RuntimeDyld.cpp revision 32bd10b1a33df2cc4d067a16901d56665f4ba085
1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ExecutionEngine/RuntimeDyld.h"
16#include "ObjectImageCommon.h"
17#include "RuntimeDyldELF.h"
18#include "RuntimeDyldImpl.h"
19#include "RuntimeDyldMachO.h"
20#include "llvm/Support/FileSystem.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Object/ELF.h"
23
24using namespace llvm;
25using namespace llvm::object;
26
27// Empty out-of-line virtual destructor as the key function.
28RuntimeDyldImpl::~RuntimeDyldImpl() {}
29
30namespace llvm {
31
32StringRef RuntimeDyldImpl::getEHFrameSection() {
33  return StringRef();
34}
35
36// Resolve the relocations for all symbols we currently know about.
37void RuntimeDyldImpl::resolveRelocations() {
38  // First, resolve relocations associated with external symbols.
39  resolveExternalSymbols();
40
41  // Just iterate over the sections we have and resolve all the relocations
42  // in them. Gross overkill, but it gets the job done.
43  for (int i = 0, e = Sections.size(); i != e; ++i) {
44    // The Section here (Sections[i]) refers to the section in which the
45    // symbol for the relocation is located.  The SectionID in the relocation
46    // entry provides the section to which the relocation will be applied.
47    uint64_t Addr = Sections[i].LoadAddress;
48    DEBUG(dbgs() << "Resolving relocations Section #" << i
49            << "\t" << format("%p", (uint8_t *)Addr)
50            << "\n");
51    resolveRelocationList(Relocations[i], Addr);
52  }
53}
54
55void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
56                                        uint64_t TargetAddress) {
57  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
58    if (Sections[i].Address == LocalAddress) {
59      reassignSectionAddress(i, TargetAddress);
60      return;
61    }
62  }
63  llvm_unreachable("Attempting to remap address of unknown section!");
64}
65
66// Subclasses can implement this method to create specialized image instances.
67// The caller owns the pointer that is returned.
68ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
69  return new ObjectImageCommon(InputBuffer);
70}
71
72ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
73  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
74  if (!obj)
75    report_fatal_error("Unable to create object image from memory buffer!");
76
77  Arch = (Triple::ArchType)obj->getArch();
78
79  // Symbols found in this object
80  StringMap<SymbolLoc> LocalSymbols;
81  // Used sections from the object file
82  ObjSectionToIDMap LocalSections;
83
84  // Common symbols requiring allocation, with their sizes and alignments
85  CommonSymbolMap CommonSymbols;
86  // Maximum required total memory to allocate all common symbols
87  uint64_t CommonSize = 0;
88
89  error_code err;
90  // Parse symbols
91  DEBUG(dbgs() << "Parse symbols:\n");
92  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
93       i != e; i.increment(err)) {
94    Check(err);
95    object::SymbolRef::Type SymType;
96    StringRef Name;
97    Check(i->getType(SymType));
98    Check(i->getName(Name));
99
100    uint32_t flags;
101    Check(i->getFlags(flags));
102
103    bool isCommon = flags & SymbolRef::SF_Common;
104    if (isCommon) {
105      // Add the common symbols to a list.  We'll allocate them all below.
106      uint32_t Align;
107      Check(i->getAlignment(Align));
108      uint64_t Size = 0;
109      Check(i->getSize(Size));
110      CommonSize += Size + Align;
111      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
112    } else {
113      if (SymType == object::SymbolRef::ST_Function ||
114          SymType == object::SymbolRef::ST_Data ||
115          SymType == object::SymbolRef::ST_Unknown) {
116        uint64_t FileOffset;
117        StringRef SectionData;
118        bool IsCode;
119        section_iterator si = obj->end_sections();
120        Check(i->getFileOffset(FileOffset));
121        Check(i->getSection(si));
122        if (si == obj->end_sections()) continue;
123        Check(si->getContents(SectionData));
124        Check(si->isText(IsCode));
125        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
126                                (uintptr_t)FileOffset;
127        uintptr_t SectOffset = (uintptr_t)(SymPtr -
128                                           (const uint8_t*)SectionData.begin());
129        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
130        LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
131        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
132                     << " flags: " << flags
133                     << " SID: " << SectionID
134                     << " Offset: " << format("%p", SectOffset));
135        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
136      }
137    }
138    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
139  }
140
141  // Allocate common symbols
142  if (CommonSize != 0)
143    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
144
145  // Parse and process relocations
146  DEBUG(dbgs() << "Parse relocations:\n");
147  for (section_iterator si = obj->begin_sections(),
148       se = obj->end_sections(); si != se; si.increment(err)) {
149    Check(err);
150    bool isFirstRelocation = true;
151    unsigned SectionID = 0;
152    StubMap Stubs;
153    section_iterator RelocatedSection = si->getRelocatedSection();
154
155    for (relocation_iterator i = si->begin_relocations(),
156         e = si->end_relocations(); i != e; i.increment(err)) {
157      Check(err);
