JITMemoryManager.cpp revision 5fe019835c269ccbfe185276269bc53b3f9a7a86
1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/GlobalValue.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Support/Memory.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/DynamicLibrary.h"
28#include "llvm/Config/config.h"
29#include <vector>
30#include <cassert>
31#include <climits>
32#include <cstring>
33
34#if defined(__linux__)
35#if defined(HAVE_SYS_STAT_H)
36#include <sys/stat.h>
37#endif
38#include <fcntl.h>
39#include <unistd.h>
40#endif
41
42using namespace llvm;
43
44STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
45
46JITMemoryManager::~JITMemoryManager() {}
47
48//===----------------------------------------------------------------------===//
49// Memory Block Implementation.
50//===----------------------------------------------------------------------===//
51
52namespace {
53  /// MemoryRangeHeader - For a range of memory, this is the header that we put
54  /// on the block of memory.  It is carefully crafted to be one word of memory.
55  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
56  /// which starts with this.
57  struct FreeRangeHeader;
58  struct MemoryRangeHeader {
59    /// ThisAllocated - This is true if this block is currently allocated.  If
60    /// not, this can be converted to a FreeRangeHeader.
61    unsigned ThisAllocated : 1;
62
63    /// PrevAllocated - Keep track of whether the block immediately before us is
64    /// allocated.  If not, the word immediately before this header is the size
65    /// of the previous block.
66    unsigned PrevAllocated : 1;
67
68    /// BlockSize - This is the size in bytes of this memory block,
69    /// including this header.
70    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
71
72
73    /// getBlockAfter - Return the memory block immediately after this one.
74    ///
75    MemoryRangeHeader &getBlockAfter() const {
76      return *(MemoryRangeHeader*)((char*)this+BlockSize);
77    }
78
79    /// getFreeBlockBefore - If the block before this one is free, return it,
80    /// otherwise return null.
81    FreeRangeHeader *getFreeBlockBefore() const {
82      if (PrevAllocated) return 0;
83      intptr_t PrevSize = ((intptr_t *)this)[-1];
84      return (FreeRangeHeader*)((char*)this-PrevSize);
85    }
86
87    /// FreeBlock - Turn an allocated block into a free block, adjusting
88    /// bits in the object headers, and adding an end of region memory block.
89    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
90
91    /// TrimAllocationToSize - If this allocated block is significantly larger
92    /// than NewSize, split it into two pieces (where the former is NewSize
93    /// bytes, including the header), and add the new block to the free list.
94    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
95                                          uint64_t NewSize);
96  };
97
98  /// FreeRangeHeader - For a memory block that isn't already allocated, this
99  /// keeps track of the current block and has a pointer to the next free block.
100  /// Free blocks are kept on a circularly linked list.
101  struct FreeRangeHeader : public MemoryRangeHeader {
102    FreeRangeHeader *Prev;
103    FreeRangeHeader *Next;
104
105    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
106    /// smaller than this size cannot be created.
107    static unsigned getMinBlockSize() {
108      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
109    }
110
111    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
112    /// known to be the size of the free block.  Set it for this block.
113    void SetEndOfBlockSizeMarker() {
114      void *EndOfBlock = (char*)this + BlockSize;
115      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
116    }
117
118    FreeRangeHeader *RemoveFromFreeList() {
119      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
120      Next->Prev = Prev;
121      return Prev->Next = Next;
122    }
123
124    void AddToFreeList(FreeRangeHeader *FreeList) {
125      Next = FreeList;
126      Prev = FreeList->Prev;
127      Prev->Next = this;
128      Next->Prev = this;
129    }
130
131    /// GrowBlock - The block after this block just got deallocated.  Merge it
132    /// into the current block.
133    void GrowBlock(uintptr_t NewSize);
134
135    /// AllocateBlock - Mark this entire block allocated, updating freelists
136    /// etc.  This returns a pointer to the circular free-list.
137    FreeRangeHeader *AllocateBlock();
138  };
139}
140
141
142/// AllocateBlock - Mark this entire block allocated, updating freelists
143/// etc.  This returns a pointer to the circular free-list.
144FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
145  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
146         "Cannot allocate an allocated block!");
147  // Mark this block allocated.
148  ThisAllocated = 1;
149  getBlockAfter().PrevAllocated = 1;
150
151  // Remove it from the free list.
152  return RemoveFromFreeList();
153}
154
155/// FreeBlock - Turn an allocated block into a free block, adjusting
156/// bits in the object headers, and adding an end of region memory block.
157/// If possible, coalesce this block with neighboring blocks.  Return the
158/// FreeRangeHeader to allocate from.
159FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
160  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
161  assert(ThisAllocated && "This block is already free!");
162  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
163
164  FreeRangeHeader *FreeListToReturn = FreeList;
165
166  // If the block after this one is free, merge it into this block.
167  if (!FollowingBlock->ThisAllocated) {
168    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
169    // "FreeList" always needs to be a valid free block.  If we're about to
170    // coalesce with it, update our notion of what the free list is.
171    if (&FollowingFreeBlock == FreeList) {
172      FreeList = FollowingFreeBlock.Next;
173      FreeListToReturn = 0;
174      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
175    }
176    FollowingFreeBlock.RemoveFromFreeList();
177
178    // Include the following block into this one.
179    BlockSize += FollowingFreeBlock.BlockSize;
180    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
181
182    // Tell the block after the block we are coalescing that this block is
183    // allocated.
184    FollowingBlock->PrevAllocated = 1;
185  }
186
187  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
188
189  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
190    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
191    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
192  }
193
194  // Otherwise, mark this block free.
195  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
196  FollowingBlock->PrevAllocated = 0;
197  FreeBlock.ThisAllocated = 0;
198
199  // Link this into the linked list of free blocks.
200  FreeBlock.AddToFreeList(FreeList);
201
202  // Add a marker at the end of the block, indicating the size of this free
203  // block.
204  FreeBlock.SetEndOfBlockSizeMarker();
205  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
206}
207
208/// GrowBlock - The block after this block just got deallocated.  Merge it
209/// into the current block.
210void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
211  assert(NewSize > BlockSize && "Not growing block?");
212  BlockSize = NewSize;
213  SetEndOfBlockSizeMarker();
214  getBlockAfter().PrevAllocated = 0;
215}
216
217/// TrimAllocationToSize - If this allocated block is significantly larger
218/// than NewSize, split it into two pieces (where the former is NewSize
219/// bytes, including the header), and add the new block to the free list.
220FreeRangeHeader *MemoryRangeHeader::
221TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
222  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
223         "Cannot deallocate part of an allocated block!");
224
225  // Don't allow blocks to be trimmed below minimum required size
226  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
227
228  // Round up size for alignment of header.
229  unsigned HeaderAlign = __alignof(FreeRangeHeader);
230  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
231
232  // Size is now the size of the block we will remove from the start of the
233  // current block.
234  assert(NewSize <= BlockSize &&
235         "Allocating more space from this block than exists!");
236
237  // If splitting this block will cause the remainder to be too small, do not
238  // split the block.
239  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
240    return FreeList;
241
242  // Otherwise, we splice the required number of bytes out of this block, form
243  // a new block immediately after it, then mark this block allocated.
244  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
245
246  // Change the size of this block.
247  BlockSize = NewSize;
248
249  // Get the new block we just sliced out and turn it into a free block.
250  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
251  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
252  NewNextBlock.ThisAllocated = 0;
253  NewNextBlock.PrevAllocated = 1;
254  NewNextBlock.SetEndOfBlockSizeMarker();
255  FormerNextBlock.PrevAllocated = 0;
256  NewNextBlock.AddToFreeList(FreeList);
257  return &NewNextBlock;
258}
259
260//===----------------------------------------------------------------------===//
261// Memory Block Implementation.
