JITEmitter.cpp revision d7398c9b699cae3a109e9808401f7d0b2fc7e686
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDwarfEmitter.h"
18#include "llvm/Constants.h"
19#include "llvm/Module.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/CodeGen/MachineCodeEmitter.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRelocation.h"
27#include "llvm/ExecutionEngine/JITMemoryManager.h"
28#include "llvm/ExecutionEngine/GenericValue.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetJITInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/MutexGuard.h"
35#include "llvm/System/Disassembler.h"
36#include "llvm/System/Memory.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include <algorithm>
41#ifndef NDEBUG
42#include <iomanip>
43#endif
44using namespace llvm;
45
46STATISTIC(NumBytes, "Number of bytes of machine code compiled");
47STATISTIC(NumRelos, "Number of relocations applied");
48static JIT *TheJIT = 0;
49
50
51//===----------------------------------------------------------------------===//
52// JIT lazy compilation code.
53//
54namespace {
55  class JITResolverState {
56  private:
57    /// FunctionToStubMap - Keep track of the stub created for a particular
58    /// function so that we can reuse them if necessary.
59    std::map<Function*, void*> FunctionToStubMap;
60
61    /// StubToFunctionMap - Keep track of the function that each stub
62    /// corresponds to.
63    std::map<void*, Function*> StubToFunctionMap;
64
65    /// GlobalToNonLazyPtrMap - Keep track of the lazy pointer created for a
66    /// particular GlobalVariable so that we can reuse them if necessary.
67    std::map<GlobalValue*, void*> GlobalToNonLazyPtrMap;
68
69  public:
70    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
71      assert(locked.holds(TheJIT->lock));
72      return FunctionToStubMap;
73    }
74
75    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
76      assert(locked.holds(TheJIT->lock));
77      return StubToFunctionMap;
78    }
79
80    std::map<GlobalValue*, void*>&
81    getGlobalToNonLazyPtrMap(const MutexGuard& locked) {
82      assert(locked.holds(TheJIT->lock));
83      return GlobalToNonLazyPtrMap;
84    }
85  };
86
87  /// JITResolver - Keep track of, and resolve, call sites for functions that
88  /// have not yet been compiled.
89  class JITResolver {
90    /// LazyResolverFn - The target lazy resolver function that we actually
91    /// rewrite instructions to use.
92    TargetJITInfo::LazyResolverFn LazyResolverFn;
93
94    JITResolverState state;
95
96    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
97    /// external functions.
98    std::map<void*, void*> ExternalFnToStubMap;
99
100    //map addresses to indexes in the GOT
101    std::map<void*, unsigned> revGOTMap;
102    unsigned nextGOTIndex;
103
104    static JITResolver *TheJITResolver;
105  public:
106    explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
107      TheJIT = &jit;
108
109      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
110      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
111      TheJITResolver = this;
112    }
113
114    ~JITResolver() {
115      TheJITResolver = 0;
116    }
117
118    /// getFunctionStub - This returns a pointer to a function stub, creating
119    /// one on demand as needed.
120    void *getFunctionStub(Function *F);
121
122    /// getExternalFunctionStub - Return a stub for the function at the
123    /// specified address, created lazily on demand.
124    void *getExternalFunctionStub(void *FnAddr);
125
126    /// getGlobalValueNonLazyPtr - Return a non-lazy pointer containing the
127    /// specified GV address.
128    void *getGlobalValueNonLazyPtr(GlobalValue *V, void *GVAddress);
129
130    /// AddCallbackAtLocation - If the target is capable of rewriting an
131    /// instruction without the use of a stub, record the location of the use so
132    /// we know which function is being used at the location.
133    void *AddCallbackAtLocation(Function *F, void *Location) {
134      MutexGuard locked(TheJIT->lock);
135      /// Get the target-specific JIT resolver function.
136      state.getStubToFunctionMap(locked)[Location] = F;
137      return (void*)(intptr_t)LazyResolverFn;
138    }
139
140    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
141    /// an address.  This function only manages slots, it does not manage the
142    /// contents of the slots or the memory associated with the GOT.
143    unsigned getGOTIndexForAddr(void *addr);
144
145    /// JITCompilerFn - This function is called to resolve a stub to a compiled
146    /// address.  If the LLVM Function corresponding to the stub has not yet
147    /// been compiled, this function compiles it first.
148    static void *JITCompilerFn(void *Stub);
149  };
150}
151
152JITResolver *JITResolver::TheJITResolver = 0;
153
154/// getFunctionStub - This returns a pointer to a function stub, creating
155/// one on demand as needed.
156void *JITResolver::getFunctionStub(Function *F) {
157  MutexGuard locked(TheJIT->lock);
158
159  // If we already have a stub for this function, recycle it.
160  void *&Stub = state.getFunctionToStubMap(locked)[F];
161  if (Stub) return Stub;
162
163  // Call the lazy resolver function unless we already KNOW it is an external
164  // function, in which case we just skip the lazy resolution step.
165  void *Actual = (void*)(intptr_t)LazyResolverFn;
166  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
167    Actual = TheJIT->getPointerToFunction(F);
168
169  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
170  // resolver function.
