JITEmitter.cpp revision dc17ab2bf0c4d325b87ac8130004ab11f3f7106d
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDwarfEmitter.h"
18#include "llvm/Constant.h"
19#include "llvm/Module.h"
20#include "llvm/Type.h"
21#include "llvm/CodeGen/MachineCodeEmitter.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRelocation.h"
27#include "llvm/ExecutionEngine/JITMemoryManager.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetJITInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/MutexGuard.h"
34#include "llvm/System/Disassembler.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/ADT/Statistic.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NumBytes, "Number of bytes of machine code compiled");
41STATISTIC(NumRelos, "Number of relocations applied");
42static JIT *TheJIT = 0;
43
44
45//===----------------------------------------------------------------------===//
46// JIT lazy compilation code.
47//
48namespace {
49  class JITResolverState {
50  private:
51    /// FunctionToStubMap - Keep track of the stub created for a particular
52    /// function so that we can reuse them if necessary.
53    std::map<Function*, void*> FunctionToStubMap;
54
55    /// StubToFunctionMap - Keep track of the function that each stub
56    /// corresponds to.
57    std::map<void*, Function*> StubToFunctionMap;
58
59    /// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a
60    /// particular GlobalVariable so that we can reuse them if necessary.
61    std::map<GlobalValue*, void*> GlobalToLazyPtrMap;
62
63  public:
64    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
65      assert(locked.holds(TheJIT->lock));
66      return FunctionToStubMap;
67    }
68
69    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
70      assert(locked.holds(TheJIT->lock));
71      return StubToFunctionMap;
72    }
73
74    std::map<GlobalValue*, void*>&
75    getGlobalToLazyPtrMap(const MutexGuard& locked) {
76      assert(locked.holds(TheJIT->lock));
77      return GlobalToLazyPtrMap;
78    }
79  };
80
81  /// JITResolver - Keep track of, and resolve, call sites for functions that
82  /// have not yet been compiled.
83  class JITResolver {
84    /// LazyResolverFn - The target lazy resolver function that we actually
85    /// rewrite instructions to use.
86    TargetJITInfo::LazyResolverFn LazyResolverFn;
87
88    JITResolverState state;
89
90    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
91    /// external functions.
92    std::map<void*, void*> ExternalFnToStubMap;
93
94    //map addresses to indexes in the GOT
95    std::map<void*, unsigned> revGOTMap;
96    unsigned nextGOTIndex;
97
98    static JITResolver *TheJITResolver;
99  public:
100    explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
101      TheJIT = &jit;
102
103      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
104      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
105      TheJITResolver = this;
106    }
107
108    ~JITResolver() {
109      TheJITResolver = 0;
110    }
111
112    /// getFunctionStub - This returns a pointer to a function stub, creating
113    /// one on demand as needed.
114    void *getFunctionStub(Function *F);
115
116    /// getExternalFunctionStub - Return a stub for the function at the
117    /// specified address, created lazily on demand.
118    void *getExternalFunctionStub(void *FnAddr);
119
120    /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
121    /// GV address.
122    void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress);
123
124    /// AddCallbackAtLocation - If the target is capable of rewriting an
125    /// instruction without the use of a stub, record the location of the use so
126    /// we know which function is being used at the location.
127    void *AddCallbackAtLocation(Function *F, void *Location) {
128      MutexGuard locked(TheJIT->lock);
129      /// Get the target-specific JIT resolver function.
130      state.getStubToFunctionMap(locked)[Location] = F;
131      return (void*)(intptr_t)LazyResolverFn;
132    }
133
134    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
135    /// an address.  This function only manages slots, it does not manage the
136    /// contents of the slots or the memory associated with the GOT.
137    unsigned getGOTIndexForAddr(void *addr);
138
139    /// JITCompilerFn - This function is called to resolve a stub to a compiled
140    /// address.  If the LLVM Function corresponding to the stub has not yet
141    /// been compiled, this function compiles it first.