158
159      // If it's the first relocation in this section, find its SectionID
160      if (isFirstRelocation) {
161        SectionID =
162            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
163        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
164        isFirstRelocation = false;
165      }
166
167      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
168			   Stubs);
169    }
170  }
171
172  return obj.take();
173}
174
175void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
176                                        const CommonSymbolMap &CommonSymbols,
177                                        uint64_t TotalSize,
178                                        SymbolTableMap &SymbolTable) {
179  // Allocate memory for the section
180  unsigned SectionID = Sections.size();
181  uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
182                                              SectionID, false);
183  if (!Addr)
184    report_fatal_error("Unable to allocate memory for common symbols!");
185  uint64_t Offset = 0;
186  Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
187  memset(Addr, 0, TotalSize);
188
189  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
190               << " new addr: " << format("%p", Addr)
191               << " DataSize: " << TotalSize
192               << "\n");
193
194  // Assign the address of each symbol
195  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
196       itEnd = CommonSymbols.end(); it != itEnd; it++) {
197    uint64_t Size = it->second.first;
198    uint64_t Align = it->second.second;
199    StringRef Name;
200    it->first.getName(Name);
201    if (Align) {
202      // This symbol has an alignment requirement.
203      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
204      Addr += AlignOffset;
205      Offset += AlignOffset;
206      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
207                      format("%p\n", Addr));
208    }
209    Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
210    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
211    Offset += Size;
212    Addr += Size;
213  }
214}
215
216unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
217                                      const SectionRef &Section,
218                                      bool IsCode) {
219
220  unsigned StubBufSize = 0,
221           StubSize = getMaxStubSize();
222  error_code err;
223  const ObjectFile *ObjFile = Obj.getObjectFile();
224  // FIXME: this is an inefficient way to handle this. We should computed the
225  // necessary section allocation size in loadObject by walking all the sections
226  // once.
227  if (StubSize > 0) {
228    for (section_iterator SI = ObjFile->begin_sections(),
229           SE = ObjFile->end_sections();
230         SI != SE; SI.increment(err), Check(err)) {
231      section_iterator RelSecI = SI->getRelocatedSection();
232      if (!(RelSecI == Section))
233        continue;
234
235      for (relocation_iterator I = SI->begin_relocations(),
236             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
237        StubBufSize += StubSize;
238      }
239    }
240  }
241
242  StringRef data;
243  uint64_t Alignment64;
244  Check(Section.getContents(data));
245  Check(Section.getAlignment(Alignment64));
246
247  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
248  bool IsRequired;
249  bool IsVirtual;
250  bool IsZeroInit;
251  bool IsReadOnly;
252  uint64_t DataSize;
253  StringRef Name;
254  Check(Section.isRequiredForExecution(IsRequired));
255  Check(Section.isVirtual(IsVirtual));
256  Check(Section.isZeroInit(IsZeroInit));
257  Check(Section.isReadOnlyData(IsReadOnly));
258  Check(Section.getSize(DataSize));
259  Check(Section.getName(Name));
260  if (StubSize > 0) {
261    unsigned StubAlignment = getStubAlignment();
262    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
263    if (StubAlignment > EndAlignment)
264      StubBufSize += StubAlignment - EndAlignment;
265  }
266
267  unsigned Allocate;
268  unsigned SectionID = Sections.size();
269  uint8_t *Addr;
270  const char *pData = 0;
271
272  // Some sections, such as debug info, don't need to be loaded for execution.
273  // Leave those where they are.
274  if (IsRequired) {
275    Allocate = DataSize + StubBufSize;
276    Addr = IsCode
277      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
278      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
279    if (!Addr)
280      report_fatal_error("Unable to allocate section memory!");
281
282    // Virtual sections have no data in the object image, so leave pData = 0
283    if (!IsVirtual)
284      pData = data.data();
285
286    // Zero-initialize or copy the data from the image
287    if (IsZeroInit || IsVirtual)
288      memset(Addr, 0, DataSize);
289    else
290      memcpy(Addr, pData, DataSize);
291
292    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
293                 << " Name: " << Name
294                 << " obj addr: " << format("%p", pData)
295                 << " new addr: " << format("%p", Addr)
296                 << " DataSize: " << DataSize
297                 << " StubBufSize: " << StubBufSize
298                 << " Allocate: " << Allocate
299                 << "\n");
300    Obj.updateSectionAddress(Section, (uint64_t)Addr);
301  }
302  else {
303    // Even if we didn't load the section, we need to record an entry for it
304    // to handle later processing (and by 'handle' I mean don't do anything
305    // with these sections).
