ConstantFold.cpp revision 59d3ae6cdc4316ad338cd848251f33a236ccb36c
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need DataLayout, and the pieces that do. This is to avoid
16// a dependence in IR on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GlobalAlias.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified vector Constant node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information.  This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getType()->getVectorNumElements())
54    return 0;
55
56  Type *DstEltTy = DstTy->getElementType();
57
58  SmallVector<Constant*, 16> Result;
59  Type *Ty = IntegerType::get(CV->getContext(), 32);
60  for (unsigned i = 0; i != NumElts; ++i) {
61    Constant *C =
62      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63    C = ConstantExpr::getBitCast(C, DstEltTy);
64    Result.push_back(C);
65  }
66
67  return ConstantVector::get(Result);
68}
69
70/// This function determines which opcode to use to fold two constant cast
71/// expressions together. It uses CastInst::isEliminableCastPair to determine
72/// the opcode. Consequently its just a wrapper around that function.
73/// @brief Determine if it is valid to fold a cast of a cast
74static unsigned
75foldConstantCastPair(
76  unsigned opc,          ///< opcode of the second cast constant expression
77  ConstantExpr *Op,      ///< the first cast constant expression
78  Type *DstTy            ///< destination type of the first cast
79) {
80  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82  assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84  // The the types and opcodes for the two Cast constant expressions
85  Type *SrcTy = Op->getOperand(0)->getType();
86  Type *MidTy = Op->getType();
87  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88  Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90  // Assume that pointers are never more than 64 bits wide, and only use this
91  // for the middle type. Otherwise we could end up folding away illegal
92  // bitcasts between address spaces with different sizes.
93  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
94
95  // Let CastInst::isEliminableCastPair do the heavy lifting.
96  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
97                                        0, FakeIntPtrTy, 0);
98}
99
100static Constant *FoldBitCast(Constant *V, Type *DestTy) {
101  Type *SrcTy = V->getType();
102  if (SrcTy == DestTy)
103    return V; // no-op cast
104
105  // Check to see if we are casting a pointer to an aggregate to a pointer to
106  // the first element.  If so, return the appropriate GEP instruction.
107  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
108    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
109      if (PTy->getAddressSpace() == DPTy->getAddressSpace()
110          && DPTy->getElementType()->isSized()) {
111        SmallVector<Value*, 8> IdxList;
112        Value *Zero =
113          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
114        IdxList.push_back(Zero);
115        Type *ElTy = PTy->getElementType();
116        while (ElTy != DPTy->getElementType()) {
117          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
118            if (STy->getNumElements() == 0) break;
119            ElTy = STy->getElementType(0);
120            IdxList.push_back(Zero);
121          } else if (SequentialType *STy =
122                     dyn_cast<SequentialType>(ElTy)) {
123            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
124            ElTy = STy->getElementType();
125            IdxList.push_back(Zero);
126          } else {
127            break;
128          }
129        }
130
131        if (ElTy == DPTy->getElementType())
132          // This GEP is inbounds because all indices are zero.
133          return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
134      }
135
136  // Handle casts from one vector constant to another.  We know that the src
137  // and dest type have the same size (otherwise its an illegal cast).
138  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
139    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
140      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
141             "Not cast between same sized vectors!");
142      SrcTy = NULL;
143      // First, check for null.  Undef is already handled.
144      if (isa<ConstantAggregateZero>(V))
145        return Constant::getNullValue(DestTy);
146
147      // Handle ConstantVector and ConstantAggregateVector.
148      return BitCastConstantVector(V, DestPTy);
149    }
150
151    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
152    // This allows for other simplifications (although some of them
153    // can only be handled by Analysis/ConstantFolding.cpp).
154    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
155      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
156  }
157
158  // Finally, implement bitcast folding now.   The code below doesn't handle
159  // bitcast right.
160  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
161    return ConstantPointerNull::get(cast<PointerType>(DestTy));
162
163  // Handle integral constant input.
164  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
165    if (DestTy->isIntegerTy())
166      // Integral -> Integral. This is a no-op because the bit widths must
167      // be the same. Consequently, we just fold to V.
168      return V;
169
170    if (DestTy->isFloatingPointTy())
171      return ConstantFP::get(DestTy->getContext(),
172                             APFloat(DestTy->getFltSemantics(),
173                                     CI->getValue()));
174
175    // Otherwise, can't fold this (vector?)
176    return 0;
177  }
178
179  // Handle ConstantFP input: FP -> Integral.
180  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
181    return ConstantInt::get(FP->getContext(),
182                            FP->getValueAPF().bitcastToAPInt());
183
184  return 0;
185}
186
187
188/// ExtractConstantBytes - V is an integer constant which only has a subset of
189/// its bytes used.  The bytes used are indicated by ByteStart (which is the
190/// first byte used, counting from the least significant byte) and ByteSize,
191/// which is the number of bytes used.
192///
193/// This function analyzes the specified constant to see if the specified byte
194/// range can be returned as a simplified constant.  If so, the constant is
195/// returned, otherwise null is returned.
196///
197static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
198                                      unsigned ByteSize) {
199  assert(C->getType()->isIntegerTy() &&
200         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
201         "Non-byte sized integer input");
202  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
203  assert(ByteSize && "Must be accessing some piece");
204  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
205  assert(ByteSize != CSize && "Should not extract everything");
206
207  // Constant Integers are simple.
208  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
209    APInt V = CI->getValue();
210    if (ByteStart)
211      V = V.lshr(ByteStart*8);
212    V = V.trunc(ByteSize*8);
213    return ConstantInt::get(CI->getContext(), V);
214  }
215
216  // In the input is a constant expr, we might be able to recursively simplify.
217  // If not, we definitely can't do anything.
218  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
219  if (CE == 0) return 0;
220
221  switch (CE->getOpcode()) {
222  default: return 0;
223  case Instruction::Or: {
224    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
225    if (RHS == 0)
226      return 0;
227
228    // X | -1 -> -1.
229    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
230      if (RHSC->isAllOnesValue())
231        return RHSC;
232
233    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
234    if (LHS == 0)
235      return 0;
236    return ConstantExpr::getOr(LHS, RHS);
237  }
238  case Instruction::And: {
239    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240    if (RHS == 0)
241      return 0;
242
243    // X & 0 -> 0.
244    if (RHS->isNullValue())
245      return RHS;
246
247    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
248    if (LHS == 0)
249      return 0;
250    return ConstantExpr::getAnd(LHS, RHS);
251  }
252  case Instruction::LShr: {
253    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
254    if (Amt == 0)
255      return 0;
256    unsigned ShAmt = Amt->getZExtValue();
257    // Cannot analyze non-byte shifts.
258    if ((ShAmt & 7) != 0)
259      return 0;
260    ShAmt >>= 3;
261
262    // If the extract is known to be all zeros, return zero.
263    if (ByteStart >= CSize-ShAmt)
264      return Constant::getNullValue(IntegerType::get(CE->getContext(),
265                                                     ByteSize*8));
266    // If the extract is known to be fully in the input, extract it.
267    if (ByteStart+ByteSize+ShAmt <= CSize)
268      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
269
270    // TODO: Handle the 'partially zero' case.
271    return 0;
272  }
273
274  case Instruction::Shl: {
275    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
276    if (Amt == 0)
277      return 0;
278    unsigned ShAmt = Amt->getZExtValue();
279    // Cannot analyze non-byte shifts.
280    if ((ShAmt & 7) != 0)
281      return 0;
282    ShAmt >>= 3;
283
284    // If the extract is known to be all zeros, return zero.
285    if (ByteStart+ByteSize <= ShAmt)
286      return Constant::getNullValue(IntegerType::get(CE->getContext(),
287                                                     ByteSize*8));
288    // If the extract is known to be fully in the input, extract it.
289    if (ByteStart >= ShAmt)
290      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
291
292    // TODO: Handle the 'partially zero' case.
293    return 0;
294  }
295
296  case Instruction::ZExt: {
297    unsigned SrcBitSize =
298      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
299
300    // If extracting something that is completely zero, return 0.
301    if (ByteStart*8 >= SrcBitSize)
302      return Constant::getNullValue(IntegerType::get(CE->getContext(),
303                                                     ByteSize*8));
304
305    // If exactly extracting the input, return it.
