JITEmitter.cpp revision be8c03fc66b75fa775e1f47d62a1b0d803fced1c
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "llvm/Constant.h"
18#include "llvm/Module.h"
19#include "llvm/Type.h"
20#include "llvm/CodeGen/MachineCodeEmitter.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineRelocation.h"
25#include "llvm/ExecutionEngine/JITMemoryManager.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetJITInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MutexGuard.h"
31#include "llvm/System/Disassembler.h"
32#include "llvm/ADT/Statistic.h"
33#include <algorithm>
34using namespace llvm;
35
36STATISTIC(NumBytes, "Number of bytes of machine code compiled");
37STATISTIC(NumRelos, "Number of relocations applied");
38static JIT *TheJIT = 0;
39
40
41//===----------------------------------------------------------------------===//
42// JIT lazy compilation code.
43//
44namespace {
45  class JITResolverState {
46  private:
47    /// FunctionToStubMap - Keep track of the stub created for a particular
48    /// function so that we can reuse them if necessary.
49    std::map<Function*, void*> FunctionToStubMap;
50
51    /// StubToFunctionMap - Keep track of the function that each stub
52    /// corresponds to.
53    std::map<void*, Function*> StubToFunctionMap;
54
55    /// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a
56    /// particular GlobalVariable so that we can reuse them if necessary.
57    std::map<GlobalValue*, void*> GlobalToLazyPtrMap;
58
59  public:
60    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
61      assert(locked.holds(TheJIT->lock));
62      return FunctionToStubMap;
63    }
64
65    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
66      assert(locked.holds(TheJIT->lock));
67      return StubToFunctionMap;
68    }
69
70    std::map<GlobalValue*, void*>&
71    getGlobalToLazyPtrMap(const MutexGuard& locked) {
72      assert(locked.holds(TheJIT->lock));
73      return GlobalToLazyPtrMap;
74    }
75  };
76
77  /// JITResolver - Keep track of, and resolve, call sites for functions that
78  /// have not yet been compiled.
79  class JITResolver {
80    /// LazyResolverFn - The target lazy resolver function that we actually
81    /// rewrite instructions to use.
82    TargetJITInfo::LazyResolverFn LazyResolverFn;
83
84    JITResolverState state;
85
86    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
87    /// external functions.
88    std::map<void*, void*> ExternalFnToStubMap;
89
90    //map addresses to indexes in the GOT
91    std::map<void*, unsigned> revGOTMap;
92    unsigned nextGOTIndex;
93
94    static JITResolver *TheJITResolver;
95  public:
96    JITResolver(JIT &jit) : nextGOTIndex(0) {
97      TheJIT = &jit;
98
99      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
100      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
101      TheJITResolver = this;
102    }
103
104    ~JITResolver() {
105      TheJITResolver = 0;
106    }
107
108    /// getFunctionStub - This returns a pointer to a function stub, creating
109    /// one on demand as needed.
110    void *getFunctionStub(Function *F);
111
112    /// getExternalFunctionStub - Return a stub for the function at the
113    /// specified address, created lazily on demand.
114    void *getExternalFunctionStub(void *FnAddr);
115
116    /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
117    /// GV address.
118    void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress);
119
120    /// AddCallbackAtLocation - If the target is capable of rewriting an
121    /// instruction without the use of a stub, record the location of the use so
122    /// we know which function is being used at the location.
123    void *AddCallbackAtLocation(Function *F, void *Location) {
124      MutexGuard locked(TheJIT->lock);
125      /// Get the target-specific JIT resolver function.
126      state.getStubToFunctionMap(locked)[Location] = F;
127      return (void*)(intptr_t)LazyResolverFn;
128    }
129
130    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
131    /// an address.  This function only manages slots, it does not manage the
132    /// contents of the slots or the memory associated with the GOT.
133    unsigned getGOTIndexForAddr(void *addr);
134
135    /// JITCompilerFn - This function is called to resolve a stub to a compiled
136    /// address.  If the LLVM Function corresponding to the stub has not yet
137    /// been compiled, this function compiles it first.
138    static void *JITCompilerFn(void *Stub);
139  };
140}
141
142JITResolver *JITResolver::TheJITResolver = 0;
143
144#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
145    defined(__APPLE__)
146extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
147#endif
148
149/// synchronizeICache - On some targets, the JIT emitted code must be
150/// explicitly refetched to ensure correct execution.
151static void synchronizeICache(const void *Addr, size_t len) {
152#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
153    defined(__APPLE__)
154  sys_icache_invalidate(Addr, len);
155#endif
156}
157
158/// getFunctionStub - This returns a pointer to a function stub, creating
159/// one on demand as needed.
