JITMemoryManager.cpp revision 7803ec3d458ec73372760b838469292cdf38fe67
1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/GlobalValue.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Support/Memory.h"
26#include <vector>
27#include <cassert>
28#include <climits>
29#include <cstring>
30using namespace llvm;
31
32STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
33
34JITMemoryManager::~JITMemoryManager() {}
35
36//===----------------------------------------------------------------------===//
37// Memory Block Implementation.
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// MemoryRangeHeader - For a range of memory, this is the header that we put
42  /// on the block of memory.  It is carefully crafted to be one word of memory.
43  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
44  /// which starts with this.
45  struct FreeRangeHeader;
46  struct MemoryRangeHeader {
47    /// ThisAllocated - This is true if this block is currently allocated.  If
48    /// not, this can be converted to a FreeRangeHeader.
49    unsigned ThisAllocated : 1;
50
51    /// PrevAllocated - Keep track of whether the block immediately before us is
52    /// allocated.  If not, the word immediately before this header is the size
53    /// of the previous block.
54    unsigned PrevAllocated : 1;
55
56    /// BlockSize - This is the size in bytes of this memory block,
57    /// including this header.
58    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
59
60
61    /// getBlockAfter - Return the memory block immediately after this one.
62    ///
63    MemoryRangeHeader &getBlockAfter() const {
64      return *(MemoryRangeHeader*)((char*)this+BlockSize);
65    }
66
67    /// getFreeBlockBefore - If the block before this one is free, return it,
68    /// otherwise return null.
69    FreeRangeHeader *getFreeBlockBefore() const {
70      if (PrevAllocated) return 0;
71      intptr_t PrevSize = ((intptr_t *)this)[-1];
72      return (FreeRangeHeader*)((char*)this-PrevSize);
73    }
74
75    /// FreeBlock - Turn an allocated block into a free block, adjusting
76    /// bits in the object headers, and adding an end of region memory block.
77    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
78
79    /// TrimAllocationToSize - If this allocated block is significantly larger
80    /// than NewSize, split it into two pieces (where the former is NewSize
81    /// bytes, including the header), and add the new block to the free list.
82    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
83                                          uint64_t NewSize);
84  };
85
86  /// FreeRangeHeader - For a memory block that isn't already allocated, this
87  /// keeps track of the current block and has a pointer to the next free block.
88  /// Free blocks are kept on a circularly linked list.
89  struct FreeRangeHeader : public MemoryRangeHeader {
90    FreeRangeHeader *Prev;
91    FreeRangeHeader *Next;
92
93    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
94    /// smaller than this size cannot be created.
95    static unsigned getMinBlockSize() {
96      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
97    }
98
99    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
100    /// known to be the size of the free block.  Set it for this block.
101    void SetEndOfBlockSizeMarker() {
102      void *EndOfBlock = (char*)this + BlockSize;
103      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
104    }
105
106    FreeRangeHeader *RemoveFromFreeList() {
107      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
108      Next->Prev = Prev;
109      return Prev->Next = Next;
110    }
111
112    void AddToFreeList(FreeRangeHeader *FreeList) {
113      Next = FreeList;
114      Prev = FreeList->Prev;
115      Prev->Next = this;
116      Next->Prev = this;
117    }
118
119    /// GrowBlock - The block after this block just got deallocated.  Merge it
120    /// into the current block.
121    void GrowBlock(uintptr_t NewSize);
122
123    /// AllocateBlock - Mark this entire block allocated, updating freelists
124    /// etc.  This returns a pointer to the circular free-list.
125    FreeRangeHeader *AllocateBlock();
126  };
127}
128
129
130/// AllocateBlock - Mark this entire block allocated, updating freelists
131/// etc.  This returns a pointer to the circular free-list.
132FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
133  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
134         "Cannot allocate an allocated block!");
135  // Mark this block allocated.
136  ThisAllocated = 1;
137  getBlockAfter().PrevAllocated = 1;
138
139  // Remove it from the free list.
140  return RemoveFromFreeList();
141}
142
143/// FreeBlock - Turn an allocated block into a free block, adjusting
144/// bits in the object headers, and adding an end of region memory block.