306    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
307      return CE->getOperand(0);
308
309    // If extracting something completely in the input, if if the input is a
310    // multiple of 8 bits, recurse.
311    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
312      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
313
314    // Otherwise, if extracting a subset of the input, which is not multiple of
315    // 8 bits, do a shift and trunc to get the bits.
316    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
317      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
318      Constant *Res = CE->getOperand(0);
319      if (ByteStart)
320        Res = ConstantExpr::getLShr(Res,
321                                 ConstantInt::get(Res->getType(), ByteStart*8));
322      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
323                                                          ByteSize*8));
324    }
325
326    // TODO: Handle the 'partially zero' case.
327    return 0;
328  }
329  }
330}
331
332/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
333/// on Ty, with any known factors factored out. If Folded is false,
334/// return null if no factoring was possible, to avoid endlessly
335/// bouncing an unfoldable expression back into the top-level folder.
336///
337static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
338                                 bool Folded) {
339  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
340    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
341    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
342    return ConstantExpr::getNUWMul(E, N);
343  }
344
345  if (StructType *STy = dyn_cast<StructType>(Ty))
346    if (!STy->isPacked()) {
347      unsigned NumElems = STy->getNumElements();
348      // An empty struct has size zero.
349      if (NumElems == 0)
350        return ConstantExpr::getNullValue(DestTy);
351      // Check for a struct with all members having the same size.
352      Constant *MemberSize =
353        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
354      bool AllSame = true;
355      for (unsigned i = 1; i != NumElems; ++i)
356        if (MemberSize !=
357            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
358          AllSame = false;
359          break;
360        }
361      if (AllSame) {
362        Constant *N = ConstantInt::get(DestTy, NumElems);
363        return ConstantExpr::getNUWMul(MemberSize, N);
364      }
365    }
366
367  // Pointer size doesn't depend on the pointee type, so canonicalize them
368  // to an arbitrary pointee.
369  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
370    if (!PTy->getElementType()->isIntegerTy(1))
371      return
372        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
373                                         PTy->getAddressSpace()),
374                        DestTy, true);
375
376  // If there's no interesting folding happening, bail so that we don't create
377  // a constant that looks like it needs folding but really doesn't.
378  if (!Folded)
379    return 0;
380
381  // Base case: Get a regular sizeof expression.
382  Constant *C = ConstantExpr::getSizeOf(Ty);
383  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
384                                                    DestTy, false),
385                            C, DestTy);
386  return C;
387}
388
389/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
390/// on Ty, with any known factors factored out. If Folded is false,
391/// return null if no factoring was possible, to avoid endlessly
392/// bouncing an unfoldable expression back into the top-level folder.
393///
394static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
395                                  bool Folded) {
396  // The alignment of an array is equal to the alignment of the
397  // array element. Note that this is not always true for vectors.
398  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
399    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
400    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
401                                                      DestTy,
402                                                      false),
403                              C, DestTy);
404    return C;
405  }
406
407  if (StructType *STy = dyn_cast<StructType>(Ty)) {
408    // Packed structs always have an alignment of 1.
409    if (STy->isPacked())
410      return ConstantInt::get(DestTy, 1);
411
412    // Otherwise, struct alignment is the maximum alignment of any member.
413    // Without target data, we can't compare much, but we can check to see
414    // if all the members have the same alignment.
415    unsigned NumElems = STy->getNumElements();
416    // An empty struct has minimal alignment.
417    if (NumElems == 0)
418      return ConstantInt::get(DestTy, 1);
419    // Check for a struct with all members having the same alignment.
420    Constant *MemberAlign =
421      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
422    bool AllSame = true;
423    for (unsigned i = 1; i != NumElems; ++i)
424      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
425        AllSame = false;
426        break;
427      }
428    if (AllSame)
429      return MemberAlign;
430  }
431
432  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
433  // to an arbitrary pointee.
434  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
435    if (!PTy->getElementType()->isIntegerTy(1))
436      return
437        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
438                                                           1),
439                                          PTy->getAddressSpace()),
440                         DestTy, true);
441
442  // If there's no interesting folding happening, bail so that we don't create
443  // a constant that looks like it needs folding but really doesn't.
444  if (!Folded)
445    return 0;
446
447  // Base case: Get a regular alignof expression.
448  Constant *C = ConstantExpr::getAlignOf(Ty);
449  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
450                                                    DestTy, false),
451                            C, DestTy);
452  return C;
453}
454
455/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
456/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
457/// return null if no factoring was possible, to avoid endlessly
458/// bouncing an unfoldable expression back into the top-level folder.
459///
460static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
461                                   Type *DestTy,
462                                   bool Folded) {
463  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
464    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
465                                                                DestTy, false),
466                                        FieldNo, DestTy);
467    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
468    return ConstantExpr::getNUWMul(E, N);
469  }
470
471  if (StructType *STy = dyn_cast<StructType>(Ty))
472    if (!STy->isPacked()) {
473      unsigned NumElems = STy->getNumElements();
474      // An empty struct has no members.
475      if (NumElems == 0)
476        return 0;
477      // Check for a struct with all members having the same size.
478      Constant *MemberSize =
479        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
480      bool AllSame = true;
481      for (unsigned i = 1; i != NumElems; ++i)
482        if (MemberSize !=
483            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
484          AllSame = false;
485          break;
486        }
487      if (AllSame) {
488        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
489                                                                    false,
490                                                                    DestTy,
491                                                                    false),
492                                            FieldNo, DestTy);
493        return ConstantExpr::getNUWMul(MemberSize, N);
494      }
495    }
496
497  // If there's no interesting folding happening, bail so that we don't create
498  // a constant that looks like it needs folding but really doesn't.
499  if (!Folded)
500    return 0;
501
502  // Base case: Get a regular offsetof expression.
503  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
504  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
505                                                    DestTy, false),
506                            C, DestTy);
507  return C;
508}
509
510Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
511                                            Type *DestTy) {
512  if (isa<UndefValue>(V)) {
513    // zext(undef) = 0, because the top bits will be zero.
514    // sext(undef) = 0, because the top bits will all be the same.
515    // [us]itofp(undef) = 0, because the result value is bounded.
516    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
517        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
518      return Constant::getNullValue(DestTy);
519    return UndefValue::get(DestTy);
520  }
521
522  if (V->isNullValue() && !DestTy->isX86_MMXTy())
523    return Constant::getNullValue(DestTy);
524
525  // If the cast operand is a constant expression, there's a few things we can
526  // do to try to simplify it.
527  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
528    if (CE->isCast()) {
529      // Try hard to fold cast of cast because they are often eliminable.
530      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
531        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
532    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
533      // If all of the indexes in the GEP are null values, there is no pointer
534      // adjustment going on.  We might as well cast the source pointer.
535      bool isAllNull = true;
536      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
537        if (!CE->getOperand(i)->isNullValue()) {
538          isAllNull = false;
539          break;
540        }
541      if (isAllNull)
542        // This is casting one pointer type to another, always BitCast
543        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
544    }
545  }
546
547  // If the cast operand is a constant vector, perform the cast by
548  // operating on each element. In the cast of bitcasts, the element
549  // count may be mismatched; don't attempt to handle that here.
550  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
551      DestTy->isVectorTy() &&
552      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
553    SmallVector<Constant*, 16> res;
554    VectorType *DestVecTy = cast<VectorType>(DestTy);
555    Type *DstEltTy = DestVecTy->getElementType();
556    Type *Ty = IntegerType::get(V->getContext(), 32);
557    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
558      Constant *C =
559        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
560      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
561    }
562    return ConstantVector::get(res);
563  }
564
565  // We actually have to do a cast now. Perform the cast according to the
566  // opcode specified.
567  switch (opc) {
568  default:
569    llvm_unreachable("Failed to cast constant expression");
570  case Instruction::FPTrunc:
571  case Instruction::FPExt:
572    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
573      bool ignored;
574      APFloat Val = FPC->getValueAPF();
575      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
576                  DestTy->isFloatTy() ? APFloat::IEEEsingle :
577                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
578                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
579                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
580                  DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
581                  APFloat::Bogus,
582                  APFloat::rmNearestTiesToEven, &ignored);
583      return ConstantFP::get(V->getContext(), Val);
584    }
585    return 0; // Can't fold.