262//===----------------------------------------------------------------------===//
263
264namespace {
265
266  class DefaultJITMemoryManager;
267
268  class JITSlabAllocator : public SlabAllocator {
269    DefaultJITMemoryManager &JMM;
270  public:
271    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
272    virtual ~JITSlabAllocator() { }
273    virtual MemSlab *Allocate(size_t Size);
274    virtual void Deallocate(MemSlab *Slab);
275  };
276
277  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
278  /// This splits a large block of MAP_NORESERVE'd memory into two
279  /// sections, one for function stubs, one for the functions themselves.  We
280  /// have to do this because we may need to emit a function stub while in the
281  /// middle of emitting a function, and we don't know how large the function we
282  /// are emitting is.
283  class DefaultJITMemoryManager : public JITMemoryManager {
284
285    // Whether to poison freed memory.
286    bool PoisonMemory;
287
288    /// LastSlab - This points to the last slab allocated and is used as the
289    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
290    /// stubs, data, and code contiguously in memory.  In general, however, this
291    /// is not possible because the NearBlock parameter is ignored on Windows
292    /// platforms and even on Unix it works on a best-effort pasis.
293    sys::MemoryBlock LastSlab;
294
295    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
296    // confuse them with the blocks of memory described above.
297    std::vector<sys::MemoryBlock> CodeSlabs;
298    JITSlabAllocator BumpSlabAllocator;
299    BumpPtrAllocator StubAllocator;
300    BumpPtrAllocator DataAllocator;
301
302    // Circular list of free blocks.
303    FreeRangeHeader *FreeMemoryList;
304
305    // When emitting code into a memory block, this is the block.
306    MemoryRangeHeader *CurBlock;
307
308    uint8_t *GOTBase;     // Target Specific reserved memory
309  public:
310    DefaultJITMemoryManager();
311    ~DefaultJITMemoryManager();
312
313    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
314    /// last slab it allocated, so that subsequent allocations follow it.
315    sys::MemoryBlock allocateNewSlab(size_t size);
316
317    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
318    /// least this much unless more is requested.
319    static const size_t DefaultCodeSlabSize;
320
321    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
322    /// an allocation above SizeThreshold.
323    static const size_t DefaultSlabSize;
324
325    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
326    /// should allocate a separate slab.
327    static const size_t DefaultSizeThreshold;
328
329    /// getPointerToNamedFunction - This method returns the address of the
330    /// specified function by using the dlsym function call.
331    virtual void *getPointerToNamedFunction(const std::string &Name,
332                                            bool AbortOnFailure = true);
333
334    void AllocateGOT();
335
336    // Testing methods.
337    virtual bool CheckInvariants(std::string &ErrorStr);
338    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
339    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
340    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
341    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
342    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
343    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
344
345    /// startFunctionBody - When a function starts, allocate a block of free
346    /// executable memory, returning a pointer to it and its actual size.
347    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
348
349      FreeRangeHeader* candidateBlock = FreeMemoryList;
350      FreeRangeHeader* head = FreeMemoryList;
351      FreeRangeHeader* iter = head->Next;
352
353      uintptr_t largest = candidateBlock->BlockSize;
354
355      // Search for the largest free block
356      while (iter != head) {
357        if (iter->BlockSize > largest) {
358          largest = iter->BlockSize;
359          candidateBlock = iter;
360        }
361        iter = iter->Next;
362      }
363
364      largest = largest - sizeof(MemoryRangeHeader);
365
366      // If this block isn't big enough for the allocation desired, allocate
367      // another block of memory and add it to the free list.
368      if (largest < ActualSize ||
369          largest <= FreeRangeHeader::getMinBlockSize()) {
370        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
371        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
372      }
373
374      // Select this candidate block for allocation
375      CurBlock = candidateBlock;
376
377      // Allocate the entire memory block.
378      FreeMemoryList = candidateBlock->AllocateBlock();
379      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
380      return (uint8_t *)(CurBlock + 1);
381    }
382
383    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
384    /// memory from the OS and add it to the free list.  Returns the new
385    /// FreeRangeHeader at the base of the slab.
386    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
387      // If the user needs at least MinSize free memory, then we account for
388      // two MemoryRangeHeaders: the one in the user's block, and the one at the
389      // end of the slab.