142    static void *JITCompilerFn(void *Stub);
143  };
144}
145
146JITResolver *JITResolver::TheJITResolver = 0;
147
148#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
149    defined(__APPLE__)
150extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
151#endif
152
153/// synchronizeICache - On some targets, the JIT emitted code must be
154/// explicitly refetched to ensure correct execution.
155static void synchronizeICache(const void *Addr, size_t len) {
156#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
157    defined(__APPLE__)
158  sys_icache_invalidate(Addr, len);
159#endif
160}
161
162/// getFunctionStub - This returns a pointer to a function stub, creating
163/// one on demand as needed.
164void *JITResolver::getFunctionStub(Function *F) {
165  MutexGuard locked(TheJIT->lock);
166
167  // If we already have a stub for this function, recycle it.
168  void *&Stub = state.getFunctionToStubMap(locked)[F];
169  if (Stub) return Stub;
170
171  // Call the lazy resolver function unless we already KNOW it is an external
172  // function, in which case we just skip the lazy resolution step.
173  void *Actual = (void*)(intptr_t)LazyResolverFn;
174  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
175    Actual = TheJIT->getPointerToFunction(F);
176
177  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
178  // resolver function.
179  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
180                                               *TheJIT->getCodeEmitter());
181
182  if (Actual != (void*)(intptr_t)LazyResolverFn) {
183    // If we are getting the stub for an external function, we really want the
184    // address of the stub in the GlobalAddressMap for the JIT, not the address
185    // of the external function.
186    TheJIT->updateGlobalMapping(F, Stub);
187  }
188
189  DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
190       << F->getName() << "'\n";
191
192  // Finally, keep track of the stub-to-Function mapping so that the
193  // JITCompilerFn knows which function to compile!
194  state.getStubToFunctionMap(locked)[Stub] = F;
195  return Stub;
196}
197
198/// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
199/// GV address.
200void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) {
201  MutexGuard locked(TheJIT->lock);
202
203  // If we already have a stub for this global variable, recycle it.
204  void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV];
205  if (LazyPtr) return LazyPtr;
206
207  // Otherwise, codegen a new lazy pointer.
208  LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GV, GVAddress,
209                                                    *TheJIT->getCodeEmitter());
210
211  DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '"
212       << GV->getName() << "'\n";
213
214  return LazyPtr;
215}
216
217/// getExternalFunctionStub - Return a stub for the function at the
218/// specified address, created lazily on demand.
219void *JITResolver::getExternalFunctionStub(void *FnAddr) {
220  // If we already have a stub for this function, recycle it.
221  void *&Stub = ExternalFnToStubMap[FnAddr];
222  if (Stub) return Stub;
223
224  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
225                                               *TheJIT->getCodeEmitter());
226
227  DOUT << "JIT: Stub emitted at [" << Stub
228       << "] for external function at '" << FnAddr << "'\n";
229  return Stub;
230}
231
232unsigned JITResolver::getGOTIndexForAddr(void* addr) {
233  unsigned idx = revGOTMap[addr];
234  if (!idx) {
235    idx = ++nextGOTIndex;
236    revGOTMap[addr] = idx;
237    DOUT << "Adding GOT entry " << idx << " for addr " << addr << "\n";
238  }
239  return idx;
240}
241
242/// JITCompilerFn - This function is called when a lazy compilation stub has
243/// been entered.  It looks up which function this stub corresponds to, compiles
244/// it if necessary, then returns the resultant function pointer.
245void *JITResolver::JITCompilerFn(void *Stub) {
246  JITResolver &JR = *TheJITResolver;
247
248  MutexGuard locked(TheJIT->lock);
249
250  // The address given to us for the stub may not be exactly right, it might be
251  // a little bit after the stub.  As such, use upper_bound to find it.
252  std::map<void*, Function*>::iterator I =
253    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
254  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
255         "This is not a known stub!");
256  Function *F = (--I)->second;
257
258  // If we have already code generated the function, just return the address.
259  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
260
261  if (!Result) {
262    // Otherwise we don't have it, do lazy compilation now.