586  case Instruction::FPToUI:
587  case Instruction::FPToSI:
588    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
589      const APFloat &V = FPC->getValueAPF();
590      bool ignored;
591      uint64_t x[2];
592      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
593      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
594                                APFloat::rmTowardZero, &ignored);
595      APInt Val(DestBitWidth, x);
596      return ConstantInt::get(FPC->getContext(), Val);
597    }
598    return 0; // Can't fold.
599  case Instruction::IntToPtr:   //always treated as unsigned
600    if (V->isNullValue())       // Is it an integral null value?
601      return ConstantPointerNull::get(cast<PointerType>(DestTy));
602    return 0;                   // Other pointer types cannot be casted
603  case Instruction::PtrToInt:   // always treated as unsigned
604    // Is it a null pointer value?
605    if (V->isNullValue())
606      return ConstantInt::get(DestTy, 0);
607    // If this is a sizeof-like expression, pull out multiplications by
608    // known factors to expose them to subsequent folding. If it's an
609    // alignof-like expression, factor out known factors.
610    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
611      if (CE->getOpcode() == Instruction::GetElementPtr &&
612          CE->getOperand(0)->isNullValue()) {
613        Type *Ty =
614          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
615        if (CE->getNumOperands() == 2) {
616          // Handle a sizeof-like expression.
617          Constant *Idx = CE->getOperand(1);
618          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
619          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
620            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
621                                                                DestTy, false),
622                                        Idx, DestTy);
623            return ConstantExpr::getMul(C, Idx);
624          }
625        } else if (CE->getNumOperands() == 3 &&
626                   CE->getOperand(1)->isNullValue()) {
627          // Handle an alignof-like expression.
628          if (StructType *STy = dyn_cast<StructType>(Ty))
629            if (!STy->isPacked()) {
630              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
631              if (CI->isOne() &&
632                  STy->getNumElements() == 2 &&
633                  STy->getElementType(0)->isIntegerTy(1)) {
634                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
635              }
636            }
637          // Handle an offsetof-like expression.
638          if (Ty->isStructTy() || Ty->isArrayTy()) {
639            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
640                                                DestTy, false))
641              return C;
642          }
643        }
644      }
645    // Other pointer types cannot be casted
646    return 0;
647  case Instruction::UIToFP:
648  case Instruction::SIToFP:
649    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
650      APInt api = CI->getValue();
651      APFloat apf(DestTy->getFltSemantics(),
652                  APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
653      (void)apf.convertFromAPInt(api,
654                                 opc==Instruction::SIToFP,
655                                 APFloat::rmNearestTiesToEven);
656      return ConstantFP::get(V->getContext(), apf);
657    }
658    return 0;
659  case Instruction::ZExt:
660    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
661      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
662      return ConstantInt::get(V->getContext(),
663                              CI->getValue().zext(BitWidth));
664    }
665    return 0;
666  case Instruction::SExt:
667    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
668      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
669      return ConstantInt::get(V->getContext(),
670                              CI->getValue().sext(BitWidth));
671    }
672    return 0;
673  case Instruction::Trunc: {
674    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
675    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
676      return ConstantInt::get(V->getContext(),
677                              CI->getValue().trunc(DestBitWidth));
678    }
679
680    // The input must be a constantexpr.  See if we can simplify this based on
681    // the bytes we are demanding.  Only do this if the source and dest are an
682    // even multiple of a byte.
683    if ((DestBitWidth & 7) == 0 &&
684        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
685      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
686        return Res;
687
688    return 0;
689  }
690  case Instruction::BitCast:
691    return FoldBitCast(V, DestTy);
692  case Instruction::AddrSpaceCast:
693    return 0;
694  }
695}
696
697Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
698                                              Constant *V1, Constant *V2) {
699  // Check for i1 and vector true/false conditions.
700  if (Cond->isNullValue()) return V2;
701  if (Cond->isAllOnesValue()) return V1;
702
703  // If the condition is a vector constant, fold the result elementwise.
704  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
705    SmallVector<Constant*, 16> Result;
706    Type *Ty = IntegerType::get(CondV->getContext(), 32);
707    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
708      ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
709      if (Cond == 0) break;
710
711      Constant *V = Cond->isNullValue() ? V2 : V1;
712      Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
713      Result.push_back(Res);
714    }
715
716    // If we were able to build the vector, return it.
717    if (Result.size() == V1->getType()->getVectorNumElements())
718      return ConstantVector::get(Result);
719  }
720
721  if (isa<UndefValue>(Cond)) {
722    if (isa<UndefValue>(V1)) return V1;
723    return V2;
724  }
725  if (isa<UndefValue>(V1)) return V2;
726  if (isa<UndefValue>(V2)) return V1;
727  if (V1 == V2) return V1;
728
729  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
730    if (TrueVal->getOpcode() == Instruction::Select)
731      if (TrueVal->getOperand(0) == Cond)
732        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
733  }
734  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
735    if (FalseVal->getOpcode() == Instruction::Select)
736      if (FalseVal->getOperand(0) == Cond)
737        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
738  }
739
740  return 0;
741}
742
743Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
744                                                      Constant *Idx) {
745  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
746    return UndefValue::get(Val->getType()->getVectorElementType());
747  if (Val->isNullValue())  // ee(zero, x) -> zero
748    return Constant::getNullValue(Val->getType()->getVectorElementType());
749  // ee({w,x,y,z}, undef) -> undef
750  if (isa<UndefValue>(Idx))
751    return UndefValue::get(Val->getType()->getVectorElementType());
752
753  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
754    uint64_t Index = CIdx->getZExtValue();
755    // ee({w,x,y,z}, wrong_value) -> undef
756    if (Index >= Val->getType()->getVectorNumElements())
757      return UndefValue::get(Val->getType()->getVectorElementType());
758    return Val->getAggregateElement(Index);
759  }
760  return 0;
761}
762
763Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
764                                                     Constant *Elt,
765                                                     Constant *Idx) {
766  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
767  if (!CIdx) return 0;
768  const APInt &IdxVal = CIdx->getValue();
769
770  SmallVector<Constant*, 16> Result;
771  Type *Ty = IntegerType::get(Val->getContext(), 32);
772  for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
773    if (i == IdxVal) {
774      Result.push_back(Elt);
775      continue;
776    }
777
778    Constant *C =
779      ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
780    Result.push_back(C);
781  }
782
783  return ConstantVector::get(Result);
784}
785
786Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
787                                                     Constant *V2,
788                                                     Constant *Mask) {
789  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
790  Type *EltTy = V1->getType()->getVectorElementType();
791
792  // Undefined shuffle mask -> undefined value.
793  if (isa<UndefValue>(Mask))
794    return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
795
796  // Don't break the bitcode reader hack.
797  if (isa<ConstantExpr>(Mask)) return 0;
798
799  unsigned SrcNumElts = V1->getType()->getVectorNumElements();
800
801  // Loop over the shuffle mask, evaluating each element.
802  SmallVector<Constant*, 32> Result;
803  for (unsigned i = 0; i != MaskNumElts; ++i) {
804    int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
805    if (Elt == -1) {
806      Result.push_back(UndefValue::get(EltTy));
807      continue;
808    }
809    Constant *InElt;
810    if (unsigned(Elt) >= SrcNumElts*2)
811      InElt = UndefValue::get(EltTy);
812    else if (unsigned(Elt) >= SrcNumElts) {
813      Type *Ty = IntegerType::get(V2->getContext(), 32);
814      InElt =
815        ConstantExpr::getExtractElement(V2,
816                                        ConstantInt::get(Ty, Elt - SrcNumElts));
817    } else {
818      Type *Ty = IntegerType::get(V1->getContext(), 32);
819      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
820    }
821    Result.push_back(InElt);
822  }
823
824  return ConstantVector::get(Result);
825}
826
827Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
828                                                    ArrayRef<unsigned> Idxs) {
829  // Base case: no indices, so return the entire value.
830  if (Idxs.empty())
831    return Agg;
832
833  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
834    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
835
836  return 0;
837}
838
839Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
840                                                   Constant *Val,
841                                                   ArrayRef<unsigned> Idxs) {
842  // Base case: no indices, so replace the entire value.