390      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
391      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
392      sys::MemoryBlock B = allocateNewSlab(SlabSize);
393      CodeSlabs.push_back(B);
394      char *MemBase = (char*)(B.base());
395
396      // Put a tiny allocated block at the end of the memory chunk, so when
397      // FreeBlock calls getBlockAfter it doesn't fall off the end.
398      MemoryRangeHeader *EndBlock =
399          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
400      EndBlock->ThisAllocated = 1;
401      EndBlock->PrevAllocated = 0;
402      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
403
404      // Start out with a vast new block of free memory.
405      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
406      NewBlock->ThisAllocated = 0;
407      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
408      NewBlock->PrevAllocated = 1;
409      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
410      NewBlock->SetEndOfBlockSizeMarker();
411      NewBlock->AddToFreeList(FreeMemoryList);
412
413      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
414             "The block was too small!");
415      return NewBlock;
416    }
417
418    /// endFunctionBody - The function F is now allocated, and takes the memory
419    /// in the range [FunctionStart,FunctionEnd).
420    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
421                         uint8_t *FunctionEnd) {
422      assert(FunctionEnd > FunctionStart);
423      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
424             "Mismatched function start/end!");
425
426      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
427
428      // Release the memory at the end of this block that isn't needed.
429      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
430    }
431
432    /// allocateSpace - Allocate a memory block of the given size.  This method
433    /// cannot be called between calls to startFunctionBody and endFunctionBody.
434    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
435      CurBlock = FreeMemoryList;
436      FreeMemoryList = FreeMemoryList->AllocateBlock();
437
438      uint8_t *result = (uint8_t *)(CurBlock + 1);
439
440      if (Alignment == 0) Alignment = 1;
441      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
442               ~(intptr_t)(Alignment-1));
443
444      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
445      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
446
447      return result;
448    }
449
450    /// allocateStub - Allocate memory for a function stub.
451    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
452                          unsigned Alignment) {
453      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
454    }
455
456    /// allocateGlobal - Allocate memory for a global.
457    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
458      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
459    }
460
461    /// allocateCodeSection - Allocate memory for a code section.
462    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
463                                 unsigned SectionID) {
464      // FIXME: Alignement handling.
465      FreeRangeHeader* candidateBlock = FreeMemoryList;
466      FreeRangeHeader* head = FreeMemoryList;
467      FreeRangeHeader* iter = head->Next;
468
469      uintptr_t largest = candidateBlock->BlockSize;
470
471      // Search for the largest free block.
472      while (iter != head) {
473        if (iter->BlockSize > largest) {
474          largest = iter->BlockSize;
475          candidateBlock = iter;
476        }
477        iter = iter->Next;
478      }
479
480      largest = largest - sizeof(MemoryRangeHeader);
481
482      // If this block isn't big enough for the allocation desired, allocate
483      // another block of memory and add it to the free list.
484      if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
485        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
486        candidateBlock = allocateNewCodeSlab((size_t)Size);
487      }
488
489      // Select this candidate block for allocation
490      CurBlock = candidateBlock;
491
492      // Allocate the entire memory block.
493      FreeMemoryList = candidateBlock->AllocateBlock();
494      // Release the memory at the end of this block that isn't needed.
495      FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
496      return (uint8_t *)(CurBlock + 1);
497    }
498
499    /// allocateDataSection - Allocate memory for a data section.
500    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
501                                 unsigned SectionID) {
502      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
503    }
504
505    /// startExceptionTable - Use startFunctionBody to allocate memory for the
506    /// function's exception table.
507    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
508      return startFunctionBody(F, ActualSize);
509    }
510
511    /// endExceptionTable - The exception table of F is now allocated,
512    /// and takes the memory in the range [TableStart,TableEnd).
513    void endExceptionTable(const Function *F, uint8_t *TableStart,
514                           uint8_t *TableEnd, uint8_t* FrameRegister) {
515      assert(TableEnd > TableStart);
516      assert(TableStart == (uint8_t *)(CurBlock+1) &&
517             "Mismatched table start/end!");
518
519      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
520
521      // Release the memory at the end of this block that isn't needed.
