JITMemoryManager.cpp revision 1ab6084c9e785415da3a48083d53b25a38f0fb48
1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Config/config.h"
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/DynamicLibrary.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/Memory.h"
27#include "llvm/Support/raw_ostream.h"
28#include <cassert>
29#include <climits>
30#include <cstring>
31#include <vector>
32
33#if defined(__linux__)
34#if defined(HAVE_SYS_STAT_H)
35#include <sys/stat.h>
36#endif
37#include <fcntl.h>
38#include <unistd.h>
39#endif
40
41using namespace llvm;
42
43STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
44
45JITMemoryManager::~JITMemoryManager() {}
46
47//===----------------------------------------------------------------------===//
48// Memory Block Implementation.
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// MemoryRangeHeader - For a range of memory, this is the header that we put
53  /// on the block of memory.  It is carefully crafted to be one word of memory.
54  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
55  /// which starts with this.
56  struct FreeRangeHeader;
57  struct MemoryRangeHeader {
58    /// ThisAllocated - This is true if this block is currently allocated.  If
59    /// not, this can be converted to a FreeRangeHeader.
60    unsigned ThisAllocated : 1;
61
62    /// PrevAllocated - Keep track of whether the block immediately before us is
63    /// allocated.  If not, the word immediately before this header is the size
64    /// of the previous block.
65    unsigned PrevAllocated : 1;
66
67    /// BlockSize - This is the size in bytes of this memory block,
68    /// including this header.
69    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
70
71
72    /// getBlockAfter - Return the memory block immediately after this one.
73    ///
74    MemoryRangeHeader &getBlockAfter() const {
75      return *reinterpret_cast<MemoryRangeHeader *>(
76                reinterpret_cast<char*>(
77                  const_cast<MemoryRangeHeader *>(this))+BlockSize);
78    }
79
80    /// getFreeBlockBefore - If the block before this one is free, return it,
81    /// otherwise return null.
82    FreeRangeHeader *getFreeBlockBefore() const {
83      if (PrevAllocated) return 0;
84      intptr_t PrevSize = reinterpret_cast<intptr_t *>(
85                            const_cast<MemoryRangeHeader *>(this))[-1];
86      return reinterpret_cast<FreeRangeHeader *>(
87               reinterpret_cast<char*>(
88                 const_cast<MemoryRangeHeader *>(this))-PrevSize);
89    }
90
91    /// FreeBlock - Turn an allocated block into a free block, adjusting
92    /// bits in the object headers, and adding an end of region memory block.
93    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
94
95    /// TrimAllocationToSize - If this allocated block is significantly larger
96    /// than NewSize, split it into two pieces (where the former is NewSize
97    /// bytes, including the header), and add the new block to the free list.
98    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
99                                          uint64_t NewSize);
100  };
101
102  /// FreeRangeHeader - For a memory block that isn't already allocated, this
103  /// keeps track of the current block and has a pointer to the next free block.
104  /// Free blocks are kept on a circularly linked list.
105  struct FreeRangeHeader : public MemoryRangeHeader {
106    FreeRangeHeader *Prev;
107    FreeRangeHeader *Next;
108
109    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
110    /// smaller than this size cannot be created.
111    static unsigned getMinBlockSize() {
112      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
113    }
114
115    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
116    /// known to be the size of the free block.  Set it for this block.
117    void SetEndOfBlockSizeMarker() {
118      void *EndOfBlock = (char*)this + BlockSize;
119      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
120    }
121
122    FreeRangeHeader *RemoveFromFreeList() {
123      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
124      Next->Prev = Prev;
125      return Prev->Next = Next;
126    }
127
128    void AddToFreeList(FreeRangeHeader *FreeList) {
129      Next = FreeList;
130      Prev = FreeList->Prev;
131      Prev->Next = this;
132      Next->Prev = this;
133    }
134
135    /// GrowBlock - The block after this block just got deallocated.  Merge it
136    /// into the current block.