145/// If possible, coalesce this block with neighboring blocks.  Return the
146/// FreeRangeHeader to allocate from.
147FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
148  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
149  assert(ThisAllocated && "This block is already free!");
150  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
151
152  FreeRangeHeader *FreeListToReturn = FreeList;
153
154  // If the block after this one is free, merge it into this block.
155  if (!FollowingBlock->ThisAllocated) {
156    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
157    // "FreeList" always needs to be a valid free block.  If we're about to
158    // coalesce with it, update our notion of what the free list is.
159    if (&FollowingFreeBlock == FreeList) {
160      FreeList = FollowingFreeBlock.Next;
161      FreeListToReturn = 0;
162      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
163    }
164    FollowingFreeBlock.RemoveFromFreeList();
165
166    // Include the following block into this one.
167    BlockSize += FollowingFreeBlock.BlockSize;
168    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
169
170    // Tell the block after the block we are coalescing that this block is
171    // allocated.
172    FollowingBlock->PrevAllocated = 1;
173  }
174
175  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
176
177  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
178    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
179    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
180  }
181
182  // Otherwise, mark this block free.
183  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
184  FollowingBlock->PrevAllocated = 0;
185  FreeBlock.ThisAllocated = 0;
186
187  // Link this into the linked list of free blocks.
188  FreeBlock.AddToFreeList(FreeList);
189
190  // Add a marker at the end of the block, indicating the size of this free
191  // block.
192  FreeBlock.SetEndOfBlockSizeMarker();
193  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
194}
195
196/// GrowBlock - The block after this block just got deallocated.  Merge it
197/// into the current block.
198void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
199  assert(NewSize > BlockSize && "Not growing block?");
200  BlockSize = NewSize;
201  SetEndOfBlockSizeMarker();
202  getBlockAfter().PrevAllocated = 0;
203}
204
205/// TrimAllocationToSize - If this allocated block is significantly larger
206/// than NewSize, split it into two pieces (where the former is NewSize
207/// bytes, including the header), and add the new block to the free list.
208FreeRangeHeader *MemoryRangeHeader::
209TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
210  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
211         "Cannot deallocate part of an allocated block!");
212
213  // Don't allow blocks to be trimmed below minimum required size
214  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
215
216  // Round up size for alignment of header.
217  unsigned HeaderAlign = __alignof(FreeRangeHeader);
218  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
219
220  // Size is now the size of the block we will remove from the start of the
221  // current block.
222  assert(NewSize <= BlockSize &&
223         "Allocating more space from this block than exists!");
224
225  // If splitting this block will cause the remainder to be too small, do not
226  // split the block.
227  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
228    return FreeList;
229
230  // Otherwise, we splice the required number of bytes out of this block, form
231  // a new block immediately after it, then mark this block allocated.
232  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
233
234  // Change the size of this block.
235  BlockSize = NewSize;
236
237  // Get the new block we just sliced out and turn it into a free block.
238  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
239  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
240  NewNextBlock.ThisAllocated = 0;
241  NewNextBlock.PrevAllocated = 1;
242  NewNextBlock.SetEndOfBlockSizeMarker();
243  FormerNextBlock.PrevAllocated = 0;
244  NewNextBlock.AddToFreeList(FreeList);
245  return &NewNextBlock;
246}
247
248//===----------------------------------------------------------------------===//
249// Memory Block Implementation.
250//===----------------------------------------------------------------------===//
251
252namespace {
253
254  class DefaultJITMemoryManager;
255
256  class JITSlabAllocator : public SlabAllocator {
257    DefaultJITMemoryManager &JMM;
258  public:
259    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
260    virtual ~JITSlabAllocator() { }
261    virtual MemSlab *Allocate(size_t Size);
262    virtual void Deallocate(MemSlab *Slab);
263  };
264
265  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
266  /// This splits a large block of MAP_NORESERVE'd memory into two
267  /// sections, one for function stubs, one for the functions themselves.  We
268  /// have to do this because we may need to emit a function stub while in the
269  /// middle of emitting a function, and we don't know how large the function we
270  /// are emitting is.