306    Allocate = 0;
307    Addr = 0;
308    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
309                 << " Name: " << Name
310                 << " obj addr: " << format("%p", data.data())
311                 << " new addr: 0"
312                 << " DataSize: " << DataSize
313                 << " StubBufSize: " << StubBufSize
314                 << " Allocate: " << Allocate
315                 << "\n");
316  }
317
318  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
319  return SectionID;
320}
321
322unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
323                                            const SectionRef &Section,
324                                            bool IsCode,
325                                            ObjSectionToIDMap &LocalSections) {
326
327  unsigned SectionID = 0;
328  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
329  if (i != LocalSections.end())
330    SectionID = i->second;
331  else {
332    SectionID = emitSection(Obj, Section, IsCode);
333    LocalSections[Section] = SectionID;
334  }
335  return SectionID;
336}
337
338void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
339                                              unsigned SectionID) {
340  Relocations[SectionID].push_back(RE);
341}
342
343void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
344                                             StringRef SymbolName) {
345  // Relocation by symbol.  If the symbol is found in the global symbol table,
346  // create an appropriate section relocation.  Otherwise, add it to
347  // ExternalSymbolRelocations.
348  SymbolTableMap::const_iterator Loc =
349      GlobalSymbolTable.find(SymbolName);
350  if (Loc == GlobalSymbolTable.end()) {
351    ExternalSymbolRelocations[SymbolName].push_back(RE);
352  } else {
353    // Copy the RE since we want to modify its addend.
354    RelocationEntry RECopy = RE;
355    RECopy.Addend += Loc->second.second;
356    Relocations[Loc->second.first].push_back(RECopy);
357  }
358}
359
360uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
361  if (Arch == Triple::aarch64) {
362    // This stub has to be able to access the full address space,
363    // since symbol lookup won't necessarily find a handy, in-range,
364    // PLT stub for functions which could be anywhere.
365    uint32_t *StubAddr = (uint32_t*)Addr;
366
367    // Stub can use ip0 (== x16) to calculate address
368    *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
369    StubAddr++;
370    *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
371    StubAddr++;
372    *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
373    StubAddr++;
374    *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
375    StubAddr++;
376    *StubAddr = 0xd61f0200; // br ip0
377
378    return Addr;
379  } else if (Arch == Triple::arm) {
380    // TODO: There is only ARM far stub now. We should add the Thumb stub,
381    // and stubs for branches Thumb - ARM and ARM - Thumb.
382    uint32_t *StubAddr = (uint32_t*)Addr;
383    *StubAddr = 0xe51ff004; // ldr pc,<label>
384    return (uint8_t*)++StubAddr;
385  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
386    uint32_t *StubAddr = (uint32_t*)Addr;
387    // 0:   3c190000        lui     t9,%hi(addr).
388    // 4:   27390000        addiu   t9,t9,%lo(addr).
389    // 8:   03200008        jr      t9.
390    // c:   00000000        nop.
391    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
392    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
393
394    *StubAddr = LuiT9Instr;
395    StubAddr++;
396    *StubAddr = AdduiT9Instr;
397    StubAddr++;
398    *StubAddr = JrT9Instr;
399    StubAddr++;
400    *StubAddr = NopInstr;
401    return Addr;
402  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
403    // PowerPC64 stub: the address points to a function descriptor
404    // instead of the function itself. Load the function address
405    // on r11 and sets it to control register. Also loads the function
406    // TOC in r2 and environment pointer to r11.
407    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
408    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
409    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
410    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
411    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
412    writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
413    writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
414    writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
415    writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
416    writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
417    writeInt32BE(Addr+40, 0x4E800420); // bctr
418
419    return Addr;
420  } else if (Arch == Triple::systemz) {
421    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
422    writeInt16BE(Addr+2,  0x0000);
423    writeInt16BE(Addr+4,  0x0004);
424    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
425    // 8-byte address stored at Addr + 8
426    return Addr;
427  }
428  return Addr;
429}
430
431// Assign an address to a symbol name and resolve all the relocations
432// associated with it.