522      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
523    }
524
525    uint8_t *getGOTBase() const {
526      return GOTBase;
527    }
528
529    void deallocateBlock(void *Block) {
530      // Find the block that is allocated for this function.
531      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
532      assert(MemRange->ThisAllocated && "Block isn't allocated!");
533
534      // Fill the buffer with garbage!
535      if (PoisonMemory) {
536        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
537      }
538
539      // Free the memory.
540      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
541    }
542
543    /// deallocateFunctionBody - Deallocate all memory for the specified
544    /// function body.
545    void deallocateFunctionBody(void *Body) {
546      if (Body) deallocateBlock(Body);
547    }
548
549    /// deallocateExceptionTable - Deallocate memory for the specified
550    /// exception table.
551    void deallocateExceptionTable(void *ET) {
552      if (ET) deallocateBlock(ET);
553    }
554
555    /// setMemoryWritable - When code generation is in progress,
556    /// the code pages may need permissions changed.
557    void setMemoryWritable()
558    {
559      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
560        sys::Memory::setWritable(CodeSlabs[i]);
561    }
562    /// setMemoryExecutable - When code generation is done and we're ready to
563    /// start execution, the code pages may need permissions changed.
564    void setMemoryExecutable()
565    {
566      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
567        sys::Memory::setExecutable(CodeSlabs[i]);
568    }
569
570    /// setPoisonMemory - Controls whether we write garbage over freed memory.
571    ///
572    void setPoisonMemory(bool poison) {
573      PoisonMemory = poison;
574    }
575  };
576}
577
578MemSlab *JITSlabAllocator::Allocate(size_t Size) {
579  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
580  MemSlab *Slab = (MemSlab*)B.base();
581  Slab->Size = B.size();
582  Slab->NextPtr = 0;
583  return Slab;
584}
585
586void JITSlabAllocator::Deallocate(MemSlab *Slab) {
587  sys::MemoryBlock B(Slab, Slab->Size);
588  sys::Memory::ReleaseRWX(B);
589}
590
591DefaultJITMemoryManager::DefaultJITMemoryManager()
592  :
593#ifdef NDEBUG
594    PoisonMemory(false),
595#else
596    PoisonMemory(true),
597#endif
598    LastSlab(0, 0),
599    BumpSlabAllocator(*this),
600    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
601    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
602
603  // Allocate space for code.
604  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
605  CodeSlabs.push_back(MemBlock);
606  uint8_t *MemBase = (uint8_t*)MemBlock.base();
607
608  // We set up the memory chunk with 4 mem regions, like this:
609  //  [ START
610  //    [ Free      #0 ] -> Large space to allocate functions from.
611  //    [ Allocated #1 ] -> Tiny space to separate regions.
612  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
613  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
614  //  END ]
615  //
616  // The last three blocks are never deallocated or touched.
617
618  // Add MemoryRangeHeader to the end of the memory region, indicating that
619  // the space after the block of memory is allocated.  This is block #3.
620  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
621  Mem3->ThisAllocated = 1;
622  Mem3->PrevAllocated = 0;
623  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
624
625  /// Add a tiny free region so that the free list always has one entry.
626  FreeRangeHeader *Mem2 =
627    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
628  Mem2->ThisAllocated = 0;
629  Mem2->PrevAllocated = 1;
630  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
631  Mem2->SetEndOfBlockSizeMarker();
632  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
633  Mem2->Next = Mem2;
634
635  /// Add a tiny allocated region so that Mem2 is never coalesced away.
636  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
637  Mem1->ThisAllocated = 1;
638  Mem1->PrevAllocated = 0;
639  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
640
641  // Add a FreeRangeHeader to the start of the function body region, indicating
642  // that the space is free.  Mark the previous block allocated so we never look
643  // at it.
644  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
645  Mem0->ThisAllocated = 0;
646  Mem0->PrevAllocated = 1;
647  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
648  Mem0->SetEndOfBlockSizeMarker();
649  Mem0->AddToFreeList(Mem2);
650
651  // Start out with the freelist pointing to Mem0.