271  class DefaultJITMemoryManager : public JITMemoryManager {
272
273    // Whether to poison freed memory.
274    bool PoisonMemory;
275
276    /// LastSlab - This points to the last slab allocated and is used as the
277    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
278    /// stubs, data, and code contiguously in memory.  In general, however, this
279    /// is not possible because the NearBlock parameter is ignored on Windows
280    /// platforms and even on Unix it works on a best-effort pasis.
281    sys::MemoryBlock LastSlab;
282
283    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
284    // confuse them with the blocks of memory described above.
285    std::vector<sys::MemoryBlock> CodeSlabs;
286    JITSlabAllocator BumpSlabAllocator;
287    BumpPtrAllocator StubAllocator;
288    BumpPtrAllocator DataAllocator;
289
290    // Circular list of free blocks.
291    FreeRangeHeader *FreeMemoryList;
292
293    // When emitting code into a memory block, this is the block.
294    MemoryRangeHeader *CurBlock;
295
296    uint8_t *GOTBase;     // Target Specific reserved memory
297  public:
298    DefaultJITMemoryManager();
299    ~DefaultJITMemoryManager();
300
301    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
302    /// last slab it allocated, so that subsequent allocations follow it.
303    sys::MemoryBlock allocateNewSlab(size_t size);
304
305    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
306    /// least this much unless more is requested.
307    static const size_t DefaultCodeSlabSize;
308
309    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
310    /// an allocation above SizeThreshold.
311    static const size_t DefaultSlabSize;
312
313    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
314    /// should allocate a separate slab.
315    static const size_t DefaultSizeThreshold;
316
317    /// getPointerToNamedFunction - This method returns the address of the
318    /// specified function by using the dlsym function call.  As such it is only
319    /// useful for resolving library symbols, not code generated symbols.
320    ///
321    /// If AbortOnFailure is false and no function with the given name is
322    /// found, this function silently returns a null pointer. Otherwise,
323    /// it prints a message to stderr and aborts.
324    ///
325    virtual void *getPointerToNamedFunction(const std::string &Name,
326                                            bool AbortOnFailure = true);
327
328    void AllocateGOT();
329
330    // Testing methods.
331    virtual bool CheckInvariants(std::string &ErrorStr);
332    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
333    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
334    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
335    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
336    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
337    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
338
339    /// startFunctionBody - When a function starts, allocate a block of free
340    /// executable memory, returning a pointer to it and its actual size.
341    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
342
343      FreeRangeHeader* candidateBlock = FreeMemoryList;
344      FreeRangeHeader* head = FreeMemoryList;
345      FreeRangeHeader* iter = head->Next;
346
347      uintptr_t largest = candidateBlock->BlockSize;
348
349      // Search for the largest free block
350      while (iter != head) {
351        if (iter->BlockSize > largest) {
352          largest = iter->BlockSize;
353          candidateBlock = iter;
354        }
355        iter = iter->Next;
356      }
357
358      largest = largest - sizeof(MemoryRangeHeader);
359
360      // If this block isn't big enough for the allocation desired, allocate
361      // another block of memory and add it to the free list.
362      if (largest < ActualSize ||
363          largest <= FreeRangeHeader::getMinBlockSize()) {
364        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
365        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
366      }
367
368      // Select this candidate block for allocation
369      CurBlock = candidateBlock;
370
371      // Allocate the entire memory block.
372      FreeMemoryList = candidateBlock->AllocateBlock();
373      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
374      return (uint8_t *)(CurBlock + 1);
375    }
376
377    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
378    /// memory from the OS and add it to the free list.  Returns the new
379    /// FreeRangeHeader at the base of the slab.
380    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
381      // If the user needs at least MinSize free memory, then we account for
382      // two MemoryRangeHeaders: the one in the user's block, and the one at the
383      // end of the slab.
384      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
385      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
386      sys::MemoryBlock B = allocateNewSlab(SlabSize);
387      CodeSlabs.push_back(B);
388      char *MemBase = (char*)(B.base());
389
390      // Put a tiny allocated block at the end of the memory chunk, so when
391      // FreeBlock calls getBlockAfter it doesn't fall off the end.