263
264    // If lazy compilation is disabled, emit a useful error message and abort.
265    if (TheJIT->isLazyCompilationDisabled()) {
266      cerr << "LLVM JIT requested to do lazy compilation of function '"
267      << F->getName() << "' when lazy compiles are disabled!\n";
268      abort();
269    }
270
271    // We might like to remove the stub from the StubToFunction map.
272    // We can't do that! Multiple threads could be stuck, waiting to acquire the
273    // lock above. As soon as the 1st function finishes compiling the function,
274    // the next one will be released, and needs to be able to find the function
275    // it needs to call.
276    //JR.state.getStubToFunctionMap(locked).erase(I);
277
278    DOUT << "JIT: Lazily resolving function '" << F->getName()
279         << "' In stub ptr = " << Stub << " actual ptr = "
280         << I->first << "\n";
281
282    Result = TheJIT->getPointerToFunction(F);
283  }
284
285  // We don't need to reuse this stub in the future, as F is now compiled.
286  JR.state.getFunctionToStubMap(locked).erase(F);
287
288  // FIXME: We could rewrite all references to this stub if we knew them.
289
290  // What we will do is set the compiled function address to map to the
291  // same GOT entry as the stub so that later clients may update the GOT
292  // if they see it still using the stub address.
293  // Note: this is done so the Resolver doesn't have to manage GOT memory
294  // Do this without allocating map space if the target isn't using a GOT
295  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
296    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
297
298  return Result;
299}
300
301//===----------------------------------------------------------------------===//
302// Function Index Support
303
304// On MacOS we generate an index of currently JIT'd functions so that
305// performance tools can determine a symbol name and accurate code range for a
306// PC value.  Because performance tools are generally asynchronous, the code
307// below is written with the hope that it could be interrupted at any time and
308// have useful answers.  However, we don't go crazy with atomic operations, we
309// just do a "reasonable effort".
310#ifdef __APPLE__
311#define ENABLE_JIT_SYMBOL_TABLE 1
312#endif
313
314/// JitSymbolEntry - Each function that is JIT compiled results in one of these
315/// being added to an array of symbols.  This indicates the name of the function
316/// as well as the address range it occupies.  This allows the client to map
317/// from a PC value to the name of the function.
318struct JitSymbolEntry {
319  const char *FnName;   // FnName - a strdup'd string.
320  void *FnStart;
321  intptr_t FnSize;
322};
323
324
325struct JitSymbolTable {
326  /// NextPtr - This forms a linked list of JitSymbolTable entries.  This
327  /// pointer is not used right now, but might be used in the future.  Consider
328  /// it reserved for future use.
329  JitSymbolTable *NextPtr;
330
331  /// Symbols - This is an array of JitSymbolEntry entries.  Only the first
332  /// 'NumSymbols' symbols are valid.
333  JitSymbolEntry *Symbols;
334
335  /// NumSymbols - This indicates the number entries in the Symbols array that
336  /// are valid.
337  unsigned NumSymbols;
338
339  /// NumAllocated - This indicates the amount of space we have in the Symbols
340  /// array.  This is a private field that should not be read by external tools.
341  unsigned NumAllocated;
342};
343
344#if ENABLE_JIT_SYMBOL_TABLE
345JitSymbolTable *__jitSymbolTable;
346#endif
347
348static void AddFunctionToSymbolTable(const char *FnName,
349                                     void *FnStart, intptr_t FnSize) {
350  assert(FnName != 0 && FnStart != 0 && "Bad symbol to add");
351  JitSymbolTable **SymTabPtrPtr = 0;
352#if !ENABLE_JIT_SYMBOL_TABLE
353  return;
354#else
355  SymTabPtrPtr = &__jitSymbolTable;
356#endif
357
358  // If this is the first entry in the symbol table, add the JitSymbolTable
359  // index.
