetails.LineStarts.clear();
1079}
1080
1081bool JITEmitter::finishFunction(MachineFunction &F) {
1082  if (CurBufferPtr == BufferEnd) {
1083    // We must call endFunctionBody before retrying, because
1084    // deallocateMemForFunction requires it.
1085    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1086    retryWithMoreMemory(F);
1087    return true;
1088  }
1089
1090  emitJumpTableInfo(F.getJumpTableInfo());
1091
1092  // FnStart is the start of the text, not the start of the constant pool and
1093  // other per-function data.
1094  uint8_t *FnStart =
1095    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
1096
1097  // FnEnd is the end of the function's machine code.
1098  uint8_t *FnEnd = CurBufferPtr;
1099
1100  if (!Relocations.empty()) {
1101    CurFn = F.getFunction();
1102    NumRelos += Relocations.size();
1103
1104    // Resolve the relocations to concrete pointers.
1105    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
1106      MachineRelocation &MR = Relocations[i];
1107      void *ResultPtr = 0;
1108      if (!MR.letTargetResolve()) {
1109        if (MR.isExternalSymbol()) {
1110          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
1111                                                        false);
1112          DEBUG(errs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
1113                       << ResultPtr << "]\n");
1114
1115          // If the target REALLY wants a stub for this function, emit it now.
1116          if (!MR.doesntNeedStub()) {
1117            if (!TheJIT->areDlsymStubsEnabled()) {
1118              ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1119            } else {
1120              void *&Stub = ExtFnStubs[MR.getExternalSymbol()];
1121              if (!Stub) {
1122                Stub = Resolver.getExternalFunctionStub((void *)&Stub);
1123                AddStubToCurrentFunction(Stub);
1124              }
1125              ResultPtr = Stub;
1126            }
1127          }
1128        } else if (MR.isGlobalValue()) {
1129          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1130                                         BufferBegin+MR.getMachineCodeOffset(),
1131                                         MR.doesntNeedStub());
1132        } else if (MR.isIndirectSymbol()) {
1133          ResultPtr = getPointerToGVIndirectSym(MR.getGlobalValue(),
1134                                          BufferBegin+MR.getMachineCodeOffset(),
1135                                          MR.doesntNeedStub());
1136        } else if (MR.isBasicBlock()) {
1137          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1138        } else if (MR.isConstantPoolIndex()) {
1139          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1140        } else {
1141          assert(MR.isJumpTableIndex());
1142          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1143        }
1144
1145        MR.setResultPointer(ResultPtr);
1146      }
1147
1148      // if we are managing the GOT and the relocation wants an index,
1149      // give it one
1150      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1151        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1152        MR.setGOTIndex(idx);
1153        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1154          DEBUG(errs() << "JIT: GOT was out of date for " << ResultPtr
1155                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1156                       << "\n");
1157          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1158        }
1159      }
1160    }
1161
1162    CurFn = 0;
1163    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1164                                  Relocations.size(), MemMgr->getGOTBase());
1165  }
1166
1167  // Update the GOT entry for F to point to the new code.
1168  if (MemMgr->isManagingGOT()) {
1169    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1170    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1171      DEBUG(errs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1172                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1173                   << "\n");
1174      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1175    }
1176  }
1177
1178  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1179  // global variables that were referenced in the relocations.
1180  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1181
1182  if (CurBufferPtr == BufferEnd) {
1183    retryWithMoreMemory(F);
1184    return true;
1185  } else {
1186    // Now that we've succeeded in emitting the function, reset the
1187    // SizeEstimate back down to zero.
1188    SizeEstimate = 0;
1189  }
1190
1191  BufferBegin = CurBufferPtr = 0;
1192  NumBytes += FnEnd-FnStart;
1193
1194  // Invalidate the icache if necessary.
1195  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1196
1197  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1198                                EmissionDetails);
1199
1200  DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1201        << "] Function: " << F.getFunction()->getName()
1202        << ": " << (FnEnd-FnStart) << " bytes of text, "
1203        << Relocations.size() << " relocations\n");
1204
1205  Relocations.clear();
1206  ConstPoolAddresses.clear();
1207
1208  // Mark code region readable and executable if it's not so already.
