JITMemoryManager.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Config/config.h"
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/DynamicLibrary.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/Memory.h"
27#include "llvm/Support/raw_ostream.h"
28#include <cassert>
29#include <climits>
30#include <cstring>
31#include <vector>
32
33#if defined(__linux__)
34#if defined(HAVE_SYS_STAT_H)
35#include <sys/stat.h>
36#endif
37#include <fcntl.h>
38#include <unistd.h>
39#endif
40
41using namespace llvm;
42
43STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
44
45JITMemoryManager::~JITMemoryManager() {}
46
47//===----------------------------------------------------------------------===//
48// Memory Block Implementation.
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// MemoryRangeHeader - For a range of memory, this is the header that we put
53  /// on the block of memory.  It is carefully crafted to be one word of memory.
54  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
55  /// which starts with this.
56  struct FreeRangeHeader;
57  struct MemoryRangeHeader {
58    /// ThisAllocated - This is true if this block is currently allocated.  If
59    /// not, this can be converted to a FreeRangeHeader.
60    unsigned ThisAllocated : 1;
61
62    /// PrevAllocated - Keep track of whether the block immediately before us is
63    /// allocated.  If not, the word immediately before this header is the size
64    /// of the previous block.
65    unsigned PrevAllocated : 1;
66
67    /// BlockSize - This is the size in bytes of this memory block,
68    /// including this header.
69    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
70
71
72    /// getBlockAfter - Return the memory block immediately after this one.
73    ///
74    MemoryRangeHeader &getBlockAfter() const {
75      return *reinterpret_cast<MemoryRangeHeader *>(
76                reinterpret_cast<char*>(
77                  const_cast<MemoryRangeHeader *>(this))+BlockSize);
78    }
79
80    /// getFreeBlockBefore - If the block before this one is free, return it,
81    /// otherwise return null.
82    FreeRangeHeader *getFreeBlockBefore() const {
83      if (PrevAllocated) return 0;
84      intptr_t PrevSize = reinterpret_cast<intptr_t *>(
85                            const_cast<MemoryRangeHeader *>(this))[-1];
86      return reinterpret_cast<FreeRangeHeader *>(
87               reinterpret_cast<char*>(
88                 const_cast<MemoryRangeHeader *>(this))-PrevSize);
89    }
90
91    /// FreeBlock - Turn an allocated block into a free block, adjusting
92    /// bits in the object headers, and adding an end of region memory block.
93    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
94
95    /// TrimAllocationToSize - If this allocated block is significantly larger
96    /// than NewSize, split it into two pieces (where the former is NewSize
97    /// bytes, including the header), and add the new block to the free list.
98    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
99                                          uint64_t NewSize);
100  };
101
102  /// FreeRangeHeader - For a memory block that isn't already allocated, this
103  /// keeps track of the current block and has a pointer to the next free block.
104  /// Free blocks are kept on a circularly linked list.
105  struct FreeRangeHeader : public MemoryRangeHeader {
106    FreeRangeHeader *Prev;
107    FreeRangeHeader *Next;
108
109    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
110    /// smaller than this size cannot be created.
111    static unsigned getMinBlockSize() {
112      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
113    }
114
115    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
116    /// known to be the size of the free block.  Set it for this block.
117    void SetEndOfBlockSizeMarker() {
118      void *EndOfBlock = (char*)this + BlockSize;
119      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
120    }
121
122    FreeRangeHeader *RemoveFromFreeList() {
123      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
124      Next->Prev = Prev;
125      return Prev->Next = Next;
126    }
127
128    void AddToFreeList(FreeRangeHeader *FreeList) {
129      Next = FreeList;
130      Prev = FreeList->Prev;
131      Prev->Next = this;
132      Next->Prev = this;
133    }
134
135    /// GrowBlock - The block after this block just got deallocated.  Merge it
136    /// into the current block.
137    void GrowBlock(uintptr_t NewSize);
138
139    /// AllocateBlock - Mark this entire block allocated, updating freelists
140    /// etc.  This returns a pointer to the circular free-list.
