JITMemoryManager.cpp revision a9ad04191cb56c42944b17980b8b2bb2afe11ab2
1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/GlobalValue.h"
19#include "llvm/Support/Allocator.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/System/Memory.h"
25#include <map>
26#include <vector>
27#include <cassert>
28#include <climits>
29#include <cstdio>
30#include <cstdlib>
31#include <cstring>
32using namespace llvm;
33
34STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
35
36JITMemoryManager::~JITMemoryManager() {}
37
38//===----------------------------------------------------------------------===//
39// Memory Block Implementation.
40//===----------------------------------------------------------------------===//
41
42namespace {
43  /// MemoryRangeHeader - For a range of memory, this is the header that we put
44  /// on the block of memory.  It is carefully crafted to be one word of memory.
45  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
46  /// which starts with this.
47  struct FreeRangeHeader;
48  struct MemoryRangeHeader {
49    /// ThisAllocated - This is true if this block is currently allocated.  If
50    /// not, this can be converted to a FreeRangeHeader.
51    unsigned ThisAllocated : 1;
52
53    /// PrevAllocated - Keep track of whether the block immediately before us is
54    /// allocated.  If not, the word immediately before this header is the size
55    /// of the previous block.
56    unsigned PrevAllocated : 1;
57
58    /// BlockSize - This is the size in bytes of this memory block,
59    /// including this header.
60    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
61
62
63    /// getBlockAfter - Return the memory block immediately after this one.
64    ///
65    MemoryRangeHeader &getBlockAfter() const {
66      return *(MemoryRangeHeader*)((char*)this+BlockSize);
67    }
68
69    /// getFreeBlockBefore - If the block before this one is free, return it,
70    /// otherwise return null.
71    FreeRangeHeader *getFreeBlockBefore() const {
72      if (PrevAllocated) return 0;
73      intptr_t PrevSize = ((intptr_t *)this)[-1];
74      return (FreeRangeHeader*)((char*)this-PrevSize);
75    }
76
77    /// FreeBlock - Turn an allocated block into a free block, adjusting
78    /// bits in the object headers, and adding an end of region memory block.
79    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
80
81    /// TrimAllocationToSize - If this allocated block is significantly larger
82    /// than NewSize, split it into two pieces (where the former is NewSize
83    /// bytes, including the header), and add the new block to the free list.
84    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
85                                          uint64_t NewSize);
86  };
87
88  /// FreeRangeHeader - For a memory block that isn't already allocated, this
89  /// keeps track of the current block and has a pointer to the next free block.
90  /// Free blocks are kept on a circularly linked list.
91  struct FreeRangeHeader : public MemoryRangeHeader {
92    FreeRangeHeader *Prev;
93    FreeRangeHeader *Next;
94
95    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
96    /// smaller than this size cannot be created.
97    static unsigned getMinBlockSize() {
98      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
99    }
100
101    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
102    /// known to be the size of the free block.  Set it for this block.
103    void SetEndOfBlockSizeMarker() {
104      void *EndOfBlock = (char*)this + BlockSize;
105      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
106    }
107
108    FreeRangeHeader *RemoveFromFreeList() {
109      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
110      Next->Prev = Prev;
111      return Prev->Next = Next;
112    }
113
114    void AddToFreeList(FreeRangeHeader *FreeList) {
115      Next = FreeList;
116      Prev = FreeList->Prev;
117      Prev->Next = this;
118      Next->Prev = this;
119    }
120
121    /// GrowBlock - The block after this block just got deallocated.  Merge it
122    /// into the current block.
123    void GrowBlock(uintptr_t NewSize);
124
125    /// AllocateBlock - Mark this entire block allocated, updating freelists
126    /// etc.  This returns a pointer to the circular free-list.
127    FreeRangeHeader *AllocateBlock();
128  };
129}
130
131
132/// AllocateBlock - Mark this entire block allocated, updating freelists
133/// etc.  This returns a pointer to the circular free-list.
134FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
135  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
136         "Cannot allocate an allocated block!");
137  // Mark this block allocated.
138  ThisAllocated = 1;
139  getBlockAfter().PrevAllocated = 1;
140
141  // Remove it from the free list.
142  return RemoveFromFreeList();
143}
144
145/// FreeBlock - Turn an allocated block into a free block, adjusting
146/// bits in the object headers, and adding an end of region memory block.
147/// If possible, coalesce this block with neighboring blocks.  Return the
148/// FreeRangeHeader to allocate from.
149FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
150  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
151  assert(ThisAllocated && "This block is already free!");
152  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
153
154  FreeRangeHeader *FreeListToReturn = FreeList;
155
156  // If the block after this one is free, merge it into this block.
157  if (!FollowingBlock->ThisAllocated) {
158    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
159    // "FreeList" always needs to be a valid free block.  If we're about to
160    // coalesce with it, update our notion of what the free list is.
161    if (&FollowingFreeBlock == FreeList) {
162      FreeList = FollowingFreeBlock.Next;
163      FreeListToReturn = 0;
164      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
165    }
166    FollowingFreeBlock.RemoveFromFreeList();
167
168    // Include the following block into this one.
169    BlockSize += FollowingFreeBlock.BlockSize;
170    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
171
172    // Tell the block after the block we are coalescing that this block is
173    // allocated.
174    FollowingBlock->PrevAllocated = 1;
175  }
176
177  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
178
179  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
180    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
181    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
182  }
183
184  // Otherwise, mark this block free.
185  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
186  FollowingBlock->PrevAllocated = 0;
187  FreeBlock.ThisAllocated = 0;
188
189  // Link this into the linked list of free blocks.
190  FreeBlock.AddToFreeList(FreeList);
191
192  // Add a marker at the end of the block, indicating the size of this free
193  // block.
194  FreeBlock.SetEndOfBlockSizeMarker();
195  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
196}
197
198/// GrowBlock - The block after this block just got deallocated.  Merge it
199/// into the current block.
200void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
201  assert(NewSize > BlockSize && "Not growing block?");
202  BlockSize = NewSize;
203  SetEndOfBlockSizeMarker();
204  getBlockAfter().PrevAllocated = 0;
205}
206
207/// TrimAllocationToSize - If this allocated block is significantly larger
208/// than NewSize, split it into two pieces (where the former is NewSize
209/// bytes, including the header), and add the new block to the free list.
210FreeRangeHeader *MemoryRangeHeader::
211TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
212  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
213         "Cannot deallocate part of an allocated block!");
214
215  // Don't allow blocks to be trimmed below minimum required size
216  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
217
218  // Round up size for alignment of header.
219  unsigned HeaderAlign = __alignof(FreeRangeHeader);
220  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
221
222  // Size is now the size of the block we will remove from the start of the
223  // current block.
224  assert(NewSize <= BlockSize &&
225         "Allocating more space from this block than exists!");
226
227  // If splitting this block will cause the remainder to be too small, do not
228  // split the block.
229  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
230    return FreeList;
231
232  // Otherwise, we splice the required number of bytes out of this block, form
233  // a new block immediately after it, then mark this block allocated.
234  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
235
236  // Change the size of this block.
237  BlockSize = NewSize;
238
239  // Get the new block we just sliced out and turn it into a free block.
240  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
241  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
242  NewNextBlock.ThisAllocated = 0;
243  NewNextBlock.PrevAllocated = 1;
244  NewNextBlock.SetEndOfBlockSizeMarker();
245  FormerNextBlock.PrevAllocated = 0;
246  NewNextBlock.AddToFreeList(FreeList);
247  return &NewNextBlock;
248}
249
250//===----------------------------------------------------------------------===//
251// Memory Block Implementation.