1209  MemMgr->setMemoryExecutable();
1210
1211  DEBUG(
1212    if (sys::hasDisassembler()) {
1213      errs() << "JIT: Disassembled code:\n";
1214      errs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1215                                       (uintptr_t)FnStart);
1216    } else {
1217      errs() << "JIT: Binary code:\n";
1218      uint8_t* q = FnStart;
1219      for (int i = 0; q < FnEnd; q += 4, ++i) {
1220        if (i == 4)
1221          i = 0;
1222        if (i == 0)
1223          errs() << "JIT: " << (long)(q - FnStart) << ": ";
1224        bool Done = false;
1225        for (int j = 3; j >= 0; --j) {
1226          if (q + j >= FnEnd)
1227            Done = true;
1228          else
1229            errs() << (unsigned short)q[j];
1230        }
1231        if (Done)
1232          break;
1233        errs() << ' ';
1234        if (i == 3)
1235          errs() << '\n';
1236      }
1237      errs()<< '\n';
1238    }
1239        );
1240
1241  if (DwarfExceptionHandling || JITEmitDebugInfo) {
1242    uintptr_t ActualSize = 0;
1243    SavedBufferBegin = BufferBegin;
1244    SavedBufferEnd = BufferEnd;
1245    SavedCurBufferPtr = CurBufferPtr;
1246
1247    if (MemMgr->NeedsExactSize()) {
1248      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1249    }
1250
1251    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1252                                                             ActualSize);
1253    BufferEnd = BufferBegin+ActualSize;
1254    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
1255    uint8_t *EhStart;
1256    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
1257                                                EhStart);
1258    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1259                              FrameRegister);
1260    uint8_t *EhEnd = CurBufferPtr;
1261    BufferBegin = SavedBufferBegin;
1262    BufferEnd = SavedBufferEnd;
1263    CurBufferPtr = SavedCurBufferPtr;
1264
1265    if (DwarfExceptionHandling) {
1266      TheJIT->RegisterTable(FrameRegister);
1267    }
1268
1269    if (JITEmitDebugInfo) {
1270      DebugInfo I;
1271      I.FnStart = FnStart;
1272      I.FnEnd = FnEnd;
1273      I.EhStart = EhStart;
1274      I.EhEnd = EhEnd;
1275      DR->RegisterFunction(F.getFunction(), I);
1276    }
1277  }
1278
1279  if (MMI)
1280    MMI->EndFunction();
1281
1282  return false;
1283}
1284
1285void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1286  DEBUG(errs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1287  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1288  ConstPoolAddresses.clear();
1289  ++NumRetries;
1290  deallocateMemForFunction(F.getFunction());
1291  // Try again with at least twice as much free space.
1292  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1293}
1294
1295/// deallocateMemForFunction - Deallocate all memory for the specified
1296/// function body.  Also drop any references the function has to stubs.
1297/// May be called while the Function is being destroyed inside ~Value().
1298void JITEmitter::deallocateMemForFunction(const Function *F) {
1299  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1300    Emitted = EmittedFunctions.find(F);
1301  if (Emitted != EmittedFunctions.end()) {
1302    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1303    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1304    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1305
1306    EmittedFunctions.erase(Emitted);
1307  }
1308
1309  // TODO: Do we need to unregister exception handling information from libgcc
1310  // here?
1311
1312  if (JITEmitDebugInfo) {
1313    DR->UnregisterFunction(F);
1314  }
1315
1316  // If the function did not reference any stubs, return.
1317  if (CurFnStubUses.find(F) == CurFnStubUses.end())
1318    return;
1319
1320  // For each referenced stub, erase the reference to this function, and then
1321  // erase the list of referenced stubs.
1322  SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
1323  for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
1324    void *Stub = StubList[i];
1325
1326    // If we already invalidated this stub for this function, continue.
1327    if (StubFnRefs.count(Stub) == 0)
1328      continue;
1329
1330    SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
1331    FnRefs.erase(F);
1332
1333    // If this function was the last reference to the stub, invalidate the stub
1334    // in the JITResolver.  Were there a memory manager deallocateStub routine,
1335    // we could call that at this point too.