137    void GrowBlock(uintptr_t NewSize);
138
139    /// AllocateBlock - Mark this entire block allocated, updating freelists
140    /// etc.  This returns a pointer to the circular free-list.
141    FreeRangeHeader *AllocateBlock();
142  };
143}
144
145
146/// AllocateBlock - Mark this entire block allocated, updating freelists
147/// etc.  This returns a pointer to the circular free-list.
148FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
149  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
150         "Cannot allocate an allocated block!");
151  // Mark this block allocated.
152  ThisAllocated = 1;
153  getBlockAfter().PrevAllocated = 1;
154
155  // Remove it from the free list.
156  return RemoveFromFreeList();
157}
158
159/// FreeBlock - Turn an allocated block into a free block, adjusting
160/// bits in the object headers, and adding an end of region memory block.
161/// If possible, coalesce this block with neighboring blocks.  Return the
162/// FreeRangeHeader to allocate from.
163FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
164  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
165  assert(ThisAllocated && "This block is already free!");
166  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
167
168  FreeRangeHeader *FreeListToReturn = FreeList;
169
170  // If the block after this one is free, merge it into this block.
171  if (!FollowingBlock->ThisAllocated) {
172    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
173    // "FreeList" always needs to be a valid free block.  If we're about to
174    // coalesce with it, update our notion of what the free list is.
175    if (&FollowingFreeBlock == FreeList) {
176      FreeList = FollowingFreeBlock.Next;
177      FreeListToReturn = 0;
178      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
179    }
180    FollowingFreeBlock.RemoveFromFreeList();
181
182    // Include the following block into this one.
183    BlockSize += FollowingFreeBlock.BlockSize;
184    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
185
186    // Tell the block after the block we are coalescing that this block is
187    // allocated.
188    FollowingBlock->PrevAllocated = 1;
189  }
190
191  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
192
193  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
194    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
195    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
196  }
197
198  // Otherwise, mark this block free.
199  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
200  FollowingBlock->PrevAllocated = 0;
201  FreeBlock.ThisAllocated = 0;
202
203  // Link this into the linked list of free blocks.
204  FreeBlock.AddToFreeList(FreeList);
205
206  // Add a marker at the end of the block, indicating the size of this free
207  // block.
208  FreeBlock.SetEndOfBlockSizeMarker();
209  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
210}
211
212/// GrowBlock - The block after this block just got deallocated.  Merge it
213/// into the current block.
214void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
215  assert(NewSize > BlockSize && "Not growing block?");
216  BlockSize = NewSize;
217  SetEndOfBlockSizeMarker();
218  getBlockAfter().PrevAllocated = 0;
219}
220
221/// TrimAllocationToSize - If this allocated block is significantly larger
222/// than NewSize, split it into two pieces (where the former is NewSize
223/// bytes, including the header), and add the new block to the free list.
224FreeRangeHeader *MemoryRangeHeader::
225TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
226  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
227         "Cannot deallocate part of an allocated block!");
228
229  // Don't allow blocks to be trimmed below minimum required size
230  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
231
232  // Round up size for alignment of header.
233  unsigned HeaderAlign = __alignof(FreeRangeHeader);
234  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
235
236  // Size is now the size of the block we will remove from the start of the
237  // current block.
238  assert(NewSize <= BlockSize &&
239         "Allocating more space from this block than exists!");
240
241  // If splitting this block will cause the remainder to be too small, do not
242  // split the block.
243  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
244    return FreeList;
245
246  // Otherwise, we splice the required number of bytes out of this block, form
247  // a new block immediately after it, then mark this block allocated.
248  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
249
250  // Change the size of this block.
251  BlockSize = NewSize;
252
253  // Get the new block we just sliced out and turn it into a free block.
254  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
255  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
256  NewNextBlock.ThisAllocated = 0;
257  NewNextBlock.PrevAllocated = 1;
258  NewNextBlock.SetEndOfBlockSizeMarker();
259  FormerNextBlock.PrevAllocated = 0;
260  NewNextBlock.AddToFreeList(FreeList);
261  return &NewNextBlock;
262}
263
264//===----------------------------------------------------------------------===//
265// Memory Block Implementation.
