JITEmitter.cpp revision 950a4c40b823cd4f09dc71be635229246dfd6cac
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDwarfEmitter.h"
18#include "llvm/Constant.h"
19#include "llvm/Module.h"
20#include "llvm/Type.h"
21#include "llvm/CodeGen/MachineCodeEmitter.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRelocation.h"
27#include "llvm/ExecutionEngine/JITMemoryManager.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetJITInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/MutexGuard.h"
34#include "llvm/System/Disassembler.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumBytes, "Number of bytes of machine code compiled");
40STATISTIC(NumRelos, "Number of relocations applied");
41static JIT *TheJIT = 0;
42
43
44//===----------------------------------------------------------------------===//
45// JIT lazy compilation code.
46//
47namespace {
48  class JITResolverState {
49  private:
50    /// FunctionToStubMap - Keep track of the stub created for a particular
51    /// function so that we can reuse them if necessary.
52    std::map<Function*, void*> FunctionToStubMap;
53
54    /// StubToFunctionMap - Keep track of the function that each stub
55    /// corresponds to.
56    std::map<void*, Function*> StubToFunctionMap;
57
58    /// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a
59    /// particular GlobalVariable so that we can reuse them if necessary.
60    std::map<GlobalValue*, void*> GlobalToLazyPtrMap;
61
62  public:
63    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
64      assert(locked.holds(TheJIT->lock));
65      return FunctionToStubMap;
66    }
67
68    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
69      assert(locked.holds(TheJIT->lock));
70      return StubToFunctionMap;
71    }
72
73    std::map<GlobalValue*, void*>&
74    getGlobalToLazyPtrMap(const MutexGuard& locked) {
75      assert(locked.holds(TheJIT->lock));
76      return GlobalToLazyPtrMap;
77    }
78  };
79
80  /// JITResolver - Keep track of, and resolve, call sites for functions that
81  /// have not yet been compiled.
82  class JITResolver {
83    /// LazyResolverFn - The target lazy resolver function that we actually
84    /// rewrite instructions to use.
85    TargetJITInfo::LazyResolverFn LazyResolverFn;
86
87    JITResolverState state;
88
89    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
90    /// external functions.
91    std::map<void*, void*> ExternalFnToStubMap;
92
93    //map addresses to indexes in the GOT
94    std::map<void*, unsigned> revGOTMap;
95    unsigned nextGOTIndex;
96
97    static JITResolver *TheJITResolver;
98  public:
99    explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
100      TheJIT = &jit;
101
102      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
103      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
104      TheJITResolver = this;
105    }
106
107    ~JITResolver() {
108      TheJITResolver = 0;
109    }
110
111    /// getFunctionStub - This returns a pointer to a function stub, creating
112    /// one on demand as needed.
113    void *getFunctionStub(Function *F);
114
115    /// getExternalFunctionStub - Return a stub for the function at the
116    /// specified address, created lazily on demand.
117    void *getExternalFunctionStub(void *FnAddr);
118
119    /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
120    /// GV address.
121    void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress);
122
123    /// AddCallbackAtLocation - If the target is capable of rewriting an
124    /// instruction without the use of a stub, record the location of the use so
125    /// we know which function is being used at the location.
126    void *AddCallbackAtLocation(Function *F, void *Location) {
127      MutexGuard locked(TheJIT->lock);
128      /// Get the target-specific JIT resolver function.
129      state.getStubToFunctionMap(locked)[Location] = F;
130      return (void*)(intptr_t)LazyResolverFn;
131    }
132
133    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
134    /// an address.  This function only manages slots, it does not manage the
135    /// contents of the slots or the memory associated with the GOT.
136    unsigned getGOTIndexForAddr(void *addr);
137
138    /// JITCompilerFn - This function is called to resolve a stub to a compiled
139    /// address.  If the LLVM Function corresponding to the stub has not yet
140    /// been compiled, this function compiles it first.
