ConstantFold.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need DataLayout, and the pieces that do. This is to avoid
16// a dependence in IR on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GetElementPtrTypeIterator.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified vector Constant node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information.  This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getType()->getVectorNumElements())
54    return nullptr;
55
56  Type *DstEltTy = DstTy->getElementType();
57
58  SmallVector<Constant*, 16> Result;
59  Type *Ty = IntegerType::get(CV->getContext(), 32);
60  for (unsigned i = 0; i != NumElts; ++i) {
61    Constant *C =
62      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63    C = ConstantExpr::getBitCast(C, DstEltTy);
64    Result.push_back(C);
65  }
66
67  return ConstantVector::get(Result);
68}
69
70/// This function determines which opcode to use to fold two constant cast
71/// expressions together. It uses CastInst::isEliminableCastPair to determine
72/// the opcode. Consequently its just a wrapper around that function.
73/// @brief Determine if it is valid to fold a cast of a cast
74static unsigned
75foldConstantCastPair(
76  unsigned opc,          ///< opcode of the second cast constant expression
77  ConstantExpr *Op,      ///< the first cast constant expression
78  Type *DstTy            ///< destination type of the first cast
79) {
80  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82  assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84  // The the types and opcodes for the two Cast constant expressions
85  Type *SrcTy = Op->getOperand(0)->getType();
86  Type *MidTy = Op->getType();
87  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88  Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90  // Assume that pointers are never more than 64 bits wide, and only use this
91  // for the middle type. Otherwise we could end up folding away illegal
92  // bitcasts between address spaces with different sizes.
93  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
94
95  // Let CastInst::isEliminableCastPair do the heavy lifting.
96  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
97                                        nullptr, FakeIntPtrTy, nullptr);
98}
99
100static Constant *FoldBitCast(Constant *V, Type *DestTy) {
101  Type *SrcTy = V->getType();
102  if (SrcTy == DestTy)
103    return V; // no-op cast
104
105  // Check to see if we are casting a pointer to an aggregate to a pointer to
106  // the first element.  If so, return the appropriate GEP instruction.
107  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
108    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
109      if (PTy->getAddressSpace() == DPTy->getAddressSpace()
110          && DPTy->getElementType()->isSized()) {
111        SmallVector<Value*, 8> IdxList;
112        Value *Zero =
113          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
114        IdxList.push_back(Zero);
115        Type *ElTy = PTy->getElementType();
116        while (ElTy != DPTy->getElementType()) {
117          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
118            if (STy->getNumElements() == 0) break;
119            ElTy = STy->getElementType(0);
120            IdxList.push_back(Zero);
121          } else if (SequentialType *STy =
122                     dyn_cast<SequentialType>(ElTy)) {
123            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
124            ElTy = STy->getElementType();
125            IdxList.push_back(Zero);
126          } else {
127            break;
128          }
129        }
130
131        if (ElTy == DPTy->getElementType())
132          // This GEP is inbounds because all indices are zero.
133          return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
134      }
135
136  // Handle casts from one vector constant to another.  We know that the src
137  // and dest type have the same size (otherwise its an illegal cast).
138  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
139    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
140      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
141             "Not cast between same sized vectors!");
142      SrcTy = nullptr;
143      // First, check for null.  Undef is already handled.
144      if (isa<ConstantAggregateZero>(V))
145        return Constant::getNullValue(DestTy);
146
147      // Handle ConstantVector and ConstantAggregateVector.
148      return BitCastConstantVector(V, DestPTy);
149    }
150
151    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
152    // This allows for other simplifications (although some of them
153    // can only be handled by Analysis/ConstantFolding.cpp).
154    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
155      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
156  }
157
158  // Finally, implement bitcast folding now.   The code below doesn't handle
159  // bitcast right.
160  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
161    return ConstantPointerNull::get(cast<PointerType>(DestTy));
162
163  // Handle integral constant input.
164  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
165    if (DestTy->isIntegerTy())
166      // Integral -> Integral. This is a no-op because the bit widths must
167      // be the same. Consequently, we just fold to V.
168      return V;
169
170    if (DestTy->isFloatingPointTy())
171      return ConstantFP::get(DestTy->getContext(),
172                             APFloat(DestTy->getFltSemantics(),
173                                     CI->getValue()));
174
175    // Otherwise, can't fold this (vector?)
176    return nullptr;
177  }
178
179  // Handle ConstantFP input: FP -> Integral.
180  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
181    return ConstantInt::get(FP->getContext(),
182                            FP->getValueAPF().bitcastToAPInt());
183
184  return nullptr;
185}
186
187
188/// ExtractConstantBytes - V is an integer constant which only has a subset of
189/// its bytes used.  The bytes used are indicated by ByteStart (which is the
190/// first byte used, counting from the least significant byte) and ByteSize,
191/// which is the number of bytes used.
192///
193/// This function analyzes the specified constant to see if the specified byte
194/// range can be returned as a simplified constant.  If so, the constant is
195/// returned, otherwise null is returned.
196///
197static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
198                                      unsigned ByteSize) {
199  assert(C->getType()->isIntegerTy() &&
200         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
201         "Non-byte sized integer input");
202  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
203  assert(ByteSize && "Must be accessing some piece");
204  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
205  assert(ByteSize != CSize && "Should not extract everything");
206
207  // Constant Integers are simple.
208  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
209    APInt V = CI->getValue();
210    if (ByteStart)
211      V = V.lshr(ByteStart*8);
212    V = V.trunc(ByteSize*8);
213    return ConstantInt::get(CI->getContext(), V);
214  }
215
216  // In the input is a constant expr, we might be able to recursively simplify.
217  // If not, we definitely can't do anything.
218  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
219  if (!CE) return nullptr;
220
221  switch (CE->getOpcode()) {
222  default: return nullptr;
223  case Instruction::Or: {
224    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
225    if (!RHS)
226      return nullptr;
227
228    // X | -1 -> -1.
229    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
230      if (RHSC->isAllOnesValue())
231        return RHSC;
232
233    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
234    if (!LHS)
235      return nullptr;
236    return ConstantExpr::getOr(LHS, RHS);
237  }
238  case Instruction::And: {
239    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240    if (!RHS)
241      return nullptr;
242
243    // X & 0 -> 0.
244    if (RHS->isNullValue())
245      return RHS;
246
247    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
248    if (!LHS)
249      return nullptr;
250    return ConstantExpr::getAnd(LHS, RHS);
251  }
252  case Instruction::LShr: {
253    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
254    if (!Amt)
255      return nullptr;
256    unsigned ShAmt = Amt->getZExtValue();
257    // Cannot analyze non-byte shifts.
258    if ((ShAmt & 7) != 0)
259      return nullptr;
260    ShAmt >>= 3;
261
262    // If the extract is known to be all zeros, return zero.
263    if (ByteStart >= CSize-ShAmt)
264      return Constant::getNullValue(IntegerType::get(CE->getContext(),
265                                                     ByteSize*8));
266    // If the extract is known to be fully in the input, extract it.
267    if (ByteStart+ByteSize+ShAmt <= CSize)
268      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
269
270    // TODO: Handle the 'partially zero' case.
271    return nullptr;
272  }
273
274  case Instruction::Shl: {
275    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
276    if (!Amt)
277      return nullptr;
278    unsigned ShAmt = Amt->getZExtValue();
279    // Cannot analyze non-byte shifts.
280    if ((ShAmt & 7) != 0)
281      return nullptr;
282    ShAmt >>= 3;
283
284    // If the extract is known to be all zeros, return zero.
285    if (ByteStart+ByteSize <= ShAmt)
286      return Constant::getNullValue(IntegerType::get(CE->getContext(),
287                                                     ByteSize*8));
288    // If the extract is known to be fully in the input, extract it.
289    if (ByteStart >= ShAmt)
290      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
291
292    // TODO: Handle the 'partially zero' case.