171  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
172                                               *TheJIT->getCodeEmitter());
173
174  if (Actual != (void*)(intptr_t)LazyResolverFn) {
175    // If we are getting the stub for an external function, we really want the
176    // address of the stub in the GlobalAddressMap for the JIT, not the address
177    // of the external function.
178    TheJIT->updateGlobalMapping(F, Stub);
179  }
180
181  DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
182       << F->getName() << "'\n";
183
184  // Finally, keep track of the stub-to-Function mapping so that the
185  // JITCompilerFn knows which function to compile!
186  state.getStubToFunctionMap(locked)[Stub] = F;
187  return Stub;
188}
189
190/// getGlobalValueNonLazyPtr - Return a lazy pointer containing the specified
191/// GV address.
192void *JITResolver::getGlobalValueNonLazyPtr(GlobalValue *GV, void *GVAddress) {
193  MutexGuard locked(TheJIT->lock);
194
195  // If we already have a stub for this global variable, recycle it.
196  void *&NonLazyPtr = state.getGlobalToNonLazyPtrMap(locked)[GV];
197  if (NonLazyPtr) return NonLazyPtr;
198
199  // Otherwise, codegen a new lazy pointer.
200  NonLazyPtr = TheJIT->getJITInfo().emitGlobalValueNonLazyPtr(GV, GVAddress,
201                                                     *TheJIT->getCodeEmitter());
202
203  DOUT << "JIT: Stub emitted at [" << NonLazyPtr << "] for GV '"
204       << GV->getName() << "'\n";
205
206  return NonLazyPtr;
207}
208
209/// getExternalFunctionStub - Return a stub for the function at the
210/// specified address, created lazily on demand.
211void *JITResolver::getExternalFunctionStub(void *FnAddr) {
212  // If we already have a stub for this function, recycle it.
213  void *&Stub = ExternalFnToStubMap[FnAddr];
214  if (Stub) return Stub;
215
216  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
217                                               *TheJIT->getCodeEmitter());
218
219  DOUT << "JIT: Stub emitted at [" << Stub
220       << "] for external function at '" << FnAddr << "'\n";
221  return Stub;
222}
223
224unsigned JITResolver::getGOTIndexForAddr(void* addr) {
225  unsigned idx = revGOTMap[addr];
226  if (!idx) {
227    idx = ++nextGOTIndex;
228    revGOTMap[addr] = idx;
229    DOUT << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n";
230  }
231  return idx;
232}
233
234/// JITCompilerFn - This function is called when a lazy compilation stub has
235/// been entered.  It looks up which function this stub corresponds to, compiles
236/// it if necessary, then returns the resultant function pointer.
237void *JITResolver::JITCompilerFn(void *Stub) {
238  JITResolver &JR = *TheJITResolver;
239
240  Function* F = 0;
241  void* ActualPtr = 0;
242
243  {
244    // Only lock for getting the Function. The call getPointerToFunction made
245    // in this function might trigger function materializing, which requires
246    // JIT lock to be unlocked.
247    MutexGuard locked(TheJIT->lock);
248
249    // The address given to us for the stub may not be exactly right, it might be
250    // a little bit after the stub.  As such, use upper_bound to find it.
251    std::map<void*, Function*>::iterator I =
252      JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
253    assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
254           "This is not a known stub!");
255    F = (--I)->second;
256    ActualPtr = I->first;
257  }
258
259  // If we have already code generated the function, just return the address.
260  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
261
262  if (!Result) {
263    // Otherwise we don't have it, do lazy compilation now.
264
265    // If lazy compilation is disabled, emit a useful error message and abort.
266    if (TheJIT->isLazyCompilationDisabled()) {
267      cerr << "LLVM JIT requested to do lazy compilation of function '"
268      << F->getName() << "' when lazy compiles are disabled!\n";
269      abort();
270    }
271
272    // We might like to remove the stub from the StubToFunction map.
273    // We can't do that! Multiple threads could be stuck, waiting to acquire the
274    // lock above. As soon as the 1st function finishes compiling the function,
275    // the next one will be released, and needs to be able to find the function
276    // it needs to call.
277    //JR.state.getStubToFunctionMap(locked).erase(I);
278
279    DOUT << "JIT: Lazily resolving function '" << F->getName()
280         << "' In stub ptr = " << Stub << " actual ptr = "
281         << ActualPtr << "\n";
282
283    Result = TheJIT->getPointerToFunction(F);
284  }
285
286  // Reacquire the lock to erase the stub in the map.
287  MutexGuard locked(TheJIT->lock);
288
289  // We don't need to reuse this stub in the future, as F is now compiled.
290  JR.state.getFunctionToStubMap(locked).erase(F);
291
292  // FIXME: We could rewrite all references to this stub if we knew them.
293
294  // What we will do is set the compiled function address to map to the
295  // same GOT entry as the stub so that later clients may update the GOT
296  // if they see it still using the stub address.
