RuntimeDyld.cpp revision b21ab43cfc3fa0dacf5c95f04e58b6d804b59a16
1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ExecutionEngine/RuntimeDyld.h"
16#include "ObjectImageCommon.h"
17#include "RuntimeDyldELF.h"
18#include "RuntimeDyldImpl.h"
19#include "RuntimeDyldMachO.h"
20#include "llvm/Support/FileSystem.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Support/MutexGuard.h"
23#include "llvm/Object/ELF.h"
24
25using namespace llvm;
26using namespace llvm::object;
27
28// Empty out-of-line virtual destructor as the key function.
29RuntimeDyldImpl::~RuntimeDyldImpl() {}
30
31namespace llvm {
32
33void RuntimeDyldImpl::registerEHFrames() {
34}
35
36void RuntimeDyldImpl::deregisterEHFrames() {
37}
38
39// Resolve the relocations for all symbols we currently know about.
40void RuntimeDyldImpl::resolveRelocations() {
41  MutexGuard locked(lock);
42
43  // First, resolve relocations associated with external symbols.
44  resolveExternalSymbols();
45
46  // Just iterate over the sections we have and resolve all the relocations
47  // in them. Gross overkill, but it gets the job done.
48  for (int i = 0, e = Sections.size(); i != e; ++i) {
49    // The Section here (Sections[i]) refers to the section in which the
50    // symbol for the relocation is located.  The SectionID in the relocation
51    // entry provides the section to which the relocation will be applied.
52    uint64_t Addr = Sections[i].LoadAddress;
53    DEBUG(dbgs() << "Resolving relocations Section #" << i
54            << "\t" << format("%p", (uint8_t *)Addr)
55            << "\n");
56    resolveRelocationList(Relocations[i], Addr);
57    Relocations.erase(i);
58  }
59}
60
61void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
62                                        uint64_t TargetAddress) {
63  MutexGuard locked(lock);
64  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
65    if (Sections[i].Address == LocalAddress) {
66      reassignSectionAddress(i, TargetAddress);
67      return;
68    }
69  }
70  llvm_unreachable("Attempting to remap address of unknown section!");
71}
72
73// Subclasses can implement this method to create specialized image instances.
74// The caller owns the pointer that is returned.
75ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
76  return new ObjectImageCommon(InputBuffer);
77}
78
79ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
80  MutexGuard locked(lock);
81
82  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
83  if (!obj)
84    report_fatal_error("Unable to create object image from memory buffer!");
85
86  // Save information about our target
87  Arch = (Triple::ArchType)obj->getArch();
88  IsTargetLittleEndian = obj->getObjectFile()->isLittleEndian();
89
90  // Symbols found in this object
91  StringMap<SymbolLoc> LocalSymbols;
92  // Used sections from the object file
93  ObjSectionToIDMap LocalSections;
94
95  // Common symbols requiring allocation, with their sizes and alignments
96  CommonSymbolMap CommonSymbols;
97  // Maximum required total memory to allocate all common symbols
98  uint64_t CommonSize = 0;
99
100  error_code err;
101  // Parse symbols
102  DEBUG(dbgs() << "Parse symbols:\n");
103  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
104       i != e; i.increment(err)) {
105    Check(err);
106    object::SymbolRef::Type SymType;
107    StringRef Name;
108    Check(i->getType(SymType));
109    Check(i->getName(Name));
110
111    uint32_t flags;
112    Check(i->getFlags(flags));
113
114    bool isCommon = flags & SymbolRef::SF_Common;
115    if (isCommon) {
116      // Add the common symbols to a list.  We'll allocate them all below.