293    return nullptr;
294  }
295
296  case Instruction::ZExt: {
297    unsigned SrcBitSize =
298      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
299
300    // If extracting something that is completely zero, return 0.
301    if (ByteStart*8 >= SrcBitSize)
302      return Constant::getNullValue(IntegerType::get(CE->getContext(),
303                                                     ByteSize*8));
304
305    // If exactly extracting the input, return it.
306    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
307      return CE->getOperand(0);
308
309    // If extracting something completely in the input, if if the input is a
310    // multiple of 8 bits, recurse.
311    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
312      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
313
314    // Otherwise, if extracting a subset of the input, which is not multiple of
315    // 8 bits, do a shift and trunc to get the bits.
316    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
317      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
318      Constant *Res = CE->getOperand(0);
319      if (ByteStart)
320        Res = ConstantExpr::getLShr(Res,
321                                 ConstantInt::get(Res->getType(), ByteStart*8));
322      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
323                                                          ByteSize*8));
324    }
325
326    // TODO: Handle the 'partially zero' case.
327    return nullptr;
328  }
329  }
330}
331
332/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
333/// on Ty, with any known factors factored out. If Folded is false,
334/// return null if no factoring was possible, to avoid endlessly
335/// bouncing an unfoldable expression back into the top-level folder.
336///
337static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
338                                 bool Folded) {
339  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
340    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
341    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
342    return ConstantExpr::getNUWMul(E, N);
343  }
344
345  if (StructType *STy = dyn_cast<StructType>(Ty))
346    if (!STy->isPacked()) {
347      unsigned NumElems = STy->getNumElements();
348      // An empty struct has size zero.
349      if (NumElems == 0)
350        return ConstantExpr::getNullValue(DestTy);
351      // Check for a struct with all members having the same size.
352      Constant *MemberSize =
353        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
354      bool AllSame = true;
355      for (unsigned i = 1; i != NumElems; ++i)
356        if (MemberSize !=
357            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
358          AllSame = false;
359          break;
360        }
361      if (AllSame) {
362        Constant *N = ConstantInt::get(DestTy, NumElems);
363        return ConstantExpr::getNUWMul(MemberSize, N);
364      }
365    }
366
367  // Pointer size doesn't depend on the pointee type, so canonicalize them
368  // to an arbitrary pointee.
369  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
370    if (!PTy->getElementType()->isIntegerTy(1))
371      return
372        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
373                                         PTy->getAddressSpace()),
374                        DestTy, true);
375
376  // If there's no interesting folding happening, bail so that we don't create
377  // a constant that looks like it needs folding but really doesn't.
378  if (!Folded)
379    return nullptr;
380
381  // Base case: Get a regular sizeof expression.
382  Constant *C = ConstantExpr::getSizeOf(Ty);
383  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
384                                                    DestTy, false),
385                            C, DestTy);
386  return C;
387}
388
389/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
390/// on Ty, with any known factors factored out. If Folded is false,
391/// return null if no factoring was possible, to avoid endlessly
392/// bouncing an unfoldable expression back into the top-level folder.
393///
394static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
395                                  bool Folded) {
396  // The alignment of an array is equal to the alignment of the
397  // array element. Note that this is not always true for vectors.
398  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
399    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
400    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
401                                                      DestTy,
402                                                      false),
403                              C, DestTy);
404    return C;
405  }
406
407  if (StructType *STy = dyn_cast<StructType>(Ty)) {
408    // Packed structs always have an alignment of 1.
409    if (STy->isPacked())
410      return ConstantInt::get(DestTy, 1);
411
412    // Otherwise, struct alignment is the maximum alignment of any member.
413    // Without target data, we can't compare much, but we can check to see
414    // if all the members have the same alignment.
415    unsigned NumElems = STy->getNumElements();
416    // An empty struct has minimal alignment.
417    if (NumElems == 0)
418      return ConstantInt::get(DestTy, 1);
419    // Check for a struct with all members having the same alignment.
420    Constant *MemberAlign =
421      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
422    bool AllSame = true;
423    for (unsigned i = 1; i != NumElems; ++i)
424      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
425        AllSame = false;
426        break;
427      }
428    if (AllSame)
429      return MemberAlign;
430  }
431
432  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
433  // to an arbitrary pointee.
434  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
435    if (!PTy->getElementType()->isIntegerTy(1))
436      return
437        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
438                                                           1),
439                                          PTy->getAddressSpace()),
440                         DestTy, true);
441
442  // If there's no interesting folding happening, bail so that we don't create
443  // a constant that looks like it needs folding but really doesn't.
444  if (!Folded)
445    return nullptr;
446
447  // Base case: Get a regular alignof expression.
448  Constant *C = ConstantExpr::getAlignOf(Ty);
449  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
450                                                    DestTy, false),
451                            C, DestTy);
452  return C;
453}
454
455/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
456/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
457/// return null if no factoring was possible, to avoid endlessly
458/// bouncing an unfoldable expression back into the top-level folder.
459///
460static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
461                                   Type *DestTy,
462                                   bool Folded) {
463  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
464    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
465                                                                DestTy, false),
466                                        FieldNo, DestTy);
467    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
468    return ConstantExpr::getNUWMul(E, N);
469  }
470
471  if (StructType *STy = dyn_cast<StructType>(Ty))
472    if (!STy->isPacked()) {
473      unsigned NumElems = STy->getNumElements();
474      // An empty struct has no members.
475      if (NumElems == 0)
476        return nullptr;
477      // Check for a struct with all members having the same size.
478      Constant *MemberSize =
479        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
480      bool AllSame = true;
481      for (unsigned i = 1; i != NumElems; ++i)
482        if (MemberSize !=
483            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
484          AllSame = false;
485          break;
486        }
487      if (AllSame) {
488        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
489                                                                    false,
490                                                                    DestTy,
491                                                                    false),
492                                            FieldNo, DestTy);
493        return ConstantExpr::getNUWMul(MemberSize, N);
494      }
495    }
496
497  // If there's no interesting folding happening, bail so that we don't create
498  // a constant that looks like it needs folding but really doesn't.
499  if (!Folded)
500    return nullptr;
501
502  // Base case: Get a regular offsetof expression.
503  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
504  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
505                                                    DestTy, false),
506                            C, DestTy);
507  return C;
508}
509
510Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
511                                            Type *DestTy) {
512  if (isa<UndefValue>(V)) {
513    // zext(undef) = 0, because the top bits will be zero.
514    // sext(undef) = 0, because the top bits will all be the same.
515    // [us]itofp(undef) = 0, because the result value is bounded.
516    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
517        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
518      return Constant::getNullValue(DestTy);
519    return UndefValue::get(DestTy);
520  }
521
522  if (V->isNullValue() && !DestTy->isX86_MMXTy())
523    return Constant::getNullValue(DestTy);
524
525  // If the cast operand is a constant expression, there's a few things we can
526  // do to try to simplify it.
527  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
528    if (CE->isCast()) {
529      // Try hard to fold cast of cast because they are often eliminable.
530      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
531        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
532    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
533      // If all of the indexes in the GEP are null values, there is no pointer
534      // adjustment going on.  We might as well cast the source pointer.
535      bool isAllNull = true;
536      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
537        if (!CE->getOperand(i)->isNullValue()) {
538          isAllNull = false;
539          break;
540        }
541      if (isAllNull)
542        // This is casting one pointer type to another, always BitCast
543        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
544    }
545  }
546
547  // If the cast operand is a constant vector, perform the cast by
548  // operating on each element. In the cast of bitcasts, the element
549  // count may be mismatched; don't attempt to handle that here.
550  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
551      DestTy->isVectorTy() &&
552      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
553    SmallVector<Constant*, 16> res;
554    VectorType *DestVecTy = cast<VectorType>(DestTy);
555    Type *DstEltTy = DestVecTy->getElementType();
556    Type *Ty = IntegerType::get(V->getContext(), 32);
557    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
558      Constant *C =
559        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
560      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
561    }
562    return ConstantVector::get(res);
563  }
564
565  // We actually have to do a cast now. Perform the cast according to the
566  // opcode specified.