297  // Note: this is done so the Resolver doesn't have to manage GOT memory
298  // Do this without allocating map space if the target isn't using a GOT
299  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
300    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
301
302  return Result;
303}
304
305//===----------------------------------------------------------------------===//
306// Function Index Support
307
308// On MacOS we generate an index of currently JIT'd functions so that
309// performance tools can determine a symbol name and accurate code range for a
310// PC value.  Because performance tools are generally asynchronous, the code
311// below is written with the hope that it could be interrupted at any time and
312// have useful answers.  However, we don't go crazy with atomic operations, we
313// just do a "reasonable effort".
314#ifdef __APPLE__
315#define ENABLE_JIT_SYMBOL_TABLE 0
316#endif
317
318/// JitSymbolEntry - Each function that is JIT compiled results in one of these
319/// being added to an array of symbols.  This indicates the name of the function
320/// as well as the address range it occupies.  This allows the client to map
321/// from a PC value to the name of the function.
322struct JitSymbolEntry {
323  const char *FnName;   // FnName - a strdup'd string.
324  void *FnStart;
325  intptr_t FnSize;
326};
327
328
329struct JitSymbolTable {
330  /// NextPtr - This forms a linked list of JitSymbolTable entries.  This
331  /// pointer is not used right now, but might be used in the future.  Consider
332  /// it reserved for future use.
333  JitSymbolTable *NextPtr;
334
335  /// Symbols - This is an array of JitSymbolEntry entries.  Only the first
336  /// 'NumSymbols' symbols are valid.
337  JitSymbolEntry *Symbols;
338
339  /// NumSymbols - This indicates the number entries in the Symbols array that
340  /// are valid.
341  unsigned NumSymbols;
342
343  /// NumAllocated - This indicates the amount of space we have in the Symbols
344  /// array.  This is a private field that should not be read by external tools.
345  unsigned NumAllocated;
346};
347
348#if ENABLE_JIT_SYMBOL_TABLE
349JitSymbolTable *__jitSymbolTable;
350#endif
351
352static void AddFunctionToSymbolTable(const char *FnName,
353                                     void *FnStart, intptr_t FnSize) {
354  assert(FnName != 0 && FnStart != 0 && "Bad symbol to add");
355  JitSymbolTable **SymTabPtrPtr = 0;
356#if !ENABLE_JIT_SYMBOL_TABLE
357  return;
358#else
359  SymTabPtrPtr = &__jitSymbolTable;
360#endif
361
362  // If this is the first entry in the symbol table, add the JitSymbolTable
363  // index.
364  if (*SymTabPtrPtr == 0) {
365    JitSymbolTable *New = new JitSymbolTable();
366    New->NextPtr = 0;
367    New->Symbols = 0;
368    New->NumSymbols = 0;
369    New->NumAllocated = 0;
370    *SymTabPtrPtr = New;
371  }
372
373  JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
374
375  // If we have space in the table, reallocate the table.
376  if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) {
377    // If we don't have space, reallocate the table.
378    unsigned NewSize = std::max(64U, SymTabPtr->NumAllocated*2);
379    JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize];
380    JitSymbolEntry *OldSymbols = SymTabPtr->Symbols;
381
382    // Copy the old entries over.
383    memcpy(NewSymbols, OldSymbols,
384           SymTabPtr->NumSymbols*sizeof(OldSymbols[0]));
385
386    // Swap the new symbols in, delete the old ones.
387    SymTabPtr->Symbols = NewSymbols;
388    SymTabPtr->NumAllocated = NewSize;
389    delete [] OldSymbols;
390  }
391
392  // Otherwise, we have enough space, just tack it onto the end of the array.
393  JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols];
394  Entry.FnName = strdup(FnName);
395  Entry.FnStart = FnStart;
396  Entry.FnSize = FnSize;
397  ++SymTabPtr->NumSymbols;
398}
399
400static void RemoveFunctionFromSymbolTable(void *FnStart) {
401  assert(FnStart && "Invalid function pointer");
402  JitSymbolTable **SymTabPtrPtr = 0;
403#if !ENABLE_JIT_SYMBOL_TABLE
404  return;
405#else
406  SymTabPtrPtr = &__jitSymbolTable;
407#endif
408
409  JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
410  JitSymbolEntry *Symbols = SymTabPtr->Symbols;
411
412  // Scan the table to find its index.  The table is not sorted, so do a linear
413  // scan.
414  unsigned Index;
415  for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index)
416    assert(Index != SymTabPtr->NumSymbols && "Didn't find function!");
417
418  // Once we have an index, we know to nuke this entry, overwrite it with the
419  // entry at the end of the array, making the last entry redundant.
420  const char *OldName = Symbols[Index].FnName;
421  Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1];
422  free((void*)OldName);
423
424  // Drop the number of symbols in the table.
425  --SymTabPtr->NumSymbols;
426
427  // Finally, if we deleted the final symbol, deallocate the table itself.
428  if (SymTabPtr->NumSymbols != 0)
429    return;
430
431  *SymTabPtrPtr = 0;
432  delete [] Symbols;
433  delete SymTabPtr;
434}
435
436//===----------------------------------------------------------------------===//
437// JITEmitter code.
438//
439namespace {
440  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
441  /// used to output functions to memory for execution.