266//===----------------------------------------------------------------------===//
267
268namespace {
269
270  class DefaultJITMemoryManager;
271
272  class JITSlabAllocator : public SlabAllocator {
273    DefaultJITMemoryManager &JMM;
274  public:
275    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
276    virtual ~JITSlabAllocator() { }
277    virtual MemSlab *Allocate(size_t Size);
278    virtual void Deallocate(MemSlab *Slab);
279  };
280
281  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
282  /// This splits a large block of MAP_NORESERVE'd memory into two
283  /// sections, one for function stubs, one for the functions themselves.  We
284  /// have to do this because we may need to emit a function stub while in the
285  /// middle of emitting a function, and we don't know how large the function we
286  /// are emitting is.
287  class DefaultJITMemoryManager : public JITMemoryManager {
288
289    // Whether to poison freed memory.
290    bool PoisonMemory;
291
292    /// LastSlab - This points to the last slab allocated and is used as the
293    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
294    /// stubs, data, and code contiguously in memory.  In general, however, this
295    /// is not possible because the NearBlock parameter is ignored on Windows
296    /// platforms and even on Unix it works on a best-effort pasis.
297    sys::MemoryBlock LastSlab;
298
299    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
300    // confuse them with the blocks of memory described above.
301    std::vector<sys::MemoryBlock> CodeSlabs;
302    JITSlabAllocator BumpSlabAllocator;
303    BumpPtrAllocator StubAllocator;
304    BumpPtrAllocator DataAllocator;
305
306    // Circular list of free blocks.
307    FreeRangeHeader *FreeMemoryList;
308
309    // When emitting code into a memory block, this is the block.
310    MemoryRangeHeader *CurBlock;
311
312    uint8_t *GOTBase;     // Target Specific reserved memory
313  public:
314    DefaultJITMemoryManager();
315    ~DefaultJITMemoryManager();
316
317    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
318    /// last slab it allocated, so that subsequent allocations follow it.
319    sys::MemoryBlock allocateNewSlab(size_t size);
320
321    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
322    /// least this much unless more is requested.
323    static const size_t DefaultCodeSlabSize;
324
325    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
326    /// an allocation above SizeThreshold.
327    static const size_t DefaultSlabSize;
328
329    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
330    /// should allocate a separate slab.
331    static const size_t DefaultSizeThreshold;
332
333    /// getPointerToNamedFunction - This method returns the address of the
334    /// specified function by using the dlsym function call.
335    virtual void *getPointerToNamedFunction(const std::string &Name,
336                                            bool AbortOnFailure = true);
337
338    void AllocateGOT();
339
340    // Testing methods.
341    virtual bool CheckInvariants(std::string &ErrorStr);
342    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
343    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
344    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
345    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
346    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
347    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
348
349    /// startFunctionBody - When a function starts, allocate a block of free
350    /// executable memory, returning a pointer to it and its actual size.
351    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
352
353      FreeRangeHeader* candidateBlock = FreeMemoryList;
354      FreeRangeHeader* head = FreeMemoryList;
355      FreeRangeHeader* iter = head->Next;
356
357      uintptr_t largest = candidateBlock->BlockSize;
358
359      // Search for the largest free block
360      while (iter != head) {
361        if (iter->BlockSize > largest) {
362          largest = iter->BlockSize;
363          candidateBlock = iter;
364        }
365        iter = iter->Next;
366      }
367
368      largest = largest - sizeof(MemoryRangeHeader);
369
370      // If this block isn't big enough for the allocation desired, allocate
371      // another block of memory and add it to the free list.
372      if (largest < ActualSize ||
373          largest <= FreeRangeHeader::getMinBlockSize()) {
374        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
375        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
376      }
377
378      // Select this candidate block for allocation
379      CurBlock = candidateBlock;
380
381      // Allocate the entire memory block.