117      uint32_t Align;
118      Check(i->getAlignment(Align));
119      uint64_t Size = 0;
120      Check(i->getSize(Size));
121      CommonSize += Size + Align;
122      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
123    } else {
124      if (SymType == object::SymbolRef::ST_Function ||
125          SymType == object::SymbolRef::ST_Data ||
126          SymType == object::SymbolRef::ST_Unknown) {
127        uint64_t FileOffset;
128        StringRef SectionData;
129        bool IsCode;
130        section_iterator si = obj->end_sections();
131        Check(i->getFileOffset(FileOffset));
132        Check(i->getSection(si));
133        if (si == obj->end_sections()) continue;
134        Check(si->getContents(SectionData));
135        Check(si->isText(IsCode));
136        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
137                                (uintptr_t)FileOffset;
138        uintptr_t SectOffset = (uintptr_t)(SymPtr -
139                                           (const uint8_t*)SectionData.begin());
140        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
141        LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
142        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
143                     << " flags: " << flags
144                     << " SID: " << SectionID
145                     << " Offset: " << format("%p", SectOffset));
146        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
147      }
148    }
149    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
150  }
151
152  // Allocate common symbols
153  if (CommonSize != 0)
154    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
155
156  // Parse and process relocations
157  DEBUG(dbgs() << "Parse relocations:\n");
158  for (section_iterator si = obj->begin_sections(),
159       se = obj->end_sections(); si != se; si.increment(err)) {
160    Check(err);
161    bool isFirstRelocation = true;
162    unsigned SectionID = 0;
163    StubMap Stubs;
164    section_iterator RelocatedSection = si->getRelocatedSection();
165
166    for (relocation_iterator i = si->begin_relocations(),
167         e = si->end_relocations(); i != e; i.increment(err)) {
168      Check(err);
169
170      // If it's the first relocation in this section, find its SectionID
171      if (isFirstRelocation) {
172        SectionID =
173            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
174        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
175        isFirstRelocation = false;
176      }
177
178      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
179			   Stubs);
180    }
181  }
182
183  // Give the subclasses a chance to tie-up any loose ends.
184  finalizeLoad(LocalSections);
185
186  return obj.take();
187}
188
189void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
190                                        const CommonSymbolMap &CommonSymbols,
191                                        uint64_t TotalSize,
192                                        SymbolTableMap &SymbolTable) {
193  // Allocate memory for the section
194  unsigned SectionID = Sections.size();
195  uint8_t *Addr = MemMgr->allocateDataSection(
196    TotalSize, sizeof(void*), SectionID, StringRef(), false);
197  if (!Addr)
198    report_fatal_error("Unable to allocate memory for common symbols!");
199  uint64_t Offset = 0;
200  Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
201  memset(Addr, 0, TotalSize);
202
203  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
204               << " new addr: " << format("%p", Addr)
205               << " DataSize: " << TotalSize
206               << "\n");
207
208  // Assign the address of each symbol
209  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
210       itEnd = CommonSymbols.end(); it != itEnd; it++) {
211    uint64_t Size = it->second.first;
212    uint64_t Align = it->second.second;
213    StringRef Name;
214    it->first.getName(Name);
215    if (Align) {
216      // This symbol has an alignment requirement.
217      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
218      Addr += AlignOffset;
219      Offset += AlignOffset;
220      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
221                      format("%p\n", Addr));
222    }
223    Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
224    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
225    Offset += Size;
226    Addr += Size;
227  }
228}
229
230unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
231                                      const SectionRef &Section,
232                                      bool IsCode) {
233
234  unsigned StubBufSize = 0,
235           StubSize = getMaxStubSize();
236  error_code err;
237  const ObjectFile *ObjFile = Obj.getObjectFile();
238  // FIXME: this is an inefficient way to handle this. We should computed the
239  // necessary section allocation size in loadObject by walking all the sections
240  // once.
241  if (StubSize > 0) {
242    for (section_iterator SI = ObjFile->begin_sections(),
243           SE = ObjFile->end_sections();
244         SI != SE; SI.increment(err), Check(err)) {
245      section_iterator RelSecI = SI->getRelocatedSection();
246      if (!(RelSecI == Section))
247        continue;
248
249      for (relocation_iterator I = SI->begin_relocations(),
250             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
251        StubBufSize += StubSize;
252      }
253    }
254  }
255
256  StringRef data;
257  uint64_t Alignment64;
258  Check(Section.getContents(data));
259  Check(Section.getAlignment(Alignment64));
260
261  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
262  bool IsRequired;
263  bool IsVirtual;
264  bool IsZeroInit;
265  bool IsReadOnly;
266  uint64_t DataSize;
267  unsigned PaddingSize = 0;
268  StringRef Name;
269  Check(Section.isRequiredForExecution(IsRequired));
270  Check(Section.isVirtual(IsVirtual));
271  Check(Section.isZeroInit(IsZeroInit));
272  Check(Section.isReadOnlyData(IsReadOnly));
273  Check(Section.getSize(DataSize));
274  Check(Section.getName(Name));
275  if (StubSize > 0) {
276    unsigned StubAlignment = getStubAlignment();
277    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
278    if (StubAlignment > EndAlignment)
279      StubBufSize += StubAlignment - EndAlignment;
280  }
281
282  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
283  // with zeroes added at the end.  For MachO objects, this section has a
284  // slightly different name, so this won't have any effect for MachO objects.