442  class JITEmitter : public MachineCodeEmitter {
443    JITMemoryManager *MemMgr;
444
445    // When outputting a function stub in the context of some other function, we
446    // save BufferBegin/BufferEnd/CurBufferPtr here.
447    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
448
449    /// Relocations - These are the relocations that the function needs, as
450    /// emitted.
451    std::vector<MachineRelocation> Relocations;
452
453    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
454    /// It is filled in by the StartMachineBasicBlock callback and queried by
455    /// the getMachineBasicBlockAddress callback.
456    std::vector<intptr_t> MBBLocations;
457
458    /// ConstantPool - The constant pool for the current function.
459    ///
460    MachineConstantPool *ConstantPool;
461
462    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
463    ///
464    void *ConstantPoolBase;
465
466    /// JumpTable - The jump tables for the current function.
467    ///
468    MachineJumpTableInfo *JumpTable;
469
470    /// JumpTableBase - A pointer to the first entry in the jump table.
471    ///
472    void *JumpTableBase;
473
474    /// Resolver - This contains info about the currently resolved functions.
475    JITResolver Resolver;
476
477    /// DE - The dwarf emitter for the jit.
478    JITDwarfEmitter *DE;
479
480    /// LabelLocations - This vector is a mapping from Label ID's to their
481    /// address.
482    std::vector<intptr_t> LabelLocations;
483
484    /// MMI - Machine module info for exception informations
485    MachineModuleInfo* MMI;
486
487    // GVSet - a set to keep track of which globals have been seen
488    SmallPtrSet<const GlobalVariable*, 8> GVSet;
489
490  public:
491    JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
492      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
493      if (jit.getJITInfo().needsGOT()) {
494        MemMgr->AllocateGOT();
495        DOUT << "JIT is managing a GOT\n";
496      }
497
498      if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
499    }
500    ~JITEmitter() {
501      delete MemMgr;
502      if (ExceptionHandling) delete DE;
503    }
504
505    /// classof - Methods for support type inquiry through isa, cast, and
506    /// dyn_cast:
507    ///
508    static inline bool classof(const JITEmitter*) { return true; }
509    static inline bool classof(const MachineCodeEmitter*) { return true; }
510
511    JITResolver &getJITResolver() { return Resolver; }
512
513    virtual void startFunction(MachineFunction &F);
514    virtual bool finishFunction(MachineFunction &F);
515
516    void emitConstantPool(MachineConstantPool *MCP);
517    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
518    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
519
520    virtual void startFunctionStub(const GlobalValue* F, unsigned StubSize,
521                                   unsigned Alignment = 1);
522    virtual void* finishFunctionStub(const GlobalValue *F);
523
524    /// allocateSpace - Reserves space in the current block if any, or
525    /// allocate a new one of the given size.
526    virtual void *allocateSpace(intptr_t Size, unsigned Alignment);
527
528    virtual void addRelocation(const MachineRelocation &MR) {
529      Relocations.push_back(MR);
530    }
531
532    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
533      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
534        MBBLocations.resize((MBB->getNumber()+1)*2);
535      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
536      DOUT << "JIT: Emitting BB" << MBB->getNumber() << " at ["
537           << (void*) getCurrentPCValue() << "]\n";
538    }
539
540    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
541    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
542
543    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
544      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
545             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
546      return MBBLocations[MBB->getNumber()];
547    }
548
549    /// deallocateMemForFunction - Deallocate all memory for the specified
550    /// function body.
551    void deallocateMemForFunction(Function *F) {
552      MemMgr->deallocateMemForFunction(F);
553    }
554
555    virtual void emitLabel(uint64_t LabelID) {
556      if (LabelLocations.size() <= LabelID)
557        LabelLocations.resize((LabelID+1)*2);
558      LabelLocations[LabelID] = getCurrentPCValue();
559    }
560
561    virtual intptr_t getLabelAddress(uint64_t LabelID) const {
562      assert(LabelLocations.size() > (unsigned)LabelID &&
563             LabelLocations[LabelID] && "Label not emitted!");
564      return LabelLocations[LabelID];
565    }
566
567    virtual void setModuleInfo(MachineModuleInfo* Info) {
568      MMI = Info;
569      if (ExceptionHandling) DE->setModuleInfo(Info);
570    }
571
572    void setMemoryExecutable(void) {
573      MemMgr->setMemoryExecutable();
574    }
575
576  private:
577    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
578    void *getPointerToGVNonLazyPtr(GlobalValue *V, void *Reference,
579                                   bool NoNeedStub);
580    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
581    unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
582    unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
583    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
584  };
585}
586
587void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
588                                     bool DoesntNeedStub) {
589  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
590    /// FIXME: If we straightened things out, this could actually emit the
591    /// global immediately instead of queuing it for codegen later!
592    return TheJIT->getOrEmitGlobalVariable(GV);
593  }
594  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
595    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
596
597  // If we have already compiled the function, return a pointer to its body.
598  Function *F = cast<Function>(V);
599  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
600  if (ResultPtr) return ResultPtr;
601
602  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
603    // If this is an external function pointer, we can force the JIT to
604    // 'compile' it, which really just adds it to the map.