382      FreeMemoryList = candidateBlock->AllocateBlock();
383      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
384      return (uint8_t *)(CurBlock + 1);
385    }
386
387    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
388    /// memory from the OS and add it to the free list.  Returns the new
389    /// FreeRangeHeader at the base of the slab.
390    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
391      // If the user needs at least MinSize free memory, then we account for
392      // two MemoryRangeHeaders: the one in the user's block, and the one at the
393      // end of the slab.
394      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
395      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
396      sys::MemoryBlock B = allocateNewSlab(SlabSize);
397      CodeSlabs.push_back(B);
398      char *MemBase = (char*)(B.base());
399
400      // Put a tiny allocated block at the end of the memory chunk, so when
401      // FreeBlock calls getBlockAfter it doesn't fall off the end.
402      MemoryRangeHeader *EndBlock =
403          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
404      EndBlock->ThisAllocated = 1;
405      EndBlock->PrevAllocated = 0;
406      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
407
408      // Start out with a vast new block of free memory.
409      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
410      NewBlock->ThisAllocated = 0;
411      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
412      NewBlock->PrevAllocated = 1;
413      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
414      NewBlock->SetEndOfBlockSizeMarker();
415      NewBlock->AddToFreeList(FreeMemoryList);
416
417      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
418             "The block was too small!");
419      return NewBlock;
420    }
421
422    /// endFunctionBody - The function F is now allocated, and takes the memory
423    /// in the range [FunctionStart,FunctionEnd).
424    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
425                         uint8_t *FunctionEnd) {
426      assert(FunctionEnd > FunctionStart);
427      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
428             "Mismatched function start/end!");
429
430      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
431
432      // Release the memory at the end of this block that isn't needed.
433      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
434    }
435
436    /// allocateSpace - Allocate a memory block of the given size.  This method
437    /// cannot be called between calls to startFunctionBody and endFunctionBody.
438    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
439      CurBlock = FreeMemoryList;
440      FreeMemoryList = FreeMemoryList->AllocateBlock();
441
442      uint8_t *result = (uint8_t *)(CurBlock + 1);
443
444      if (Alignment == 0) Alignment = 1;
445      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
446               ~(intptr_t)(Alignment-1));
447
448      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
449      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
450
451      return result;
452    }
453
454    /// allocateStub - Allocate memory for a function stub.
455    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
456                          unsigned Alignment) {
457      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
458    }
459
460    /// allocateGlobal - Allocate memory for a global.
461    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
462      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
463    }
464
465    /// allocateCodeSection - Allocate memory for a code section.
466    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
467                                 unsigned SectionID, StringRef SectionName) {
468      // Grow the required block size to account for the block header
469      Size += sizeof(*CurBlock);
470
471      // Alignment handling.
472      if (!Alignment)
473        Alignment = 16;
474      Size += Alignment - 1;
475
476      FreeRangeHeader* candidateBlock = FreeMemoryList;
477      FreeRangeHeader* head = FreeMemoryList;
478      FreeRangeHeader* iter = head->Next;
479
480      uintptr_t largest = candidateBlock->BlockSize;
481
482      // Search for the largest free block.
483      while (iter != head) {
484        if (iter->BlockSize > largest) {
485          largest = iter->BlockSize;
486          candidateBlock = iter;
487        }
488        iter = iter->Next;
489      }
490
491      largest = largest - sizeof(MemoryRangeHeader);
492
493      // If this block isn't big enough for the allocation desired, allocate
494      // another block of memory and add it to the free list.
495      if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
496        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
497        candidateBlock = allocateNewCodeSlab((size_t)Size);
498      }
499
500      // Select this candidate block for allocation
501      CurBlock = candidateBlock;
502
503      // Allocate the entire memory block.
504      FreeMemoryList = candidateBlock->AllocateBlock();
505      // Release the memory at the end of this block that isn't needed.
506      FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
507      uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
508      return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
509    }
510
511    /// allocateDataSection - Allocate memory for a data section.