160void *JITResolver::getFunctionStub(Function *F) {
161  MutexGuard locked(TheJIT->lock);
162
163  // If we already have a stub for this function, recycle it.
164  void *&Stub = state.getFunctionToStubMap(locked)[F];
165  if (Stub) return Stub;
166
167  // Call the lazy resolver function unless we already KNOW it is an external
168  // function, in which case we just skip the lazy resolution step.
169  void *Actual = (void*)(intptr_t)LazyResolverFn;
170  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
171    Actual = TheJIT->getPointerToFunction(F);
172
173  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
174  // resolver function.
175  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual,
176                                               *TheJIT->getCodeEmitter());
177
178  if (Actual != (void*)(intptr_t)LazyResolverFn) {
179    // If we are getting the stub for an external function, we really want the
180    // address of the stub in the GlobalAddressMap for the JIT, not the address
181    // of the external function.
182    TheJIT->updateGlobalMapping(F, Stub);
183  }
184
185  // Invalidate the icache if necessary.
186  synchronizeICache(Stub, TheJIT->getCodeEmitter()->getCurrentPCValue() -
187                          (intptr_t)Stub);
188
189  DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
190       << F->getName() << "'\n";
191
192  // Finally, keep track of the stub-to-Function mapping so that the
193  // JITCompilerFn knows which function to compile!
194  state.getStubToFunctionMap(locked)[Stub] = F;
195  return Stub;
196}
197
198/// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
199/// GV address.
200void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) {
201  MutexGuard locked(TheJIT->lock);
202
203  // If we already have a stub for this global variable, recycle it.
204  void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV];
205  if (LazyPtr) return LazyPtr;
206
207  // Otherwise, codegen a new lazy pointer.
208  LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GVAddress,
209                                                    *TheJIT->getCodeEmitter());
210
211  DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '"
212       << GV->getName() << "'\n";
213
214  return LazyPtr;
215}
216
217/// getExternalFunctionStub - Return a stub for the function at the
218/// specified address, created lazily on demand.
219void *JITResolver::getExternalFunctionStub(void *FnAddr) {
220  // If we already have a stub for this function, recycle it.
221  void *&Stub = ExternalFnToStubMap[FnAddr];
222  if (Stub) return Stub;
223
224  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr,
225                                               *TheJIT->getCodeEmitter());
226
227  // Invalidate the icache if necessary.
228  synchronizeICache(Stub, TheJIT->getCodeEmitter()->getCurrentPCValue() -
229                    (intptr_t)Stub);
230
231  DOUT << "JIT: Stub emitted at [" << Stub
232       << "] for external function at '" << FnAddr << "'\n";
233  return Stub;
234}
235
236unsigned JITResolver::getGOTIndexForAddr(void* addr) {
237  unsigned idx = revGOTMap[addr];
238  if (!idx) {
239    idx = ++nextGOTIndex;
240    revGOTMap[addr] = idx;
241    DOUT << "Adding GOT entry " << idx
242         << " for addr " << addr << "\n";
243  }
244  return idx;
245}
246
247/// JITCompilerFn - This function is called when a lazy compilation stub has
248/// been entered.  It looks up which function this stub corresponds to, compiles
249/// it if necessary, then returns the resultant function pointer.
250void *JITResolver::JITCompilerFn(void *Stub) {
251  JITResolver &JR = *TheJITResolver;
252
253  MutexGuard locked(TheJIT->lock);
254
255  // The address given to us for the stub may not be exactly right, it might be
256  // a little bit after the stub.  As such, use upper_bound to find it.
257  std::map<void*, Function*>::iterator I =
258    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
259  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
260         "This is not a known stub!");
261  Function *F = (--I)->second;
262
263  // If we have already code generated the function, just return the address.
264  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
265
266  if (!Result) {
267    // Otherwise we don't have it, do lazy compilation now.
268
269    // If lazy compilation is disabled, emit a useful error message and abort.
270    if (TheJIT->isLazyCompilationDisabled()) {
271      cerr << "LLVM JIT requested to do lazy compilation of function '"
272      << F->getName() << "' when lazy compiles are disabled!\n";
273      abort();
274    }
275
276    // We might like to remove the stub from the StubToFunction map.
277    // We can't do that! Multiple threads could be stuck, waiting to acquire the
278    // lock above. As soon as the 1st function finishes compiling the function,
279    // the next one will be released, and needs to be able to find the function
280    // it needs to call.