392      MemoryRangeHeader *EndBlock =
393          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
394      EndBlock->ThisAllocated = 1;
395      EndBlock->PrevAllocated = 0;
396      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
397
398      // Start out with a vast new block of free memory.
399      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
400      NewBlock->ThisAllocated = 0;
401      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
402      NewBlock->PrevAllocated = 1;
403      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
404      NewBlock->SetEndOfBlockSizeMarker();
405      NewBlock->AddToFreeList(FreeMemoryList);
406
407      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
408             "The block was too small!");
409      return NewBlock;
410    }
411
412    /// endFunctionBody - The function F is now allocated, and takes the memory
413    /// in the range [FunctionStart,FunctionEnd).
414    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
415                         uint8_t *FunctionEnd) {
416      assert(FunctionEnd > FunctionStart);
417      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
418             "Mismatched function start/end!");
419
420      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
421
422      // Release the memory at the end of this block that isn't needed.
423      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
424    }
425
426    /// allocateSpace - Allocate a memory block of the given size.  This method
427    /// cannot be called between calls to startFunctionBody and endFunctionBody.
428    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
429      CurBlock = FreeMemoryList;
430      FreeMemoryList = FreeMemoryList->AllocateBlock();
431
432      uint8_t *result = (uint8_t *)(CurBlock + 1);
433
434      if (Alignment == 0) Alignment = 1;
435      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
436               ~(intptr_t)(Alignment-1));
437
438      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
439      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
440
441      return result;
442    }
443
444    /// allocateStub - Allocate memory for a function stub.
445    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
446                          unsigned Alignment) {
447      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
448    }
449
450    /// allocateGlobal - Allocate memory for a global.
451    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
452      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
453    }
454
455    /// allocateCodeSection - Allocate memory for a code section.
456    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
457                                 unsigned SectionID) {
458      // FIXME: Alignement handling.
459      FreeRangeHeader* candidateBlock = FreeMemoryList;
460      FreeRangeHeader* head = FreeMemoryList;
461      FreeRangeHeader* iter = head->Next;
462
463      uintptr_t largest = candidateBlock->BlockSize;
464
465      // Search for the largest free block.
466      while (iter != head) {
467        if (iter->BlockSize > largest) {
468          largest = iter->BlockSize;
469          candidateBlock = iter;
470        }
471        iter = iter->Next;
472      }
473
474      largest = largest - sizeof(MemoryRangeHeader);
475
476      // If this block isn't big enough for the allocation desired, allocate
477      // another block of memory and add it to the free list.
478      if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
479        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
480        candidateBlock = allocateNewCodeSlab((size_t)Size);
481      }
482
483      // Select this candidate block for allocation
484      CurBlock = candidateBlock;
485
486      // Allocate the entire memory block.
487      FreeMemoryList = candidateBlock->AllocateBlock();
488      // Release the memory at the end of this block that isn't needed.
489      FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
490      return (uint8_t *)(CurBlock + 1);
491    }
492
493    /// allocateDataSection - Allocate memory for a data section.
494    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
495                                 unsigned SectionID) {
496      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
497    }
498
499    /// startExceptionTable - Use startFunctionBody to allocate memory for the
500    /// function's exception table.
501    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
502      return startFunctionBody(F, ActualSize);
503    }
504
505    /// endExceptionTable - The exception table of F is now allocated,
506    /// and takes the memory in the range [TableStart,TableEnd).
507    void endExceptionTable(const Function *F, uint8_t *TableStart,
508                           uint8_t *TableEnd, uint8_t* FrameRegister) {
509      assert(TableEnd > TableStart);
510      assert(TableStart == (uint8_t *)(CurBlock+1) &&
511             "Mismatched table start/end!");
512
513      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
514
515      // Release the memory at the end of this block that isn't needed.
516      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
517    }
518
519    uint8_t *getGOTBase() const {
520      return GOTBase;
521    }
522
523    void deallocateBlock(void *Block) {
524      // Find the block that is allocated for this function.