252//===----------------------------------------------------------------------===//
253
254namespace {
255
256  class DefaultJITMemoryManager;
257
258  class JITSlabAllocator : public SlabAllocator {
259    DefaultJITMemoryManager &JMM;
260  public:
261    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
262    virtual ~JITSlabAllocator() { }
263    virtual MemSlab *Allocate(size_t Size);
264    virtual void Deallocate(MemSlab *Slab);
265  };
266
267  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
268  /// This splits a large block of MAP_NORESERVE'd memory into two
269  /// sections, one for function stubs, one for the functions themselves.  We
270  /// have to do this because we may need to emit a function stub while in the
271  /// middle of emitting a function, and we don't know how large the function we
272  /// are emitting is.
273  class DefaultJITMemoryManager : public JITMemoryManager {
274
275    // Whether to poison freed memory.
276    bool PoisonMemory;
277
278    /// LastSlab - This points to the last slab allocated and is used as the
279    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
280    /// stubs, data, and code contiguously in memory.  In general, however, this
281    /// is not possible because the NearBlock parameter is ignored on Windows
282    /// platforms and even on Unix it works on a best-effort pasis.
283    sys::MemoryBlock LastSlab;
284
285    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
286    // confuse them with the blocks of memory descibed above.
287    std::vector<sys::MemoryBlock> CodeSlabs;
288    JITSlabAllocator BumpSlabAllocator;
289    BumpPtrAllocator StubAllocator;
290    BumpPtrAllocator DataAllocator;
291
292    // Circular list of free blocks.
293    FreeRangeHeader *FreeMemoryList;
294
295    // When emitting code into a memory block, this is the block.
296    MemoryRangeHeader *CurBlock;
297
298    uint8_t *GOTBase;     // Target Specific reserved memory
299    void *DlsymTable;     // Stub external symbol information
300
301    std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
302    std::map<const Function*, MemoryRangeHeader*> TableBlocks;
303  public:
304    DefaultJITMemoryManager();
305    ~DefaultJITMemoryManager();
306
307    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
308    /// last slab it allocated, so that subsequent allocations follow it.
309    sys::MemoryBlock allocateNewSlab(size_t size);
310
311    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
312    /// least this much unless more is requested.
313    static const size_t DefaultCodeSlabSize;
314
315    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
316    /// an allocation above SizeThreshold.
317    static const size_t DefaultSlabSize;
318
319    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
320    /// should allocate a separate slab.
321    static const size_t DefaultSizeThreshold;
322
323    void AllocateGOT();
324    void SetDlsymTable(void *);
325
326    // Testing methods.
327    virtual bool CheckInvariants(std::string &ErrorStr);
328    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
329    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
330    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
331    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
332    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
333    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
334
335    /// startFunctionBody - When a function starts, allocate a block of free
336    /// executable memory, returning a pointer to it and its actual size.
337    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
338
339      FreeRangeHeader* candidateBlock = FreeMemoryList;
340      FreeRangeHeader* head = FreeMemoryList;
341      FreeRangeHeader* iter = head->Next;
342
343      uintptr_t largest = candidateBlock->BlockSize;
344
345      // Search for the largest free block
346      while (iter != head) {
347        if (iter->BlockSize > largest) {
348          largest = iter->BlockSize;
349          candidateBlock = iter;
350        }
351        iter = iter->Next;
352      }
353
354      largest = largest - sizeof(MemoryRangeHeader);
355
356      // If this block isn't big enough for the allocation desired, allocate
357      // another block of memory and add it to the free list.
358      if (largest < ActualSize ||
359          largest <= FreeRangeHeader::getMinBlockSize()) {
360        DOUT << "JIT: Allocating another slab of memory for function.";
361        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
362      }
363
364      // Select this candidate block for allocation
365      CurBlock = candidateBlock;
366
367      // Allocate the entire memory block.
368      FreeMemoryList = candidateBlock->AllocateBlock();
369      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
370      return (uint8_t *)(CurBlock + 1);
371    }
372
373    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
374    /// memory from the OS and add it to the free list.  Returns the new
375    /// FreeRangeHeader at the base of the slab.