567  switch (opc) {
568  default:
569    llvm_unreachable("Failed to cast constant expression");
570  case Instruction::FPTrunc:
571  case Instruction::FPExt:
572    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
573      bool ignored;
574      APFloat Val = FPC->getValueAPF();
575      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
576                  DestTy->isFloatTy() ? APFloat::IEEEsingle :
577                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
578                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
579                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
580                  DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
581                  APFloat::Bogus,
582                  APFloat::rmNearestTiesToEven, &ignored);
583      return ConstantFP::get(V->getContext(), Val);
584    }
585    return nullptr; // Can't fold.
586  case Instruction::FPToUI:
587  case Instruction::FPToSI:
588    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
589      const APFloat &V = FPC->getValueAPF();
590      bool ignored;
591      uint64_t x[2];
592      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
593      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
594                                APFloat::rmTowardZero, &ignored);
595      APInt Val(DestBitWidth, x);
596      return ConstantInt::get(FPC->getContext(), Val);
597    }
598    return nullptr; // Can't fold.
599  case Instruction::IntToPtr:   //always treated as unsigned
600    if (V->isNullValue())       // Is it an integral null value?
601      return ConstantPointerNull::get(cast<PointerType>(DestTy));
602    return nullptr;                   // Other pointer types cannot be casted
603  case Instruction::PtrToInt:   // always treated as unsigned
604    // Is it a null pointer value?
605    if (V->isNullValue())
606      return ConstantInt::get(DestTy, 0);
607    // If this is a sizeof-like expression, pull out multiplications by
608    // known factors to expose them to subsequent folding. If it's an
609    // alignof-like expression, factor out known factors.
610    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
611      if (CE->getOpcode() == Instruction::GetElementPtr &&
612          CE->getOperand(0)->isNullValue()) {
613        Type *Ty =
614          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
615        if (CE->getNumOperands() == 2) {
616          // Handle a sizeof-like expression.
617          Constant *Idx = CE->getOperand(1);
618          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
619          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
620            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
621                                                                DestTy, false),
622                                        Idx, DestTy);
623            return ConstantExpr::getMul(C, Idx);
624          }
625        } else if (CE->getNumOperands() == 3 &&
626                   CE->getOperand(1)->isNullValue()) {
627          // Handle an alignof-like expression.
628          if (StructType *STy = dyn_cast<StructType>(Ty))
629            if (!STy->isPacked()) {
630              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
631              if (CI->isOne() &&
632                  STy->getNumElements() == 2 &&
633                  STy->getElementType(0)->isIntegerTy(1)) {
634                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
635              }
636            }
637          // Handle an offsetof-like expression.
638          if (Ty->isStructTy() || Ty->isArrayTy()) {
639            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
640                                                DestTy, false))
641              return C;
642          }
643        }
644      }
645    // Other pointer types cannot be casted
646    return nullptr;
647  case Instruction::UIToFP:
648  case Instruction::SIToFP:
649    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
650      APInt api = CI->getValue();
651      APFloat apf(DestTy->getFltSemantics(),
652                  APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
653      (void)apf.convertFromAPInt(api,
654                                 opc==Instruction::SIToFP,
655                                 APFloat::rmNearestTiesToEven);
656      return ConstantFP::get(V->getContext(), apf);
657    }
658    return nullptr;
659  case Instruction::ZExt:
660    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
661      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
662      return ConstantInt::get(V->getContext(),
663                              CI->getValue().zext(BitWidth));
664    }
665    return nullptr;
666  case Instruction::SExt:
667    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
668      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
669      return ConstantInt::get(V->getContext(),
670                              CI->getValue().sext(BitWidth));
671    }
672    return nullptr;
673  case Instruction::Trunc: {
674    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
675    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
676      return ConstantInt::get(V->getContext(),
677                              CI->getValue().trunc(DestBitWidth));
678    }
679
680    // The input must be a constantexpr.  See if we can simplify this based on
681    // the bytes we are demanding.  Only do this if the source and dest are an
682    // even multiple of a byte.
683    if ((DestBitWidth & 7) == 0 &&
684        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
685      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
686        return Res;
687
688    return nullptr;
689  }
690  case Instruction::BitCast:
691    return FoldBitCast(V, DestTy);
692  case Instruction::AddrSpaceCast:
693    return nullptr;
694  }
695}
696
697Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
698                                              Constant *V1, Constant *V2) {
699  // Check for i1 and vector true/false conditions.
700  if (Cond->isNullValue()) return V2;
701  if (Cond->isAllOnesValue()) return V1;
702
703  // If the condition is a vector constant, fold the result elementwise.
704  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
705    SmallVector<Constant*, 16> Result;
706    Type *Ty = IntegerType::get(CondV->getContext(), 32);
707    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
708      Constant *V;
709      Constant *V1Element = ConstantExpr::getExtractElement(V1,
710                                                    ConstantInt::get(Ty, i));
711      Constant *V2Element = ConstantExpr::getExtractElement(V2,
712                                                    ConstantInt::get(Ty, i));
713      Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
714      if (V1Element == V2Element) {
715        V = V1Element;
716      } else if (isa<UndefValue>(Cond)) {
717        V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
718      } else {
719        if (!isa<ConstantInt>(Cond)) break;
720        V = Cond->isNullValue() ? V2Element : V1Element;
721      }
722      Result.push_back(V);
723    }
724
725    // If we were able to build the vector, return it.
726    if (Result.size() == V1->getType()->getVectorNumElements())
727      return ConstantVector::get(Result);
728  }
729
730  if (isa<UndefValue>(Cond)) {
731    if (isa<UndefValue>(V1)) return V1;
732    return V2;
733  }
734  if (isa<UndefValue>(V1)) return V2;
735  if (isa<UndefValue>(V2)) return V1;
736  if (V1 == V2) return V1;
737
738  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
739    if (TrueVal->getOpcode() == Instruction::Select)
740      if (TrueVal->getOperand(0) == Cond)
741        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
742  }
743  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
744    if (FalseVal->getOpcode() == Instruction::Select)
745      if (FalseVal->getOperand(0) == Cond)
746        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
747  }
748
749  return nullptr;
750}
751
752Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
753                                                      Constant *Idx) {
754  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
755    return UndefValue::get(Val->getType()->getVectorElementType());
756  if (Val->isNullValue())  // ee(zero, x) -> zero
757    return Constant::getNullValue(Val->getType()->getVectorElementType());
758  // ee({w,x,y,z}, undef) -> undef
759  if (isa<UndefValue>(Idx))
760    return UndefValue::get(Val->getType()->getVectorElementType());
761
762  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
763    uint64_t Index = CIdx->getZExtValue();
764    // ee({w,x,y,z}, wrong_value) -> undef
765    if (Index >= Val->getType()->getVectorNumElements())
766      return UndefValue::get(Val->getType()->getVectorElementType());
767    return Val->getAggregateElement(Index);
768  }
769  return nullptr;
770}
771
772Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
773                                                     Constant *Elt,
774                                                     Constant *Idx) {
775  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
776  if (!CIdx) return nullptr;
777  const APInt &IdxVal = CIdx->getValue();
778
779  SmallVector<Constant*, 16> Result;
780  Type *Ty = IntegerType::get(Val->getContext(), 32);
781  for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
782    if (i == IdxVal) {
783      Result.push_back(Elt);
784      continue;
785    }
786
787    Constant *C =
788      ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
789    Result.push_back(C);
790  }
791
792  return ConstantVector::get(Result);
793}
794
795Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
796                                                     Constant *V2,
797                                                     Constant *Mask) {
798  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
799  Type *EltTy = V1->getType()->getVectorElementType();
800
801  // Undefined shuffle mask -> undefined value.
802  if (isa<UndefValue>(Mask))
803    return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
804
805  // Don't break the bitcode reader hack.