141    FreeRangeHeader *AllocateBlock();
142  };
143}
144
145
146/// AllocateBlock - Mark this entire block allocated, updating freelists
147/// etc.  This returns a pointer to the circular free-list.
148FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
149  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
150         "Cannot allocate an allocated block!");
151  // Mark this block allocated.
152  ThisAllocated = 1;
153  getBlockAfter().PrevAllocated = 1;
154
155  // Remove it from the free list.
156  return RemoveFromFreeList();
157}
158
159/// FreeBlock - Turn an allocated block into a free block, adjusting
160/// bits in the object headers, and adding an end of region memory block.
161/// If possible, coalesce this block with neighboring blocks.  Return the
162/// FreeRangeHeader to allocate from.
163FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
164  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
165  assert(ThisAllocated && "This block is already free!");
166  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
167
168  FreeRangeHeader *FreeListToReturn = FreeList;
169
170  // If the block after this one is free, merge it into this block.
171  if (!FollowingBlock->ThisAllocated) {
172    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
173    // "FreeList" always needs to be a valid free block.  If we're about to
174    // coalesce with it, update our notion of what the free list is.
175    if (&FollowingFreeBlock == FreeList) {
176      FreeList = FollowingFreeBlock.Next;
177      FreeListToReturn = 0;
178      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
179    }
180    FollowingFreeBlock.RemoveFromFreeList();
181
182    // Include the following block into this one.
183    BlockSize += FollowingFreeBlock.BlockSize;
184    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
185
186    // Tell the block after the block we are coalescing that this block is
187    // allocated.
188    FollowingBlock->PrevAllocated = 1;
189  }
190
191  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
192
193  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
194    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
195    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
196  }
197
198  // Otherwise, mark this block free.
199  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
200  FollowingBlock->PrevAllocated = 0;
201  FreeBlock.ThisAllocated = 0;
202
203  // Link this into the linked list of free blocks.
204  FreeBlock.AddToFreeList(FreeList);
205
206  // Add a marker at the end of the block, indicating the size of this free
207  // block.
208  FreeBlock.SetEndOfBlockSizeMarker();
209  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
210}
211
212/// GrowBlock - The block after this block just got deallocated.  Merge it
213/// into the current block.
214void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
215  assert(NewSize > BlockSize && "Not growing block?");
216  BlockSize = NewSize;
217  SetEndOfBlockSizeMarker();
218  getBlockAfter().PrevAllocated = 0;
219}
220
221/// TrimAllocationToSize - If this allocated block is significantly larger
222/// than NewSize, split it into two pieces (where the former is NewSize
223/// bytes, including the header), and add the new block to the free list.
224FreeRangeHeader *MemoryRangeHeader::
225TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
226  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
227         "Cannot deallocate part of an allocated block!");
228
229  // Don't allow blocks to be trimmed below minimum required size
230  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
231
232  // Round up size for alignment of header.
233  unsigned HeaderAlign = __alignof(FreeRangeHeader);
234  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
235
236  // Size is now the size of the block we will remove from the start of the
237  // current block.
238  assert(NewSize <= BlockSize &&
239         "Allocating more space from this block than exists!");
240
241  // If splitting this block will cause the remainder to be too small, do not
242  // split the block.
243  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
244    return FreeList;
245
246  // Otherwise, we splice the required number of bytes out of this block, form
247  // a new block immediately after it, then mark this block allocated.
248  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
249
250  // Change the size of this block.
251  BlockSize = NewSize;
252
253  // Get the new block we just sliced out and turn it into a free block.
254  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
255  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
256  NewNextBlock.ThisAllocated = 0;
257  NewNextBlock.PrevAllocated = 1;
258  NewNextBlock.SetEndOfBlockSizeMarker();
259  FormerNextBlock.PrevAllocated = 0;
260  NewNextBlock.AddToFreeList(FreeList);
261  return &NewNextBlock;
262}
263
264//===----------------------------------------------------------------------===//
265// Memory Block Implementation.