376    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
377      // If the user needs at least MinSize free memory, then we account for
378      // two MemoryRangeHeaders: the one in the user's block, and the one at the
379      // end of the slab.
380      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
381      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
382      sys::MemoryBlock B = allocateNewSlab(SlabSize);
383      CodeSlabs.push_back(B);
384      char *MemBase = (char*)(B.base());
385
386      // Put a tiny allocated block at the end of the memory chunk, so when
387      // FreeBlock calls getBlockAfter it doesn't fall off the end.
388      MemoryRangeHeader *EndBlock =
389          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
390      EndBlock->ThisAllocated = 1;
391      EndBlock->PrevAllocated = 0;
392      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
393
394      // Start out with a vast new block of free memory.
395      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
396      NewBlock->ThisAllocated = 0;
397      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
398      NewBlock->PrevAllocated = 1;
399      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
400      NewBlock->SetEndOfBlockSizeMarker();
401      NewBlock->AddToFreeList(FreeMemoryList);
402
403      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
404             "The block was too small!");
405      return NewBlock;
406    }
407
408    /// endFunctionBody - The function F is now allocated, and takes the memory
409    /// in the range [FunctionStart,FunctionEnd).
410    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
411                         uint8_t *FunctionEnd) {
412      assert(FunctionEnd > FunctionStart);
413      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
414             "Mismatched function start/end!");
415
416      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
417      FunctionBlocks[F] = CurBlock;
418
419      // Release the memory at the end of this block that isn't needed.
420      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
421    }
422
423    /// allocateSpace - Allocate a memory block of the given size.  This method
424    /// cannot be called between calls to startFunctionBody and endFunctionBody.
425    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
426      CurBlock = FreeMemoryList;
427      FreeMemoryList = FreeMemoryList->AllocateBlock();
428
429      uint8_t *result = (uint8_t *)(CurBlock + 1);
430
431      if (Alignment == 0) Alignment = 1;
432      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
433               ~(intptr_t)(Alignment-1));
434
435      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
436      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
437
438      return result;
439    }
440
441    /// allocateStub - Allocate memory for a function stub.
442    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
443                          unsigned Alignment) {
444      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
445    }
446
447    /// allocateGlobal - Allocate memory for a global.
448    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
449      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
450    }
451
452    /// startExceptionTable - Use startFunctionBody to allocate memory for the
453    /// function's exception table.
454    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
455      return startFunctionBody(F, ActualSize);
456    }
457
458    /// endExceptionTable - The exception table of F is now allocated,
459    /// and takes the memory in the range [TableStart,TableEnd).
460    void endExceptionTable(const Function *F, uint8_t *TableStart,
461                           uint8_t *TableEnd, uint8_t* FrameRegister) {
462      assert(TableEnd > TableStart);
463      assert(TableStart == (uint8_t *)(CurBlock+1) &&
464             "Mismatched table start/end!");
465
466      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
467      TableBlocks[F] = CurBlock;
468
469      // Release the memory at the end of this block that isn't needed.
470      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
471    }
472
473    uint8_t *getGOTBase() const {
474      return GOTBase;
475    }
476
477    void *getDlsymTable() const {
478      return DlsymTable;
479    }
480
481    /// deallocateMemForFunction - Deallocate all memory for the specified
482    /// function body.
483    void deallocateMemForFunction(const Function *F) {
484      std::map<const Function*, MemoryRangeHeader*>::iterator
485        I = FunctionBlocks.find(F);
486      if (I == FunctionBlocks.end()) return;
487
488      // Find the block that is allocated for this function.
489      MemoryRangeHeader *MemRange = I->second;
490      assert(MemRange->ThisAllocated && "Block isn't allocated!");
491
492      // Fill the buffer with garbage!
493      if (PoisonMemory) {
494        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
495      }
496
497      // Free the memory.