806  if (isa<ConstantExpr>(Mask)) return nullptr;
807
808  unsigned SrcNumElts = V1->getType()->getVectorNumElements();
809
810  // Loop over the shuffle mask, evaluating each element.
811  SmallVector<Constant*, 32> Result;
812  for (unsigned i = 0; i != MaskNumElts; ++i) {
813    int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
814    if (Elt == -1) {
815      Result.push_back(UndefValue::get(EltTy));
816      continue;
817    }
818    Constant *InElt;
819    if (unsigned(Elt) >= SrcNumElts*2)
820      InElt = UndefValue::get(EltTy);
821    else if (unsigned(Elt) >= SrcNumElts) {
822      Type *Ty = IntegerType::get(V2->getContext(), 32);
823      InElt =
824        ConstantExpr::getExtractElement(V2,
825                                        ConstantInt::get(Ty, Elt - SrcNumElts));
826    } else {
827      Type *Ty = IntegerType::get(V1->getContext(), 32);
828      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
829    }
830    Result.push_back(InElt);
831  }
832
833  return ConstantVector::get(Result);
834}
835
836Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
837                                                    ArrayRef<unsigned> Idxs) {
838  // Base case: no indices, so return the entire value.
839  if (Idxs.empty())
840    return Agg;
841
842  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
843    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
844
845  return nullptr;
846}
847
848Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
849                                                   Constant *Val,
850                                                   ArrayRef<unsigned> Idxs) {
851  // Base case: no indices, so replace the entire value.
852  if (Idxs.empty())
853    return Val;
854
855  unsigned NumElts;
856  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
857    NumElts = ST->getNumElements();
858  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
859    NumElts = AT->getNumElements();
860  else
861    NumElts = Agg->getType()->getVectorNumElements();
862
863  SmallVector<Constant*, 32> Result;
864  for (unsigned i = 0; i != NumElts; ++i) {
865    Constant *C = Agg->getAggregateElement(i);
866    if (!C) return nullptr;
867
868    if (Idxs[0] == i)
869      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
870
871    Result.push_back(C);
872  }
873
874  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
875    return ConstantStruct::get(ST, Result);
876  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
877    return ConstantArray::get(AT, Result);
878  return ConstantVector::get(Result);
879}
880
881
882Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
883                                              Constant *C1, Constant *C2) {
884  // Handle UndefValue up front.
885  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
886    switch (Opcode) {
887    case Instruction::Xor:
888      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
889        // Handle undef ^ undef -> 0 special case. This is a common
890        // idiom (misuse).
891        return Constant::getNullValue(C1->getType());
892      // Fallthrough
893    case Instruction::Add:
894    case Instruction::Sub:
895      return UndefValue::get(C1->getType());
896    case Instruction::And:
897      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
898        return C1;
899      return Constant::getNullValue(C1->getType());   // undef & X -> 0
900    case Instruction::Mul: {
901      ConstantInt *CI;
902      // X * undef -> undef   if X is odd or undef
903      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
904          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
905          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
906        return UndefValue::get(C1->getType());
907
908      // X * undef -> 0       otherwise
909      return Constant::getNullValue(C1->getType());
910    }
911    case Instruction::UDiv:
912    case Instruction::SDiv:
913      // undef / 1 -> undef
914      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
915        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
916          if (CI2->isOne())
917            return C1;
918      // FALL THROUGH
919    case Instruction::URem:
920    case Instruction::SRem:
921      if (!isa<UndefValue>(C2))                    // undef / X -> 0
922        return Constant::getNullValue(C1->getType());
923      return C2;                                   // X / undef -> undef
924    case Instruction::Or:                          // X | undef -> -1
925      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
926        return C1;
927      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
928    case Instruction::LShr:
929      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
930        return C1;                                  // undef lshr undef -> undef
931      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
932                                                    // undef lshr X -> 0
933    case Instruction::AShr:
934      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
935        return Constant::getAllOnesValue(C1->getType());
936      else if (isa<UndefValue>(C1))
937        return C1;                                  // undef ashr undef -> undef
938      else
939        return C1;                                  // X ashr undef --> X
940    case Instruction::Shl:
941      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
942        return C1;                                  // undef shl undef -> undef
943      // undef << X -> 0   or   X << undef -> 0
944      return Constant::getNullValue(C1->getType());
945    }
946  }
947
948  // Handle simplifications when the RHS is a constant int.
949  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
950    switch (Opcode) {
951    case Instruction::Add:
952      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
953      break;
954    case Instruction::Sub:
955      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
956      break;
957    case Instruction::Mul:
958      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
959      if (CI2->equalsInt(1))
960        return C1;                                              // X * 1 == X
961      break;
962    case Instruction::UDiv:
963    case Instruction::SDiv:
964      if (CI2->equalsInt(1))
965        return C1;                                            // X / 1 == X
966      if (CI2->equalsInt(0))
967        return UndefValue::get(CI2->getType());               // X / 0 == undef
968      break;
969    case Instruction::URem:
970    case Instruction::SRem:
971      if (CI2->equalsInt(1))
972        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
973      if (CI2->equalsInt(0))
974        return UndefValue::get(CI2->getType());               // X % 0 == undef
975      break;
976    case Instruction::And:
977      if (CI2->isZero()) return C2;                           // X & 0 == 0
978      if (CI2->isAllOnesValue())
979        return C1;                                            // X & -1 == X
980
981      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
982        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
983        if (CE1->getOpcode() == Instruction::ZExt) {
984          unsigned DstWidth = CI2->getType()->getBitWidth();
985          unsigned SrcWidth =
986            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
987          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
988          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
989            return C1;
990        }
991
992        // If and'ing the address of a global with a constant, fold it.
993        if (CE1->getOpcode() == Instruction::PtrToInt &&
994            isa<GlobalValue>(CE1->getOperand(0))) {
995          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
996
997          // Functions are at least 4-byte aligned.
998          unsigned GVAlign = GV->getAlignment();
999          if (isa<Function>(GV))
1000            GVAlign = std::max(GVAlign, 4U);
1001
1002          if (GVAlign > 1) {
1003            unsigned DstWidth = CI2->getType()->getBitWidth();
1004            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1005            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1006
1007            // If checking bits we know are clear, return zero.
1008            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1009              return Constant::getNullValue(CI2->getType());
1010          }
1011        }
1012      }
1013      break;
1014    case Instruction::Or:
1015      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1016      if (CI2->isAllOnesValue())
1017        return C2;                         // X | -1 == -1
1018      break;
1019    case Instruction::Xor:
1020      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1021
1022      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1023        switch (CE1->getOpcode()) {
1024        default: break;
1025        case Instruction::ICmp:
1026        case Instruction::FCmp:
1027          // cmp pred ^ true -> cmp !pred
1028          assert(CI2->equalsInt(1));
1029          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1030          pred = CmpInst::getInversePredicate(pred);
1031          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1032                                          CE1->getOperand(1));
1033        }
1034      }
1035      break;
1036    case Instruction::AShr:
1037      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1038      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1039        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1040          return ConstantExpr::getLShr(C1, C2);
1041      break;
1042    }
1043  } else if (isa<ConstantInt>(C1)) {
1044    // If C1 is a ConstantInt and C2 is not, swap the operands.
1045    if (Instruction::isCommutative(Opcode))
1046      return ConstantExpr::get(Opcode, C2, C1);
1047  }
1048
1049  // At this point we know neither constant is an UndefValue.