281    //JR.state.getStubToFunctionMap(locked).erase(I);
282
283    DOUT << "JIT: Lazily resolving function '" << F->getName()
284         << "' In stub ptr = " << Stub << " actual ptr = "
285         << I->first << "\n";
286
287    Result = TheJIT->getPointerToFunction(F);
288  }
289
290  // We don't need to reuse this stub in the future, as F is now compiled.
291  JR.state.getFunctionToStubMap(locked).erase(F);
292
293  // FIXME: We could rewrite all references to this stub if we knew them.
294
295  // What we will do is set the compiled function address to map to the
296  // same GOT entry as the stub so that later clients may update the GOT
297  // if they see it still using the stub address.
298  // Note: this is done so the Resolver doesn't have to manage GOT memory
299  // Do this without allocating map space if the target isn't using a GOT
300  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
301    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
302
303  return Result;
304}
305
306
307//===----------------------------------------------------------------------===//
308// JITEmitter code.
309//
310namespace {
311  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
312  /// used to output functions to memory for execution.
313  class JITEmitter : public MachineCodeEmitter {
314    JITMemoryManager *MemMgr;
315
316    // When outputting a function stub in the context of some other function, we
317    // save BufferBegin/BufferEnd/CurBufferPtr here.
318    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
319
320    /// Relocations - These are the relocations that the function needs, as
321    /// emitted.
322    std::vector<MachineRelocation> Relocations;
323
324    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
325    /// It is filled in by the StartMachineBasicBlock callback and queried by
326    /// the getMachineBasicBlockAddress callback.
327    std::vector<intptr_t> MBBLocations;
328
329    /// ConstantPool - The constant pool for the current function.
330    ///
331    MachineConstantPool *ConstantPool;
332
333    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
334    ///
335    void *ConstantPoolBase;
336
337    /// JumpTable - The jump tables for the current function.
338    ///
339    MachineJumpTableInfo *JumpTable;
340
341    /// JumpTableBase - A pointer to the first entry in the jump table.
342    ///
343    void *JumpTableBase;
344
345    /// Resolver - This contains info about the currently resolved functions.
346    JITResolver Resolver;
347  public:
348    JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
349      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
350      if (jit.getJITInfo().needsGOT()) {
351        MemMgr->AllocateGOT();
352        DOUT << "JIT is managing a GOT\n";
353      }
354    }
355    ~JITEmitter() {
356      delete MemMgr;
357    }
358
359    JITResolver &getJITResolver() { return Resolver; }
360
361    virtual void startFunction(MachineFunction &F);
362    virtual bool finishFunction(MachineFunction &F);
363
364    void emitConstantPool(MachineConstantPool *MCP);
365    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
366    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
367
368    virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1);
369    virtual void* finishFunctionStub(const Function *F);
370
371    virtual void addRelocation(const MachineRelocation &MR) {
372      Relocations.push_back(MR);
373    }
374
375    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
376      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
377        MBBLocations.resize((MBB->getNumber()+1)*2);
378      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
379    }
380
381    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
382    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
383
384    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
385      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
386             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
387      return MBBLocations[MBB->getNumber()];
388    }
389
390    /// deallocateMemForFunction - Deallocate all memory for the specified
391    /// function body.
392    void deallocateMemForFunction(Function *F) {
393      MemMgr->deallocateMemForFunction(F);
394    }
395  private:
396    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
397    void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
398                                bool NoNeedStub);
399  };
400}
401
402void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
403                                     bool DoesntNeedStub) {
404  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
405    /// FIXME: If we straightened things out, this could actually emit the
406    /// global immediately instead of queuing it for codegen later!
407    return TheJIT->getOrEmitGlobalVariable(GV);
408  }
409
410  // If we have already compiled the function, return a pointer to its body.
411  Function *F = cast<Function>(V);
412  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
413  if (ResultPtr) return ResultPtr;
414
415  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
416    // If this is an external function pointer, we can force the JIT to
417    // 'compile' it, which really just adds it to the map.
418    if (DoesntNeedStub)
419      return TheJIT->getPointerToFunction(F);
420
421    return Resolver.getFunctionStub(F);
422  }
423
424  // Okay, the function has not been compiled yet, if the target callback
425  // mechanism is capable of rewriting the instruction directly, prefer to do
426  // that instead of emitting a stub.
427  if (DoesntNeedStub)
428    return Resolver.AddCallbackAtLocation(F, Reference);
429
430  // Otherwise, we have to emit a lazy resolving stub.
431  return Resolver.getFunctionStub(F);
432}
433
434void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
435                                        bool DoesntNeedStub) {
436  // Make sure GV is emitted first.