360  if (*SymTabPtrPtr == 0) {
361    JitSymbolTable *New = new JitSymbolTable();
362    New->NextPtr = 0;
363    New->Symbols = 0;
364    New->NumSymbols = 0;
365    New->NumAllocated = 0;
366    *SymTabPtrPtr = New;
367  }
368
369  JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
370
371  // If we have space in the table, reallocate the table.
372  if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) {
373    // If we don't have space, reallocate the table.
374    unsigned NewSize = std::max(64U, SymTabPtr->NumAllocated*2);
375    JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize];
376    JitSymbolEntry *OldSymbols = SymTabPtr->Symbols;
377
378    // Copy the old entries over.
379    memcpy(NewSymbols, OldSymbols,
380           SymTabPtr->NumSymbols*sizeof(OldSymbols[0]));
381
382    // Swap the new symbols in, delete the old ones.
383    SymTabPtr->Symbols = NewSymbols;
384    SymTabPtr->NumAllocated = NewSize;
385    delete [] OldSymbols;
386  }
387
388  // Otherwise, we have enough space, just tack it onto the end of the array.
389  JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols];
390  Entry.FnName = strdup(FnName);
391  Entry.FnStart = FnStart;
392  Entry.FnSize = FnSize;
393  ++SymTabPtr->NumSymbols;
394}
395
396static void RemoveFunctionFromSymbolTable(void *FnStart) {
397  assert(FnStart && "Invalid function pointer");
398  JitSymbolTable **SymTabPtrPtr = 0;
399#if !ENABLE_JIT_SYMBOL_TABLE
400  return;
401#else
402  SymTabPtrPtr = &__jitSymbolTable;
403#endif
404
405  JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
406  JitSymbolEntry *Symbols = SymTabPtr->Symbols;
407
408  // Scan the table to find its index.  The table is not sorted, so do a linear
409  // scan.
410  unsigned Index;
411  for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index)
412    assert(Index != SymTabPtr->NumSymbols && "Didn't find function!");
413
414  // Once we have an index, we know to nuke this entry, overwrite it with the
415  // entry at the end of the array, making the last entry redundant.
416  const char *OldName = Symbols[Index].FnName;
417  Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1];
418  free((void*)OldName);
419
420  // Drop the number of symbols in the table.
421  --SymTabPtr->NumSymbols;
422
423  // Finally, if we deleted the final symbol, deallocate the table itself.
424  if (SymTabPtr->NumSymbols == 0)
425    return;
426
427  *SymTabPtrPtr = 0;
428  delete [] Symbols;
429  delete SymTabPtr;
430}
431
432//===----------------------------------------------------------------------===//
433// JITEmitter code.
434//
435namespace {
436  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
437  /// used to output functions to memory for execution.
438  class JITEmitter : public MachineCodeEmitter {
439    JITMemoryManager *MemMgr;
440
441    // When outputting a function stub in the context of some other function, we
442    // save BufferBegin/BufferEnd/CurBufferPtr here.
443    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
444
445    /// Relocations - These are the relocations that the function needs, as
446    /// emitted.
447    std::vector<MachineRelocation> Relocations;
448
449    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
450    /// It is filled in by the StartMachineBasicBlock callback and queried by
451    /// the getMachineBasicBlockAddress callback.
452    std::vector<intptr_t> MBBLocations;
453
454    /// ConstantPool - The constant pool for the current function.
455    ///
456    MachineConstantPool *ConstantPool;
457
458    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
459    ///
460    void *ConstantPoolBase;
461
462    /// JumpTable - The jump tables for the current function.
463    ///
464    MachineJumpTableInfo *JumpTable;
465
466    /// JumpTableBase - A pointer to the first entry in the jump table.
467    ///
468    void *JumpTableBase;
469
470    /// Resolver - This contains info about the currently resolved functions.
471    JITResolver Resolver;
472
473    /// DE - The dwarf emitter for the jit.
474    JITDwarfEmitter *DE;
475
476    /// LabelLocations - This vector is a mapping from Label ID's to their
477    /// address.