266//===----------------------------------------------------------------------===//
267
268namespace {
269
270  class DefaultJITMemoryManager;
271
272  class JITSlabAllocator : public SlabAllocator {
273    DefaultJITMemoryManager &JMM;
274  public:
275    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
276    virtual ~JITSlabAllocator() { }
277    MemSlab *Allocate(size_t Size) override;
278    void Deallocate(MemSlab *Slab) override;
279  };
280
281  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
282  /// This splits a large block of MAP_NORESERVE'd memory into two
283  /// sections, one for function stubs, one for the functions themselves.  We
284  /// have to do this because we may need to emit a function stub while in the
285  /// middle of emitting a function, and we don't know how large the function we
286  /// are emitting is.
287  class DefaultJITMemoryManager : public JITMemoryManager {
288  public:
289    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
290    /// least this much unless more is requested. Currently, in 512k slabs.
291    static const size_t DefaultCodeSlabSize = 512 * 1024;
292
293    /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably
294    /// 16 pages) unless we get an allocation above SizeThreshold.
295    static const size_t DefaultSlabSize = 64 * 1024;
296
297    /// DefaultSizeThreshold - For any allocation larger than 16K (probably
298    /// 4 pages), we should allocate a separate slab to avoid wasted space at
299    /// the end of a normal slab.
300    static const size_t DefaultSizeThreshold = 16 * 1024;
301
302  private:
303    // Whether to poison freed memory.
304    bool PoisonMemory;
305
306    /// LastSlab - This points to the last slab allocated and is used as the
307    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
308    /// stubs, data, and code contiguously in memory.  In general, however, this
309    /// is not possible because the NearBlock parameter is ignored on Windows
310    /// platforms and even on Unix it works on a best-effort pasis.
311    sys::MemoryBlock LastSlab;
312
313    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
314    // confuse them with the blocks of memory described above.
315    std::vector<sys::MemoryBlock> CodeSlabs;
316    JITSlabAllocator BumpSlabAllocator;
317    BumpPtrAllocatorImpl<DefaultSlabSize, DefaultSizeThreshold> StubAllocator;
318    BumpPtrAllocatorImpl<DefaultSlabSize, DefaultSizeThreshold> DataAllocator;
319
320    // Circular list of free blocks.
321    FreeRangeHeader *FreeMemoryList;
322
323    // When emitting code into a memory block, this is the block.
324    MemoryRangeHeader *CurBlock;
325
326    uint8_t *GOTBase;     // Target Specific reserved memory
327  public:
328    DefaultJITMemoryManager();
329    ~DefaultJITMemoryManager();
330
331    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
332    /// last slab it allocated, so that subsequent allocations follow it.
333    sys::MemoryBlock allocateNewSlab(size_t size);
334
335    /// getPointerToNamedFunction - This method returns the address of the
336    /// specified function by using the dlsym function call.
337    void *getPointerToNamedFunction(const std::string &Name,
338                                    bool AbortOnFailure = true) override;
339
340    void AllocateGOT() override;
341
342    // Testing methods.
343    bool CheckInvariants(std::string &ErrorStr) override;
344    size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; }
345    size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; }
346    size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; }
347    unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); }
348    unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); }
349    unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); }
350
351    /// startFunctionBody - When a function starts, allocate a block of free
352    /// executable memory, returning a pointer to it and its actual size.
353    uint8_t *startFunctionBody(const Function *F,
354                               uintptr_t &ActualSize) override {
355
356      FreeRangeHeader* candidateBlock = FreeMemoryList;
357      FreeRangeHeader* head = FreeMemoryList;
358      FreeRangeHeader* iter = head->Next;
359
360      uintptr_t largest = candidateBlock->BlockSize;
361
362      // Search for the largest free block
363      while (iter != head) {
364        if (iter->BlockSize > largest) {
365          largest = iter->BlockSize;
366          candidateBlock = iter;
367        }
368        iter = iter->Next;
369      }
370
371      largest = largest - sizeof(MemoryRangeHeader);
372
373      // If this block isn't big enough for the allocation desired, allocate
374      // another block of memory and add it to the free list.
375      if (largest < ActualSize ||
376          largest <= FreeRangeHeader::getMinBlockSize()) {
377        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
378        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
379      }
380
381      // Select this candidate block for allocation
382      CurBlock = candidateBlock;
383
384      // Allocate the entire memory block.