1050  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1051    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1052      const APInt &C1V = CI1->getValue();
1053      const APInt &C2V = CI2->getValue();
1054      switch (Opcode) {
1055      default:
1056        break;
1057      case Instruction::Add:
1058        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1059      case Instruction::Sub:
1060        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1061      case Instruction::Mul:
1062        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1063      case Instruction::UDiv:
1064        assert(!CI2->isNullValue() && "Div by zero handled above");
1065        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1066      case Instruction::SDiv:
1067        assert(!CI2->isNullValue() && "Div by zero handled above");
1068        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1069          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1070        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1071      case Instruction::URem:
1072        assert(!CI2->isNullValue() && "Div by zero handled above");
1073        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1074      case Instruction::SRem:
1075        assert(!CI2->isNullValue() && "Div by zero handled above");
1076        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1077          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1078        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1079      case Instruction::And:
1080        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1081      case Instruction::Or:
1082        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1083      case Instruction::Xor:
1084        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1085      case Instruction::Shl: {
1086        uint32_t shiftAmt = C2V.getZExtValue();
1087        if (shiftAmt < C1V.getBitWidth())
1088          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1089        else
1090          return UndefValue::get(C1->getType()); // too big shift is undef
1091      }
1092      case Instruction::LShr: {
1093        uint32_t shiftAmt = C2V.getZExtValue();
1094        if (shiftAmt < C1V.getBitWidth())
1095          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1096        else
1097          return UndefValue::get(C1->getType()); // too big shift is undef
1098      }
1099      case Instruction::AShr: {
1100        uint32_t shiftAmt = C2V.getZExtValue();
1101        if (shiftAmt < C1V.getBitWidth())
1102          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1103        else
1104          return UndefValue::get(C1->getType()); // too big shift is undef
1105      }
1106      }
1107    }
1108
1109    switch (Opcode) {
1110    case Instruction::SDiv:
1111    case Instruction::UDiv:
1112    case Instruction::URem:
1113    case Instruction::SRem:
1114    case Instruction::LShr:
1115    case Instruction::AShr:
1116    case Instruction::Shl:
1117      if (CI1->equalsInt(0)) return C1;
1118      break;
1119    default:
1120      break;
1121    }
1122  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1123    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1124      APFloat C1V = CFP1->getValueAPF();
1125      APFloat C2V = CFP2->getValueAPF();
1126      APFloat C3V = C1V;  // copy for modification
1127      switch (Opcode) {
1128      default:
1129        break;
1130      case Instruction::FAdd:
1131        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1132        return ConstantFP::get(C1->getContext(), C3V);
1133      case Instruction::FSub:
1134        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1135        return ConstantFP::get(C1->getContext(), C3V);
1136      case Instruction::FMul:
1137        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1138        return ConstantFP::get(C1->getContext(), C3V);
1139      case Instruction::FDiv:
1140        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1141        return ConstantFP::get(C1->getContext(), C3V);
1142      case Instruction::FRem:
1143        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1144        return ConstantFP::get(C1->getContext(), C3V);
1145      }
1146    }
1147  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1148    // Perform elementwise folding.
1149    SmallVector<Constant*, 16> Result;
1150    Type *Ty = IntegerType::get(VTy->getContext(), 32);
1151    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1152      Constant *LHS =
1153        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1154      Constant *RHS =
1155        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1156
1157      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1158    }
1159
1160    return ConstantVector::get(Result);
1161  }
1162
1163  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1164    // There are many possible foldings we could do here.  We should probably
1165    // at least fold add of a pointer with an integer into the appropriate
1166    // getelementptr.  This will improve alias analysis a bit.
1167
1168    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1169    // (a + (b + c)).
1170    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1171      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1172      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1173        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1174    }
1175  } else if (isa<ConstantExpr>(C2)) {
1176    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1177    // other way if possible.
1178    if (Instruction::isCommutative(Opcode))
1179      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1180  }
1181
1182  // i1 can be simplified in many cases.
1183  if (C1->getType()->isIntegerTy(1)) {
1184    switch (Opcode) {
1185    case Instruction::Add:
1186    case Instruction::Sub:
1187      return ConstantExpr::getXor(C1, C2);
1188    case Instruction::Mul:
1189      return ConstantExpr::getAnd(C1, C2);
1190    case Instruction::Shl:
1191    case Instruction::LShr:
1192    case Instruction::AShr:
1193      // We can assume that C2 == 0.  If it were one the result would be
1194      // undefined because the shift value is as large as the bitwidth.
1195      return C1;
1196    case Instruction::SDiv:
1197    case Instruction::UDiv:
1198      // We can assume that C2 == 1.  If it were zero the result would be
1199      // undefined through division by zero.
1200      return C1;
1201    case Instruction::URem:
1202    case Instruction::SRem:
1203      // We can assume that C2 == 1.  If it were zero the result would be
1204      // undefined through division by zero.
1205      return ConstantInt::getFalse(C1->getContext());
1206    default:
1207      break;
1208    }
1209  }
1210
1211  // We don't know how to fold this.
1212  return nullptr;
1213}
1214
1215/// isZeroSizedType - This type is zero sized if its an array or structure of
1216/// zero sized types.  The only leaf zero sized type is an empty structure.
1217static bool isMaybeZeroSizedType(Type *Ty) {
1218  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1219    if (STy->isOpaque()) return true;  // Can't say.
1220
1221    // If all of elements have zero size, this does too.
1222    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1223      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1224    return true;
1225
1226  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1227    return isMaybeZeroSizedType(ATy->getElementType());
1228  }
1229  return false;
1230}
1231
1232/// IdxCompare - Compare the two constants as though they were getelementptr
1233/// indices.  This allows coersion of the types to be the same thing.
1234///
1235/// If the two constants are the "same" (after coersion), return 0.  If the
1236/// first is less than the second, return -1, if the second is less than the
1237/// first, return 1.  If the constants are not integral, return -2.
1238///
1239static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1240  if (C1 == C2) return 0;
1241
1242  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1243  // anything with them.
1244  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1245    return -2; // don't know!
1246
1247  // Ok, we have two differing integer indices.  Sign extend them to be the same
1248  // type.  Long is always big enough, so we use it.
1249  if (!C1->getType()->isIntegerTy(64))
1250    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1251
1252  if (!C2->getType()->isIntegerTy(64))
1253    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1254
1255  if (C1 == C2) return 0;  // They are equal
1256
1257  // If the type being indexed over is really just a zero sized type, there is
1258  // no pointer difference being made here.
1259  if (isMaybeZeroSizedType(ElTy))
1260    return -2; // dunno.
1261
1262  // If they are really different, now that they are the same type, then we
1263  // found a difference!
1264  if (cast<ConstantInt>(C1)->getSExtValue() <
1265      cast<ConstantInt>(C2)->getSExtValue())
1266    return -1;
1267  else
1268    return 1;
1269}
1270
1271/// evaluateFCmpRelation - This function determines if there is anything we can
1272/// decide about the two constants provided.  This doesn't need to handle simple
1273/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1274/// If we can determine that the two constants have a particular relation to
1275/// each other, we should return the corresponding FCmpInst predicate,
1276/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1277/// ConstantFoldCompareInstruction.
1278///
1279/// To simplify this code we canonicalize the relation so that the first
1280/// operand is always the most "complex" of the two.  We consider ConstantFP
1281/// to be the simplest, and ConstantExprs to be the most complex.
1282static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1283  assert(V1->getType() == V2->getType() &&
1284         "Cannot compare values of different types!");
1285
1286  // Handle degenerate case quickly
1287  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1288
1289  if (!isa<ConstantExpr>(V1)) {
1290    if (!isa<ConstantExpr>(V2)) {
1291      // We distilled thisUse the standard constant folder for a few cases
1292      ConstantInt *R = nullptr;
1293      R = dyn_cast<ConstantInt>(
1294                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1295      if (R && !R->isZero())
1296        return FCmpInst::FCMP_OEQ;
1297      R = dyn_cast<ConstantInt>(
1298                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1299      if (R && !R->isZero())
1300        return FCmpInst::FCMP_OLT;
1301      R = dyn_cast<ConstantInt>(
1302                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1303      if (R && !R->isZero())
1304        return FCmpInst::FCMP_OGT;
1305
1306      // Nothing more we can do
1307      return FCmpInst::BAD_FCMP_PREDICATE;
1308    }
1309
1310    // If the first operand is simple and second is ConstantExpr, swap operands.