843  if (Idxs.empty())
844    return Val;
845
846  unsigned NumElts;
847  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
848    NumElts = ST->getNumElements();
849  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
850    NumElts = AT->getNumElements();
851  else
852    NumElts = Agg->getType()->getVectorNumElements();
853
854  SmallVector<Constant*, 32> Result;
855  for (unsigned i = 0; i != NumElts; ++i) {
856    Constant *C = Agg->getAggregateElement(i);
857    if (C == 0) return 0;
858
859    if (Idxs[0] == i)
860      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
861
862    Result.push_back(C);
863  }
864
865  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
866    return ConstantStruct::get(ST, Result);
867  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
868    return ConstantArray::get(AT, Result);
869  return ConstantVector::get(Result);
870}
871
872
873Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
874                                              Constant *C1, Constant *C2) {
875  // Handle UndefValue up front.
876  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
877    switch (Opcode) {
878    case Instruction::Xor:
879      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
880        // Handle undef ^ undef -> 0 special case. This is a common
881        // idiom (misuse).
882        return Constant::getNullValue(C1->getType());
883      // Fallthrough
884    case Instruction::Add:
885    case Instruction::Sub:
886      return UndefValue::get(C1->getType());
887    case Instruction::And:
888      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
889        return C1;
890      return Constant::getNullValue(C1->getType());   // undef & X -> 0
891    case Instruction::Mul: {
892      ConstantInt *CI;
893      // X * undef -> undef   if X is odd or undef
894      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
895          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
896          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
897        return UndefValue::get(C1->getType());
898
899      // X * undef -> 0       otherwise
900      return Constant::getNullValue(C1->getType());
901    }
902    case Instruction::UDiv:
903    case Instruction::SDiv:
904      // undef / 1 -> undef
905      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
906        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
907          if (CI2->isOne())
908            return C1;
909      // FALL THROUGH
910    case Instruction::URem:
911    case Instruction::SRem:
912      if (!isa<UndefValue>(C2))                    // undef / X -> 0
913        return Constant::getNullValue(C1->getType());
914      return C2;                                   // X / undef -> undef
915    case Instruction::Or:                          // X | undef -> -1
916      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
917        return C1;
918      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
919    case Instruction::LShr:
920      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
921        return C1;                                  // undef lshr undef -> undef
922      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
923                                                    // undef lshr X -> 0
924    case Instruction::AShr:
925      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
926        return Constant::getAllOnesValue(C1->getType());
927      else if (isa<UndefValue>(C1))
928        return C1;                                  // undef ashr undef -> undef
929      else
930        return C1;                                  // X ashr undef --> X
931    case Instruction::Shl:
932      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
933        return C1;                                  // undef shl undef -> undef
934      // undef << X -> 0   or   X << undef -> 0
935      return Constant::getNullValue(C1->getType());
936    }
937  }
938
939  // Handle simplifications when the RHS is a constant int.
940  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
941    switch (Opcode) {
942    case Instruction::Add:
943      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
944      break;
945    case Instruction::Sub:
946      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
947      break;
948    case Instruction::Mul:
949      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
950      if (CI2->equalsInt(1))
951        return C1;                                              // X * 1 == X
952      break;
953    case Instruction::UDiv:
954    case Instruction::SDiv:
955      if (CI2->equalsInt(1))
956        return C1;                                            // X / 1 == X
957      if (CI2->equalsInt(0))
958        return UndefValue::get(CI2->getType());               // X / 0 == undef
959      break;
960    case Instruction::URem:
961    case Instruction::SRem:
962      if (CI2->equalsInt(1))
963        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
964      if (CI2->equalsInt(0))
965        return UndefValue::get(CI2->getType());               // X % 0 == undef
966      break;
967    case Instruction::And:
968      if (CI2->isZero()) return C2;                           // X & 0 == 0
969      if (CI2->isAllOnesValue())
970        return C1;                                            // X & -1 == X
971
972      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
973        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
974        if (CE1->getOpcode() == Instruction::ZExt) {
975          unsigned DstWidth = CI2->getType()->getBitWidth();
976          unsigned SrcWidth =
977            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
978          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
979          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
980            return C1;
981        }
982
983        // If and'ing the address of a global with a constant, fold it.
984        if (CE1->getOpcode() == Instruction::PtrToInt &&
985            isa<GlobalValue>(CE1->getOperand(0))) {
986          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
987
988          // Functions are at least 4-byte aligned.
989          unsigned GVAlign = GV->getAlignment();
990          if (isa<Function>(GV))
991            GVAlign = std::max(GVAlign, 4U);
992
993          if (GVAlign > 1) {
994            unsigned DstWidth = CI2->getType()->getBitWidth();
995            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
996            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
997
998            // If checking bits we know are clear, return zero.
999            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1000              return Constant::getNullValue(CI2->getType());
1001          }
1002        }
1003      }
1004      break;
1005    case Instruction::Or:
1006      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1007      if (CI2->isAllOnesValue())
1008        return C2;                         // X | -1 == -1
1009      break;
1010    case Instruction::Xor:
1011      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1012
1013      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1014        switch (CE1->getOpcode()) {
1015        default: break;
1016        case Instruction::ICmp:
1017        case Instruction::FCmp:
1018          // cmp pred ^ true -> cmp !pred
1019          assert(CI2->equalsInt(1));
1020          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1021          pred = CmpInst::getInversePredicate(pred);
1022          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1023                                          CE1->getOperand(1));
1024        }
1025      }
1026      break;
1027    case Instruction::AShr:
1028      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1029      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1030        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1031          return ConstantExpr::getLShr(C1, C2);
1032      break;
1033    }
1034  } else if (isa<ConstantInt>(C1)) {
1035    // If C1 is a ConstantInt and C2 is not, swap the operands.
1036    if (Instruction::isCommutative(Opcode))
1037      return ConstantExpr::get(Opcode, C2, C1);
1038  }
1039
1040  // At this point we know neither constant is an UndefValue.
1041  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1042    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1043      const APInt &C1V = CI1->getValue();
1044      const APInt &C2V = CI2->getValue();
1045      switch (Opcode) {
1046      default:
1047        break;
1048      case Instruction::Add:
1049        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1050      case Instruction::Sub:
1051        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1052      case Instruction::Mul:
1053        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1054      case Instruction::UDiv:
1055        assert(!CI2->isNullValue() && "Div by zero handled above");
1056        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1057      case Instruction::SDiv:
1058        assert(!CI2->isNullValue() && "Div by zero handled above");
1059        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1060          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1061        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1062      case Instruction::URem:
1063        assert(!CI2->isNullValue() && "Div by zero handled above");
1064        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1065      case Instruction::SRem:
1066        assert(!CI2->isNullValue() && "Div by zero handled above");
1067        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1068          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1069        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1070      case Instruction::And:
1071        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1072      case Instruction::Or:
1073        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1074      case Instruction::Xor:
1075        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1076      case Instruction::Shl: {
1077        uint32_t shiftAmt = C2V.getZExtValue();
1078        if (shiftAmt < C1V.getBitWidth())
1079          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1080        else
1081          return UndefValue::get(C1->getType()); // too big shift is undef
1082      }
1083      case Instruction::LShr: {
1084        uint32_t shiftAmt = C2V.getZExtValue();
1085        if (shiftAmt < C1V.getBitWidth())
1086          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1087        else
1088          return UndefValue::get(C1->getType()); // too big shift is undef
1089      }
1090      case Instruction::AShr: {
1091        uint32_t shiftAmt = C2V.getZExtValue();
1092        if (shiftAmt < C1V.getBitWidth())
1093          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1094        else
1095          return UndefValue::get(C1->getType()); // too big shift is undef
1096      }
1097      }
1098    }
1099
1100    switch (Opcode) {
1101    case Instruction::SDiv:
1102    case Instruction::UDiv:
1103    case Instruction::URem:
1104    case Instruction::SRem:
1105    case Instruction::LShr:
1106    case Instruction::AShr:
1107    case Instruction::Shl:
1108      if (CI1->equalsInt(0)) return C1;
1109      break;
1110    default:
1111      break;
1112    }
1113  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1114    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1115      APFloat C1V = CFP1->getValueAPF();
1116      APFloat C2V = CFP2->getValueAPF();
1117      APFloat C3V = C1V;  // copy for modification
1118      switch (Opcode) {
1119      default:
1120        break;
1121      case Instruction::FAdd:
1122        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1123        return ConstantFP::get(C1->getContext(), C3V);
1124      case Instruction::FSub:
1125        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1126        return ConstantFP::get(C1->getContext(), C3V);
1127      case Instruction::FMul:
1128        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1129        return ConstantFP::get(C1->getContext(), C3V);
1130      case Instruction::FDiv:
1131        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1132        return ConstantFP::get(C1->getContext(), C3V);
1133      case Instruction::FRem:
1134        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1135        return ConstantFP::get(C1->getContext(), C3V);
1136      }
1137    }
1138  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1139    // Perform elementwise folding.