285  if (Name == ".eh_frame")
286    PaddingSize = 4;
287
288  unsigned Allocate;
289  unsigned SectionID = Sections.size();
290  uint8_t *Addr;
291  const char *pData = 0;
292
293  // Some sections, such as debug info, don't need to be loaded for execution.
294  // Leave those where they are.
295  if (IsRequired) {
296    Allocate = DataSize + PaddingSize + StubBufSize;
297    Addr = IsCode
298      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
299      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
300                                    IsReadOnly);
301    if (!Addr)
302      report_fatal_error("Unable to allocate section memory!");
303
304    // Virtual sections have no data in the object image, so leave pData = 0
305    if (!IsVirtual)
306      pData = data.data();
307
308    // Zero-initialize or copy the data from the image
309    if (IsZeroInit || IsVirtual)
310      memset(Addr, 0, DataSize);
311    else
312      memcpy(Addr, pData, DataSize);
313
314    // Fill in any extra bytes we allocated for padding
315    if (PaddingSize != 0) {
316      memset(Addr + DataSize, 0, PaddingSize);
317      // Update the DataSize variable so that the stub offset is set correctly.
318      DataSize += PaddingSize;
319    }
320
321    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
322                 << " Name: " << Name
323                 << " obj addr: " << format("%p", pData)
324                 << " new addr: " << format("%p", Addr)
325                 << " DataSize: " << DataSize
326                 << " StubBufSize: " << StubBufSize
327                 << " Allocate: " << Allocate
328                 << "\n");
329    Obj.updateSectionAddress(Section, (uint64_t)Addr);
330  }
331  else {
332    // Even if we didn't load the section, we need to record an entry for it
333    // to handle later processing (and by 'handle' I mean don't do anything
334    // with these sections).
335    Allocate = 0;
336    Addr = 0;
337    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
338                 << " Name: " << Name
339                 << " obj addr: " << format("%p", data.data())
340                 << " new addr: 0"
341                 << " DataSize: " << DataSize
342                 << " StubBufSize: " << StubBufSize
343                 << " Allocate: " << Allocate
344                 << "\n");
345  }
346
347  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
348  return SectionID;
349}
350
351unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
352                                            const SectionRef &Section,
353                                            bool IsCode,
354                                            ObjSectionToIDMap &LocalSections) {
355
356  unsigned SectionID = 0;
357  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
358  if (i != LocalSections.end())
359    SectionID = i->second;
360  else {
361    SectionID = emitSection(Obj, Section, IsCode);
362    LocalSections[Section] = SectionID;
363  }
364  return SectionID;
365}
366
367void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
368                                              unsigned SectionID) {
369  Relocations[SectionID].push_back(RE);
370}
371
372void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
373                                             StringRef SymbolName) {
374  // Relocation by symbol.  If the symbol is found in the global symbol table,
375  // create an appropriate section relocation.  Otherwise, add it to
376  // ExternalSymbolRelocations.
377  SymbolTableMap::const_iterator Loc =
378      GlobalSymbolTable.find(SymbolName);
379  if (Loc == GlobalSymbolTable.end()) {
380    ExternalSymbolRelocations[SymbolName].push_back(RE);
381  } else {
382    // Copy the RE since we want to modify its addend.
383    RelocationEntry RECopy = RE;
384    RECopy.Addend += Loc->second.second;
385    Relocations[Loc->second.first].push_back(RECopy);
386  }
387}
388
389uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
390  if (Arch == Triple::aarch64) {
391    // This stub has to be able to access the full address space,
392    // since symbol lookup won't necessarily find a handy, in-range,
393    // PLT stub for functions which could be anywhere.