512    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
513                                 unsigned SectionID, StringRef SectionName,
514                                 bool IsReadOnly) {
515      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
516    }
517
518    bool finalizeMemory(std::string *ErrMsg) {
519      return false;
520    }
521
522    uint8_t *getGOTBase() const {
523      return GOTBase;
524    }
525
526    void deallocateBlock(void *Block) {
527      // Find the block that is allocated for this function.
528      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
529      assert(MemRange->ThisAllocated && "Block isn't allocated!");
530
531      // Fill the buffer with garbage!
532      if (PoisonMemory) {
533        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
534      }
535
536      // Free the memory.
537      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
538    }
539
540    /// deallocateFunctionBody - Deallocate all memory for the specified
541    /// function body.
542    void deallocateFunctionBody(void *Body) {
543      if (Body) deallocateBlock(Body);
544    }
545
546    /// setMemoryWritable - When code generation is in progress,
547    /// the code pages may need permissions changed.
548    void setMemoryWritable()
549    {
550      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
551        sys::Memory::setWritable(CodeSlabs[i]);
552    }
553    /// setMemoryExecutable - When code generation is done and we're ready to
554    /// start execution, the code pages may need permissions changed.
555    void setMemoryExecutable()
556    {
557      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
558        sys::Memory::setExecutable(CodeSlabs[i]);
559    }
560
561    /// setPoisonMemory - Controls whether we write garbage over freed memory.
562    ///
563    void setPoisonMemory(bool poison) {
564      PoisonMemory = poison;
565    }
566  };
567}
568
569MemSlab *JITSlabAllocator::Allocate(size_t Size) {
570  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
571  MemSlab *Slab = (MemSlab*)B.base();
572  Slab->Size = B.size();
573  Slab->NextPtr = 0;
574  return Slab;
575}
576
577void JITSlabAllocator::Deallocate(MemSlab *Slab) {
578  sys::MemoryBlock B(Slab, Slab->Size);
579  sys::Memory::ReleaseRWX(B);
580}
581
582DefaultJITMemoryManager::DefaultJITMemoryManager()
583  :
584#ifdef NDEBUG
585    PoisonMemory(false),
586#else
587    PoisonMemory(true),
588#endif
589    LastSlab(0, 0),
590    BumpSlabAllocator(*this),
591    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
592    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
593
594  // Allocate space for code.
595  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
596  CodeSlabs.push_back(MemBlock);
597  uint8_t *MemBase = (uint8_t*)MemBlock.base();
598
599  // We set up the memory chunk with 4 mem regions, like this:
600  //  [ START
601  //    [ Free      #0 ] -> Large space to allocate functions from.
602  //    [ Allocated #1 ] -> Tiny space to separate regions.
603  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
604  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
605  //  END ]
606  //
607  // The last three blocks are never deallocated or touched.
608
609  // Add MemoryRangeHeader to the end of the memory region, indicating that
610  // the space after the block of memory is allocated.  This is block #3.
611  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
612  Mem3->ThisAllocated = 1;
613  Mem3->PrevAllocated = 0;
614  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
615
616  /// Add a tiny free region so that the free list always has one entry.
617  FreeRangeHeader *Mem2 =
618    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
619  Mem2->ThisAllocated = 0;
620  Mem2->PrevAllocated = 1;
621  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
622  Mem2->SetEndOfBlockSizeMarker();
623  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
624  Mem2->Next = Mem2;
625
626  /// Add a tiny allocated region so that Mem2 is never coalesced away.
627  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
628  Mem1->ThisAllocated = 1;
629  Mem1->PrevAllocated = 0;
630  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
631
632  // Add a FreeRangeHeader to the start of the function body region, indicating
633  // that the space is free.  Mark the previous block allocated so we never look
634  // at it.
635  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
636  Mem0->ThisAllocated = 0;
637  Mem0->PrevAllocated = 1;
638  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
639  Mem0->SetEndOfBlockSizeMarker();
640  Mem0->AddToFreeList(Mem2);
641
642  // Start out with the freelist pointing to Mem0.