652  FreeMemoryList = Mem0;
653
654  GOTBase = NULL;
655}
656
657void DefaultJITMemoryManager::AllocateGOT() {
658  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
659  GOTBase = new uint8_t[sizeof(void*) * 8192];
660  HasGOT = true;
661}
662
663DefaultJITMemoryManager::~DefaultJITMemoryManager() {
664  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
665    sys::Memory::ReleaseRWX(CodeSlabs[i]);
666
667  delete[] GOTBase;
668}
669
670sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
671  // Allocate a new block close to the last one.
672  std::string ErrMsg;
673  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
674  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
675  if (B.base() == 0) {
676    report_fatal_error("Allocation failed when allocating new memory in the"
677                       " JIT\n" + Twine(ErrMsg));
678  }
679  LastSlab = B;
680  ++NumSlabs;
681  // Initialize the slab to garbage when debugging.
682  if (PoisonMemory) {
683    memset(B.base(), 0xCD, B.size());
684  }
685  return B;
686}
687
688/// CheckInvariants - For testing only.  Return "" if all internal invariants
689/// are preserved, and a helpful error message otherwise.  For free and
690/// allocated blocks, make sure that adding BlockSize gives a valid block.
691/// For free blocks, make sure they're in the free list and that their end of
692/// block size marker is correct.  This function should return an error before
693/// accessing bad memory.  This function is defined here instead of in
694/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
695/// implementation details of DefaultJITMemoryManager.
696bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
697  raw_string_ostream Err(ErrorStr);
698
699  // Construct a the set of FreeRangeHeader pointers so we can query it
700  // efficiently.
701  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
702  FreeRangeHeader* FreeHead = FreeMemoryList;
703  FreeRangeHeader* FreeRange = FreeHead;
704
705  do {
706    // Check that the free range pointer is in the blocks we've allocated.
707    bool Found = false;
708    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
709         E = CodeSlabs.end(); I != E && !Found; ++I) {
710      char *Start = (char*)I->base();
711      char *End = Start + I->size();
712      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
713    }
714    if (!Found) {
715      Err << "Corrupt free list; points to " << FreeRange;
716      return false;
717    }
718
719    if (FreeRange->Next->Prev != FreeRange) {
720      Err << "Next and Prev pointers do not match.";
721      return false;
722    }
723
724    // Otherwise, add it to the set.
725    FreeHdrSet.insert(FreeRange);
726    FreeRange = FreeRange->Next;
727  } while (FreeRange != FreeHead);
728
729  // Go over each block, and look at each MemoryRangeHeader.
730  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
731       E = CodeSlabs.end(); I != E; ++I) {
732    char *Start = (char*)I->base();
733    char *End = Start + I->size();
734
735    // Check each memory range.
736    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
737         Start <= (char*)Hdr && (char*)Hdr < End;
738         Hdr = &Hdr->getBlockAfter()) {
739      if (Hdr->ThisAllocated == 0) {
740        // Check that this range is in the free list.
741        if (!FreeHdrSet.count(Hdr)) {
742          Err << "Found free header at " << Hdr << " that is not in free list.";
743          return false;
744        }
745
746        // Now make sure the size marker at the end of the block is correct.
747        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
748        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
749          Err << "Block size in header points out of current MemoryBlock.";
750          return false;
751        }
752        if (Hdr->BlockSize != *Marker) {
753          Err << "End of block size marker (" << *Marker << ") "
754              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
755          return false;
756        }
757      }
758
759      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
760        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
761            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
762        return false;
763      } else if (!LastHdr && !Hdr->PrevAllocated) {
764        Err << "The first header should have PrevAllocated true.";
765        return false;
766      }
767
768      // Remember the last header.
769      LastHdr = Hdr;
770    }
771  }
772
773  // All invariants are preserved.
774  return true;
775}
776
777//===----------------------------------------------------------------------===//
778// getPointerToNamedFunction() implementation.
779//===----------------------------------------------------------------------===//
780
781// AtExitHandlers - List of functions to call when the program exits,
782// registered with the atexit() library function.