1140    SmallVector<Constant*, 16> Result;
1141    Type *Ty = IntegerType::get(VTy->getContext(), 32);
1142    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1143      Constant *LHS =
1144        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1145      Constant *RHS =
1146        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1147
1148      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1149    }
1150
1151    return ConstantVector::get(Result);
1152  }
1153
1154  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1155    // There are many possible foldings we could do here.  We should probably
1156    // at least fold add of a pointer with an integer into the appropriate
1157    // getelementptr.  This will improve alias analysis a bit.
1158
1159    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1160    // (a + (b + c)).
1161    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1162      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1163      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1164        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1165    }
1166  } else if (isa<ConstantExpr>(C2)) {
1167    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1168    // other way if possible.
1169    if (Instruction::isCommutative(Opcode))
1170      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1171  }
1172
1173  // i1 can be simplified in many cases.
1174  if (C1->getType()->isIntegerTy(1)) {
1175    switch (Opcode) {
1176    case Instruction::Add:
1177    case Instruction::Sub:
1178      return ConstantExpr::getXor(C1, C2);
1179    case Instruction::Mul:
1180      return ConstantExpr::getAnd(C1, C2);
1181    case Instruction::Shl:
1182    case Instruction::LShr:
1183    case Instruction::AShr:
1184      // We can assume that C2 == 0.  If it were one the result would be
1185      // undefined because the shift value is as large as the bitwidth.
1186      return C1;
1187    case Instruction::SDiv:
1188    case Instruction::UDiv:
1189      // We can assume that C2 == 1.  If it were zero the result would be
1190      // undefined through division by zero.
1191      return C1;
1192    case Instruction::URem:
1193    case Instruction::SRem:
1194      // We can assume that C2 == 1.  If it were zero the result would be
1195      // undefined through division by zero.
1196      return ConstantInt::getFalse(C1->getContext());
1197    default:
1198      break;
1199    }
1200  }
1201
1202  // We don't know how to fold this.
1203  return 0;
1204}
1205
1206/// isZeroSizedType - This type is zero sized if its an array or structure of
1207/// zero sized types.  The only leaf zero sized type is an empty structure.
1208static bool isMaybeZeroSizedType(Type *Ty) {
1209  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1210    if (STy->isOpaque()) return true;  // Can't say.
1211
1212    // If all of elements have zero size, this does too.
1213    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1214      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1215    return true;
1216
1217  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1218    return isMaybeZeroSizedType(ATy->getElementType());
1219  }
1220  return false;
1221}
1222
1223/// IdxCompare - Compare the two constants as though they were getelementptr
1224/// indices.  This allows coersion of the types to be the same thing.
1225///
1226/// If the two constants are the "same" (after coersion), return 0.  If the
1227/// first is less than the second, return -1, if the second is less than the
1228/// first, return 1.  If the constants are not integral, return -2.
1229///
1230static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1231  if (C1 == C2) return 0;
1232
1233  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1234  // anything with them.
1235  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1236    return -2; // don't know!
1237
1238  // Ok, we have two differing integer indices.  Sign extend them to be the same
1239  // type.  Long is always big enough, so we use it.
1240  if (!C1->getType()->isIntegerTy(64))
1241    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1242
1243  if (!C2->getType()->isIntegerTy(64))
1244    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1245
1246  if (C1 == C2) return 0;  // They are equal
1247
1248  // If the type being indexed over is really just a zero sized type, there is
1249  // no pointer difference being made here.
1250  if (isMaybeZeroSizedType(ElTy))
1251    return -2; // dunno.
1252
1253  // If they are really different, now that they are the same type, then we
1254  // found a difference!
1255  if (cast<ConstantInt>(C1)->getSExtValue() <
1256      cast<ConstantInt>(C2)->getSExtValue())
1257    return -1;
1258  else
1259    return 1;
1260}
1261
1262/// evaluateFCmpRelation - This function determines if there is anything we can
1263/// decide about the two constants provided.  This doesn't need to handle simple
1264/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1265/// If we can determine that the two constants have a particular relation to
1266/// each other, we should return the corresponding FCmpInst predicate,
1267/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1268/// ConstantFoldCompareInstruction.
1269///
1270/// To simplify this code we canonicalize the relation so that the first
1271/// operand is always the most "complex" of the two.  We consider ConstantFP
1272/// to be the simplest, and ConstantExprs to be the most complex.
1273static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1274  assert(V1->getType() == V2->getType() &&
1275         "Cannot compare values of different types!");
1276
1277  // Handle degenerate case quickly
1278  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1279
1280  if (!isa<ConstantExpr>(V1)) {
1281    if (!isa<ConstantExpr>(V2)) {
1282      // We distilled thisUse the standard constant folder for a few cases
1283      ConstantInt *R = 0;
1284      R = dyn_cast<ConstantInt>(
1285                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1286      if (R && !R->isZero())
1287        return FCmpInst::FCMP_OEQ;
1288      R = dyn_cast<ConstantInt>(
1289                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1290      if (R && !R->isZero())
1291        return FCmpInst::FCMP_OLT;
1292      R = dyn_cast<ConstantInt>(
1293                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1294      if (R && !R->isZero())
1295        return FCmpInst::FCMP_OGT;
1296
1297      // Nothing more we can do
1298      return FCmpInst::BAD_FCMP_PREDICATE;
1299    }
1300
1301    // If the first operand is simple and second is ConstantExpr, swap operands.
1302    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1303    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1304      return FCmpInst::getSwappedPredicate(SwappedRelation);
1305  } else {
1306    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1307    // constantexpr or a simple constant.
1308    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1309    switch (CE1->getOpcode()) {
1310    case Instruction::FPTrunc:
1311    case Instruction::FPExt:
1312    case Instruction::UIToFP:
1313    case Instruction::SIToFP:
1314      // We might be able to do something with these but we don't right now.
1315      break;
1316    default:
1317      break;
1318    }
1319  }
1320  // There are MANY other foldings that we could perform here.  They will
1321  // probably be added on demand, as they seem needed.
1322  return FCmpInst::BAD_FCMP_PREDICATE;
1323}
1324
1325/// evaluateICmpRelation - This function determines if there is anything we can
1326/// decide about the two constants provided.  This doesn't need to handle simple
1327/// things like integer comparisons, but should instead handle ConstantExprs
1328/// and GlobalValues.  If we can determine that the two constants have a
1329/// particular relation to each other, we should return the corresponding ICmp
1330/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1331///
1332/// To simplify this code we canonicalize the relation so that the first
1333/// operand is always the most "complex" of the two.  We consider simple
1334/// constants (like ConstantInt) to be the simplest, followed by
1335/// GlobalValues, followed by ConstantExpr's (the most complex).
1336///
1337static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1338                                                bool isSigned) {
1339  assert(V1->getType() == V2->getType() &&
1340         "Cannot compare different types of values!");
1341  if (V1 == V2) return ICmpInst::ICMP_EQ;
1342
1343  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1344      !isa<BlockAddress>(V1)) {
1345    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1346        !isa<BlockAddress>(V2)) {
1347      // We distilled this down to a simple case, use the standard constant
1348      // folder.
1349      ConstantInt *R = 0;
1350      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1351      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1352      if (R && !R->isZero())
1353        return pred;
1354      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1355      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1356      if (R && !R->isZero())
1357        return pred;
1358      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1359      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1360      if (R && !R->isZero())
1361        return pred;
1362
1363      // If we couldn't figure it out, bail.
1364      return ICmpInst::BAD_ICMP_PREDICATE;
1365    }
1366
1367    // If the first operand is simple, swap operands.