525      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
526      assert(MemRange->ThisAllocated && "Block isn't allocated!");
527
528      // Fill the buffer with garbage!
529      if (PoisonMemory) {
530        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
531      }
532
533      // Free the memory.
534      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
535    }
536
537    /// deallocateFunctionBody - Deallocate all memory for the specified
538    /// function body.
539    void deallocateFunctionBody(void *Body) {
540      if (Body) deallocateBlock(Body);
541    }
542
543    /// deallocateExceptionTable - Deallocate memory for the specified
544    /// exception table.
545    void deallocateExceptionTable(void *ET) {
546      if (ET) deallocateBlock(ET);
547    }
548
549    /// setMemoryWritable - When code generation is in progress,
550    /// the code pages may need permissions changed.
551    void setMemoryWritable()
552    {
553      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
554        sys::Memory::setWritable(CodeSlabs[i]);
555    }
556    /// setMemoryExecutable - When code generation is done and we're ready to
557    /// start execution, the code pages may need permissions changed.
558    void setMemoryExecutable()
559    {
560      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
561        sys::Memory::setExecutable(CodeSlabs[i]);
562    }
563
564    /// setPoisonMemory - Controls whether we write garbage over freed memory.
565    ///
566    void setPoisonMemory(bool poison) {
567      PoisonMemory = poison;
568    }
569  };
570}
571
572MemSlab *JITSlabAllocator::Allocate(size_t Size) {
573  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
574  MemSlab *Slab = (MemSlab*)B.base();
575  Slab->Size = B.size();
576  Slab->NextPtr = 0;
577  return Slab;
578}
579
580void JITSlabAllocator::Deallocate(MemSlab *Slab) {
581  sys::MemoryBlock B(Slab, Slab->Size);
582  sys::Memory::ReleaseRWX(B);
583}
584
585DefaultJITMemoryManager::DefaultJITMemoryManager()
586  :
587#ifdef NDEBUG
588    PoisonMemory(false),
589#else
590    PoisonMemory(true),
591#endif
592    LastSlab(0, 0),
593    BumpSlabAllocator(*this),
594    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
595    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
596
597  // Allocate space for code.
598  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
599  CodeSlabs.push_back(MemBlock);
600  uint8_t *MemBase = (uint8_t*)MemBlock.base();
601
602  // We set up the memory chunk with 4 mem regions, like this:
603  //  [ START
604  //    [ Free      #0 ] -> Large space to allocate functions from.
605  //    [ Allocated #1 ] -> Tiny space to separate regions.
606  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
607  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
608  //  END ]
609  //
610  // The last three blocks are never deallocated or touched.
611
612  // Add MemoryRangeHeader to the end of the memory region, indicating that
613  // the space after the block of memory is allocated.  This is block #3.
614  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
615  Mem3->ThisAllocated = 1;
616  Mem3->PrevAllocated = 0;
617  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
618
619  /// Add a tiny free region so that the free list always has one entry.
620  FreeRangeHeader *Mem2 =
621    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
622  Mem2->ThisAllocated = 0;
623  Mem2->PrevAllocated = 1;
624  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
625  Mem2->SetEndOfBlockSizeMarker();
626  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
627  Mem2->Next = Mem2;
628
629  /// Add a tiny allocated region so that Mem2 is never coalesced away.
630  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
631  Mem1->ThisAllocated = 1;
632  Mem1->PrevAllocated = 0;
633  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
634
635  // Add a FreeRangeHeader to the start of the function body region, indicating
636  // that the space is free.  Mark the previous block allocated so we never look
637  // at it.
638  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
639  Mem0->ThisAllocated = 0;
640  Mem0->PrevAllocated = 1;
641  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
642  Mem0->SetEndOfBlockSizeMarker();
643  Mem0->AddToFreeList(Mem2);
644
645  // Start out with the freelist pointing to Mem0.
646  FreeMemoryList = Mem0;
647
648  GOTBase = NULL;
649}
650
651void DefaultJITMemoryManager::AllocateGOT() {
652  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
653  GOTBase = new uint8_t[sizeof(void*) * 8192];
654  HasGOT = true;
655}
656
657DefaultJITMemoryManager::~DefaultJITMemoryManager() {
658  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
659    sys::Memory::ReleaseRWX(CodeSlabs[i]);
660
661  delete[] GOTBase;
662}
663
664sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
665  // Allocate a new block close to the last one.