394    uint32_t *StubAddr = (uint32_t*)Addr;
395
396    // Stub can use ip0 (== x16) to calculate address
397    *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
398    StubAddr++;
399    *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
400    StubAddr++;
401    *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
402    StubAddr++;
403    *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
404    StubAddr++;
405    *StubAddr = 0xd61f0200; // br ip0
406
407    return Addr;
408  } else if (Arch == Triple::arm) {
409    // TODO: There is only ARM far stub now. We should add the Thumb stub,
410    // and stubs for branches Thumb - ARM and ARM - Thumb.
411    uint32_t *StubAddr = (uint32_t*)Addr;
412    *StubAddr = 0xe51ff004; // ldr pc,<label>
413    return (uint8_t*)++StubAddr;
414  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
415    uint32_t *StubAddr = (uint32_t*)Addr;
416    // 0:   3c190000        lui     t9,%hi(addr).
417    // 4:   27390000        addiu   t9,t9,%lo(addr).
418    // 8:   03200008        jr      t9.
419    // c:   00000000        nop.
420    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
421    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
422
423    *StubAddr = LuiT9Instr;
424    StubAddr++;
425    *StubAddr = AdduiT9Instr;
426    StubAddr++;
427    *StubAddr = JrT9Instr;
428    StubAddr++;
429    *StubAddr = NopInstr;
430    return Addr;
431  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
432    // PowerPC64 stub: the address points to a function descriptor
433    // instead of the function itself. Load the function address
434    // on r11 and sets it to control register. Also loads the function
435    // TOC in r2 and environment pointer to r11.
436    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
437    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
438    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
439    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
440    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
441    writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
442    writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
443    writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
444    writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
445    writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
446    writeInt32BE(Addr+40, 0x4E800420); // bctr
447
448    return Addr;
449  } else if (Arch == Triple::systemz) {
450    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
451    writeInt16BE(Addr+2,  0x0000);
452    writeInt16BE(Addr+4,  0x0004);
453    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
454    // 8-byte address stored at Addr + 8
455    return Addr;
456  } else if (Arch == Triple::x86_64) {
457    *Addr      = 0xFF; // jmp
458    *(Addr+1)  = 0x25; // rip
459    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
460  }
461  return Addr;
462}
463
464// Assign an address to a symbol name and resolve all the relocations
465// associated with it.
466void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
467                                             uint64_t Addr) {
468  // The address to use for relocation resolution is not
469  // the address of the local section buffer. We must be doing
470  // a remote execution environment of some sort. Relocations can't
471  // be applied until all the sections have been moved.  The client must
472  // trigger this with a call to MCJIT::finalize() or
473  // RuntimeDyld::resolveRelocations().
474  //
475  // Addr is a uint64_t because we can't assume the pointer width
476  // of the target is the same as that of the host. Just use a generic
477  // "big enough" type.
478  Sections[SectionID].LoadAddress = Addr;
479}
480
481void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
482                                            uint64_t Value) {
483  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
484    const RelocationEntry &RE = Relocs[i];
485    // Ignore relocations for sections that were not loaded
486    if (Sections[RE.SectionID].Address == 0)
487      continue;
488    resolveRelocation(RE, Value);
489  }
490}
491
492void RuntimeDyldImpl::resolveExternalSymbols() {
493  while(!ExternalSymbolRelocations.empty()) {
494    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
495
496    StringRef Name = i->first();
497    if (Name.size() == 0) {
498      // This is an absolute symbol, use an address of zero.
499      DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
500      RelocationList &Relocs = i->second;
501      resolveRelocationList(Relocs, 0);
502    } else {
503      uint64_t Addr = 0;
504      SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
505      if (Loc == GlobalSymbolTable.end()) {
506          // This is an external symbol, try to get its address from
507          // MemoryManager.
508          Addr = MemMgr->getSymbolAddress(Name.data());
509          // The call to getSymbolAddress may have caused additional modules to
510          // be loaded, which may have added new entries to the
511          // ExternalSymbolRelocations map.  Consquently, we need to update our
512          // iterator.  This is also why retrieval of the relocation list
513          // associated with this symbol is deferred until below this point.
514          // New entries may have been added to the relocation list.