478    std::vector<intptr_t> LabelLocations;
479
480    /// MMI - Machine module info for exception informations
481    MachineModuleInfo* MMI;
482
483  public:
484    JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
485      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
486      if (jit.getJITInfo().needsGOT()) {
487        MemMgr->AllocateGOT();
488        DOUT << "JIT is managing a GOT\n";
489      }
490
491      if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
492    }
493    ~JITEmitter() {
494      delete MemMgr;
495      if (ExceptionHandling) delete DE;
496    }
497
498    JITResolver &getJITResolver() { return Resolver; }
499
500    virtual void startFunction(MachineFunction &F);
501    virtual bool finishFunction(MachineFunction &F);
502
503    void emitConstantPool(MachineConstantPool *MCP);
504    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
505    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
506
507    virtual void startFunctionStub(const GlobalValue* F, unsigned StubSize,
508                                   unsigned Alignment = 1);
509    virtual void* finishFunctionStub(const GlobalValue *F);
510
511    virtual void addRelocation(const MachineRelocation &MR) {
512      Relocations.push_back(MR);
513    }
514
515    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
516      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
517        MBBLocations.resize((MBB->getNumber()+1)*2);
518      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
519    }
520
521    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
522    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
523
524    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
525      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
526             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
527      return MBBLocations[MBB->getNumber()];
528    }
529
530    /// deallocateMemForFunction - Deallocate all memory for the specified
531    /// function body.
532    void deallocateMemForFunction(Function *F) {
533      MemMgr->deallocateMemForFunction(F);
534    }
535
536    virtual void emitLabel(uint64_t LabelID) {
537      if (LabelLocations.size() <= LabelID)
538        LabelLocations.resize((LabelID+1)*2);
539      LabelLocations[LabelID] = getCurrentPCValue();
540    }
541
542    virtual intptr_t getLabelAddress(uint64_t LabelID) const {
543      assert(LabelLocations.size() > (unsigned)LabelID &&
544             LabelLocations[LabelID] && "Label not emitted!");
545      return LabelLocations[LabelID];
546    }
547
548    virtual void setModuleInfo(MachineModuleInfo* Info) {
549      MMI = Info;
550      if (ExceptionHandling) DE->setModuleInfo(Info);
551    }
552
553  private:
554    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
555    void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
556                                bool NoNeedStub);
557  };
558}
559
560void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
561                                     bool DoesntNeedStub) {
562  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
563    /// FIXME: If we straightened things out, this could actually emit the
564    /// global immediately instead of queuing it for codegen later!
565    return TheJIT->getOrEmitGlobalVariable(GV);
566  }
567
568  // If we have already compiled the function, return a pointer to its body.
569  Function *F = cast<Function>(V);
570  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
571  if (ResultPtr) return ResultPtr;
572
573  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
574    // If this is an external function pointer, we can force the JIT to
575    // 'compile' it, which really just adds it to the map.
576    if (DoesntNeedStub)
577      return TheJIT->getPointerToFunction(F);
578
579    return Resolver.getFunctionStub(F);
580  }
581
582  // Okay, the function has not been compiled yet, if the target callback
583  // mechanism is capable of rewriting the instruction directly, prefer to do
584  // that instead of emitting a stub.
585  if (DoesntNeedStub)
586    return Resolver.AddCallbackAtLocation(F, Reference);
587
588  // Otherwise, we have to emit a lazy resolving stub.
589  return Resolver.getFunctionStub(F);
590}
591
592void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
593                                        bool DoesntNeedStub) {
594  // Make sure GV is emitted first.
595  // FIXME: For now, if the GV is an external function we force the JIT to
596  // compile it so the lazy pointer will contain the fully resolved address.