605    if (DoesntNeedStub)
606      return TheJIT->getPointerToFunction(F);
607
608    return Resolver.getFunctionStub(F);
609  }
610
611  // Okay, the function has not been compiled yet, if the target callback
612  // mechanism is capable of rewriting the instruction directly, prefer to do
613  // that instead of emitting a stub.
614  if (DoesntNeedStub)
615    return Resolver.AddCallbackAtLocation(F, Reference);
616
617  // Otherwise, we have to emit a lazy resolving stub.
618  return Resolver.getFunctionStub(F);
619}
620
621void *JITEmitter::getPointerToGVNonLazyPtr(GlobalValue *V, void *Reference,
622                                        bool DoesntNeedStub) {
623  // Make sure GV is emitted first.
624  // FIXME: For now, if the GV is an external function we force the JIT to
625  // compile it so the non-lazy pointer will contain the fully resolved address.
626  void *GVAddress = getPointerToGlobal(V, Reference, true);
627  return Resolver.getGlobalValueNonLazyPtr(V, GVAddress);
628}
629
630static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP) {
631  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
632  if (Constants.empty()) return 0;
633
634  MachineConstantPoolEntry CPE = Constants.back();
635  unsigned Size = CPE.Offset;
636  const Type *Ty = CPE.isMachineConstantPoolEntry()
637    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
638  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
639  return Size;
640}
641
642static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
643  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
644  if (JT.empty()) return 0;
645
646  unsigned NumEntries = 0;
647  for (unsigned i = 0, e = JT.size(); i != e; ++i)
648    NumEntries += JT[i].MBBs.size();
649
650  unsigned EntrySize = MJTI->getEntrySize();
651
652  return NumEntries * EntrySize;
653}
654
655static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
656  if (Alignment == 0) Alignment = 1;
657  // Since we do not know where the buffer will be allocated, be pessimistic.
658  return Size + Alignment;
659}
660
661/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
662/// into the running total Size.
663
664unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
665  const Type *ElTy = GV->getType()->getElementType();
666  size_t GVSize = (size_t)TheJIT->getTargetData()->getABITypeSize(ElTy);
667  size_t GVAlign =
668      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
669  DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign;
670  DEBUG(GV->dump());
671  // Assume code section ends with worst possible alignment, so first
672  // variable needs maximal padding.
673  if (Size==0)
674    Size = 1;
675  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
676  Size += GVSize;
677  return Size;
678}
679
680/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
681/// but are referenced from the constant; put them in GVSet and add their
682/// size into the running total Size.
683
684unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
685                                              unsigned Size) {
686  // If its undefined, return the garbage.
687  if (isa<UndefValue>(C))
688    return Size;
689
690  // If the value is a ConstantExpr
691  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
692    Constant *Op0 = CE->getOperand(0);
693    switch (CE->getOpcode()) {
694    case Instruction::GetElementPtr:
695    case Instruction::Trunc:
696    case Instruction::ZExt:
697    case Instruction::SExt:
698    case Instruction::FPTrunc:
699    case Instruction::FPExt:
700    case Instruction::UIToFP:
701    case Instruction::SIToFP:
702    case Instruction::FPToUI:
703    case Instruction::FPToSI:
704    case Instruction::PtrToInt:
705    case Instruction::IntToPtr:
706    case Instruction::BitCast: {
707      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
708      break;
709    }
710    case Instruction::Add:
711    case Instruction::Sub:
712    case Instruction::Mul:
713    case Instruction::UDiv:
714    case Instruction::SDiv:
715    case Instruction::URem:
716    case Instruction::SRem:
717    case Instruction::And:
718    case Instruction::Or:
719    case Instruction::Xor: {
720      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
721      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
722      break;
723    }
724    default: {
725       cerr << "ConstantExpr not handled: " << *CE << "\n";
726      abort();
727    }
728    }
729  }
730
731  if (C->getType()->getTypeID() == Type::PointerTyID)
732    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
733      if (GVSet.insert(GV))
734        Size = addSizeOfGlobal(GV, Size);
735
736  return Size;
737}
738
739/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
740/// but are referenced from the given initializer.
741
742unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
743                                              unsigned Size) {
744  if (!isa<UndefValue>(Init) &&
745      !isa<ConstantVector>(Init) &&
746      !isa<ConstantAggregateZero>(Init) &&
747      !isa<ConstantArray>(Init) &&
748      !isa<ConstantStruct>(Init) &&
749      Init->getType()->isFirstClassType())
750    Size = addSizeOfGlobalsInConstantVal(Init, Size);
751  return Size;
752}
753
754/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
755/// globals; then walk the initializers of those globals looking for more.
756/// If their size has not been considered yet, add it into the running total
757/// Size.
758
759unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
760  unsigned Size = 0;
761  GVSet.clear();
762
763  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
764       MBB != E; ++MBB) {
765    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
766         I != E; ++I) {
767      const TargetInstrDesc &Desc = I->getDesc();
768      const MachineInstr &MI = *I;
769      unsigned NumOps = Desc.getNumOperands();
770      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
771        const MachineOperand &MO = MI.getOperand(CurOp);
772        if (MO.isGlobal()) {
773          GlobalValue* V = MO.getGlobal();
774          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
775          if (!GV)
776            continue;
777          // If seen in previous function, it will have an entry here.