643  FreeMemoryList = Mem0;
644
645  GOTBase = NULL;
646}
647
648void DefaultJITMemoryManager::AllocateGOT() {
649  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
650  GOTBase = new uint8_t[sizeof(void*) * 8192];
651  HasGOT = true;
652}
653
654DefaultJITMemoryManager::~DefaultJITMemoryManager() {
655  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
656    sys::Memory::ReleaseRWX(CodeSlabs[i]);
657
658  delete[] GOTBase;
659}
660
661sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
662  // Allocate a new block close to the last one.
663  std::string ErrMsg;
664  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
665  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
666  if (B.base() == 0) {
667    report_fatal_error("Allocation failed when allocating new memory in the"
668                       " JIT\n" + Twine(ErrMsg));
669  }
670  LastSlab = B;
671  ++NumSlabs;
672  // Initialize the slab to garbage when debugging.
673  if (PoisonMemory) {
674    memset(B.base(), 0xCD, B.size());
675  }
676  return B;
677}
678
679/// CheckInvariants - For testing only.  Return "" if all internal invariants
680/// are preserved, and a helpful error message otherwise.  For free and
681/// allocated blocks, make sure that adding BlockSize gives a valid block.
682/// For free blocks, make sure they're in the free list and that their end of
683/// block size marker is correct.  This function should return an error before
684/// accessing bad memory.  This function is defined here instead of in
685/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
686/// implementation details of DefaultJITMemoryManager.
687bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
688  raw_string_ostream Err(ErrorStr);
689
690  // Construct a the set of FreeRangeHeader pointers so we can query it
691  // efficiently.
692  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
693  FreeRangeHeader* FreeHead = FreeMemoryList;
694  FreeRangeHeader* FreeRange = FreeHead;
695
696  do {
697    // Check that the free range pointer is in the blocks we've allocated.
698    bool Found = false;
699    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
700         E = CodeSlabs.end(); I != E && !Found; ++I) {
701      char *Start = (char*)I->base();
702      char *End = Start + I->size();
703      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
704    }
705    if (!Found) {
706      Err << "Corrupt free list; points to " << FreeRange;
707      return false;
708    }
709
710    if (FreeRange->Next->Prev != FreeRange) {
711      Err << "Next and Prev pointers do not match.";
712      return false;
713    }
714
715    // Otherwise, add it to the set.
716    FreeHdrSet.insert(FreeRange);
717    FreeRange = FreeRange->Next;
718  } while (FreeRange != FreeHead);
719
720  // Go over each block, and look at each MemoryRangeHeader.
721  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
722       E = CodeSlabs.end(); I != E; ++I) {
723    char *Start = (char*)I->base();
724    char *End = Start + I->size();
725
726    // Check each memory range.
727    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
728         Start <= (char*)Hdr && (char*)Hdr < End;
729         Hdr = &Hdr->getBlockAfter()) {
730      if (Hdr->ThisAllocated == 0) {
731        // Check that this range is in the free list.
732        if (!FreeHdrSet.count(Hdr)) {
733          Err << "Found free header at " << Hdr << " that is not in free list.";
734          return false;
735        }
736
737        // Now make sure the size marker at the end of the block is correct.
738        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
739        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
740          Err << "Block size in header points out of current MemoryBlock.";
741          return false;
742        }
743        if (Hdr->BlockSize != *Marker) {
744          Err << "End of block size marker (" << *Marker << ") "
745              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
746          return false;
747        }
748      }
749
750      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
751        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
752            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
753        return false;
754      } else if (!LastHdr && !Hdr->PrevAllocated) {
755        Err << "The first header should have PrevAllocated true.";
756        return false;
757      }
758
759      // Remember the last header.
760      LastHdr = Hdr;
761    }
762  }
763
764  // All invariants are preserved.
765  return true;
766}
767
768//===----------------------------------------------------------------------===//
769// getPointerToNamedFunction() implementation.
770//===----------------------------------------------------------------------===//
771
772// AtExitHandlers - List of functions to call when the program exits,
773// registered with the atexit() library function.
774static std::vector<void (*)()> AtExitHandlers;
775
776/// runAtExitHandlers - Run any functions registered by the program's
777/// calls to atexit(3), which we intercept and store in
778/// AtExitHandlers.