1336    if (FnRefs.empty()) {
1337      DEBUG(errs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
1338      StubFnRefs.erase(Stub);
1339
1340      // Invalidate the stub.  If it is a GV stub, update the JIT's global
1341      // mapping for that GV to zero, otherwise, search the string map of
1342      // external function names to stubs and remove the entry for this stub.
1343      GlobalValue *GV = Resolver.invalidateStub(Stub);
1344      if (GV) {
1345        TheJIT->updateGlobalMapping(GV, 0);
1346      } else {
1347        for (StringMapIterator<void*> i = ExtFnStubs.begin(),
1348             e = ExtFnStubs.end(); i != e; ++i) {
1349          if (i->second == Stub) {
1350            ExtFnStubs.erase(i);
1351            break;
1352          }
1353        }
1354      }
1355    }
1356  }
1357  CurFnStubUses.erase(F);
1358}
1359
1360
1361void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1362  if (BufferBegin)
1363    return JITCodeEmitter::allocateSpace(Size, Alignment);
1364
1365  // create a new memory block if there is no active one.
1366  // care must be taken so that BufferBegin is invalidated when a
1367  // block is trimmed
1368  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1369  BufferEnd = BufferBegin+Size;
1370  return CurBufferPtr;
1371}
1372
1373void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1374  // Delegate this call through the memory manager.
1375  return MemMgr->allocateGlobal(Size, Alignment);
1376}
1377
1378void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1379  if (TheJIT->getJITInfo().hasCustomConstantPool())
1380    return;
1381
1382  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1383  if (Constants.empty()) return;
1384
1385  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1386  unsigned Align = MCP->getConstantPoolAlignment();
1387  ConstantPoolBase = allocateSpace(Size, Align);
1388  ConstantPool = MCP;
1389
1390  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1391
1392  DEBUG(errs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1393               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1394
1395  // Initialize the memory for all of the constant pool entries.
1396  unsigned Offset = 0;
1397  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1398    MachineConstantPoolEntry CPE = Constants[i];
1399    unsigned AlignMask = CPE.getAlignment() - 1;
1400    Offset = (Offset + AlignMask) & ~AlignMask;
1401
1402    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1403    ConstPoolAddresses.push_back(CAddr);
1404    if (CPE.isMachineConstantPoolEntry()) {
1405      // FIXME: add support to lower machine constant pool values into bytes!
1406      llvm_report_error("Initialize memory with machine specific constant pool"
1407                        "entry has not been implemented!");
1408    }
1409    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1410    DEBUG(errs() << "JIT:   CP" << i << " at [0x";
1411          errs().write_hex(CAddr) << "]\n");
1412
1413    const Type *Ty = CPE.Val.ConstVal->getType();
1414    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1415  }
1416}
1417
1418void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1419  if (TheJIT->getJITInfo().hasCustomJumpTables())
1420    return;
1421
1422  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1423  if (JT.empty()) return;
1424
1425  unsigned NumEntries = 0;
1426  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1427    NumEntries += JT[i].MBBs.size();
1428
1429  unsigned EntrySize = MJTI->getEntrySize();
1430
1431  // Just allocate space for all the jump tables now.  We will fix up the actual
1432  // MBB entries in the tables after we emit the code for each block, since then
1433  // we will know the final locations of the MBBs in memory.
1434  JumpTable = MJTI;
1435  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
1436}
1437
1438void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1439  if (TheJIT->getJITInfo().hasCustomJumpTables())
1440    return;
1441
1442  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1443  if (JT.empty() || JumpTableBase == 0) return;
1444
1445  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
1446    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
1447    // For each jump table, place the offset from the beginning of the table
1448    // to the target address.
1449    int *SlotPtr = (int*)JumpTableBase;
1450
1451    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1452      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1453      // Store the offset of the basic block for this jump table slot in the
1454      // memory we allocated for the jump table in 'initJumpTableInfo'
1455      uintptr_t Base = (uintptr_t)SlotPtr;
1456      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1457        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1458        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1459      }
1460    }
1461  } else {
1462    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
1463
1464    // For each jump table, map each target in the jump table to the address of
1465    // an emitted MachineBasicBlock.