498      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
499
500      // Finally, remove this entry from FunctionBlocks.
501      FunctionBlocks.erase(I);
502
503      I = TableBlocks.find(F);
504      if (I == TableBlocks.end()) return;
505
506      // Find the block that is allocated for this function.
507      MemRange = I->second;
508      assert(MemRange->ThisAllocated && "Block isn't allocated!");
509
510      // Fill the buffer with garbage!
511      if (PoisonMemory) {
512        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
513      }
514
515      // Free the memory.
516      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
517
518      // Finally, remove this entry from TableBlocks.
519      TableBlocks.erase(I);
520    }
521
522    /// setMemoryWritable - When code generation is in progress,
523    /// the code pages may need permissions changed.
524    void setMemoryWritable()
525    {
526      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
527        sys::Memory::setWritable(CodeSlabs[i]);
528    }
529    /// setMemoryExecutable - When code generation is done and we're ready to
530    /// start execution, the code pages may need permissions changed.
531    void setMemoryExecutable()
532    {
533      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
534        sys::Memory::setExecutable(CodeSlabs[i]);
535    }
536
537    /// setPoisonMemory - Controls whether we write garbage over freed memory.
538    ///
539    void setPoisonMemory(bool poison) {
540      PoisonMemory = poison;
541    }
542  };
543}
544
545MemSlab *JITSlabAllocator::Allocate(size_t Size) {
546  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
547  MemSlab *Slab = (MemSlab*)B.base();
548  Slab->Size = B.size();
549  Slab->NextPtr = 0;
550  return Slab;
551}
552
553void JITSlabAllocator::Deallocate(MemSlab *Slab) {
554  sys::MemoryBlock B(Slab, Slab->Size);
555  sys::Memory::ReleaseRWX(B);
556}
557
558DefaultJITMemoryManager::DefaultJITMemoryManager()
559  : LastSlab(0, 0),
560    BumpSlabAllocator(*this),
561    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
562    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
563
564#ifdef NDEBUG
565  PoisonMemory = false;
566#else
567  PoisonMemory = true;
568#endif
569
570  // Allocate space for code.
571  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
572  CodeSlabs.push_back(MemBlock);
573  uint8_t *MemBase = (uint8_t*)MemBlock.base();
574
575  // We set up the memory chunk with 4 mem regions, like this:
576  //  [ START
577  //    [ Free      #0 ] -> Large space to allocate functions from.
578  //    [ Allocated #1 ] -> Tiny space to separate regions.
579  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
580  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
581  //  END ]
582  //
583  // The last three blocks are never deallocated or touched.
584
585  // Add MemoryRangeHeader to the end of the memory region, indicating that
586  // the space after the block of memory is allocated.  This is block #3.
587  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
588  Mem3->ThisAllocated = 1;
589  Mem3->PrevAllocated = 0;
590  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
591
592  /// Add a tiny free region so that the free list always has one entry.
593  FreeRangeHeader *Mem2 =
594    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
595  Mem2->ThisAllocated = 0;
596  Mem2->PrevAllocated = 1;
597  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
598  Mem2->SetEndOfBlockSizeMarker();
599  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
600  Mem2->Next = Mem2;
601
602  /// Add a tiny allocated region so that Mem2 is never coalesced away.
603  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
604  Mem1->ThisAllocated = 1;
605  Mem1->PrevAllocated = 0;
606  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
607
608  // Add a FreeRangeHeader to the start of the function body region, indicating
609  // that the space is free.  Mark the previous block allocated so we never look
610  // at it.
611  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
612  Mem0->ThisAllocated = 0;
613  Mem0->PrevAllocated = 1;
614  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
615  Mem0->SetEndOfBlockSizeMarker();
616  Mem0->AddToFreeList(Mem2);
617
618  // Start out with the freelist pointing to Mem0.