783static std::vector<void (*)()> AtExitHandlers;
784
785/// runAtExitHandlers - Run any functions registered by the program's
786/// calls to atexit(3), which we intercept and store in
787/// AtExitHandlers.
788///
789static void runAtExitHandlers() {
790  while (!AtExitHandlers.empty()) {
791    void (*Fn)() = AtExitHandlers.back();
792    AtExitHandlers.pop_back();
793    Fn();
794  }
795}
796
797//===----------------------------------------------------------------------===//
798// Function stubs that are invoked instead of certain library calls
799//
800// Force the following functions to be linked in to anything that uses the
801// JIT. This is a hack designed to work around the all-too-clever Glibc
802// strategy of making these functions work differently when inlined vs. when
803// not inlined, and hiding their real definitions in a separate archive file
804// that the dynamic linker can't see. For more info, search for
805// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
806#if defined(__linux__)
807/* stat functions are redirecting to __xstat with a version number.  On x86-64
808 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
809 * available as an exported symbol, so we have to add it explicitly.
810 */
811namespace {
812class StatSymbols {
813public:
814  StatSymbols() {
815    sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
816    sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
817    sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
818    sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
819    sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
820    sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
821    sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
822    sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
823    sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
824    sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
825    sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
826  }
827};
828}
829static StatSymbols initStatSymbols;
830#endif // __linux__
831
832// jit_exit - Used to intercept the "exit" library call.
833static void jit_exit(int Status) {
834  runAtExitHandlers();   // Run atexit handlers...
835  exit(Status);
836}
837
838// jit_atexit - Used to intercept the "atexit" library call.
839static int jit_atexit(void (*Fn)()) {
840  AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
841  return 0;  // Always successful
842}
843
844static int jit_noop() {
845  return 0;
846}
847
848//===----------------------------------------------------------------------===//
849//
850/// getPointerToNamedFunction - This method returns the address of the specified
851/// function by using the dynamic loader interface.  As such it is only useful
852/// for resolving library symbols, not code generated symbols.
853///
854void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
855                                                         bool AbortOnFailure) {
856  // Check to see if this is one of the functions we want to intercept.  Note,
857  // we cast to intptr_t here to silence a -pedantic warning that complains
858  // about casting a function pointer to a normal pointer.
859  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
860  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
861
862  // We should not invoke parent's ctors/dtors from generated main()!
863  // On Mingw and Cygwin, the symbol __main is resolved to
864  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
865  // (and register wrong callee's dtors with atexit(3)).
866  // We expect ExecutionEngine::runStaticConstructorsDestructors()
867  // is called before ExecutionEngine::runFunctionAsMain() is called.
868  if (Name == "__main") return (void*)(intptr_t)&jit_noop;
869
870  const char *NameStr = Name.c_str();
871  // If this is an asm specifier, skip the sentinal.
872  if (NameStr[0] == 1) ++NameStr;
873
874  // If it's an external function, look it up in the process image...
875  void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
876  if (Ptr) return Ptr;
877
878  // If it wasn't found and if it starts with an underscore ('_') character,
879  // try again without the underscore.
880  if (NameStr[0] == '_') {
881    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
882    if (Ptr) return Ptr;
883  }
884
885  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
886  // are references to hidden visibility symbols that dlsym cannot resolve.
887  // If we have one of these, strip off $LDBLStub and try again.
888#if defined(__APPLE__) && defined(__ppc__)
889  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
890      memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
891    // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
892    // This mirrors logic in libSystemStubs.a.
893    std::string Prefix = std::string(Name.begin(), Name.end()-9);
894    if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
895      return Ptr;
896    if (void *Ptr = getPointerToNamedFunction(Prefix, false))
897      return Ptr;
898  }
899#endif
900
901  if (AbortOnFailure) {
902    report_fatal_error("Program used external function '"+Name+
903                      "' which could not be resolved!");
904  }
905  return 0;
906}
907
908
909
910JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
911  return new DefaultJITMemoryManager();
912}
913
914// Allocate memory for code in 512K slabs.
915const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
916
917// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
918const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
919
920// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
921const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
922