141    static void *JITCompilerFn(void *Stub);
142  };
143}
144
145JITResolver *JITResolver::TheJITResolver = 0;
146
147#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
148    defined(__APPLE__)
149extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
150#endif
151
152/// synchronizeICache - On some targets, the JIT emitted code must be
153/// explicitly refetched to ensure correct execution.
154static void synchronizeICache(const void *Addr, size_t len) {
155#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
156    defined(__APPLE__)
157  sys_icache_invalidate(Addr, len);
158#endif
159}
160
161/// getFunctionStub - This returns a pointer to a function stub, creating
162/// one on demand as needed.
163void *JITResolver::getFunctionStub(Function *F) {
164  MutexGuard locked(TheJIT->lock);
165
166  // If we already have a stub for this function, recycle it.
167  void *&Stub = state.getFunctionToStubMap(locked)[F];
168  if (Stub) return Stub;
169
170  // Call the lazy resolver function unless we already KNOW it is an external
171  // function, in which case we just skip the lazy resolution step.
172  void *Actual = (void*)(intptr_t)LazyResolverFn;
173  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
174    Actual = TheJIT->getPointerToFunction(F);
175
176  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
177  // resolver function.
178  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual,
179                                               *TheJIT->getCodeEmitter());
180
181  if (Actual != (void*)(intptr_t)LazyResolverFn) {
182    // If we are getting the stub for an external function, we really want the
183    // address of the stub in the GlobalAddressMap for the JIT, not the address
184    // of the external function.
185    TheJIT->updateGlobalMapping(F, Stub);
186  }
187
188  DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
189       << F->getName() << "'\n";
190
191  // Finally, keep track of the stub-to-Function mapping so that the
192  // JITCompilerFn knows which function to compile!
193  state.getStubToFunctionMap(locked)[Stub] = F;
194  return Stub;
195}
196
197/// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
198/// GV address.
199void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) {
200  MutexGuard locked(TheJIT->lock);
201
202  // If we already have a stub for this global variable, recycle it.
203  void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV];
204  if (LazyPtr) return LazyPtr;
205
206  // Otherwise, codegen a new lazy pointer.
207  LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GVAddress,
208                                                    *TheJIT->getCodeEmitter());
209
210  DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '"
211       << GV->getName() << "'\n";
212
213  return LazyPtr;
214}
215
216/// getExternalFunctionStub - Return a stub for the function at the
217/// specified address, created lazily on demand.
218void *JITResolver::getExternalFunctionStub(void *FnAddr) {
219  // If we already have a stub for this function, recycle it.
220  void *&Stub = ExternalFnToStubMap[FnAddr];
221  if (Stub) return Stub;
222
223  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr,
224                                               *TheJIT->getCodeEmitter());
225
226  DOUT << "JIT: Stub emitted at [" << Stub
227       << "] for external function at '" << FnAddr << "'\n";
228  return Stub;
229}
230
231unsigned JITResolver::getGOTIndexForAddr(void* addr) {
232  unsigned idx = revGOTMap[addr];
233  if (!idx) {
234    idx = ++nextGOTIndex;
235    revGOTMap[addr] = idx;
236    DOUT << "Adding GOT entry " << idx
237         << " for addr " << addr << "\n";
238  }
239  return idx;
240}
241
242/// JITCompilerFn - This function is called when a lazy compilation stub has
243/// been entered.  It looks up which function this stub corresponds to, compiles
244/// it if necessary, then returns the resultant function pointer.
245void *JITResolver::JITCompilerFn(void *Stub) {
246  JITResolver &JR = *TheJITResolver;
247
248  MutexGuard locked(TheJIT->lock);
249
250  // The address given to us for the stub may not be exactly right, it might be
251  // a little bit after the stub.  As such, use upper_bound to find it.
252  std::map<void*, Function*>::iterator I =
253    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
254  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
255         "This is not a known stub!");
256  Function *F = (--I)->second;
257
258  // If we have already code generated the function, just return the address.
259  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
260
261  if (!Result) {
262    // Otherwise we don't have it, do lazy compilation now.