437  // FIXME: For now, if the GV is an external function we force the JIT to
438  // compile it so the lazy pointer will contain the fully resolved address.
439  void *GVAddress = getPointerToGlobal(V, Reference, true);
440  return Resolver.getGlobalValueLazyPtr(V, GVAddress);
441}
442
443
444void JITEmitter::startFunction(MachineFunction &F) {
445  uintptr_t ActualSize;
446  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
447                                                         ActualSize);
448  BufferEnd = BufferBegin+ActualSize;
449
450  // Ensure the constant pool/jump table info is at least 4-byte aligned.
451  emitAlignment(16);
452
453  emitConstantPool(F.getConstantPool());
454  initJumpTableInfo(F.getJumpTableInfo());
455
456  // About to start emitting the machine code for the function.
457  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
458  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
459
460  MBBLocations.clear();
461}
462
463bool JITEmitter::finishFunction(MachineFunction &F) {
464  if (CurBufferPtr == BufferEnd) {
465    // FIXME: Allocate more space, then try again.
466    cerr << "JIT: Ran out of space for generated machine code!\n";
467    abort();
468  }
469
470  emitJumpTableInfo(F.getJumpTableInfo());
471
472  // FnStart is the start of the text, not the start of the constant pool and
473  // other per-function data.
474  unsigned char *FnStart =
475    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
476  unsigned char *FnEnd   = CurBufferPtr;
477
478  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
479  NumBytes += FnEnd-FnStart;
480
481  if (!Relocations.empty()) {
482    NumRelos += Relocations.size();
483
484    // Resolve the relocations to concrete pointers.
485    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
486      MachineRelocation &MR = Relocations[i];
487      void *ResultPtr;
488      if (MR.isString()) {
489        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
490
491        // If the target REALLY wants a stub for this function, emit it now.
492        if (!MR.doesntNeedStub())
493          ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
494      } else if (MR.isGlobalValue()) {
495        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
496                                       BufferBegin+MR.getMachineCodeOffset(),
497                                       MR.doesntNeedStub());
498      } else if (MR.isGlobalValueLazyPtr()) {
499        ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(),
500                                          BufferBegin+MR.getMachineCodeOffset(),
501                                          MR.doesntNeedStub());
502      } else if (MR.isBasicBlock()) {
503        ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
504      } else if (MR.isConstantPoolIndex()) {
505        ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
506      } else {
507        assert(MR.isJumpTableIndex());
508        ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
509      }
510
511      MR.setResultPointer(ResultPtr);
512
513      // if we are managing the GOT and the relocation wants an index,
514      // give it one
515      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
516        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
517        MR.setGOTIndex(idx);
518        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
519          DOUT << "GOT was out of date for " << ResultPtr
520               << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
521               << "\n";
522          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
523        }
524      }
525    }
526
527    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
528                                  Relocations.size(), MemMgr->getGOTBase());
529  }
530
531  // Update the GOT entry for F to point to the new code.
532  if (MemMgr->isManagingGOT()) {
533    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
534    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
535      DOUT << "GOT was out of date for " << (void*)BufferBegin
536           << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
537      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
538    }
539  }
540
541  // Invalidate the icache if necessary.
542  synchronizeICache(FnStart, FnEnd-FnStart);
543
544  DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
545       << "] Function: " << F.getFunction()->getName()
546       << ": " << (FnEnd-FnStart) << " bytes of text, "
547       << Relocations.size() << " relocations\n";
548  Relocations.clear();
549
550#ifndef NDEBUG
551  if (sys::hasDisassembler())
552    DOUT << "Disassembled code:\n"
553         << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
554#endif
555
556  return false;
557}
558
559void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
560  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
561  if (Constants.empty()) return;
562
563  MachineConstantPoolEntry CPE = Constants.back();
564  unsigned Size = CPE.Offset;
565  const Type *Ty = CPE.isMachineConstantPoolEntry()
566    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
567  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
568
569  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
570  ConstantPool = MCP;
571
572  if (ConstantPoolBase == 0) return;  // Buffer overflow.
573
574  // Initialize the memory for all of the constant pool entries.
575  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
576    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
577    if (Constants[i].isMachineConstantPoolEntry()) {
578      // FIXME: add support to lower machine constant pool values into bytes!