778          if (TheJIT->getPointerToGlobalIfAvailable(GV))
779            continue;
780          // If seen earlier in this function, it will have an entry here.
781          // FIXME: it should be possible to combine these tables, by
782          // assuming the addresses of the new globals in this module
783          // start at 0 (or something) and adjusting them after codegen
784          // complete.  Another possibility is to grab a marker bit in GV.
785          if (GVSet.insert(GV))
786            // A variable as yet unseen.  Add in its size.
787            Size = addSizeOfGlobal(GV, Size);
788        }
789      }
790    }
791  }
792  DOUT << "JIT: About to look through initializers\n";
793  // Look for more globals that are referenced only from initializers.
794  // GVSet.end is computed each time because the set can grow as we go.
795  for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
796       I != GVSet.end(); I++) {
797    const GlobalVariable* GV = *I;
798    if (GV->hasInitializer())
799      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
800  }
801
802  return Size;
803}
804
805void JITEmitter::startFunction(MachineFunction &F) {
806  DOUT << "JIT: Starting CodeGen of Function "
807       << F.getFunction()->getName() << "\n";
808
809  uintptr_t ActualSize = 0;
810  // Set the memory writable, if it's not already
811  MemMgr->setMemoryWritable();
812  if (MemMgr->NeedsExactSize()) {
813    DOUT << "JIT: ExactSize\n";
814    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
815    MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
816    MachineConstantPool *MCP = F.getConstantPool();
817
818    // Ensure the constant pool/jump table info is at least 4-byte aligned.
819    ActualSize = RoundUpToAlign(ActualSize, 16);
820
821    // Add the alignment of the constant pool
822    ActualSize = RoundUpToAlign(ActualSize,
823                                1 << MCP->getConstantPoolAlignment());
824
825    // Add the constant pool size
826    ActualSize += GetConstantPoolSizeInBytes(MCP);
827
828    // Add the aligment of the jump table info
829    ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
830
831    // Add the jump table size
832    ActualSize += GetJumpTableSizeInBytes(MJTI);
833
834    // Add the alignment for the function
835    ActualSize = RoundUpToAlign(ActualSize,
836                                std::max(F.getFunction()->getAlignment(), 8U));
837
838    // Add the function size
839    ActualSize += TII->GetFunctionSizeInBytes(F);
840
841    DOUT << "JIT: ActualSize before globals " << ActualSize << "\n";
842    // Add the size of the globals that will be allocated after this function.
843    // These are all the ones referenced from this function that were not
844    // previously allocated.
845    ActualSize += GetSizeOfGlobalsInBytes(F);
846    DOUT << "JIT: ActualSize after globals " << ActualSize << "\n";
847  }
848
849  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
850                                                         ActualSize);
851  BufferEnd = BufferBegin+ActualSize;
852
853  // Ensure the constant pool/jump table info is at least 4-byte aligned.
854  emitAlignment(16);
855
856  emitConstantPool(F.getConstantPool());
857  initJumpTableInfo(F.getJumpTableInfo());
858
859  // About to start emitting the machine code for the function.
860  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
861  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
862
863  MBBLocations.clear();
864}
865
866bool JITEmitter::finishFunction(MachineFunction &F) {
867  if (CurBufferPtr == BufferEnd) {
868    // FIXME: Allocate more space, then try again.
869    cerr << "JIT: Ran out of space for generated machine code!\n";
870    abort();
871  }
872
873  emitJumpTableInfo(F.getJumpTableInfo());
874
875  // FnStart is the start of the text, not the start of the constant pool and
876  // other per-function data.
877  unsigned char *FnStart =
878    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
879
880  if (!Relocations.empty()) {
881    NumRelos += Relocations.size();
882
883    // Resolve the relocations to concrete pointers.
884    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
885      MachineRelocation &MR = Relocations[i];
886      void *ResultPtr = 0;
887      if (!MR.letTargetResolve()) {
888        if (MR.isExternalSymbol()) {
889          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol());
890          DOUT << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
891               << ResultPtr << "]\n";
892
893          // If the target REALLY wants a stub for this function, emit it now.
894          if (!MR.doesntNeedStub())
895            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
896        } else if (MR.isGlobalValue()) {
897          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
898                                         BufferBegin+MR.getMachineCodeOffset(),
899                                         MR.doesntNeedStub());
900        } else if (MR.isGlobalValueNonLazyPtr()) {
901          ResultPtr = getPointerToGVNonLazyPtr(MR.getGlobalValue(),
902                                          BufferBegin+MR.getMachineCodeOffset(),
903                                          MR.doesntNeedStub());
904        } else if (MR.isBasicBlock()) {
905          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
906        } else if (MR.isConstantPoolIndex()) {
907          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
908        } else {
909          assert(MR.isJumpTableIndex());
910          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
911        }
912
913        MR.setResultPointer(ResultPtr);
914      }
915
916      // if we are managing the GOT and the relocation wants an index,
917      // give it one
918      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
919        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
920        MR.setGOTIndex(idx);
921        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
922          DOUT << "JIT: GOT was out of date for " << ResultPtr
923               << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
924               << "\n";
925          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
926        }
927      }
928    }
929
930    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
931                                  Relocations.size(), MemMgr->getGOTBase());
932  }
933
934  // Update the GOT entry for F to point to the new code.