385      FreeMemoryList = candidateBlock->AllocateBlock();
386      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
387      return (uint8_t *)(CurBlock + 1);
388    }
389
390    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
391    /// memory from the OS and add it to the free list.  Returns the new
392    /// FreeRangeHeader at the base of the slab.
393    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
394      // If the user needs at least MinSize free memory, then we account for
395      // two MemoryRangeHeaders: the one in the user's block, and the one at the
396      // end of the slab.
397      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
398      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
399      sys::MemoryBlock B = allocateNewSlab(SlabSize);
400      CodeSlabs.push_back(B);
401      char *MemBase = (char*)(B.base());
402
403      // Put a tiny allocated block at the end of the memory chunk, so when
404      // FreeBlock calls getBlockAfter it doesn't fall off the end.
405      MemoryRangeHeader *EndBlock =
406          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
407      EndBlock->ThisAllocated = 1;
408      EndBlock->PrevAllocated = 0;
409      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
410
411      // Start out with a vast new block of free memory.
412      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
413      NewBlock->ThisAllocated = 0;
414      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
415      NewBlock->PrevAllocated = 1;
416      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
417      NewBlock->SetEndOfBlockSizeMarker();
418      NewBlock->AddToFreeList(FreeMemoryList);
419
420      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
421             "The block was too small!");
422      return NewBlock;
423    }
424
425    /// endFunctionBody - The function F is now allocated, and takes the memory
426    /// in the range [FunctionStart,FunctionEnd).
427    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
428                         uint8_t *FunctionEnd) override {
429      assert(FunctionEnd > FunctionStart);
430      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
431             "Mismatched function start/end!");
432
433      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
434
435      // Release the memory at the end of this block that isn't needed.
436      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
437    }
438
439    /// allocateSpace - Allocate a memory block of the given size.  This method
440    /// cannot be called between calls to startFunctionBody and endFunctionBody.
441    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override {
442      CurBlock = FreeMemoryList;
443      FreeMemoryList = FreeMemoryList->AllocateBlock();
444
445      uint8_t *result = (uint8_t *)(CurBlock + 1);
446
447      if (Alignment == 0) Alignment = 1;
448      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
449               ~(intptr_t)(Alignment-1));
450
451      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
452      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
453
454      return result;
455    }
456
457    /// allocateStub - Allocate memory for a function stub.
458    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
459                          unsigned Alignment) override {
460      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
461    }
462
463    /// allocateGlobal - Allocate memory for a global.
464    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override {
465      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
466    }
467
468    /// allocateCodeSection - Allocate memory for a code section.
469    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
470                                 unsigned SectionID,
471                                 StringRef SectionName) override {
472      // Grow the required block size to account for the block header
473      Size += sizeof(*CurBlock);
474
475      // Alignment handling.
476      if (!Alignment)
477        Alignment = 16;
478      Size += Alignment - 1;
479
480      FreeRangeHeader* candidateBlock = FreeMemoryList;
481      FreeRangeHeader* head = FreeMemoryList;
482      FreeRangeHeader* iter = head->Next;
483
484      uintptr_t largest = candidateBlock->BlockSize;
485
486      // Search for the largest free block.
487      while (iter != head) {
488        if (iter->BlockSize > largest) {
489          largest = iter->BlockSize;
490          candidateBlock = iter;
491        }
492        iter = iter->Next;
493      }
494
495      largest = largest - sizeof(MemoryRangeHeader);
496
497      // If this block isn't big enough for the allocation desired, allocate
498      // another block of memory and add it to the free list.
499      if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
500        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
501        candidateBlock = allocateNewCodeSlab((size_t)Size);
502      }
503
504      // Select this candidate block for allocation
505      CurBlock = candidateBlock;
506
507      // Allocate the entire memory block.
508      FreeMemoryList = candidateBlock->AllocateBlock();
509      // Release the memory at the end of this block that isn't needed.
510      FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
511      uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
512      return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
513    }
514
515    /// allocateDataSection - Allocate memory for a data section.