597  void *GVAddress = getPointerToGlobal(V, Reference, true);
598  return Resolver.getGlobalValueLazyPtr(V, GVAddress);
599}
600
601static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP) {
602  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
603  if (Constants.empty()) return 0;
604
605  MachineConstantPoolEntry CPE = Constants.back();
606  unsigned Size = CPE.Offset;
607  const Type *Ty = CPE.isMachineConstantPoolEntry()
608    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
609  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
610  return Size;
611}
612
613static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
614  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
615  if (JT.empty()) return 0;
616
617  unsigned NumEntries = 0;
618  for (unsigned i = 0, e = JT.size(); i != e; ++i)
619    NumEntries += JT[i].MBBs.size();
620
621  unsigned EntrySize = MJTI->getEntrySize();
622
623  return NumEntries * EntrySize;
624}
625
626static void AddAlignment(uintptr_t& Size, unsigned Alignment) {
627  if (Alignment == 0) Alignment = 1;
628  Size = (Size + Alignment - 1) & (Alignment - 1);
629}
630
631void JITEmitter::startFunction(MachineFunction &F) {
632  uintptr_t ActualSize = 0;
633  if (MemMgr->RequiresSize()) {
634    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
635    MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
636    MachineConstantPool *MCP = F.getConstantPool();
637
638    // Ensure the constant pool/jump table info is at least 4-byte aligned.
639    AddAlignment(ActualSize, 16);
640
641    // Add the alignment of the constant pool
642    AddAlignment(ActualSize, 1 << MCP->getConstantPoolAlignment());
643
644    // Add the constant pool size
645    ActualSize += GetConstantPoolSizeInBytes(MCP);
646
647    // Add the aligment of the jump table info
648    AddAlignment(ActualSize, MJTI->getAlignment());
649
650    // Add the jump table size
651    ActualSize += GetJumpTableSizeInBytes(MJTI);
652
653    // Add the alignment for the function
654    AddAlignment(ActualSize, std::max(F.getFunction()->getAlignment(), 8U));
655
656    // Add the function size
657    ActualSize += TII->GetFunctionSizeInBytes(F);
658  }
659
660  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
661                                                         ActualSize);
662  BufferEnd = BufferBegin+ActualSize;
663
664  // Ensure the constant pool/jump table info is at least 4-byte aligned.
665  emitAlignment(16);
666
667  emitConstantPool(F.getConstantPool());
668  initJumpTableInfo(F.getJumpTableInfo());
669
670  // About to start emitting the machine code for the function.
671  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
672  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
673
674  MBBLocations.clear();
675}
676
677bool JITEmitter::finishFunction(MachineFunction &F) {
678  if (CurBufferPtr == BufferEnd) {
679    // FIXME: Allocate more space, then try again.
680    cerr << "JIT: Ran out of space for generated machine code!\n";
681    abort();
682  }
683
684  emitJumpTableInfo(F.getJumpTableInfo());
685
686  // FnStart is the start of the text, not the start of the constant pool and
687  // other per-function data.
688  unsigned char *FnStart =
689    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
690  unsigned char *FnEnd   = CurBufferPtr;
691
692  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
693  NumBytes += FnEnd-FnStart;
694
695  if (!Relocations.empty()) {
696    NumRelos += Relocations.size();
697
698    // Resolve the relocations to concrete pointers.
699    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
700      MachineRelocation &MR = Relocations[i];
701      void *ResultPtr;
702      if (MR.isString()) {
703        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
704
705        // If the target REALLY wants a stub for this function, emit it now.
706        if (!MR.doesntNeedStub())
707          ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
708      } else if (MR.isGlobalValue()) {
709        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
710                                       BufferBegin+MR.getMachineCodeOffset(),
711                                       MR.doesntNeedStub());
712      } else if (MR.isGlobalValueLazyPtr()) {
713        ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(),
714                                          BufferBegin+MR.getMachineCodeOffset(),
715                                          MR.doesntNeedStub());
716      } else if (MR.isBasicBlock()) {
717        ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
718      } else if (MR.isConstantPoolIndex()) {
719        ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
720      } else {
721        assert(MR.isJumpTableIndex());
722        ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
723      }
724
725      MR.setResultPointer(ResultPtr);
726
727      // if we are managing the GOT and the relocation wants an index,
728      // give it one
729      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
730        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
731        MR.setGOTIndex(idx);
732        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
733          DOUT << "GOT was out of date for " << ResultPtr
734               << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
735               << "\n";
736          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
737        }
738      }
739    }
740
741    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
742                                  Relocations.size(), MemMgr->getGOTBase());
743  }
744
745  // Update the GOT entry for F to point to the new code.