263
264    // If lazy compilation is disabled, emit a useful error message and abort.
265    if (TheJIT->isLazyCompilationDisabled()) {
266      cerr << "LLVM JIT requested to do lazy compilation of function '"
267      << F->getName() << "' when lazy compiles are disabled!\n";
268      abort();
269    }
270
271    // We might like to remove the stub from the StubToFunction map.
272    // We can't do that! Multiple threads could be stuck, waiting to acquire the
273    // lock above. As soon as the 1st function finishes compiling the function,
274    // the next one will be released, and needs to be able to find the function
275    // it needs to call.
276    //JR.state.getStubToFunctionMap(locked).erase(I);
277
278    DOUT << "JIT: Lazily resolving function '" << F->getName()
279         << "' In stub ptr = " << Stub << " actual ptr = "
280         << I->first << "\n";
281
282    Result = TheJIT->getPointerToFunction(F);
283  }
284
285  // We don't need to reuse this stub in the future, as F is now compiled.
286  JR.state.getFunctionToStubMap(locked).erase(F);
287
288  // FIXME: We could rewrite all references to this stub if we knew them.
289
290  // What we will do is set the compiled function address to map to the
291  // same GOT entry as the stub so that later clients may update the GOT
292  // if they see it still using the stub address.
293  // Note: this is done so the Resolver doesn't have to manage GOT memory
294  // Do this without allocating map space if the target isn't using a GOT
295  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
296    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
297
298  return Result;
299}
300
301
302//===----------------------------------------------------------------------===//
303// JITEmitter code.
304//
305namespace {
306  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
307  /// used to output functions to memory for execution.
308  class JITEmitter : public MachineCodeEmitter {
309    JITMemoryManager *MemMgr;
310
311    // When outputting a function stub in the context of some other function, we
312    // save BufferBegin/BufferEnd/CurBufferPtr here.
313    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
314
315    /// Relocations - These are the relocations that the function needs, as
316    /// emitted.
317    std::vector<MachineRelocation> Relocations;
318
319    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
320    /// It is filled in by the StartMachineBasicBlock callback and queried by
321    /// the getMachineBasicBlockAddress callback.
322    std::vector<intptr_t> MBBLocations;
323
324    /// ConstantPool - The constant pool for the current function.
325    ///
326    MachineConstantPool *ConstantPool;
327
328    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
329    ///
330    void *ConstantPoolBase;
331
332    /// JumpTable - The jump tables for the current function.
333    ///
334    MachineJumpTableInfo *JumpTable;
335
336    /// JumpTableBase - A pointer to the first entry in the jump table.
337    ///
338    void *JumpTableBase;
339
340    /// Resolver - This contains info about the currently resolved functions.
341    JITResolver Resolver;
342
343    /// DE - The dwarf emitter for the jit.
344    JITDwarfEmitter *DE;
345
346    /// LabelLocations - This vector is a mapping from Label ID's to their
347    /// address.
348    std::vector<intptr_t> LabelLocations;
349
350    /// MMI - Machine module info for exception informations
351    MachineModuleInfo* MMI;
352
353  public:
354    JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
355      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
356      if (jit.getJITInfo().needsGOT()) {
357        MemMgr->AllocateGOT();
358        DOUT << "JIT is managing a GOT\n";
359      }
360
361      if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
362    }
363    ~JITEmitter() {
364      delete MemMgr;
365      if (ExceptionHandling) delete DE;
366    }
367
368    JITResolver &getJITResolver() { return Resolver; }
369
370    virtual void startFunction(MachineFunction &F);
371    virtual bool finishFunction(MachineFunction &F);
372
373    void emitConstantPool(MachineConstantPool *MCP);
374    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
375    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
376
377    virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1);
378    virtual void* finishFunctionStub(const Function *F);
379
380    virtual void addRelocation(const MachineRelocation &MR) {
381      Relocations.push_back(MR);
382    }
383
384    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
385      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
386        MBBLocations.resize((MBB->getNumber()+1)*2);
387      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
388    }
389
390    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
391    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
392
393    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
394      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
395             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
396      return MBBLocations[MBB->getNumber()];
397    }
398
399    /// deallocateMemForFunction - Deallocate all memory for the specified
400    /// function body.