1311    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1312    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1313      return FCmpInst::getSwappedPredicate(SwappedRelation);
1314  } else {
1315    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1316    // constantexpr or a simple constant.
1317    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1318    switch (CE1->getOpcode()) {
1319    case Instruction::FPTrunc:
1320    case Instruction::FPExt:
1321    case Instruction::UIToFP:
1322    case Instruction::SIToFP:
1323      // We might be able to do something with these but we don't right now.
1324      break;
1325    default:
1326      break;
1327    }
1328  }
1329  // There are MANY other foldings that we could perform here.  They will
1330  // probably be added on demand, as they seem needed.
1331  return FCmpInst::BAD_FCMP_PREDICATE;
1332}
1333
1334/// evaluateICmpRelation - This function determines if there is anything we can
1335/// decide about the two constants provided.  This doesn't need to handle simple
1336/// things like integer comparisons, but should instead handle ConstantExprs
1337/// and GlobalValues.  If we can determine that the two constants have a
1338/// particular relation to each other, we should return the corresponding ICmp
1339/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1340///
1341/// To simplify this code we canonicalize the relation so that the first
1342/// operand is always the most "complex" of the two.  We consider simple
1343/// constants (like ConstantInt) to be the simplest, followed by
1344/// GlobalValues, followed by ConstantExpr's (the most complex).
1345///
1346static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1347                                                bool isSigned) {
1348  assert(V1->getType() == V2->getType() &&
1349         "Cannot compare different types of values!");
1350  if (V1 == V2) return ICmpInst::ICMP_EQ;
1351
1352  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1353      !isa<BlockAddress>(V1)) {
1354    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1355        !isa<BlockAddress>(V2)) {
1356      // We distilled this down to a simple case, use the standard constant
1357      // folder.
1358      ConstantInt *R = nullptr;
1359      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1360      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1361      if (R && !R->isZero())
1362        return pred;
1363      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1364      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1365      if (R && !R->isZero())
1366        return pred;
1367      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1368      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1369      if (R && !R->isZero())
1370        return pred;
1371
1372      // If we couldn't figure it out, bail.
1373      return ICmpInst::BAD_ICMP_PREDICATE;
1374    }
1375
1376    // If the first operand is simple, swap operands.
1377    ICmpInst::Predicate SwappedRelation =
1378      evaluateICmpRelation(V2, V1, isSigned);
1379    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1380      return ICmpInst::getSwappedPredicate(SwappedRelation);
1381
1382  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1383    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1384      ICmpInst::Predicate SwappedRelation =
1385        evaluateICmpRelation(V2, V1, isSigned);
1386      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1387        return ICmpInst::getSwappedPredicate(SwappedRelation);
1388      return ICmpInst::BAD_ICMP_PREDICATE;
1389    }
1390
1391    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1392    // constant (which, since the types must match, means that it's a
1393    // ConstantPointerNull).
1394    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1395      // Don't try to decide equality of aliases.
1396      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1397        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1398          return ICmpInst::ICMP_NE;
1399    } else if (isa<BlockAddress>(V2)) {
1400      return ICmpInst::ICMP_NE; // Globals never equal labels.
1401    } else {
1402      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1403      // GlobalVals can never be null unless they have external weak linkage.
1404      // We don't try to evaluate aliases here.
1405      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1406        return ICmpInst::ICMP_NE;
1407    }
1408  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1409    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1410      ICmpInst::Predicate SwappedRelation =
1411        evaluateICmpRelation(V2, V1, isSigned);
1412      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1413        return ICmpInst::getSwappedPredicate(SwappedRelation);
1414      return ICmpInst::BAD_ICMP_PREDICATE;
1415    }
1416
1417    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1418    // constant (which, since the types must match, means that it is a
1419    // ConstantPointerNull).
1420    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1421      // Block address in another function can't equal this one, but block
1422      // addresses in the current function might be the same if blocks are
1423      // empty.
1424      if (BA2->getFunction() != BA->getFunction())
1425        return ICmpInst::ICMP_NE;
1426    } else {
1427      // Block addresses aren't null, don't equal the address of globals.
1428      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1429             "Canonicalization guarantee!");
1430      return ICmpInst::ICMP_NE;
1431    }
1432  } else {
1433    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1434    // constantexpr, a global, block address, or a simple constant.
1435    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1436    Constant *CE1Op0 = CE1->getOperand(0);
1437
1438    switch (CE1->getOpcode()) {
1439    case Instruction::Trunc:
1440    case Instruction::FPTrunc:
1441    case Instruction::FPExt:
1442    case Instruction::FPToUI:
1443    case Instruction::FPToSI:
1444      break; // We can't evaluate floating point casts or truncations.
1445
1446    case Instruction::UIToFP:
1447    case Instruction::SIToFP:
1448    case Instruction::BitCast:
1449    case Instruction::ZExt:
1450    case Instruction::SExt:
1451      // If the cast is not actually changing bits, and the second operand is a
1452      // null pointer, do the comparison with the pre-casted value.
1453      if (V2->isNullValue() &&
1454          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1455        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1456        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1457        return evaluateICmpRelation(CE1Op0,
1458                                    Constant::getNullValue(CE1Op0->getType()),
1459                                    isSigned);
1460      }
1461      break;
1462
1463    case Instruction::GetElementPtr:
1464      // Ok, since this is a getelementptr, we know that the constant has a
1465      // pointer type.  Check the various cases.
1466      if (isa<ConstantPointerNull>(V2)) {
1467        // If we are comparing a GEP to a null pointer, check to see if the base
1468        // of the GEP equals the null pointer.
1469        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1470          if (GV->hasExternalWeakLinkage())
1471            // Weak linkage GVals could be zero or not. We're comparing that
1472            // to null pointer so its greater-or-equal
1473            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1474          else
1475            // If its not weak linkage, the GVal must have a non-zero address
1476            // so the result is greater-than
1477            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1478        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1479          // If we are indexing from a null pointer, check to see if we have any
1480          // non-zero indices.
1481          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1482            if (!CE1->getOperand(i)->isNullValue())
1483              // Offsetting from null, must not be equal.
1484              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1485          // Only zero indexes from null, must still be zero.
1486          return ICmpInst::ICMP_EQ;
1487        }
1488        // Otherwise, we can't really say if the first operand is null or not.
1489      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1490        if (isa<ConstantPointerNull>(CE1Op0)) {
1491          if (GV2->hasExternalWeakLinkage())
1492            // Weak linkage GVals could be zero or not. We're comparing it to
1493            // a null pointer, so its less-or-equal
1494            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1495          else
1496            // If its not weak linkage, the GVal must have a non-zero address
1497            // so the result is less-than
1498            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1499        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1500          if (GV == GV2) {
1501            // If this is a getelementptr of the same global, then it must be
1502            // different.  Because the types must match, the getelementptr could
1503            // only have at most one index, and because we fold getelementptr's
1504            // with a single zero index, it must be nonzero.
1505            assert(CE1->getNumOperands() == 2 &&
1506                   !CE1->getOperand(1)->isNullValue() &&
1507                   "Surprising getelementptr!");
1508            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1509          } else {
1510            // If they are different globals, we don't know what the value is.
1511            return ICmpInst::BAD_ICMP_PREDICATE;
1512          }
1513        }
1514      } else {
1515        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1516        Constant *CE2Op0 = CE2->getOperand(0);
1517
1518        // There are MANY other foldings that we could perform here.  They will
1519        // probably be added on demand, as they seem needed.
1520        switch (CE2->getOpcode()) {
1521        default: break;
1522        case Instruction::GetElementPtr:
1523          // By far the most common case to handle is when the base pointers are
1524          // obviously to the same global.
1525          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1526            if (CE1Op0 != CE2Op0) // Don't know relative ordering.
1527              return ICmpInst::BAD_ICMP_PREDICATE;
1528            // Ok, we know that both getelementptr instructions are based on the
1529            // same global.  From this, we can precisely determine the relative
1530            // ordering of the resultant pointers.