433void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
434                                             uint64_t Addr) {
435  // The address to use for relocation resolution is not
436  // the address of the local section buffer. We must be doing
437  // a remote execution environment of some sort. Relocations can't
438  // be applied until all the sections have been moved.  The client must
439  // trigger this with a call to MCJIT::finalize() or
440  // RuntimeDyld::resolveRelocations().
441  //
442  // Addr is a uint64_t because we can't assume the pointer width
443  // of the target is the same as that of the host. Just use a generic
444  // "big enough" type.
445  Sections[SectionID].LoadAddress = Addr;
446}
447
448void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
449                                            uint64_t Value) {
450  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
451    const RelocationEntry &RE = Relocs[i];
452    // Ignore relocations for sections that were not loaded
453    if (Sections[RE.SectionID].Address == 0)
454      continue;
455    resolveRelocation(RE, Value);
456  }
457}
458
459void RuntimeDyldImpl::resolveExternalSymbols() {
460  StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
461                                      e = ExternalSymbolRelocations.end();
462  for (; i != e; i++) {
463    StringRef Name = i->first();
464    RelocationList &Relocs = i->second;
465    SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
466    if (Loc == GlobalSymbolTable.end()) {
467      if (Name.size() == 0) {
468        // This is an absolute symbol, use an address of zero.
469        DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
470        resolveRelocationList(Relocs, 0);
471      } else {
472        // This is an external symbol, try to get its address from
473        // MemoryManager.
474        uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
475                                                                   true);
476        DEBUG(dbgs() << "Resolving relocations Name: " << Name
477                << "\t" << format("%p", Addr)
478                << "\n");
479        resolveRelocationList(Relocs, (uintptr_t)Addr);
480      }
481    } else {
482      report_fatal_error("Expected external symbol");
483    }
484  }
485}
486
487
488//===----------------------------------------------------------------------===//
489// RuntimeDyld class implementation
490RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
491  // FIXME: There's a potential issue lurking here if a single instance of
492  // RuntimeDyld is used to load multiple objects.  The current implementation
493  // associates a single memory manager with a RuntimeDyld instance.  Even
494  // though the public class spawns a new 'impl' instance for each load,
495  // they share a single memory manager.  This can become a problem when page
496  // permissions are applied.
497  Dyld = 0;
498  MM = mm;
499}
500
501RuntimeDyld::~RuntimeDyld() {
502  delete Dyld;
503}
504
505ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
506  if (!Dyld) {
507    sys::fs::file_magic Type =
508        sys::fs::identify_magic(InputBuffer->getBuffer());
509    switch (Type) {
510    case sys::fs::file_magic::elf_relocatable:
511    case sys::fs::file_magic::elf_executable:
512    case sys::fs::file_magic::elf_shared_object:
513    case sys::fs::file_magic::elf_core:
514      Dyld = new RuntimeDyldELF(MM);
515      break;
516    case sys::fs::file_magic::macho_object:
517    case sys::fs::file_magic::macho_executable:
518    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
519    case sys::fs::file_magic::macho_core:
520    case sys::fs::file_magic::macho_preload_executable:
521    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
522    case sys::fs::file_magic::macho_dynamic_linker:
523    case sys::fs::file_magic::macho_bundle:
524    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
525    case sys::fs::file_magic::macho_dsym_companion:
526      Dyld = new RuntimeDyldMachO(MM);
527      break;
528    case sys::fs::file_magic::unknown:
529    case sys::fs::file_magic::bitcode:
530    case sys::fs::file_magic::archive:
531    case sys::fs::file_magic::coff_object:
532    case sys::fs::file_magic::pecoff_executable:
533    case sys::fs::file_magic::macho_universal_binary:
534      report_fatal_error("Incompatible object format!");
535    }
536  } else {
537    if (!Dyld->isCompatibleFormat(InputBuffer))
538      report_fatal_error("Incompatible object format!");
539  }
540
541  return Dyld->loadObject(InputBuffer);
542}
543
544void *RuntimeDyld::getSymbolAddress(StringRef Name) {
545  return Dyld->getSymbolAddress(Name);
546}
547
548uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
549  return Dyld->getSymbolLoadAddress(Name);
550}
551
552void RuntimeDyld::resolveRelocations() {
553  Dyld->resolveRelocations();
554}
555
556void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
557                                         uint64_t Addr) {
558  Dyld->reassignSectionAddress(SectionID, Addr);
559}
560
561void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
562                                    uint64_t TargetAddress) {
563  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
564}
565
566StringRef RuntimeDyld::getErrorString() {
567  return Dyld->getErrorString();
568}
569
570StringRef RuntimeDyld::getEHFrameSection() {
571  return Dyld->getEHFrameSection();
572}
573
574} // end namespace llvm
575