515          i = ExternalSymbolRelocations.find(Name);
516      } else {
517        // We found the symbol in our global table.  It was probably in a
518        // Module that we loaded previously.
519        SymbolLoc SymLoc = Loc->second;
520        Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
521      }
522
523      // FIXME: Implement error handling that doesn't kill the host program!
524      if (!Addr)
525        report_fatal_error("Program used external function '" + Name +
526                          "' which could not be resolved!");
527
528      updateGOTEntries(Name, Addr);
529      DEBUG(dbgs() << "Resolving relocations Name: " << Name
530              << "\t" << format("0x%lx", Addr)
531              << "\n");
532      // This list may have been updated when we called getSymbolAddress, so
533      // don't change this code to get the list earlier.
534      RelocationList &Relocs = i->second;
535      resolveRelocationList(Relocs, Addr);
536    }
537
538    ExternalSymbolRelocations.erase(i);
539  }
540}
541
542
543//===----------------------------------------------------------------------===//
544// RuntimeDyld class implementation
545RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
546  // FIXME: There's a potential issue lurking here if a single instance of
547  // RuntimeDyld is used to load multiple objects.  The current implementation
548  // associates a single memory manager with a RuntimeDyld instance.  Even
549  // though the public class spawns a new 'impl' instance for each load,
550  // they share a single memory manager.  This can become a problem when page
551  // permissions are applied.
552  Dyld = 0;
553  MM = mm;
554}
555
556RuntimeDyld::~RuntimeDyld() {
557  delete Dyld;
558}
559
560ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
561  if (!Dyld) {
562    sys::fs::file_magic Type =
563        sys::fs::identify_magic(InputBuffer->getBuffer());
564    switch (Type) {
565    case sys::fs::file_magic::elf_relocatable:
566    case sys::fs::file_magic::elf_executable:
567    case sys::fs::file_magic::elf_shared_object:
568    case sys::fs::file_magic::elf_core:
569      Dyld = new RuntimeDyldELF(MM);
570      break;
571    case sys::fs::file_magic::macho_object:
572    case sys::fs::file_magic::macho_executable:
573    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
574    case sys::fs::file_magic::macho_core:
575    case sys::fs::file_magic::macho_preload_executable:
576    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
577    case sys::fs::file_magic::macho_dynamic_linker:
578    case sys::fs::file_magic::macho_bundle:
579    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
580    case sys::fs::file_magic::macho_dsym_companion:
581      Dyld = new RuntimeDyldMachO(MM);
582      break;
583    case sys::fs::file_magic::unknown:
584    case sys::fs::file_magic::bitcode:
585    case sys::fs::file_magic::archive:
586    case sys::fs::file_magic::coff_object:
587    case sys::fs::file_magic::coff_import_library:
588    case sys::fs::file_magic::pecoff_executable:
589    case sys::fs::file_magic::macho_universal_binary:
590    case sys::fs::file_magic::windows_resource:
591      report_fatal_error("Incompatible object format!");
592    }
593  } else {
594    if (!Dyld->isCompatibleFormat(InputBuffer))
595      report_fatal_error("Incompatible object format!");
596  }
597
598  return Dyld->loadObject(InputBuffer);
599}
600
601void *RuntimeDyld::getSymbolAddress(StringRef Name) {
602  if (!Dyld)
603    return NULL;
604  return Dyld->getSymbolAddress(Name);
605}
606
607uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
608  if (!Dyld)
609    return 0;
610  return Dyld->getSymbolLoadAddress(Name);
611}
612
613void RuntimeDyld::resolveRelocations() {
614  Dyld->resolveRelocations();
615}
616
617void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
618                                         uint64_t Addr) {
619  Dyld->reassignSectionAddress(SectionID, Addr);
620}
621
622void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
623                                    uint64_t TargetAddress) {
624  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
625}
626
627StringRef RuntimeDyld::getErrorString() {
628  return Dyld->getErrorString();
629}
630
631void RuntimeDyld::registerEHFrames() {
632  if (Dyld)
633    Dyld->registerEHFrames();
634}
635
636void RuntimeDyld::deregisterEHFrames() {
637  if (Dyld)
638    Dyld->deregisterEHFrames();
639}
640
641} // end namespace llvm
642