1531            unsigned i = 1;
1532
1533            // The logic below assumes that the result of the comparison
1534            // can be determined by finding the first index that differs.
1535            // This doesn't work if there is over-indexing in any
1536            // subsequent indices, so check for that case first.
1537            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1538                !CE2->isGEPWithNoNotionalOverIndexing())
1539               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1540
1541            // Compare all of the operands the GEP's have in common.
1542            gep_type_iterator GTI = gep_type_begin(CE1);
1543            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1544                 ++i, ++GTI)
1545              switch (IdxCompare(CE1->getOperand(i),
1546                                 CE2->getOperand(i), GTI.getIndexedType())) {
1547              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1548              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1549              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1550              }
1551
1552            // Ok, we ran out of things they have in common.  If any leftovers
1553            // are non-zero then we have a difference, otherwise we are equal.
1554            for (; i < CE1->getNumOperands(); ++i)
1555              if (!CE1->getOperand(i)->isNullValue()) {
1556                if (isa<ConstantInt>(CE1->getOperand(i)))
1557                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1558                else
1559                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1560              }
1561
1562            for (; i < CE2->getNumOperands(); ++i)
1563              if (!CE2->getOperand(i)->isNullValue()) {
1564                if (isa<ConstantInt>(CE2->getOperand(i)))
1565                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1566                else
1567                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1568              }
1569            return ICmpInst::ICMP_EQ;
1570          }
1571        }
1572      }
1573    default:
1574      break;
1575    }
1576  }
1577
1578  return ICmpInst::BAD_ICMP_PREDICATE;
1579}
1580
1581Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1582                                               Constant *C1, Constant *C2) {
1583  Type *ResultTy;
1584  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1585    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1586                               VT->getNumElements());
1587  else
1588    ResultTy = Type::getInt1Ty(C1->getContext());
1589
1590  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1591  if (pred == FCmpInst::FCMP_FALSE)
1592    return Constant::getNullValue(ResultTy);
1593
1594  if (pred == FCmpInst::FCMP_TRUE)
1595    return Constant::getAllOnesValue(ResultTy);
1596
1597  // Handle some degenerate cases first
1598  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1599    // For EQ and NE, we can always pick a value for the undef to make the
1600    // predicate pass or fail, so we can return undef.
1601    // Also, if both operands are undef, we can return undef.
1602    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1603        (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1604      return UndefValue::get(ResultTy);
1605    // Otherwise, pick the same value as the non-undef operand, and fold
1606    // it to true or false.
1607    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1608  }
1609
1610  // icmp eq/ne(null,GV) -> false/true
1611  if (C1->isNullValue()) {
1612    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1613      // Don't try to evaluate aliases.  External weak GV can be null.
1614      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1615        if (pred == ICmpInst::ICMP_EQ)
1616          return ConstantInt::getFalse(C1->getContext());
1617        else if (pred == ICmpInst::ICMP_NE)
1618          return ConstantInt::getTrue(C1->getContext());
1619      }
1620  // icmp eq/ne(GV,null) -> false/true
1621  } else if (C2->isNullValue()) {
1622    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1623      // Don't try to evaluate aliases.  External weak GV can be null.
1624      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1625        if (pred == ICmpInst::ICMP_EQ)
1626          return ConstantInt::getFalse(C1->getContext());
1627        else if (pred == ICmpInst::ICMP_NE)
1628          return ConstantInt::getTrue(C1->getContext());
1629      }
1630  }
1631
1632  // If the comparison is a comparison between two i1's, simplify it.
1633  if (C1->getType()->isIntegerTy(1)) {
1634    switch(pred) {
1635    case ICmpInst::ICMP_EQ:
1636      if (isa<ConstantInt>(C2))
1637        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1638      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1639    case ICmpInst::ICMP_NE:
1640      return ConstantExpr::getXor(C1, C2);
1641    default:
1642      break;
1643    }
1644  }
1645
1646  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1647    APInt V1 = cast<ConstantInt>(C1)->getValue();
1648    APInt V2 = cast<ConstantInt>(C2)->getValue();
1649    switch (pred) {
1650    default: llvm_unreachable("Invalid ICmp Predicate");
1651    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1652    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1653    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1654    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1655    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1656    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1657    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1658    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1659    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1660    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1661    }
1662  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1663    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1664    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1665    APFloat::cmpResult R = C1V.compare(C2V);
1666    switch (pred) {
1667    default: llvm_unreachable("Invalid FCmp Predicate");
1668    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1669    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1670    case FCmpInst::FCMP_UNO:
1671      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1672    case FCmpInst::FCMP_ORD:
1673      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1674    case FCmpInst::FCMP_UEQ:
1675      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1676                                        R==APFloat::cmpEqual);
1677    case FCmpInst::FCMP_OEQ:
1678      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1679    case FCmpInst::FCMP_UNE:
1680      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1681    case FCmpInst::FCMP_ONE:
1682      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1683                                        R==APFloat::cmpGreaterThan);
1684    case FCmpInst::FCMP_ULT:
1685      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1686                                        R==APFloat::cmpLessThan);
1687    case FCmpInst::FCMP_OLT:
1688      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1689    case FCmpInst::FCMP_UGT:
1690      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1691                                        R==APFloat::cmpGreaterThan);
1692    case FCmpInst::FCMP_OGT:
1693      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1694    case FCmpInst::FCMP_ULE:
1695      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1696    case FCmpInst::FCMP_OLE:
1697      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1698                                        R==APFloat::cmpEqual);
1699    case FCmpInst::FCMP_UGE:
1700      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1701    case FCmpInst::FCMP_OGE:
1702      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1703                                        R==APFloat::cmpEqual);
1704    }
1705  } else if (C1->getType()->isVectorTy()) {
1706    // If we can constant fold the comparison of each element, constant fold
1707    // the whole vector comparison.
1708    SmallVector<Constant*, 4> ResElts;
1709    Type *Ty = IntegerType::get(C1->getContext(), 32);
1710    // Compare the elements, producing an i1 result or constant expr.
1711    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1712      Constant *C1E =
1713        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1714      Constant *C2E =
1715        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1716
1717      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1718    }
1719
1720    return ConstantVector::get(ResElts);
1721  }
1722
1723  if (C1->getType()->isFloatingPointTy()) {
1724    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1725    switch (evaluateFCmpRelation(C1, C2)) {
1726    default: llvm_unreachable("Unknown relation!");
1727    case FCmpInst::FCMP_UNO:
1728    case FCmpInst::FCMP_ORD:
1729    case FCmpInst::FCMP_UEQ:
1730    case FCmpInst::FCMP_UNE:
1731    case FCmpInst::FCMP_ULT:
1732    case FCmpInst::FCMP_UGT:
1733    case FCmpInst::FCMP_ULE:
1734    case FCmpInst::FCMP_UGE:
1735    case FCmpInst::FCMP_TRUE:
1736    case FCmpInst::FCMP_FALSE:
1737    case FCmpInst::BAD_FCMP_PREDICATE:
1738      break; // Couldn't determine anything about these constants.
1739    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1740      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1741                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1742                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1743      break;
1744    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1745      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1746                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1747                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1748      break;
1749    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1750      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1751                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1752                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1753      break;
1754    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1755      // We can only partially decide this relation.
1756      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1757        Result = 0;
1758      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1759        Result = 1;
1760      break;
1761    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1762      // We can only partially decide this relation.
1763      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1764        Result = 0;
1765      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1766        Result = 1;
1767      break;
1768    case FCmpInst::FCMP_ONE: // We know that C1 != C2
1769      // We can only partially decide this relation.
1770      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1771        Result = 0;
1772      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1773        Result = 1;
1774      break;
1775    }
1776
1777    // If we evaluated the result, return it now.
1778    if (Result != -1)
1779      return ConstantInt::get(ResultTy, Result);
1780
1781  } else {
1782    // Evaluate the relation between the two constants, per the predicate.
