RuntimeDyldMachO.cpp revision c201e6eaf165c83f0092c43b371e509fa8eaf4cc
1//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "RuntimeDyldMachO.h"
19using namespace llvm;
20using namespace llvm::object;
21
22namespace llvm {
23
24void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress,
25                                         uint64_t FinalAddress,
26                                         uint64_t Value,
27                                         uint32_t Type,
28                                         int64_t Addend) {
29  bool isPCRel = (Type >> 24) & 1;
30  unsigned MachoType = (Type >> 28) & 0xf;
31  unsigned Size = 1 << ((Type >> 25) & 3);
32
33  DEBUG(dbgs() << "resolveRelocation LocalAddress: "
34        << format("%p", LocalAddress)
35        << " FinalAddress: " << format("%p", FinalAddress)
36        << " Value: " << format("%p", Value)
37        << " Addend: " << Addend
38        << " isPCRel: " << isPCRel
39        << " MachoType: " << MachoType
40        << " Size: " << Size
41        << "\n");
42
43  // This just dispatches to the proper target specific routine.
44  switch (Arch) {
45  default: llvm_unreachable("Unsupported CPU type!");
46  case Triple::x86_64:
47    resolveX86_64Relocation(LocalAddress,
48                            FinalAddress,
49                            (uintptr_t)Value,
50                            isPCRel,
51                            MachoType,
52                            Size,
53                            Addend);
54    break;
55  case Triple::x86:
56    resolveI386Relocation(LocalAddress,
57                          FinalAddress,
58                          (uintptr_t)Value,
59                          isPCRel,
60                          Type,
61                          Size,
62                          Addend);
63    break;
64  case Triple::arm:    // Fall through.
65  case Triple::thumb:
66    resolveARMRelocation(LocalAddress,
67                         FinalAddress,
68                         (uintptr_t)Value,
69                         isPCRel,
70                         MachoType,
71                         Size,
72                         Addend);
73    break;
74  }
75}
76
77bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress,
78                                             uint64_t FinalAddress,
79                                             uint64_t Value,
80                                             bool isPCRel,
81                                             unsigned Type,
82                                             unsigned Size,
83                                             int64_t Addend) {
84  if (isPCRel)
85    Value -= FinalAddress + 4; // see resolveX86_64Relocation
86
87  switch (Type) {
88  default:
89    llvm_unreachable("Invalid relocation type!");
90  case macho::RIT_Vanilla: {
91    uint8_t *p = LocalAddress;
92    uint64_t ValueToWrite = Value + Addend;
93    for (unsigned i = 0; i < Size; ++i) {
94      *p++ = (uint8_t)(ValueToWrite & 0xff);
95      ValueToWrite >>= 8;
96    }
97  }
98  case macho::RIT_Difference:
99  case macho::RIT_Generic_LocalDifference:
100  case macho::RIT_Generic_PreboundLazyPointer:
101    return Error("Relocation type not implemented yet!");
102  }
103}
104
105bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress,
106                                               uint64_t FinalAddress,
107                                               uint64_t Value,
108                                               bool isPCRel,
109                                               unsigned Type,
110                                               unsigned Size,
111                                               int64_t Addend) {
112  // If the relocation is PC-relative, the value to be encoded is the
113  // pointer difference.
114  if (isPCRel)
115    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
116    // address. Is that expected? Only for branches, perhaps?
117    Value -= FinalAddress + 4;
118
119  switch(Type) {
120  default:
121    llvm_unreachable("Invalid relocation type!");
122  case macho::RIT_X86_64_Signed1:
123  case macho::RIT_X86_64_Signed2:
124  case macho::RIT_X86_64_Signed4:
125  case macho::RIT_X86_64_Signed:
126  case macho::RIT_X86_64_Unsigned:
127  case macho::RIT_X86_64_Branch: {
128    Value += Addend;
129    // Mask in the target value a byte at a time (we don't have an alignment
130    // guarantee for the target address, so this is safest).
131    uint8_t *p = (uint8_t*)LocalAddress;
132    for (unsigned i = 0; i < Size; ++i) {
133      *p++ = (uint8_t)Value;
134      Value >>= 8;
135    }
136    return false;
137  }
138  case macho::RIT_X86_64_GOTLoad:
139  case macho::RIT_X86_64_GOT:
140  case macho::RIT_X86_64_Subtractor:
141  case macho::RIT_X86_64_TLV:
142    return Error("Relocation type not implemented yet!");
143  }
144}
145
146bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
147                                            uint64_t FinalAddress,
148                                            uint64_t Value,
149                                            bool isPCRel,
150                                            unsigned Type,
151                                            unsigned Size,
152                                            int64_t Addend) {
153  // If the relocation is PC-relative, the value to be encoded is the
154  // pointer difference.
155  if (isPCRel) {
156    Value -= FinalAddress;
157    // ARM PCRel relocations have an effective-PC offset of two instructions
158    // (four bytes in Thumb mode, 8 bytes in ARM mode).
159    // FIXME: For now, assume ARM mode.