779///
780static void runAtExitHandlers() {
781  while (!AtExitHandlers.empty()) {
782    void (*Fn)() = AtExitHandlers.back();
783    AtExitHandlers.pop_back();
784    Fn();
785  }
786}
787
788//===----------------------------------------------------------------------===//
789// Function stubs that are invoked instead of certain library calls
790//
791// Force the following functions to be linked in to anything that uses the
792// JIT. This is a hack designed to work around the all-too-clever Glibc
793// strategy of making these functions work differently when inlined vs. when
794// not inlined, and hiding their real definitions in a separate archive file
795// that the dynamic linker can't see. For more info, search for
796// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
797#if defined(__linux__) && defined(__GLIBC__)
798/* stat functions are redirecting to __xstat with a version number.  On x86-64
799 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
800 * available as an exported symbol, so we have to add it explicitly.
801 */
802namespace {
803class StatSymbols {
804public:
805  StatSymbols() {
806    sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
807    sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
808    sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
809    sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
810    sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
811    sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
812    sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
813    sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
814    sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
815    sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
816    sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
817  }
818};
819}
820static StatSymbols initStatSymbols;
821#endif // __linux__
822
823// jit_exit - Used to intercept the "exit" library call.
824static void jit_exit(int Status) {
825  runAtExitHandlers();   // Run atexit handlers...
826  exit(Status);
827}
828
829// jit_atexit - Used to intercept the "atexit" library call.
830static int jit_atexit(void (*Fn)()) {
831  AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
832  return 0;  // Always successful
833}
834
835static int jit_noop() {
836  return 0;
837}
838
839//===----------------------------------------------------------------------===//
840//
841/// getPointerToNamedFunction - This method returns the address of the specified
842/// function by using the dynamic loader interface.  As such it is only useful
843/// for resolving library symbols, not code generated symbols.
844///
845void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
846                                                         bool AbortOnFailure) {
847  // Check to see if this is one of the functions we want to intercept.  Note,
848  // we cast to intptr_t here to silence a -pedantic warning that complains
849  // about casting a function pointer to a normal pointer.
850  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
851  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
852
853  // We should not invoke parent's ctors/dtors from generated main()!
854  // On Mingw and Cygwin, the symbol __main is resolved to
855  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
856  // (and register wrong callee's dtors with atexit(3)).
857  // We expect ExecutionEngine::runStaticConstructorsDestructors()
858  // is called before ExecutionEngine::runFunctionAsMain() is called.
859  if (Name == "__main") return (void*)(intptr_t)&jit_noop;
860
861  const char *NameStr = Name.c_str();
862  // If this is an asm specifier, skip the sentinal.
863  if (NameStr[0] == 1) ++NameStr;
864
865  // If it's an external function, look it up in the process image...
866  void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
867  if (Ptr) return Ptr;
868
869  // If it wasn't found and if it starts with an underscore ('_') character,
870  // try again without the underscore.
871  if (NameStr[0] == '_') {
872    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
873    if (Ptr) return Ptr;
874  }
875
876  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
877  // are references to hidden visibility symbols that dlsym cannot resolve.
878  // If we have one of these, strip off $LDBLStub and try again.
879#if defined(__APPLE__) && defined(__ppc__)
880  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
881      memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
882    // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
883    // This mirrors logic in libSystemStubs.a.
884    std::string Prefix = std::string(Name.begin(), Name.end()-9);
885    if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
886      return Ptr;
887    if (void *Ptr = getPointerToNamedFunction(Prefix, false))
888      return Ptr;
889  }
890#endif
891
892  if (AbortOnFailure) {
893    report_fatal_error("Program used external function '"+Name+
894                      "' which could not be resolved!");
895  }
896  return 0;
897}
898
899
900
901JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
902  return new DefaultJITMemoryManager();
903}
904
905// Allocate memory for code in 512K slabs.
906const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
907
908// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
909const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
910
911// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
912const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
913