579      cerr << "Initialize memory with machine specific constant pool entry"
580           << " has not been implemented!\n";
581      abort();
582    }
583    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
584  }
585}
586
587void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
588  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
589  if (JT.empty()) return;
590
591  unsigned NumEntries = 0;
592  for (unsigned i = 0, e = JT.size(); i != e; ++i)
593    NumEntries += JT[i].MBBs.size();
594
595  unsigned EntrySize = MJTI->getEntrySize();
596
597  // Just allocate space for all the jump tables now.  We will fix up the actual
598  // MBB entries in the tables after we emit the code for each block, since then
599  // we will know the final locations of the MBBs in memory.
600  JumpTable = MJTI;
601  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
602}
603
604void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
605  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
606  if (JT.empty() || JumpTableBase == 0) return;
607
608  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
609    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
610    // For each jump table, place the offset from the beginning of the table
611    // to the target address.
612    int *SlotPtr = (int*)JumpTableBase;
613
614    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
615      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
616      // Store the offset of the basic block for this jump table slot in the
617      // memory we allocated for the jump table in 'initJumpTableInfo'
618      intptr_t Base = (intptr_t)SlotPtr;
619      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
620        *SlotPtr++ = (intptr_t)getMachineBasicBlockAddress(MBBs[mi]) - Base;
621    }
622  } else {
623    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
624
625    // For each jump table, map each target in the jump table to the address of
626    // an emitted MachineBasicBlock.
627    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
628
629    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
630      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
631      // Store the address of the basic block for this jump table slot in the
632      // memory we allocated for the jump table in 'initJumpTableInfo'
633      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
634        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
635    }
636  }
637}
638
639void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) {
640  SavedBufferBegin = BufferBegin;
641  SavedBufferEnd = BufferEnd;
642  SavedCurBufferPtr = CurBufferPtr;
643
644  BufferBegin = CurBufferPtr = MemMgr->allocateStub(StubSize, Alignment);
645  BufferEnd = BufferBegin+StubSize+1;
646}
647
648void *JITEmitter::finishFunctionStub(const Function *F) {
649  NumBytes += getCurrentPCOffset();
650  std::swap(SavedBufferBegin, BufferBegin);
651  BufferEnd = SavedBufferEnd;
652  CurBufferPtr = SavedCurBufferPtr;
653  return SavedBufferBegin;
654}
655
656// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
657// in the constant pool that was last emitted with the 'emitConstantPool'
658// method.
659//
660intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
661  assert(ConstantNum < ConstantPool->getConstants().size() &&
662         "Invalid ConstantPoolIndex!");
663  return (intptr_t)ConstantPoolBase +
664         ConstantPool->getConstants()[ConstantNum].Offset;
665}
666
667// getJumpTableEntryAddress - Return the address of the JumpTable with index
668// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
669//
670intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
671  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
672  assert(Index < JT.size() && "Invalid jump table index!");
673
674  unsigned Offset = 0;
675  unsigned EntrySize = JumpTable->getEntrySize();
676
677  for (unsigned i = 0; i < Index; ++i)
678    Offset += JT[i].MBBs.size();
679
680   Offset *= EntrySize;
681
682  return (intptr_t)((char *)JumpTableBase + Offset);
683}
684
685//===----------------------------------------------------------------------===//
686//  Public interface to this file
687//===----------------------------------------------------------------------===//
688
689MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
690  return new JITEmitter(jit, JMM);
691}
692
693// getPointerToNamedFunction - This function is used as a global wrapper to
694// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
695// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
696// need to resolve function(s) that are being mis-codegenerated, so we need to
697// resolve their addresses at runtime, and this is the way to do it.
698extern "C" {
699  void *getPointerToNamedFunction(const char *Name) {
700    if (Function *F = TheJIT->FindFunctionNamed(Name))
701      return TheJIT->getPointerToFunction(F);
702    return TheJIT->getPointerToNamedFunction(Name);
703  }
704}
705
706// getPointerToFunctionOrStub - If the specified function has been
707// code-gen'd, return a pointer to the function.  If not, compile it, or use
708// a stub to implement lazy compilation if available.
709//
710void *JIT::getPointerToFunctionOrStub(Function *F) {
711  // If we have already code generated the function, just return the address.
712  if (void *Addr = getPointerToGlobalIfAvailable(F))
713    return Addr;
714
715  // Get a stub if the target supports it.
716  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
717  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
718  return JE->getJITResolver().getFunctionStub(F);
719}
720
721/// freeMachineCodeForFunction - release machine code memory for given Function.
722///
723void JIT::freeMachineCodeForFunction(Function *F) {
724  // Delete translation for this from the ExecutionEngine, so it will get
725  // retranslated next time it is used.
726  updateGlobalMapping(F, 0);
727
728  // Free the actual memory for the function body and related stuff.
729  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
730  static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
731}
732
733