746  if (MemMgr->isManagingGOT()) {
747    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
748    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
749      DOUT << "GOT was out of date for " << (void*)BufferBegin
750           << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
751      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
752    }
753  }
754
755  // Invalidate the icache if necessary.
756  synchronizeICache(FnStart, FnEnd-FnStart);
757
758  // Add it to the JIT symbol table if the host wants it.
759  AddFunctionToSymbolTable(F.getFunction()->getNameStart(),
760                           FnStart, FnEnd-FnStart);
761
762  DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
763       << "] Function: " << F.getFunction()->getName()
764       << ": " << (FnEnd-FnStart) << " bytes of text, "
765       << Relocations.size() << " relocations\n";
766  Relocations.clear();
767
768#ifndef NDEBUG
769  if (sys::hasDisassembler())
770    DOUT << "Disassembled code:\n"
771         << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
772#endif
773  if (ExceptionHandling) {
774    uintptr_t ActualSize = 0;
775    SavedBufferBegin = BufferBegin;
776    SavedBufferEnd = BufferEnd;
777    SavedCurBufferPtr = CurBufferPtr;
778
779    if (MemMgr->RequiresSize()) {
780      ActualSize = DE->GetDwarfTableSize(F, *this, FnStart, FnEnd);
781    }
782
783    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
784                                                             ActualSize);
785    BufferEnd = BufferBegin+ActualSize;
786    unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
787    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
788                              FrameRegister);
789    BufferBegin = SavedBufferBegin;
790    BufferEnd = SavedBufferEnd;
791    CurBufferPtr = SavedCurBufferPtr;
792
793    TheJIT->RegisterTable(FrameRegister);
794  }
795  MMI->EndFunction();
796
797  return false;
798}
799
800void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
801  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
802  if (Constants.empty()) return;
803
804  MachineConstantPoolEntry CPE = Constants.back();
805  unsigned Size = CPE.Offset;
806  const Type *Ty = CPE.isMachineConstantPoolEntry()
807    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
808  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
809
810  unsigned Align = 1 << MCP->getConstantPoolAlignment();
811  ConstantPoolBase = allocateSpace(Size, Align);
812  ConstantPool = MCP;
813
814  if (ConstantPoolBase == 0) return;  // Buffer overflow.
815
816  DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
817       << "] (size: " << Size << ", alignment: " << Align << ")\n";
818
819  // Initialize the memory for all of the constant pool entries.
820  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
821    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
822    if (Constants[i].isMachineConstantPoolEntry()) {
823      // FIXME: add support to lower machine constant pool values into bytes!
824      cerr << "Initialize memory with machine specific constant pool entry"
825           << " has not been implemented!\n";
826      abort();
827    }
828    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
829    DOUT << "JIT:   CP" << i << " at [" << CAddr << "]\n";
830  }
831}
832
833void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
834  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
835  if (JT.empty()) return;
836
837  unsigned NumEntries = 0;
838  for (unsigned i = 0, e = JT.size(); i != e; ++i)
839    NumEntries += JT[i].MBBs.size();
840
841  unsigned EntrySize = MJTI->getEntrySize();
842
843  // Just allocate space for all the jump tables now.  We will fix up the actual
844  // MBB entries in the tables after we emit the code for each block, since then
845  // we will know the final locations of the MBBs in memory.
846  JumpTable = MJTI;
847  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
848}
849
850void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
851  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
852  if (JT.empty() || JumpTableBase == 0) return;
853
854  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
855    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
856    // For each jump table, place the offset from the beginning of the table
857    // to the target address.