619  FreeMemoryList = Mem0;
620
621  GOTBase = NULL;
622  DlsymTable = NULL;
623}
624
625void DefaultJITMemoryManager::AllocateGOT() {
626  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
627  GOTBase = new uint8_t[sizeof(void*) * 8192];
628  HasGOT = true;
629}
630
631void DefaultJITMemoryManager::SetDlsymTable(void *ptr) {
632  DlsymTable = ptr;
633}
634
635DefaultJITMemoryManager::~DefaultJITMemoryManager() {
636  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
637    sys::Memory::ReleaseRWX(CodeSlabs[i]);
638
639  delete[] GOTBase;
640}
641
642sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
643  // Allocate a new block close to the last one.
644  std::string ErrMsg;
645  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
646  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
647  if (B.base() == 0) {
648    llvm_report_error("Allocation failed when allocating new memory in the"
649                      " JIT\n" + ErrMsg);
650  }
651  LastSlab = B;
652  ++NumSlabs;
653  return B;
654}
655
656/// CheckInvariants - For testing only.  Return "" if all internal invariants
657/// are preserved, and a helpful error message otherwise.  For free and
658/// allocated blocks, make sure that adding BlockSize gives a valid block.
659/// For free blocks, make sure they're in the free list and that their end of
660/// block size marker is correct.  This function should return an error before
661/// accessing bad memory.  This function is defined here instead of in
662/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
663/// implementation details of DefaultJITMemoryManager.
664bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
665  raw_string_ostream Err(ErrorStr);
666
667  // Construct a the set of FreeRangeHeader pointers so we can query it
668  // efficiently.
669  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
670  FreeRangeHeader* FreeHead = FreeMemoryList;
671  FreeRangeHeader* FreeRange = FreeHead;
672
673  do {
674    // Check that the free range pointer is in the blocks we've allocated.
675    bool Found = false;
676    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
677         E = CodeSlabs.end(); I != E && !Found; ++I) {
678      char *Start = (char*)I->base();
679      char *End = Start + I->size();
680      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
681    }
682    if (!Found) {
683      Err << "Corrupt free list; points to " << FreeRange;
684      return false;
685    }
686
687    if (FreeRange->Next->Prev != FreeRange) {
688      Err << "Next and Prev pointers do not match.";
689      return false;
690    }
691
692    // Otherwise, add it to the set.
693    FreeHdrSet.insert(FreeRange);
694    FreeRange = FreeRange->Next;
695  } while (FreeRange != FreeHead);
696
697  // Go over each block, and look at each MemoryRangeHeader.
698  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
699       E = CodeSlabs.end(); I != E; ++I) {
700    char *Start = (char*)I->base();
701    char *End = Start + I->size();
702
703    // Check each memory range.
704    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
705         Start <= (char*)Hdr && (char*)Hdr < End;
706         Hdr = &Hdr->getBlockAfter()) {
707      if (Hdr->ThisAllocated == 0) {
708        // Check that this range is in the free list.
709        if (!FreeHdrSet.count(Hdr)) {
710          Err << "Found free header at " << Hdr << " that is not in free list.";
711          return false;
712        }
713
714        // Now make sure the size marker at the end of the block is correct.
715        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
716        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
717          Err << "Block size in header points out of current MemoryBlock.";
718          return false;
719        }
720        if (Hdr->BlockSize != *Marker) {
721          Err << "End of block size marker (" << *Marker << ") "
722              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
723          return false;
724        }
725      }
726
727      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
728        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
729            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
730        return false;
731      } else if (!LastHdr && !Hdr->PrevAllocated) {
732        Err << "The first header should have PrevAllocated true.";
733        return false;
734      }
735
736      // Remember the last header.
737      LastHdr = Hdr;
738    }
739  }
740
741  // All invariants are preserved.
742  return true;
743}
744
745JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
746  return new DefaultJITMemoryManager();
747}
748
749// Allocate memory for code in 512K slabs.
750const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
751
752// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
753const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
754
755// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
756const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
757