160    Value -= 8;
161  }
162
163  switch(Type) {
164  default:
165    llvm_unreachable("Invalid relocation type!");
166  case macho::RIT_Vanilla: {
167    // Mask in the target value a byte at a time (we don't have an alignment
168    // guarantee for the target address, so this is safest).
169    uint8_t *p = (uint8_t*)LocalAddress;
170    for (unsigned i = 0; i < Size; ++i) {
171      *p++ = (uint8_t)Value;
172      Value >>= 8;
173    }
174    break;
175  }
176  case macho::RIT_ARM_Branch24Bit: {
177    // Mask the value into the target address. We know instructions are
178    // 32-bit aligned, so we can do it all at once.
179    uint32_t *p = (uint32_t*)LocalAddress;
180    // The low two bits of the value are not encoded.
181    Value >>= 2;
182    // Mask the value to 24 bits.
183    Value &= 0xffffff;
184    // FIXME: If the destination is a Thumb function (and the instruction
185    // is a non-predicated BL instruction), we need to change it to a BLX
186    // instruction instead.
187
188    // Insert the value into the instruction.
189    *p = (*p & ~0xffffff) | Value;
190    break;
191  }
192  case macho::RIT_ARM_ThumbBranch22Bit:
193  case macho::RIT_ARM_ThumbBranch32Bit:
194  case macho::RIT_ARM_Half:
195  case macho::RIT_ARM_HalfDifference:
196  case macho::RIT_Pair:
197  case macho::RIT_Difference:
198  case macho::RIT_ARM_LocalDifference:
199  case macho::RIT_ARM_PreboundLazyPointer:
200    return Error("Relocation type not implemented yet!");
201  }
202  return false;
203}
204
205void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
206                                            ObjectImage &Obj,
207                                            ObjSectionToIDMap &ObjSectionToID,
208                                            const SymbolTableMap &Symbols,
209                                            StubMap &Stubs) {
210
211  uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
212  RelocationValueRef Value;
213  SectionEntry &Section = Sections[Rel.SectionID];
214  uint8_t *Target = Section.Address + Rel.Offset;
215
216  bool isExtern = (RelType >> 27) & 1;
217  if (isExtern) {
218    // Obtain the symbol name which is referenced in the relocation
219    StringRef TargetName;
220    const SymbolRef &Symbol = Rel.Symbol;
221    Symbol.getName(TargetName);
222    // First search for the symbol in the local symbol table
223    SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
224    if (lsi != Symbols.end()) {
225      Value.SectionID = lsi->second.first;
226      Value.Addend = lsi->second.second;
227    } else {
228      // Search for the symbol in the global symbol table
229      SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
230      if (gsi != GlobalSymbolTable.end()) {
231        Value.SectionID = gsi->second.first;
232        Value.Addend = gsi->second.second;
233      } else
234        Value.SymbolName = TargetName.data();
235    }
236  } else {
237    error_code err;
238    uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
239    section_iterator si = Obj.begin_sections(),
240                     se = Obj.end_sections();
241    for (uint8_t i = 1; i < sectionIndex; i++) {
242      error_code err;
243      si.increment(err);
244      if (si == se)
245        break;
246    }
247    assert(si != se && "No section containing relocation!");
248    Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
249    Value.Addend = *(const intptr_t *)Target;
250    if (Value.Addend) {
251      // The MachO addend is an offset from the current section.  We need it
252      // to be an offset from the destination section
253      Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
254    }
255  }
256
257  if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) {
258    // This is an ARM branch relocation, need to use a stub function.
259
260    //  Look up for existing stub.
261    StubMap::const_iterator i = Stubs.find(Value);
262    if (i != Stubs.end())
263      resolveRelocation(Target, (uint64_t)Target,
264                        (uint64_t)Section.Address + i->second,
265                        RelType, 0);
266    else {
267      // Create a new stub function.
268      Stubs[Value] = Section.StubOffset;
269      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
270                                                   Section.StubOffset);
271      RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
272                         macho::RIT_Vanilla, Value.Addend);
273      if (Value.SymbolName)
274        addRelocationForSymbol(RE, Value.SymbolName);
275      else
276        addRelocationForSection(RE, Value.SectionID);
277      resolveRelocation(Target, (uint64_t)Target,
278                        (uint64_t)Section.Address + Section.StubOffset,
279                        RelType, 0);
280      Section.StubOffset += getMaxStubSize();
281    }
282  } else {
283    RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
284    if (Value.SymbolName)
285      addRelocationForSymbol(RE, Value.SymbolName);
286    else
287      addRelocationForSection(RE, Value.SectionID);
288  }
289}
290
291
292bool RuntimeDyldMachO::isCompatibleFormat(
293        const MemoryBuffer *InputBuffer) const {
294  StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
295  if (Magic == "\xFE\xED\xFA\xCE") return true;
296  if (Magic == "\xCE\xFA\xED\xFE") return true;
297  if (Magic == "\xFE\xED\xFA\xCF") return true;
298  if (Magic == "\xCF\xFA\xED\xFE") return true;
299  return false;
300}
301
302} // end namespace llvm
303