666  std::string ErrMsg;
667  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
668  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
669  if (B.base() == 0) {
670    report_fatal_error("Allocation failed when allocating new memory in the"
671                       " JIT\n" + Twine(ErrMsg));
672  }
673  LastSlab = B;
674  ++NumSlabs;
675  // Initialize the slab to garbage when debugging.
676  if (PoisonMemory) {
677    memset(B.base(), 0xCD, B.size());
678  }
679  return B;
680}
681
682/// CheckInvariants - For testing only.  Return "" if all internal invariants
683/// are preserved, and a helpful error message otherwise.  For free and
684/// allocated blocks, make sure that adding BlockSize gives a valid block.
685/// For free blocks, make sure they're in the free list and that their end of
686/// block size marker is correct.  This function should return an error before
687/// accessing bad memory.  This function is defined here instead of in
688/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
689/// implementation details of DefaultJITMemoryManager.
690bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
691  raw_string_ostream Err(ErrorStr);
692
693  // Construct a the set of FreeRangeHeader pointers so we can query it
694  // efficiently.
695  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
696  FreeRangeHeader* FreeHead = FreeMemoryList;
697  FreeRangeHeader* FreeRange = FreeHead;
698
699  do {
700    // Check that the free range pointer is in the blocks we've allocated.
701    bool Found = false;
702    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
703         E = CodeSlabs.end(); I != E && !Found; ++I) {
704      char *Start = (char*)I->base();
705      char *End = Start + I->size();
706      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
707    }
708    if (!Found) {
709      Err << "Corrupt free list; points to " << FreeRange;
710      return false;
711    }
712
713    if (FreeRange->Next->Prev != FreeRange) {
714      Err << "Next and Prev pointers do not match.";
715      return false;
716    }
717
718    // Otherwise, add it to the set.
719    FreeHdrSet.insert(FreeRange);
720    FreeRange = FreeRange->Next;
721  } while (FreeRange != FreeHead);
722
723  // Go over each block, and look at each MemoryRangeHeader.
724  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
725       E = CodeSlabs.end(); I != E; ++I) {
726    char *Start = (char*)I->base();
727    char *End = Start + I->size();
728
729    // Check each memory range.
730    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
731         Start <= (char*)Hdr && (char*)Hdr < End;
732         Hdr = &Hdr->getBlockAfter()) {
733      if (Hdr->ThisAllocated == 0) {
734        // Check that this range is in the free list.
735        if (!FreeHdrSet.count(Hdr)) {
736          Err << "Found free header at " << Hdr << " that is not in free list.";
737          return false;
738        }
739
740        // Now make sure the size marker at the end of the block is correct.
741        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
742        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
743          Err << "Block size in header points out of current MemoryBlock.";
744          return false;
745        }
746        if (Hdr->BlockSize != *Marker) {
747          Err << "End of block size marker (" << *Marker << ") "
748              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
749          return false;
750        }
751      }
752
753      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
754        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
755            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
756        return false;
757      } else if (!LastHdr && !Hdr->PrevAllocated) {
758        Err << "The first header should have PrevAllocated true.";
759        return false;
760      }
761
762      // Remember the last header.
763      LastHdr = Hdr;
764    }
765  }
766
767  // All invariants are preserved.
768  return true;
769}
770
771//===----------------------------------------------------------------------===//
772// getPointerToNamedFunction() implementation.
773//===----------------------------------------------------------------------===//
774#include "llvm/Support/ErrorHandling.h"
775#include "llvm/Support/DynamicLibrary.h"
776#include "llvm/Config/config.h"
777
778// AtExitHandlers - List of functions to call when the program exits,
779// registered with the atexit() library function.
780static std::vector<void (*)()> AtExitHandlers;
781
782/// runAtExitHandlers - Run any functions registered by the program's
783/// calls to atexit(3), which we intercept and store in
784/// AtExitHandlers.