401    void deallocateMemForFunction(Function *F) {
402      MemMgr->deallocateMemForFunction(F);
403    }
404
405    virtual void emitLabel(uint64_t LabelID) {
406      if (LabelLocations.size() <= LabelID)
407        LabelLocations.resize((LabelID+1)*2);
408      LabelLocations[LabelID] = getCurrentPCValue();
409    }
410
411    virtual intptr_t getLabelAddress(uint64_t LabelID) const {
412      assert(LabelLocations.size() > (unsigned)LabelID &&
413             LabelLocations[LabelID] && "Label not emitted!");
414      return LabelLocations[LabelID];
415    }
416
417    virtual void setModuleInfo(MachineModuleInfo* Info) {
418      MMI = Info;
419      if (ExceptionHandling) DE->setModuleInfo(Info);
420    }
421
422  private:
423    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
424    void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
425                                bool NoNeedStub);
426  };
427}
428
429void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
430                                     bool DoesntNeedStub) {
431  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
432    /// FIXME: If we straightened things out, this could actually emit the
433    /// global immediately instead of queuing it for codegen later!
434    return TheJIT->getOrEmitGlobalVariable(GV);
435  }
436
437  // If we have already compiled the function, return a pointer to its body.
438  Function *F = cast<Function>(V);
439  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
440  if (ResultPtr) return ResultPtr;
441
442  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
443    // If this is an external function pointer, we can force the JIT to
444    // 'compile' it, which really just adds it to the map.
445    if (DoesntNeedStub)
446      return TheJIT->getPointerToFunction(F);
447
448    return Resolver.getFunctionStub(F);
449  }
450
451  // Okay, the function has not been compiled yet, if the target callback
452  // mechanism is capable of rewriting the instruction directly, prefer to do
453  // that instead of emitting a stub.
454  if (DoesntNeedStub)
455    return Resolver.AddCallbackAtLocation(F, Reference);
456
457  // Otherwise, we have to emit a lazy resolving stub.
458  return Resolver.getFunctionStub(F);
459}
460
461void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
462                                        bool DoesntNeedStub) {
463  // Make sure GV is emitted first.
464  // FIXME: For now, if the GV is an external function we force the JIT to
465  // compile it so the lazy pointer will contain the fully resolved address.
466  void *GVAddress = getPointerToGlobal(V, Reference, true);
467  return Resolver.getGlobalValueLazyPtr(V, GVAddress);
468}
469
470
471void JITEmitter::startFunction(MachineFunction &F) {
472  uintptr_t ActualSize;
473  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
474                                                         ActualSize);
475  BufferEnd = BufferBegin+ActualSize;
476
477  // Ensure the constant pool/jump table info is at least 4-byte aligned.
478  emitAlignment(16);
479
480  emitConstantPool(F.getConstantPool());
481  initJumpTableInfo(F.getJumpTableInfo());
482
483  // About to start emitting the machine code for the function.
484  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
485  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
486
487  MBBLocations.clear();
488}
489
490bool JITEmitter::finishFunction(MachineFunction &F) {
491  if (CurBufferPtr == BufferEnd) {
492    // FIXME: Allocate more space, then try again.
493    cerr << "JIT: Ran out of space for generated machine code!\n";
494    abort();
495  }
496
497  emitJumpTableInfo(F.getJumpTableInfo());
498
499  // FnStart is the start of the text, not the start of the constant pool and
500  // other per-function data.
501  unsigned char *FnStart =
502    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
503  unsigned char *FnEnd   = CurBufferPtr;
504
505  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
506  NumBytes += FnEnd-FnStart;
507
508  if (!Relocations.empty()) {
509    NumRelos += Relocations.size();
510
511    // Resolve the relocations to concrete pointers.