1368    ICmpInst::Predicate SwappedRelation =
1369      evaluateICmpRelation(V2, V1, isSigned);
1370    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1371      return ICmpInst::getSwappedPredicate(SwappedRelation);
1372
1373  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1374    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1375      ICmpInst::Predicate SwappedRelation =
1376        evaluateICmpRelation(V2, V1, isSigned);
1377      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1378        return ICmpInst::getSwappedPredicate(SwappedRelation);
1379      return ICmpInst::BAD_ICMP_PREDICATE;
1380    }
1381
1382    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1383    // constant (which, since the types must match, means that it's a
1384    // ConstantPointerNull).
1385    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1386      // Don't try to decide equality of aliases.
1387      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1388        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1389          return ICmpInst::ICMP_NE;
1390    } else if (isa<BlockAddress>(V2)) {
1391      return ICmpInst::ICMP_NE; // Globals never equal labels.
1392    } else {
1393      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1394      // GlobalVals can never be null unless they have external weak linkage.
1395      // We don't try to evaluate aliases here.
1396      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1397        return ICmpInst::ICMP_NE;
1398    }
1399  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1400    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1401      ICmpInst::Predicate SwappedRelation =
1402        evaluateICmpRelation(V2, V1, isSigned);
1403      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1404        return ICmpInst::getSwappedPredicate(SwappedRelation);
1405      return ICmpInst::BAD_ICMP_PREDICATE;
1406    }
1407
1408    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1409    // constant (which, since the types must match, means that it is a
1410    // ConstantPointerNull).
1411    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1412      // Block address in another function can't equal this one, but block
1413      // addresses in the current function might be the same if blocks are
1414      // empty.
1415      if (BA2->getFunction() != BA->getFunction())
1416        return ICmpInst::ICMP_NE;
1417    } else {
1418      // Block addresses aren't null, don't equal the address of globals.
1419      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1420             "Canonicalization guarantee!");
1421      return ICmpInst::ICMP_NE;
1422    }
1423  } else {
1424    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1425    // constantexpr, a global, block address, or a simple constant.
1426    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1427    Constant *CE1Op0 = CE1->getOperand(0);
1428
1429    switch (CE1->getOpcode()) {
1430    case Instruction::Trunc:
1431    case Instruction::FPTrunc:
1432    case Instruction::FPExt:
1433    case Instruction::FPToUI:
1434    case Instruction::FPToSI:
1435      break; // We can't evaluate floating point casts or truncations.
1436
1437    case Instruction::UIToFP:
1438    case Instruction::SIToFP:
1439    case Instruction::BitCast:
1440    case Instruction::ZExt:
1441    case Instruction::SExt:
1442      // If the cast is not actually changing bits, and the second operand is a
1443      // null pointer, do the comparison with the pre-casted value.
1444      if (V2->isNullValue() &&
1445          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1446        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1447        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1448        return evaluateICmpRelation(CE1Op0,
1449                                    Constant::getNullValue(CE1Op0->getType()),
1450                                    isSigned);
1451      }
1452      break;
1453
1454    case Instruction::GetElementPtr:
1455      // Ok, since this is a getelementptr, we know that the constant has a
1456      // pointer type.  Check the various cases.
1457      if (isa<ConstantPointerNull>(V2)) {
1458        // If we are comparing a GEP to a null pointer, check to see if the base
1459        // of the GEP equals the null pointer.
1460        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1461          if (GV->hasExternalWeakLinkage())
1462            // Weak linkage GVals could be zero or not. We're comparing that
1463            // to null pointer so its greater-or-equal
1464            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1465          else
1466            // If its not weak linkage, the GVal must have a non-zero address
1467            // so the result is greater-than
1468            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1469        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1470          // If we are indexing from a null pointer, check to see if we have any
1471          // non-zero indices.
1472          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1473            if (!CE1->getOperand(i)->isNullValue())
1474              // Offsetting from null, must not be equal.
1475              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1476          // Only zero indexes from null, must still be zero.
1477          return ICmpInst::ICMP_EQ;
1478        }
1479        // Otherwise, we can't really say if the first operand is null or not.
1480      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1481        if (isa<ConstantPointerNull>(CE1Op0)) {
1482          if (GV2->hasExternalWeakLinkage())
1483            // Weak linkage GVals could be zero or not. We're comparing it to
1484            // a null pointer, so its less-or-equal
1485            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1486          else
1487            // If its not weak linkage, the GVal must have a non-zero address
1488            // so the result is less-than
1489            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1490        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1491          if (GV == GV2) {
1492            // If this is a getelementptr of the same global, then it must be
1493            // different.  Because the types must match, the getelementptr could
1494            // only have at most one index, and because we fold getelementptr's
1495            // with a single zero index, it must be nonzero.
1496            assert(CE1->getNumOperands() == 2 &&
1497                   !CE1->getOperand(1)->isNullValue() &&
1498                   "Surprising getelementptr!");
1499            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1500          } else {
1501            // If they are different globals, we don't know what the value is.
1502            return ICmpInst::BAD_ICMP_PREDICATE;
1503          }
1504        }
1505      } else {
1506        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1507        Constant *CE2Op0 = CE2->getOperand(0);
1508
1509        // There are MANY other foldings that we could perform here.  They will
1510        // probably be added on demand, as they seem needed.
1511        switch (CE2->getOpcode()) {
1512        default: break;
1513        case Instruction::GetElementPtr:
1514          // By far the most common case to handle is when the base pointers are
1515          // obviously to the same global.
1516          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1517            if (CE1Op0 != CE2Op0) // Don't know relative ordering.
1518              return ICmpInst::BAD_ICMP_PREDICATE;
1519            // Ok, we know that both getelementptr instructions are based on the
1520            // same global.  From this, we can precisely determine the relative
1521            // ordering of the resultant pointers.
1522            unsigned i = 1;
1523
1524            // The logic below assumes that the result of the comparison
1525            // can be determined by finding the first index that differs.
1526            // This doesn't work if there is over-indexing in any
1527            // subsequent indices, so check for that case first.
1528            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1529                !CE2->isGEPWithNoNotionalOverIndexing())
1530               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1531
1532            // Compare all of the operands the GEP's have in common.
1533            gep_type_iterator GTI = gep_type_begin(CE1);
1534            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1535                 ++i, ++GTI)
1536              switch (IdxCompare(CE1->getOperand(i),
1537                                 CE2->getOperand(i), GTI.getIndexedType())) {
1538              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1539              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1540              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1541              }
1542
1543            // Ok, we ran out of things they have in common.  If any leftovers
1544            // are non-zero then we have a difference, otherwise we are equal.
1545            for (; i < CE1->getNumOperands(); ++i)
1546              if (!CE1->getOperand(i)->isNullValue()) {
1547                if (isa<ConstantInt>(CE1->getOperand(i)))
1548                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1549                else
1550                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1551              }
1552
1553            for (; i < CE2->getNumOperands(); ++i)
1554              if (!CE2->getOperand(i)->isNullValue()) {
1555                if (isa<ConstantInt>(CE2->getOperand(i)))
1556                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1557                else
1558                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1559              }
1560            return ICmpInst::ICMP_EQ;
1561          }
1562        }
1563      }
1564    default:
1565      break;
1566    }
1567  }
1568
1569  return ICmpInst::BAD_ICMP_PREDICATE;
1570}
1571
1572Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1573                                               Constant *C1, Constant *C2) {
1574  Type *ResultTy;
1575  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1576    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1577                               VT->getNumElements());
1578  else
1579    ResultTy = Type::getInt1Ty(C1->getContext());
1580
1581  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1582  if (pred == FCmpInst::FCMP_FALSE)
1583    return Constant::getNullValue(ResultTy);
1584
1585  if (pred == FCmpInst::FCMP_TRUE)
1586    return Constant::getAllOnesValue(ResultTy);
1587
1588  // Handle some degenerate cases first
1589  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1590    // For EQ and NE, we can always pick a value for the undef to make the
1591    // predicate pass or fail, so we can return undef.
1592    // Also, if both operands are undef, we can return undef.
1593    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1594        (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1595      return UndefValue::get(ResultTy);
1596    // Otherwise, pick the same value as the non-undef operand, and fold
1597    // it to true or false.