785///
786static void runAtExitHandlers() {
787  while (!AtExitHandlers.empty()) {
788    void (*Fn)() = AtExitHandlers.back();
789    AtExitHandlers.pop_back();
790    Fn();
791  }
792}
793
794//===----------------------------------------------------------------------===//
795// Function stubs that are invoked instead of certain library calls
796//===----------------------------------------------------------------------===//
797
798// Force the following functions to be linked in to anything that uses the
799// JIT. This is a hack designed to work around the all-too-clever Glibc
800// strategy of making these functions work differently when inlined vs. when
801// not inlined, and hiding their real definitions in a separate archive file
802// that the dynamic linker can't see. For more info, search for
803// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
804#if defined(__linux__)
805#if defined(HAVE_SYS_STAT_H)
806#include <sys/stat.h>
807#endif
808#include <fcntl.h>
809#include <unistd.h>
810/* stat functions are redirecting to __xstat with a version number.  On x86-64
811 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
812 * available as an exported symbol, so we have to add it explicitly.
813 */
814namespace {
815class StatSymbols {
816public:
817  StatSymbols() {
818    sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
819    sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
820    sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
821    sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
822    sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
823    sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
824    sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
825    sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
826    sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
827    sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
828    sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
829  }
830};
831}
832static StatSymbols initStatSymbols;
833#endif // __linux__
834
835// jit_exit - Used to intercept the "exit" library call.
836static void jit_exit(int Status) {
837  runAtExitHandlers();   // Run atexit handlers...
838  exit(Status);
839}
840
841// jit_atexit - Used to intercept the "atexit" library call.
842static int jit_atexit(void (*Fn)()) {
843  AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
844  return 0;  // Always successful
845}
846
847static int jit_noop() {
848  return 0;
849}
850
851//===----------------------------------------------------------------------===//
852//
853/// getPointerToNamedFunction - This method returns the address of the specified
854/// function by using the dynamic loader interface.  As such it is only useful
855/// for resolving library symbols, not code generated symbols.
856///
857void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
858                                     bool AbortOnFailure) {
859  // Check to see if this is one of the functions we want to intercept.  Note,
860  // we cast to intptr_t here to silence a -pedantic warning that complains
861  // about casting a function pointer to a normal pointer.
862  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
863  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
864
865  // We should not invoke parent's ctors/dtors from generated main()!
866  // On Mingw and Cygwin, the symbol __main is resolved to
867  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
868  // (and register wrong callee's dtors with atexit(3)).
869  // We expect ExecutionEngine::runStaticConstructorsDestructors()
870  // is called before ExecutionEngine::runFunctionAsMain() is called.
871  if (Name == "__main") return (void*)(intptr_t)&jit_noop;
872
873  const char *NameStr = Name.c_str();
874  // If this is an asm specifier, skip the sentinal.
875  if (NameStr[0] == 1) ++NameStr;
876
877  // If it's an external function, look it up in the process image...
878  void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
879  if (Ptr) return Ptr;
880
881  // If it wasn't found and if it starts with an underscore ('_') character,
882  // try again without the underscore.
883  if (NameStr[0] == '_') {
884    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
885    if (Ptr) return Ptr;
886  }
887
888  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
889  // are references to hidden visibility symbols that dlsym cannot resolve.
890  // If we have one of these, strip off $LDBLStub and try again.
891#if defined(__APPLE__) && defined(__ppc__)
892  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
893      memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
894    // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
895    // This mirrors logic in libSystemStubs.a.
896    std::string Prefix = std::string(Name.begin(), Name.end()-9);
897    if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
898      return Ptr;
899    if (void *Ptr = getPointerToNamedFunction(Prefix, false))
900      return Ptr;
901  }
902#endif
903
904  if (AbortOnFailure) {
905    report_fatal_error("Program used external function '"+Name+
906                      "' which could not be resolved!");
907  }
908  return 0;
909}
910
911
912
913JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
914  return new DefaultJITMemoryManager();
915}
916
917// Allocate memory for code in 512K slabs.
918const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
919
920// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
921const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
922
923// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
924const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
925