512    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
513      MachineRelocation &MR = Relocations[i];
514      void *ResultPtr;
515      if (MR.isString()) {
516        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
517
518        // If the target REALLY wants a stub for this function, emit it now.
519        if (!MR.doesntNeedStub())
520          ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
521      } else if (MR.isGlobalValue()) {
522        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
523                                       BufferBegin+MR.getMachineCodeOffset(),
524                                       MR.doesntNeedStub());
525      } else if (MR.isGlobalValueLazyPtr()) {
526        ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(),
527                                          BufferBegin+MR.getMachineCodeOffset(),
528                                          MR.doesntNeedStub());
529      } else if (MR.isBasicBlock()) {
530        ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
531      } else if (MR.isConstantPoolIndex()) {
532        ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
533      } else {
534        assert(MR.isJumpTableIndex());
535        ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
536      }
537
538      MR.setResultPointer(ResultPtr);
539
540      // if we are managing the GOT and the relocation wants an index,
541      // give it one
542      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
543        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
544        MR.setGOTIndex(idx);
545        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
546          DOUT << "GOT was out of date for " << ResultPtr
547               << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
548               << "\n";
549          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
550        }
551      }
552    }
553
554    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
555                                  Relocations.size(), MemMgr->getGOTBase());
556  }
557
558  // Update the GOT entry for F to point to the new code.
559  if (MemMgr->isManagingGOT()) {
560    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
561    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
562      DOUT << "GOT was out of date for " << (void*)BufferBegin
563           << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
564      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
565    }
566  }
567
568  // Invalidate the icache if necessary.
569  synchronizeICache(FnStart, FnEnd-FnStart);
570
571  DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
572       << "] Function: " << F.getFunction()->getName()
573       << ": " << (FnEnd-FnStart) << " bytes of text, "
574       << Relocations.size() << " relocations\n";
575  Relocations.clear();
576
577#ifndef NDEBUG
578  if (sys::hasDisassembler())
579    DOUT << "Disassembled code:\n"
580         << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
581#endif
582  if (ExceptionHandling) {
583    uintptr_t ActualSize;
584    SavedBufferBegin = BufferBegin;
585    SavedBufferEnd = BufferEnd;
586    SavedCurBufferPtr = CurBufferPtr;
587
588    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
589                                                             ActualSize);
590    BufferEnd = BufferBegin+ActualSize;
591    unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
592    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
593                              FrameRegister);
594    BufferBegin = SavedBufferBegin;
595    BufferEnd = SavedBufferEnd;
596    CurBufferPtr = SavedCurBufferPtr;
597
598    TheJIT->RegisterTable(FrameRegister);
599  }
600  MMI->EndFunction();
601
602  return false;
603}
604
605void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
606  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
607  if (Constants.empty()) return;
608
609  MachineConstantPoolEntry CPE = Constants.back();
610  unsigned Size = CPE.Offset;
611  const Type *Ty = CPE.isMachineConstantPoolEntry()
612    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
613  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
614
615  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
616  ConstantPool = MCP;
617
618  if (ConstantPoolBase == 0) return;  // Buffer overflow.
619
620  // Initialize the memory for all of the constant pool entries.
621  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
622    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
623    if (Constants[i].isMachineConstantPoolEntry()) {
624      // FIXME: add support to lower machine constant pool values into bytes!
625      cerr << "Initialize memory with machine specific constant pool entry"
626           << " has not been implemented!\n";
627      abort();
628    }
629    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
630  }
631}
632
633void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
634  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
635  if (JT.empty()) return;
636
637  unsigned NumEntries = 0;
638  for (unsigned i = 0, e = JT.size(); i != e; ++i)
639    NumEntries += JT[i].MBBs.size();
640
641  unsigned EntrySize = MJTI->getEntrySize();
642
643  // Just allocate space for all the jump tables now.  We will fix up the actual
644  // MBB entries in the tables after we emit the code for each block, since then
645  // we will know the final locations of the MBBs in memory.
646  JumpTable = MJTI;
647  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
648}
649
650void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
651  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
652  if (JT.empty() || JumpTableBase == 0) return;
653
654  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
655    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
656    // For each jump table, place the offset from the beginning of the table
657    // to the target address.