1466    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1467
1468    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1469      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1470      // Store the address of the basic block for this jump table slot in the
1471      // memory we allocated for the jump table in 'initJumpTableInfo'
1472      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1473        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1474    }
1475  }
1476}
1477
1478void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize,
1479                             unsigned Alignment) {
1480  SavedBufferBegin = BufferBegin;
1481  SavedBufferEnd = BufferEnd;
1482  SavedCurBufferPtr = CurBufferPtr;
1483
1484  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1485  BufferEnd = BufferBegin+StubSize+1;
1486}
1487
1488void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer,
1489                             unsigned StubSize) {
1490  SavedBufferBegin = BufferBegin;
1491  SavedBufferEnd = BufferEnd;
1492  SavedCurBufferPtr = CurBufferPtr;
1493
1494  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1495  BufferEnd = BufferBegin+StubSize+1;
1496}
1497
1498void *JITEmitter::finishGVStub(const GlobalValue* GV) {
1499  NumBytes += getCurrentPCOffset();
1500  std::swap(SavedBufferBegin, BufferBegin);
1501  BufferEnd = SavedBufferEnd;
1502  CurBufferPtr = SavedCurBufferPtr;
1503  return SavedBufferBegin;
1504}
1505
1506// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1507// in the constant pool that was last emitted with the 'emitConstantPool'
1508// method.
1509//
1510uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1511  assert(ConstantNum < ConstantPool->getConstants().size() &&
1512         "Invalid ConstantPoolIndex!");
1513  return ConstPoolAddresses[ConstantNum];
1514}
1515
1516// getJumpTableEntryAddress - Return the address of the JumpTable with index
1517// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1518//
1519uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1520  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1521  assert(Index < JT.size() && "Invalid jump table index!");
1522
1523  unsigned Offset = 0;
1524  unsigned EntrySize = JumpTable->getEntrySize();
1525
1526  for (unsigned i = 0; i < Index; ++i)
1527    Offset += JT[i].MBBs.size();
1528
1529   Offset *= EntrySize;
1530
1531  return (uintptr_t)((char *)JumpTableBase + Offset);
1532}
1533
1534void JITEmitter::EmittedFunctionConfig::onDelete(
1535  JITEmitter *Emitter, const Function *F) {
1536  Emitter->deallocateMemForFunction(F);
1537}
1538void JITEmitter::EmittedFunctionConfig::onRAUW(
1539  JITEmitter *, const Function*, const Function*) {
1540  llvm_unreachable("The JIT doesn't know how to handle a"
1541                   " RAUW on a value it has emitted.");
1542}
1543
1544
1545//===----------------------------------------------------------------------===//
1546//  Public interface to this file
1547//===----------------------------------------------------------------------===//
1548
1549JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1550                                   TargetMachine &tm) {
1551  return new JITEmitter(jit, JMM, tm);
1552}
1553
1554// getPointerToNamedFunction - This function is used as a global wrapper to
1555// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1556// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1557// need to resolve function(s) that are being mis-codegenerated, so we need to
1558// resolve their addresses at runtime, and this is the way to do it.
1559extern "C" {
1560  void *getPointerToNamedFunction(const char *Name) {
1561    if (Function *F = TheJIT->FindFunctionNamed(Name))
1562      return TheJIT->getPointerToFunction(F);
1563    return TheJIT->getPointerToNamedFunction(Name);
1564  }
1565}
1566
1567// getPointerToFunctionOrStub - If the specified function has been
1568// code-gen'd, return a pointer to the function.  If not, compile it, or use
1569// a stub to implement lazy compilation if available.
1570//
1571void *JIT::getPointerToFunctionOrStub(Function *F) {
1572  // If we have already code generated the function, just return the address.
1573  if (void *Addr = getPointerToGlobalIfAvailable(F))
1574    return Addr;
1575
1576  // Get a stub if the target supports it.