1598    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1599  }
1600
1601  // icmp eq/ne(null,GV) -> false/true
1602  if (C1->isNullValue()) {
1603    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1604      // Don't try to evaluate aliases.  External weak GV can be null.
1605      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1606        if (pred == ICmpInst::ICMP_EQ)
1607          return ConstantInt::getFalse(C1->getContext());
1608        else if (pred == ICmpInst::ICMP_NE)
1609          return ConstantInt::getTrue(C1->getContext());
1610      }
1611  // icmp eq/ne(GV,null) -> false/true
1612  } else if (C2->isNullValue()) {
1613    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1614      // Don't try to evaluate aliases.  External weak GV can be null.
1615      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1616        if (pred == ICmpInst::ICMP_EQ)
1617          return ConstantInt::getFalse(C1->getContext());
1618        else if (pred == ICmpInst::ICMP_NE)
1619          return ConstantInt::getTrue(C1->getContext());
1620      }
1621  }
1622
1623  // If the comparison is a comparison between two i1's, simplify it.
1624  if (C1->getType()->isIntegerTy(1)) {
1625    switch(pred) {
1626    case ICmpInst::ICMP_EQ:
1627      if (isa<ConstantInt>(C2))
1628        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1629      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1630    case ICmpInst::ICMP_NE:
1631      return ConstantExpr::getXor(C1, C2);
1632    default:
1633      break;
1634    }
1635  }
1636
1637  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1638    APInt V1 = cast<ConstantInt>(C1)->getValue();
1639    APInt V2 = cast<ConstantInt>(C2)->getValue();
1640    switch (pred) {
1641    default: llvm_unreachable("Invalid ICmp Predicate");
1642    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1643    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1644    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1645    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1646    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1647    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1648    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1649    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1650    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1651    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1652    }
1653  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1654    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1655    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1656    APFloat::cmpResult R = C1V.compare(C2V);
1657    switch (pred) {
1658    default: llvm_unreachable("Invalid FCmp Predicate");
1659    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1660    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1661    case FCmpInst::FCMP_UNO:
1662      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1663    case FCmpInst::FCMP_ORD:
1664      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1665    case FCmpInst::FCMP_UEQ:
1666      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1667                                        R==APFloat::cmpEqual);
1668    case FCmpInst::FCMP_OEQ:
1669      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1670    case FCmpInst::FCMP_UNE:
1671      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1672    case FCmpInst::FCMP_ONE:
1673      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1674                                        R==APFloat::cmpGreaterThan);
1675    case FCmpInst::FCMP_ULT:
1676      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1677                                        R==APFloat::cmpLessThan);
1678    case FCmpInst::FCMP_OLT:
1679      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1680    case FCmpInst::FCMP_UGT:
1681      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1682                                        R==APFloat::cmpGreaterThan);
1683    case FCmpInst::FCMP_OGT:
1684      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1685    case FCmpInst::FCMP_ULE:
1686      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1687    case FCmpInst::FCMP_OLE:
1688      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1689                                        R==APFloat::cmpEqual);
1690    case FCmpInst::FCMP_UGE:
1691      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1692    case FCmpInst::FCMP_OGE:
1693      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1694                                        R==APFloat::cmpEqual);
1695    }
1696  } else if (C1->getType()->isVectorTy()) {
1697    // If we can constant fold the comparison of each element, constant fold
1698    // the whole vector comparison.
1699    SmallVector<Constant*, 4> ResElts;
1700    Type *Ty = IntegerType::get(C1->getContext(), 32);
1701    // Compare the elements, producing an i1 result or constant expr.
1702    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1703      Constant *C1E =
1704        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1705      Constant *C2E =
1706        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1707
1708      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1709    }
1710
1711    return ConstantVector::get(ResElts);
1712  }
1713
1714  if (C1->getType()->isFloatingPointTy()) {
1715    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1716    switch (evaluateFCmpRelation(C1, C2)) {
1717    default: llvm_unreachable("Unknown relation!");
1718    case FCmpInst::FCMP_UNO:
1719    case FCmpInst::FCMP_ORD:
1720    case FCmpInst::FCMP_UEQ:
1721    case FCmpInst::FCMP_UNE:
1722    case FCmpInst::FCMP_ULT:
1723    case FCmpInst::FCMP_UGT:
1724    case FCmpInst::FCMP_ULE:
1725    case FCmpInst::FCMP_UGE:
1726    case FCmpInst::FCMP_TRUE:
1727    case FCmpInst::FCMP_FALSE:
1728    case FCmpInst::BAD_FCMP_PREDICATE:
1729      break; // Couldn't determine anything about these constants.
1730    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1731      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1732                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1733                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1734      break;
1735    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1736      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1737                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1738                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1739      break;
1740    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1741      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1742                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1743                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1744      break;
1745    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1746      // We can only partially decide this relation.
1747      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1748        Result = 0;
1749      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1750        Result = 1;
1751      break;
1752    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1753      // We can only partially decide this relation.
1754      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1755        Result = 0;
1756      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1757        Result = 1;
1758      break;
1759    case FCmpInst::FCMP_ONE: // We know that C1 != C2
1760      // We can only partially decide this relation.
1761      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1762        Result = 0;
1763      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1764        Result = 1;
1765      break;
1766    }
1767
1768    // If we evaluated the result, return it now.
1769    if (Result != -1)
1770      return ConstantInt::get(ResultTy, Result);
1771
1772  } else {
1773    // Evaluate the relation between the two constants, per the predicate.
1774    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1775    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1776    default: llvm_unreachable("Unknown relational!");
1777    case ICmpInst::BAD_ICMP_PREDICATE:
1778      break;  // Couldn't determine anything about these constants.
1779    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1780      // If we know the constants are equal, we can decide the result of this
1781      // computation precisely.
1782      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1783      break;
1784    case ICmpInst::ICMP_ULT:
1785      switch (pred) {
1786      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1787        Result = 1; break;
1788      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1789        Result = 0; break;
1790      }
1791      break;
1792    case ICmpInst::ICMP_SLT:
1793      switch (pred) {
1794      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1795        Result = 1; break;
1796      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1797        Result = 0; break;
1798      }
1799      break;
1800    case ICmpInst::ICMP_UGT:
1801      switch (pred) {
1802      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1803        Result = 1; break;
1804      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1805        Result = 0; break;
1806      }
1807      break;
1808    case ICmpInst::ICMP_SGT:
1809      switch (pred) {
1810      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1811        Result = 1; break;
1812      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1813        Result = 0; break;
1814      }
1815      break;
1816    case ICmpInst::ICMP_ULE:
1817      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1818      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1819      break;
1820    case ICmpInst::ICMP_SLE:
1821      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1822      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1823      break;
1824    case ICmpInst::ICMP_UGE:
1825      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1826      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1827      break;
1828    case ICmpInst::ICMP_SGE:
1829      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1830      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1831      break;
1832    case ICmpInst::ICMP_NE:
1833      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1834      if (pred == ICmpInst::ICMP_NE) Result = 1;
1835      break;
1836    }
1837
1838    // If we evaluated the result, return it now.
1839    if (Result != -1)
1840      return ConstantInt::get(ResultTy, Result);
1841
1842    // If the right hand side is a bitcast, try using its inverse to simplify
1843    // it by moving it to the left hand side.  We can't do this if it would turn
1844    // a vector compare into a scalar compare or visa versa.
1845    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1846      Constant *CE2Op0 = CE2->getOperand(0);
1847      if (CE2->getOpcode() == Instruction::BitCast &&
1848          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1849        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1850        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1851      }
1852    }
1853
1854    // If the left hand side is an extension, try eliminating it.
1855    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1856      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
1857          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
1858        Constant *CE1Op0 = CE1->getOperand(0);
1859        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1860        if (CE1Inverse == CE1Op0) {
1861          // Check whether we can safely truncate the right hand side.
1862          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1863          if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1864                                    C2->getType()) == C2)
1865            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1866        }
1867      }
1868    }
1869
1870    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1871        (C1->isNullValue() && !C2->isNullValue())) {
1872      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1873      // other way if possible.
1874      // Also, if C1 is null and C2 isn't, flip them around.
1875      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1876      return ConstantExpr::getICmp(pred, C2, C1);
1877    }
1878  }
1879  return 0;
1880}
1881
1882/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1883/// is "inbounds".