935  if (MemMgr->isManagingGOT()) {
936    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
937    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
938      DOUT << "JIT: GOT was out of date for " << (void*)BufferBegin
939           << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
940      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
941    }
942  }
943
944  unsigned char *FnEnd = CurBufferPtr;
945
946  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
947  BufferBegin = CurBufferPtr = 0;
948  NumBytes += FnEnd-FnStart;
949
950  // Invalidate the icache if necessary.
951  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
952
953  // Add it to the JIT symbol table if the host wants it.
954  AddFunctionToSymbolTable(F.getFunction()->getNameStart(),
955                           FnStart, FnEnd-FnStart);
956
957  DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
958       << "] Function: " << F.getFunction()->getName()
959       << ": " << (FnEnd-FnStart) << " bytes of text, "
960       << Relocations.size() << " relocations\n";
961  Relocations.clear();
962
963  // Mark code region readable and executable if it's not so already.
964  MemMgr->setMemoryExecutable();
965
966#ifndef NDEBUG
967  {
968    DOUT << "JIT: Disassembled code:\n";
969    if (sys::hasDisassembler())
970      DOUT << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
971    else {
972      DOUT << std::hex;
973      int i;
974      unsigned char* q = FnStart;
975      for (i=1; q!=FnEnd; q++, i++) {
976        if (i%8==1)
977          DOUT << "JIT: 0x" << (long)q << ": ";
978        DOUT<< std::setw(2) << std::setfill('0') << (unsigned short)*q << " ";
979        if (i%8==0)
980          DOUT << '\n';
981      }
982      DOUT << std::dec;
983      DOUT<< '\n';
984    }
985  }
986#endif
987  if (ExceptionHandling) {
988    uintptr_t ActualSize = 0;
989    SavedBufferBegin = BufferBegin;
990    SavedBufferEnd = BufferEnd;
991    SavedCurBufferPtr = CurBufferPtr;
992
993    if (MemMgr->NeedsExactSize()) {
994      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
995    }
996
997    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
998                                                             ActualSize);
999    BufferEnd = BufferBegin+ActualSize;
1000    unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
1001    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1002                              FrameRegister);
1003    BufferBegin = SavedBufferBegin;
1004    BufferEnd = SavedBufferEnd;
1005    CurBufferPtr = SavedCurBufferPtr;
1006
1007    TheJIT->RegisterTable(FrameRegister);
1008  }
1009
1010  if (MMI)
1011    MMI->EndFunction();
1012
1013  return false;
1014}
1015
1016void* JITEmitter::allocateSpace(intptr_t Size, unsigned Alignment) {
1017  if (BufferBegin)
1018    return MachineCodeEmitter::allocateSpace(Size, Alignment);
1019
1020  // create a new memory block if there is no active one.
1021  // care must be taken so that BufferBegin is invalidated when a
1022  // block is trimmed
1023  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1024  BufferEnd = BufferBegin+Size;
1025  return CurBufferPtr;
1026}
1027
1028void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1029  if (TheJIT->getJITInfo().hasCustomConstantPool())
1030    return;
1031
1032  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1033  if (Constants.empty()) return;
1034
1035  MachineConstantPoolEntry CPE = Constants.back();
1036  unsigned Size = CPE.Offset;
1037  const Type *Ty = CPE.isMachineConstantPoolEntry()
1038    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
1039  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
1040
1041  unsigned Align = 1 << MCP->getConstantPoolAlignment();
1042  ConstantPoolBase = allocateSpace(Size, Align);
1043  ConstantPool = MCP;
1044
1045  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1046
1047  DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
1048       << "] (size: " << Size << ", alignment: " << Align << ")\n";
1049
1050  // Initialize the memory for all of the constant pool entries.
1051  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1052    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
1053    if (Constants[i].isMachineConstantPoolEntry()) {
1054      // FIXME: add support to lower machine constant pool values into bytes!
1055      cerr << "Initialize memory with machine specific constant pool entry"
1056           << " has not been implemented!\n";
1057      abort();
1058    }
1059    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
1060    DOUT << "JIT:   CP" << i << " at [" << CAddr << "]\n";
1061  }
1062}
1063
1064void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1065  if (TheJIT->getJITInfo().hasCustomJumpTables())
1066    return;
1067
1068  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1069  if (JT.empty()) return;
1070
1071  unsigned NumEntries = 0;
1072  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1073    NumEntries += JT[i].MBBs.size();
1074
1075  unsigned EntrySize = MJTI->getEntrySize();
1076
1077  // Just allocate space for all the jump tables now.  We will fix up the actual
1078  // MBB entries in the tables after we emit the code for each block, since then
1079  // we will know the final locations of the MBBs in memory.