658    int *SlotPtr = (int*)JumpTableBase;
659
660    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
661      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
662      // Store the offset of the basic block for this jump table slot in the
663      // memory we allocated for the jump table in 'initJumpTableInfo'
664      intptr_t Base = (intptr_t)SlotPtr;
665      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
666        intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
667        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
668      }
669    }
670  } else {
671    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
672
673    // For each jump table, map each target in the jump table to the address of
674    // an emitted MachineBasicBlock.
675    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
676
677    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
678      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
679      // Store the address of the basic block for this jump table slot in the
680      // memory we allocated for the jump table in 'initJumpTableInfo'
681      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
682        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
683    }
684  }
685}
686
687void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) {
688  SavedBufferBegin = BufferBegin;
689  SavedBufferEnd = BufferEnd;
690  SavedCurBufferPtr = CurBufferPtr;
691
692  BufferBegin = CurBufferPtr = MemMgr->allocateStub(StubSize, Alignment);
693  BufferEnd = BufferBegin+StubSize+1;
694}
695
696void *JITEmitter::finishFunctionStub(const Function *F) {
697  NumBytes += getCurrentPCOffset();
698  std::swap(SavedBufferBegin, BufferBegin);
699  BufferEnd = SavedBufferEnd;
700  CurBufferPtr = SavedCurBufferPtr;
701  return SavedBufferBegin;
702}
703
704// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
705// in the constant pool that was last emitted with the 'emitConstantPool'
706// method.
707//
708intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
709  assert(ConstantNum < ConstantPool->getConstants().size() &&
710         "Invalid ConstantPoolIndex!");
711  return (intptr_t)ConstantPoolBase +
712         ConstantPool->getConstants()[ConstantNum].Offset;
713}
714
715// getJumpTableEntryAddress - Return the address of the JumpTable with index
716// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
717//
718intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
719  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
720  assert(Index < JT.size() && "Invalid jump table index!");
721
722  unsigned Offset = 0;
723  unsigned EntrySize = JumpTable->getEntrySize();
724
725  for (unsigned i = 0; i < Index; ++i)
726    Offset += JT[i].MBBs.size();
727
728   Offset *= EntrySize;
729
730  return (intptr_t)((char *)JumpTableBase + Offset);
731}
732
733//===----------------------------------------------------------------------===//
734//  Public interface to this file
735//===----------------------------------------------------------------------===//
736
737MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
738  return new JITEmitter(jit, JMM);
739}
740
741// getPointerToNamedFunction - This function is used as a global wrapper to
742// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
743// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
744// need to resolve function(s) that are being mis-codegenerated, so we need to
745// resolve their addresses at runtime, and this is the way to do it.
746extern "C" {
747  void *getPointerToNamedFunction(const char *Name) {
748    if (Function *F = TheJIT->FindFunctionNamed(Name))
749      return TheJIT->getPointerToFunction(F);
750    return TheJIT->getPointerToNamedFunction(Name);
751  }
752}
753
754// getPointerToFunctionOrStub - If the specified function has been
755// code-gen'd, return a pointer to the function.  If not, compile it, or use
756// a stub to implement lazy compilation if available.
757//
758void *JIT::getPointerToFunctionOrStub(Function *F) {
759  // If we have already code generated the function, just return the address.
760  if (void *Addr = getPointerToGlobalIfAvailable(F))
761    return Addr;
762
763  // Get a stub if the target supports it.
764  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
765  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
766  return JE->getJITResolver().getFunctionStub(F);
767}
768
769/// freeMachineCodeForFunction - release machine code memory for given Function.
770///
771void JIT::freeMachineCodeForFunction(Function *F) {
772  // Delete translation for this from the ExecutionEngine, so it will get
773  // retranslated next time it is used.
774  updateGlobalMapping(F, 0);
775
776  // Free the actual memory for the function body and related stuff.
777  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
778  static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
779}
780
781