516    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
517                                 unsigned SectionID, StringRef SectionName,
518                                 bool IsReadOnly) override {
519      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
520    }
521
522    bool finalizeMemory(std::string *ErrMsg) override {
523      return false;
524    }
525
526    uint8_t *getGOTBase() const override {
527      return GOTBase;
528    }
529
530    void deallocateBlock(void *Block) {
531      // Find the block that is allocated for this function.
532      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
533      assert(MemRange->ThisAllocated && "Block isn't allocated!");
534
535      // Fill the buffer with garbage!
536      if (PoisonMemory) {
537        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
538      }
539
540      // Free the memory.
541      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
542    }
543
544    /// deallocateFunctionBody - Deallocate all memory for the specified
545    /// function body.
546    void deallocateFunctionBody(void *Body) override {
547      if (Body) deallocateBlock(Body);
548    }
549
550    /// setMemoryWritable - When code generation is in progress,
551    /// the code pages may need permissions changed.
552    void setMemoryWritable() override {
553      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
554        sys::Memory::setWritable(CodeSlabs[i]);
555    }
556    /// setMemoryExecutable - When code generation is done and we're ready to
557    /// start execution, the code pages may need permissions changed.
558    void setMemoryExecutable() override {
559      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
560        sys::Memory::setExecutable(CodeSlabs[i]);
561    }
562
563    /// setPoisonMemory - Controls whether we write garbage over freed memory.
564    ///
565    void setPoisonMemory(bool poison) override {
566      PoisonMemory = poison;
567    }
568  };
569}
570
571MemSlab *JITSlabAllocator::Allocate(size_t Size) {
572  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
573  MemSlab *Slab = (MemSlab*)B.base();
574  Slab->Size = B.size();
575  Slab->NextPtr = 0;
576  return Slab;
577}
578
579void JITSlabAllocator::Deallocate(MemSlab *Slab) {
580  sys::MemoryBlock B(Slab, Slab->Size);
581  sys::Memory::ReleaseRWX(B);
582}
583
584DefaultJITMemoryManager::DefaultJITMemoryManager()
585  :
586#ifdef NDEBUG
587    PoisonMemory(false),
588#else
589    PoisonMemory(true),
590#endif
591    LastSlab(0, 0),
592    BumpSlabAllocator(*this),
593    StubAllocator(BumpSlabAllocator),
594    DataAllocator(BumpSlabAllocator) {
595
596  // Allocate space for code.
597  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
598  CodeSlabs.push_back(MemBlock);
599  uint8_t *MemBase = (uint8_t*)MemBlock.base();
600
601  // We set up the memory chunk with 4 mem regions, like this:
602  //  [ START
603  //    [ Free      #0 ] -> Large space to allocate functions from.
604  //    [ Allocated #1 ] -> Tiny space to separate regions.
605  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
606  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
607  //  END ]
608  //
609  // The last three blocks are never deallocated or touched.
610
611  // Add MemoryRangeHeader to the end of the memory region, indicating that
612  // the space after the block of memory is allocated.  This is block #3.
613  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
614  Mem3->ThisAllocated = 1;
615  Mem3->PrevAllocated = 0;
616  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
617
618  /// Add a tiny free region so that the free list always has one entry.
619  FreeRangeHeader *Mem2 =
620    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
621  Mem2->ThisAllocated = 0;
622  Mem2->PrevAllocated = 1;
623  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
624  Mem2->SetEndOfBlockSizeMarker();
625  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
626  Mem2->Next = Mem2;
627
628  /// Add a tiny allocated region so that Mem2 is never coalesced away.
629  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
630  Mem1->ThisAllocated = 1;
631  Mem1->PrevAllocated = 0;
632  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
633
634  // Add a FreeRangeHeader to the start of the function body region, indicating
635  // that the space is free.  Mark the previous block allocated so we never look
636  // at it.
637  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
638  Mem0->ThisAllocated = 0;
639  Mem0->PrevAllocated = 1;
640  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
641  Mem0->SetEndOfBlockSizeMarker();
642  Mem0->AddToFreeList(Mem2);
643
644  // Start out with the freelist pointing to Mem0.