1080  JumpTable = MJTI;
1081  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
1082}
1083
1084void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1085  if (TheJIT->getJITInfo().hasCustomJumpTables())
1086    return;
1087
1088  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1089  if (JT.empty() || JumpTableBase == 0) return;
1090
1091  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
1092    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
1093    // For each jump table, place the offset from the beginning of the table
1094    // to the target address.
1095    int *SlotPtr = (int*)JumpTableBase;
1096
1097    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1098      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1099      // Store the offset of the basic block for this jump table slot in the
1100      // memory we allocated for the jump table in 'initJumpTableInfo'
1101      intptr_t Base = (intptr_t)SlotPtr;
1102      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1103        intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1104        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1105      }
1106    }
1107  } else {
1108    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
1109
1110    // For each jump table, map each target in the jump table to the address of
1111    // an emitted MachineBasicBlock.
1112    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1113
1114    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1115      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1116      // Store the address of the basic block for this jump table slot in the
1117      // memory we allocated for the jump table in 'initJumpTableInfo'
1118      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1119        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1120    }
1121  }
1122}
1123
1124void JITEmitter::startFunctionStub(const GlobalValue* F, unsigned StubSize,
1125                                   unsigned Alignment) {
1126  SavedBufferBegin = BufferBegin;
1127  SavedBufferEnd = BufferEnd;
1128  SavedCurBufferPtr = CurBufferPtr;
1129
1130  BufferBegin = CurBufferPtr = MemMgr->allocateStub(F, StubSize, Alignment);
1131  BufferEnd = BufferBegin+StubSize+1;
1132}
1133
1134void *JITEmitter::finishFunctionStub(const GlobalValue* F) {
1135  NumBytes += getCurrentPCOffset();
1136
1137  // Invalidate the icache if necessary.
1138  sys::Memory::InvalidateInstructionCache(BufferBegin, NumBytes);
1139
1140  std::swap(SavedBufferBegin, BufferBegin);
1141  BufferEnd = SavedBufferEnd;
1142  CurBufferPtr = SavedCurBufferPtr;
1143  return SavedBufferBegin;
1144}
1145
1146// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1147// in the constant pool that was last emitted with the 'emitConstantPool'
1148// method.
1149//
1150intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1151  assert(ConstantNum < ConstantPool->getConstants().size() &&
1152         "Invalid ConstantPoolIndex!");
1153  return (intptr_t)ConstantPoolBase +
1154         ConstantPool->getConstants()[ConstantNum].Offset;
1155}
1156
1157// getJumpTableEntryAddress - Return the address of the JumpTable with index
1158// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1159//
1160intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1161  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1162  assert(Index < JT.size() && "Invalid jump table index!");
1163
1164  unsigned Offset = 0;
1165  unsigned EntrySize = JumpTable->getEntrySize();
1166
1167  for (unsigned i = 0; i < Index; ++i)
1168    Offset += JT[i].MBBs.size();
1169
1170   Offset *= EntrySize;
1171
1172  return (intptr_t)((char *)JumpTableBase + Offset);
1173}
1174
1175//===----------------------------------------------------------------------===//
1176//  Public interface to this file
1177//===----------------------------------------------------------------------===//
1178
1179MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
1180  return new JITEmitter(jit, JMM);
1181}
1182
1183// getPointerToNamedFunction - This function is used as a global wrapper to
1184// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1185// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1186// need to resolve function(s) that are being mis-codegenerated, so we need to
1187// resolve their addresses at runtime, and this is the way to do it.
1188extern "C" {
1189  void *getPointerToNamedFunction(const char *Name) {
1190    if (Function *F = TheJIT->FindFunctionNamed(Name))
1191      return TheJIT->getPointerToFunction(F);
1192    return TheJIT->getPointerToNamedFunction(Name);
1193  }
1194}
1195
1196// getPointerToFunctionOrStub - If the specified function has been
1197// code-gen'd, return a pointer to the function.  If not, compile it, or use
1198// a stub to implement lazy compilation if available.
1199//
1200void *JIT::getPointerToFunctionOrStub(Function *F) {
1201  // If we have already code generated the function, just return the address.
1202  if (void *Addr = getPointerToGlobalIfAvailable(F))
1203    return Addr;
1204
1205  // Get a stub if the target supports it.
1206  assert(isa<JITEmitter>(MCE) && "Unexpected MCE?");
1207  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1208  return JE->getJITResolver().getFunctionStub(F);
1209}
1210
1211/// freeMachineCodeForFunction - release machine code memory for given Function.
1212///
1213void JIT::freeMachineCodeForFunction(Function *F) {
1214
1215  // Delete translation for this from the ExecutionEngine, so it will get
1216  // retranslated next time it is used.
1217  void *OldPtr = updateGlobalMapping(F, 0);
1218
1219  if (OldPtr)
1220    RemoveFunctionFromSymbolTable(OldPtr);
1221
1222  // Free the actual memory for the function body and related stuff.
1223  assert(isa<JITEmitter>(MCE) && "Unexpected MCE?");
1224  cast<JITEmitter>(MCE)->deallocateMemForFunction(F);
1225}
1226
1227