858    int *SlotPtr = (int*)JumpTableBase;
859
860    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
861      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
862      // Store the offset of the basic block for this jump table slot in the
863      // memory we allocated for the jump table in 'initJumpTableInfo'
864      intptr_t Base = (intptr_t)SlotPtr;
865      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
866        intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
867        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
868      }
869    }
870  } else {
871    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
872
873    // For each jump table, map each target in the jump table to the address of
874    // an emitted MachineBasicBlock.
875    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
876
877    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
878      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
879      // Store the address of the basic block for this jump table slot in the
880      // memory we allocated for the jump table in 'initJumpTableInfo'
881      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
882        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
883    }
884  }
885}
886
887void JITEmitter::startFunctionStub(const GlobalValue* F, unsigned StubSize,
888                                   unsigned Alignment) {
889  SavedBufferBegin = BufferBegin;
890  SavedBufferEnd = BufferEnd;
891  SavedCurBufferPtr = CurBufferPtr;
892
893  BufferBegin = CurBufferPtr = MemMgr->allocateStub(F, StubSize, Alignment);
894  BufferEnd = BufferBegin+StubSize+1;
895}
896
897void *JITEmitter::finishFunctionStub(const GlobalValue* F) {
898  NumBytes += getCurrentPCOffset();
899  std::swap(SavedBufferBegin, BufferBegin);
900  BufferEnd = SavedBufferEnd;
901  CurBufferPtr = SavedCurBufferPtr;
902  return SavedBufferBegin;
903}
904
905// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
906// in the constant pool that was last emitted with the 'emitConstantPool'
907// method.
908//
909intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
910  assert(ConstantNum < ConstantPool->getConstants().size() &&
911         "Invalid ConstantPoolIndex!");
912  return (intptr_t)ConstantPoolBase +
913         ConstantPool->getConstants()[ConstantNum].Offset;
914}
915
916// getJumpTableEntryAddress - Return the address of the JumpTable with index
917// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
918//
919intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
920  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
921  assert(Index < JT.size() && "Invalid jump table index!");
922
923  unsigned Offset = 0;
924  unsigned EntrySize = JumpTable->getEntrySize();
925
926  for (unsigned i = 0; i < Index; ++i)
927    Offset += JT[i].MBBs.size();
928
929   Offset *= EntrySize;
930
931  return (intptr_t)((char *)JumpTableBase + Offset);
932}
933
934//===----------------------------------------------------------------------===//
935//  Public interface to this file
936//===----------------------------------------------------------------------===//
937
938MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
939  return new JITEmitter(jit, JMM);
940}
941
942// getPointerToNamedFunction - This function is used as a global wrapper to
943// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
944// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
945// need to resolve function(s) that are being mis-codegenerated, so we need to
946// resolve their addresses at runtime, and this is the way to do it.
947extern "C" {
948  void *getPointerToNamedFunction(const char *Name) {
949    if (Function *F = TheJIT->FindFunctionNamed(Name))
950      return TheJIT->getPointerToFunction(F);
951    return TheJIT->getPointerToNamedFunction(Name);
952  }
953}
954
955// getPointerToFunctionOrStub - If the specified function has been
956// code-gen'd, return a pointer to the function.  If not, compile it, or use
957// a stub to implement lazy compilation if available.
958//
959void *JIT::getPointerToFunctionOrStub(Function *F) {
960  // If we have already code generated the function, just return the address.
961  if (void *Addr = getPointerToGlobalIfAvailable(F))
962    return Addr;
963
964  // Get a stub if the target supports it.
965  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
966  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
967  return JE->getJITResolver().getFunctionStub(F);
968}
969
970/// freeMachineCodeForFunction - release machine code memory for given Function.
971///
972void JIT::freeMachineCodeForFunction(Function *F) {
973
974  // Delete translation for this from the ExecutionEngine, so it will get
975  // retranslated next time it is used.
976  void *OldPtr = updateGlobalMapping(F, 0);
977
978  if (OldPtr)
979    RemoveFunctionFromSymbolTable(OldPtr);
980
981  // Free the actual memory for the function body and related stuff.
982  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
983  static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
984}
985
986