645  FreeMemoryList = Mem0;
646
647  GOTBase = NULL;
648}
649
650void DefaultJITMemoryManager::AllocateGOT() {
651  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
652  GOTBase = new uint8_t[sizeof(void*) * 8192];
653  HasGOT = true;
654}
655
656DefaultJITMemoryManager::~DefaultJITMemoryManager() {
657  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
658    sys::Memory::ReleaseRWX(CodeSlabs[i]);
659
660  delete[] GOTBase;
661}
662
663sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
664  // Allocate a new block close to the last one.
665  std::string ErrMsg;
666  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
667  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
668  if (B.base() == 0) {
669    report_fatal_error("Allocation failed when allocating new memory in the"
670                       " JIT\n" + Twine(ErrMsg));
671  }
672  LastSlab = B;
673  ++NumSlabs;
674  // Initialize the slab to garbage when debugging.
675  if (PoisonMemory) {
676    memset(B.base(), 0xCD, B.size());
677  }
678  return B;
679}
680
681/// CheckInvariants - For testing only.  Return "" if all internal invariants
682/// are preserved, and a helpful error message otherwise.  For free and
683/// allocated blocks, make sure that adding BlockSize gives a valid block.
684/// For free blocks, make sure they're in the free list and that their end of
685/// block size marker is correct.  This function should return an error before
686/// accessing bad memory.  This function is defined here instead of in
687/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
688/// implementation details of DefaultJITMemoryManager.
689bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
690  raw_string_ostream Err(ErrorStr);
691
692  // Construct a the set of FreeRangeHeader pointers so we can query it
693  // efficiently.
694  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
695  FreeRangeHeader* FreeHead = FreeMemoryList;
696  FreeRangeHeader* FreeRange = FreeHead;
697
698  do {
699    // Check that the free range pointer is in the blocks we've allocated.
700    bool Found = false;
701    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
702         E = CodeSlabs.end(); I != E && !Found; ++I) {
703      char *Start = (char*)I->base();
704      char *End = Start + I->size();
705      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
706    }
707    if (!Found) {
708      Err << "Corrupt free list; points to " << FreeRange;
709      return false;
710    }
711
712    if (FreeRange->Next->Prev != FreeRange) {
713      Err << "Next and Prev pointers do not match.";
714      return false;
715    }
716
717    // Otherwise, add it to the set.
718    FreeHdrSet.insert(FreeRange);
719    FreeRange = FreeRange->Next;
720  } while (FreeRange != FreeHead);
721
722  // Go over each block, and look at each MemoryRangeHeader.
723  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
724       E = CodeSlabs.end(); I != E; ++I) {
725    char *Start = (char*)I->base();
726    char *End = Start + I->size();
727
728    // Check each memory range.
729    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
730         Start <= (char*)Hdr && (char*)Hdr < End;
731         Hdr = &Hdr->getBlockAfter()) {
732      if (Hdr->ThisAllocated == 0) {
733        // Check that this range is in the free list.
734        if (!FreeHdrSet.count(Hdr)) {
735          Err << "Found free header at " << Hdr << " that is not in free list.";
736          return false;
737        }
738
739        // Now make sure the size marker at the end of the block is correct.
740        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
741        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
742          Err << "Block size in header points out of current MemoryBlock.";
743          return false;
744        }
745        if (Hdr->BlockSize != *Marker) {
746          Err << "End of block size marker (" << *Marker << ") "
747              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
748          return false;
749        }
750      }
751
752      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
753        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
754            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
755        return false;
756      } else if (!LastHdr && !Hdr->PrevAllocated) {
757        Err << "The first header should have PrevAllocated true.";
758        return false;
759      }
760
761      // Remember the last header.
762      LastHdr = Hdr;
763    }
764  }
765
766  // All invariants are preserved.
767  return true;
768}
769
770//===----------------------------------------------------------------------===//
771// getPointerToNamedFunction() implementation.
772//===----------------------------------------------------------------------===//
773
774// AtExitHandlers - List of functions to call when the program exits,
775// registered with the atexit() library function.
776static std::vector<void (*)()> AtExitHandlers;
777
778/// runAtExitHandlers - Run any functions registered by the program's
779/// calls to atexit(3), which we intercept and store in
780/// AtExitHandlers.