1884template<typename IndexTy>
1885static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1886  // No indices means nothing that could be out of bounds.
1887  if (Idxs.empty()) return true;
1888
1889  // If the first index is zero, it's in bounds.
1890  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1891
1892  // If the first index is one and all the rest are zero, it's in bounds,
1893  // by the one-past-the-end rule.
1894  if (!cast<ConstantInt>(Idxs[0])->isOne())
1895    return false;
1896  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1897    if (!cast<Constant>(Idxs[i])->isNullValue())
1898      return false;
1899  return true;
1900}
1901
1902/// \brief Test whether a given ConstantInt is in-range for a SequentialType.
1903static bool isIndexInRangeOfSequentialType(const SequentialType *STy,
1904                                           const ConstantInt *CI) {
1905  if (const PointerType *PTy = dyn_cast<PointerType>(STy))
1906    // Only handle pointers to sized types, not pointers to functions.
1907    return PTy->getElementType()->isSized();
1908
1909  uint64_t NumElements = 0;
1910  // Determine the number of elements in our sequential type.
1911  if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
1912    NumElements = ATy->getNumElements();
1913  else if (const VectorType *VTy = dyn_cast<VectorType>(STy))
1914    NumElements = VTy->getNumElements();
1915
1916  assert((isa<ArrayType>(STy) || NumElements > 0) &&
1917         "didn't expect non-array type to have zero elements!");
1918
1919  // We cannot bounds check the index if it doesn't fit in an int64_t.
1920  if (CI->getValue().getActiveBits() > 64)
1921    return false;
1922
1923  // A negative index or an index past the end of our sequential type is
1924  // considered out-of-range.
1925  int64_t IndexVal = CI->getSExtValue();
1926  if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
1927    return false;
1928
1929  // Otherwise, it is in-range.
1930  return true;
1931}
1932
1933template<typename IndexTy>
1934static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
1935                                               bool inBounds,
1936                                               ArrayRef<IndexTy> Idxs) {
1937  if (Idxs.empty()) return C;
1938  Constant *Idx0 = cast<Constant>(Idxs[0]);
1939  if ((Idxs.size() == 1 && Idx0->isNullValue()))
1940    return C;
1941
1942  if (isa<UndefValue>(C)) {
1943    PointerType *Ptr = cast<PointerType>(C->getType());
1944    Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1945    assert(Ty != 0 && "Invalid indices for GEP!");
1946    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1947  }
1948
1949  if (C->isNullValue()) {
1950    bool isNull = true;
1951    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1952      if (!cast<Constant>(Idxs[i])->isNullValue()) {
1953        isNull = false;
1954        break;
1955      }
1956    if (isNull) {
1957      PointerType *Ptr = cast<PointerType>(C->getType());
1958      Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1959      assert(Ty != 0 && "Invalid indices for GEP!");
1960      return ConstantPointerNull::get(PointerType::get(Ty,
1961                                                       Ptr->getAddressSpace()));
1962    }
1963  }
1964
1965  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1966    // Combine Indices - If the source pointer to this getelementptr instruction
1967    // is a getelementptr instruction, combine the indices of the two
1968    // getelementptr instructions into a single instruction.
1969    //
1970    if (CE->getOpcode() == Instruction::GetElementPtr) {
1971      Type *LastTy = 0;
1972      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1973           I != E; ++I)
1974        LastTy = *I;
1975
1976      // We cannot combine indices if doing so would take us outside of an
1977      // array or vector.  Doing otherwise could trick us if we evaluated such a
1978      // GEP as part of a load.
1979      //
1980      // e.g. Consider if the original GEP was:
1981      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
1982      //                    i32 0, i32 0, i64 0)
1983      //
1984      // If we then tried to offset it by '8' to get to the third element,
1985      // an i8, we should *not* get:
1986      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
1987      //                    i32 0, i32 0, i64 8)
1988      //
1989      // This GEP tries to index array element '8  which runs out-of-bounds.
1990      // Subsequent evaluation would get confused and produce erroneous results.
1991      //
1992      // The following prohibits such a GEP from being formed by checking to see
1993      // if the index is in-range with respect to an array or vector.
1994      bool PerformFold = false;
1995      if (Idx0->isNullValue())
1996        PerformFold = true;
1997      else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
1998        if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
1999          PerformFold = isIndexInRangeOfSequentialType(STy, CI);
2000
2001      if (PerformFold) {
2002        SmallVector<Value*, 16> NewIndices;
2003        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2004        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2005          NewIndices.push_back(CE->getOperand(i));
2006
2007        // Add the last index of the source with the first index of the new GEP.
2008        // Make sure to handle the case when they are actually different types.
2009        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2010        // Otherwise it must be an array.
2011        if (!Idx0->isNullValue()) {
2012          Type *IdxTy = Combined->getType();
2013          if (IdxTy != Idx0->getType()) {
2014            Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2015            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2016            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2017            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2018          } else {
2019            Combined =
2020              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2021          }
2022        }
2023
2024        NewIndices.push_back(Combined);
2025        NewIndices.append(Idxs.begin() + 1, Idxs.end());
2026        return
2027          ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
2028                                         inBounds &&
2029                                           cast<GEPOperator>(CE)->isInBounds());
2030      }
2031    }
2032
2033    // Attempt to fold casts to the same type away.  For example, folding:
2034    //
2035    //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2036    //                       i64 0, i64 0)
2037    // into:
2038    //
2039    //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2040    //
2041    // Don't fold if the cast is changing address spaces.
2042    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2043      PointerType *SrcPtrTy =
2044        dyn_cast<PointerType>(CE->getOperand(0)->getType());
2045      PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2046      if (SrcPtrTy && DstPtrTy) {
2047        ArrayType *SrcArrayTy =
2048          dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2049        ArrayType *DstArrayTy =
2050          dyn_cast<ArrayType>(DstPtrTy->getElementType());
2051        if (SrcArrayTy && DstArrayTy
2052            && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2053            && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2054          return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
2055                                                Idxs, inBounds);
2056      }
2057    }
2058  }
2059
2060  // Check to see if any array indices are not within the corresponding
2061  // notional array or vector bounds. If so, try to determine if they can be
2062  // factored out into preceding dimensions.
2063  bool Unknown = false;
2064  SmallVector<Constant *, 8> NewIdxs;
2065  Type *Ty = C->getType();
2066  Type *Prev = 0;
2067  for (unsigned i = 0, e = Idxs.size(); i != e;
2068       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2069    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2070      if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
2071        if (CI->getSExtValue() > 0 &&
2072            !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
2073          if (isa<SequentialType>(Prev)) {
2074            // It's out of range, but we can factor it into the prior
2075            // dimension.
2076            NewIdxs.resize(Idxs.size());
2077            uint64_t NumElements = 0;
2078            if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2079              NumElements = ATy->getNumElements();
2080            else
2081              NumElements = cast<VectorType>(Ty)->getNumElements();
2082
2083            ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
2084            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2085
2086            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2087            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2088
2089            // Before adding, extend both operands to i64 to avoid
2090            // overflow trouble.
2091            if (!PrevIdx->getType()->isIntegerTy(64))
2092              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2093                                           Type::getInt64Ty(Div->getContext()));
2094            if (!Div->getType()->isIntegerTy(64))
2095              Div = ConstantExpr::getSExt(Div,
2096                                          Type::getInt64Ty(Div->getContext()));
2097
2098            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2099          } else {
2100            // It's out of range, but the prior dimension is a struct
2101            // so we can't do anything about it.
2102            Unknown = true;
2103          }
2104        }
2105    } else {
2106      // We don't know if it's in range or not.
2107      Unknown = true;
2108    }
2109  }
2110
2111  // If we did any factoring, start over with the adjusted indices.
2112  if (!NewIdxs.empty()) {
2113    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2114      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2115    return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2116  }
2117
2118  // If all indices are known integers and normalized, we can do a simple
2119  // check for the "inbounds" property.
2120  if (!Unknown && !inBounds &&
2121      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2122    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2123
2124  return 0;
2125}
2126
2127Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2128                                          bool inBounds,
2129                                          ArrayRef<Constant *> Idxs) {
2130  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2131}
2132
2133Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2134                                          bool inBounds,
2135                                          ArrayRef<Value *> Idxs) {
2136  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2137}
2138