1577  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1578  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1579  return JE->getJITResolver().getFunctionStub(F);
1580}
1581
1582void JIT::updateFunctionStub(Function *F) {
1583  // Get the empty stub we generated earlier.
1584  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1585  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1586  void *Stub = JE->getJITResolver().getFunctionStub(F);
1587
1588  // Tell the target jit info to rewrite the stub at the specified address,
1589  // rather than creating a new one.
1590  void *Addr = getPointerToGlobalIfAvailable(F);
1591  getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter());
1592}
1593
1594/// updateDlsymStubTable - Emit the data necessary to relocate the stubs
1595/// that were emitted during code generation.
1596///
1597void JIT::updateDlsymStubTable() {
1598  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1599  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1600
1601  SmallVector<GlobalValue*, 8> GVs;
1602  SmallVector<void*, 8> Ptrs;
1603  const StringMap<void *> &ExtFns = JE->getExternalFnStubs();
1604
1605  JE->getJITResolver().getRelocatableGVs(GVs, Ptrs);
1606
1607  unsigned nStubs = GVs.size() + ExtFns.size();
1608
1609  // If there are no relocatable stubs, return.
1610  if (nStubs == 0)
1611    return;
1612
1613  // If there are no new relocatable stubs, return.
1614  void *CurTable = JE->getMemMgr()->getDlsymTable();
1615  if (CurTable && (*(unsigned *)CurTable == nStubs))
1616    return;
1617
1618  // Calculate the size of the stub info
1619  unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs;
1620
1621  SmallVector<unsigned, 8> Offsets;
1622  for (unsigned i = 0; i != GVs.size(); ++i) {
1623    Offsets.push_back(offset);
1624    offset += GVs[i]->getName().size() + 1;
1625  }
1626  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1627       i != e; ++i) {
1628    Offsets.push_back(offset);
1629    offset += strlen(i->first()) + 1;
1630  }
1631
1632  // Allocate space for the new "stub", which contains the dlsym table.
1633  JE->startGVStub(0, offset, 4);
1634
1635  // Emit the number of records
1636  JE->emitInt32(nStubs);
1637
1638  // Emit the string offsets
1639  for (unsigned i = 0; i != nStubs; ++i)
1640    JE->emitInt32(Offsets[i]);
1641
1642  // Emit the pointers.  Verify that they are at least 2-byte aligned, and set
1643  // the low bit to 0 == GV, 1 == Function, so that the client code doing the
1644  // relocation can write the relocated pointer at the appropriate place in
1645  // the stub.
1646  for (unsigned i = 0; i != GVs.size(); ++i) {
1647    intptr_t Ptr = (intptr_t)Ptrs[i];
1648    assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!");
1649
1650    if (isa<Function>(GVs[i]))
1651      Ptr |= (intptr_t)1;
1652
1653    if (sizeof(Ptr) == 8)
1654      JE->emitInt64(Ptr);
1655    else
1656      JE->emitInt32(Ptr);
1657  }
1658  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1659       i != e; ++i) {
1660    intptr_t Ptr = (intptr_t)i->second | 1;
1661
1662    if (sizeof(Ptr) == 8)
1663      JE->emitInt64(Ptr);
1664    else
1665      JE->emitInt32(Ptr);
1666  }
1667
1668  // Emit the strings.
1669  for (unsigned i = 0; i != GVs.size(); ++i)
1670    JE->emitString(GVs[i]->getName());
1671  for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1672       i != e; ++i)
1673    JE->emitString(i->first());
1674
1675  // Tell the JIT memory manager where it is.  The JIT Memory Manager will
1676  // deallocate space for the old one, if one existed.
1677  JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0));
1678}
1679
1680/// freeMachineCodeForFunction - release machine code memory for given Function.
1681///
1682void JIT::freeMachineCodeForFunction(Function *F) {
1683  // Delete translation for this from the ExecutionEngine, so it will get
1684  // retranslated next time it is used.
1685  updateGlobalMapping(F, 0);
1686
1687  // Free the actual memory for the function body and related stuff.
1688  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1689  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1690}
1691