781///
782static void runAtExitHandlers() {
783  while (!AtExitHandlers.empty()) {
784    void (*Fn)() = AtExitHandlers.back();
785    AtExitHandlers.pop_back();
786    Fn();
787  }
788}
789
790//===----------------------------------------------------------------------===//
791// Function stubs that are invoked instead of certain library calls
792//
793// Force the following functions to be linked in to anything that uses the
794// JIT. This is a hack designed to work around the all-too-clever Glibc
795// strategy of making these functions work differently when inlined vs. when
796// not inlined, and hiding their real definitions in a separate archive file
797// that the dynamic linker can't see. For more info, search for
798// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
799#if defined(__linux__) && defined(__GLIBC__)
800/* stat functions are redirecting to __xstat with a version number.  On x86-64
801 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
802 * available as an exported symbol, so we have to add it explicitly.
803 */
804namespace {
805class StatSymbols {
806public:
807  StatSymbols() {
808    sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
809    sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
810    sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
811    sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
812    sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
813    sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
814    sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
815    sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
816    sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
817    sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
818    sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
819  }
820};
821}
822static StatSymbols initStatSymbols;
823#endif // __linux__
824
825// jit_exit - Used to intercept the "exit" library call.
826static void jit_exit(int Status) {
827  runAtExitHandlers();   // Run atexit handlers...
828  exit(Status);
829}
830
831// jit_atexit - Used to intercept the "atexit" library call.
832static int jit_atexit(void (*Fn)()) {
833  AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
834  return 0;  // Always successful
835}
836
837static int jit_noop() {
838  return 0;
839}
840
841//===----------------------------------------------------------------------===//
842//
843/// getPointerToNamedFunction - This method returns the address of the specified
844/// function by using the dynamic loader interface.  As such it is only useful
845/// for resolving library symbols, not code generated symbols.
846///
847void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
848                                                         bool AbortOnFailure) {
849  // Check to see if this is one of the functions we want to intercept.  Note,
850  // we cast to intptr_t here to silence a -pedantic warning that complains
851  // about casting a function pointer to a normal pointer.
852  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
853  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
854
855  // We should not invoke parent's ctors/dtors from generated main()!
856  // On Mingw and Cygwin, the symbol __main is resolved to
857  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
858  // (and register wrong callee's dtors with atexit(3)).
859  // We expect ExecutionEngine::runStaticConstructorsDestructors()
860  // is called before ExecutionEngine::runFunctionAsMain() is called.
861  if (Name == "__main") return (void*)(intptr_t)&jit_noop;
862
863  const char *NameStr = Name.c_str();
864  // If this is an asm specifier, skip the sentinal.
865  if (NameStr[0] == 1) ++NameStr;
866
867  // If it's an external function, look it up in the process image...
868  void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
869  if (Ptr) return Ptr;
870
871  // If it wasn't found and if it starts with an underscore ('_') character,
872  // try again without the underscore.
873  if (NameStr[0] == '_') {
874    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
875    if (Ptr) return Ptr;
876  }
877
878  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
879  // are references to hidden visibility symbols that dlsym cannot resolve.
880  // If we have one of these, strip off $LDBLStub and try again.
881#if defined(__APPLE__) && defined(__ppc__)
882  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
883      memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
884    // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
885    // This mirrors logic in libSystemStubs.a.
886    std::string Prefix = std::string(Name.begin(), Name.end()-9);
887    if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
888      return Ptr;
889    if (void *Ptr = getPointerToNamedFunction(Prefix, false))
890      return Ptr;
891  }
892#endif
893
894  if (AbortOnFailure) {
895    report_fatal_error("Program used external function '"+Name+
896                      "' which could not be resolved!");
897  }
898  return 0;
899}
900
901
902
903JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
904  return new DefaultJITMemoryManager();
905}
906
907const size_t DefaultJITMemoryManager::DefaultCodeSlabSize;
908const size_t DefaultJITMemoryManager::DefaultSlabSize;
909const size_t DefaultJITMemoryManager::DefaultSizeThreshold;
910