1783    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1784    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1785    default: llvm_unreachable("Unknown relational!");
1786    case ICmpInst::BAD_ICMP_PREDICATE:
1787      break;  // Couldn't determine anything about these constants.
1788    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1789      // If we know the constants are equal, we can decide the result of this
1790      // computation precisely.
1791      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1792      break;
1793    case ICmpInst::ICMP_ULT:
1794      switch (pred) {
1795      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1796        Result = 1; break;
1797      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1798        Result = 0; break;
1799      }
1800      break;
1801    case ICmpInst::ICMP_SLT:
1802      switch (pred) {
1803      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1804        Result = 1; break;
1805      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1806        Result = 0; break;
1807      }
1808      break;
1809    case ICmpInst::ICMP_UGT:
1810      switch (pred) {
1811      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1812        Result = 1; break;
1813      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1814        Result = 0; break;
1815      }
1816      break;
1817    case ICmpInst::ICMP_SGT:
1818      switch (pred) {
1819      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1820        Result = 1; break;
1821      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1822        Result = 0; break;
1823      }
1824      break;
1825    case ICmpInst::ICMP_ULE:
1826      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1827      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1828      break;
1829    case ICmpInst::ICMP_SLE:
1830      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1831      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1832      break;
1833    case ICmpInst::ICMP_UGE:
1834      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1835      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1836      break;
1837    case ICmpInst::ICMP_SGE:
1838      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1839      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1840      break;
1841    case ICmpInst::ICMP_NE:
1842      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1843      if (pred == ICmpInst::ICMP_NE) Result = 1;
1844      break;
1845    }
1846
1847    // If we evaluated the result, return it now.
1848    if (Result != -1)
1849      return ConstantInt::get(ResultTy, Result);
1850
1851    // If the right hand side is a bitcast, try using its inverse to simplify
1852    // it by moving it to the left hand side.  We can't do this if it would turn
1853    // a vector compare into a scalar compare or visa versa.
1854    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1855      Constant *CE2Op0 = CE2->getOperand(0);
1856      if (CE2->getOpcode() == Instruction::BitCast &&
1857          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1858        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1859        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1860      }
1861    }
1862
1863    // If the left hand side is an extension, try eliminating it.
1864    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1865      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
1866          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
1867        Constant *CE1Op0 = CE1->getOperand(0);
1868        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1869        if (CE1Inverse == CE1Op0) {
1870          // Check whether we can safely truncate the right hand side.
1871          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1872          if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1873                                    C2->getType()) == C2)
1874            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1875        }
1876      }
1877    }
1878
1879    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1880        (C1->isNullValue() && !C2->isNullValue())) {
1881      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1882      // other way if possible.
1883      // Also, if C1 is null and C2 isn't, flip them around.
1884      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1885      return ConstantExpr::getICmp(pred, C2, C1);
1886    }
1887  }
1888  return nullptr;
1889}
1890
1891/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1892/// is "inbounds".
1893template<typename IndexTy>
1894static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1895  // No indices means nothing that could be out of bounds.
1896  if (Idxs.empty()) return true;
1897
1898  // If the first index is zero, it's in bounds.
1899  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1900
1901  // If the first index is one and all the rest are zero, it's in bounds,
1902  // by the one-past-the-end rule.
1903  if (!cast<ConstantInt>(Idxs[0])->isOne())
1904    return false;
1905  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1906    if (!cast<Constant>(Idxs[i])->isNullValue())
1907      return false;
1908  return true;
1909}
1910
1911/// \brief Test whether a given ConstantInt is in-range for a SequentialType.
1912static bool isIndexInRangeOfSequentialType(const SequentialType *STy,
1913                                           const ConstantInt *CI) {
1914  if (const PointerType *PTy = dyn_cast<PointerType>(STy))
1915    // Only handle pointers to sized types, not pointers to functions.
1916    return PTy->getElementType()->isSized();
1917
1918  uint64_t NumElements = 0;
1919  // Determine the number of elements in our sequential type.
1920  if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
1921    NumElements = ATy->getNumElements();
1922  else if (const VectorType *VTy = dyn_cast<VectorType>(STy))
1923    NumElements = VTy->getNumElements();
1924
1925  assert((isa<ArrayType>(STy) || NumElements > 0) &&
1926         "didn't expect non-array type to have zero elements!");
1927
1928  // We cannot bounds check the index if it doesn't fit in an int64_t.
1929  if (CI->getValue().getActiveBits() > 64)
1930    return false;
1931
1932  // A negative index or an index past the end of our sequential type is
1933  // considered out-of-range.
1934  int64_t IndexVal = CI->getSExtValue();
1935  if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
1936    return false;
1937
1938  // Otherwise, it is in-range.
1939  return true;
1940}
1941
1942template<typename IndexTy>
1943static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
1944                                               bool inBounds,
1945                                               ArrayRef<IndexTy> Idxs) {
1946  if (Idxs.empty()) return C;
1947  Constant *Idx0 = cast<Constant>(Idxs[0]);
1948  if ((Idxs.size() == 1 && Idx0->isNullValue()))
1949    return C;
1950
1951  if (isa<UndefValue>(C)) {
1952    PointerType *Ptr = cast<PointerType>(C->getType());
1953    Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1954    assert(Ty && "Invalid indices for GEP!");
1955    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1956  }
1957
1958  if (C->isNullValue()) {
1959    bool isNull = true;
1960    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1961      if (!cast<Constant>(Idxs[i])->isNullValue()) {
1962        isNull = false;
1963        break;
1964      }
1965    if (isNull) {
1966      PointerType *Ptr = cast<PointerType>(C->getType());
1967      Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1968      assert(Ty && "Invalid indices for GEP!");
1969      return ConstantPointerNull::get(PointerType::get(Ty,
1970                                                       Ptr->getAddressSpace()));
1971    }
1972  }
1973
1974  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1975    // Combine Indices - If the source pointer to this getelementptr instruction
1976    // is a getelementptr instruction, combine the indices of the two
1977    // getelementptr instructions into a single instruction.
1978    //
1979    if (CE->getOpcode() == Instruction::GetElementPtr) {
1980      Type *LastTy = nullptr;
1981      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1982           I != E; ++I)
1983        LastTy = *I;
1984
1985      // We cannot combine indices if doing so would take us outside of an
1986      // array or vector.  Doing otherwise could trick us if we evaluated such a
1987      // GEP as part of a load.
1988      //
1989      // e.g. Consider if the original GEP was:
1990      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
1991      //                    i32 0, i32 0, i64 0)
1992      //
1993      // If we then tried to offset it by '8' to get to the third element,
1994      // an i8, we should *not* get:
1995      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
1996      //                    i32 0, i32 0, i64 8)
1997      //
1998      // This GEP tries to index array element '8  which runs out-of-bounds.
1999      // Subsequent evaluation would get confused and produce erroneous results.
2000      //
2001      // The following prohibits such a GEP from being formed by checking to see
2002      // if the index is in-range with respect to an array or vector.
2003      bool PerformFold = false;
2004      if (Idx0->isNullValue())
2005        PerformFold = true;
2006      else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
2007        if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2008          PerformFold = isIndexInRangeOfSequentialType(STy, CI);
2009
2010      if (PerformFold) {
2011        SmallVector<Value*, 16> NewIndices;
2012        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2013        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2014          NewIndices.push_back(CE->getOperand(i));
2015
2016        // Add the last index of the source with the first index of the new GEP.
2017        // Make sure to handle the case when they are actually different types.
2018        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2019        // Otherwise it must be an array.
2020        if (!Idx0->isNullValue()) {
2021          Type *IdxTy = Combined->getType();
2022          if (IdxTy != Idx0->getType()) {
2023            Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2024            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2025            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2026            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2027          } else {
2028            Combined =
2029              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2030          }
2031        }
2032
2033        NewIndices.push_back(Combined);
2034        NewIndices.append(Idxs.begin() + 1, Idxs.end());
2035        return
2036          ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
2037                                         inBounds &&
2038                                           cast<GEPOperator>(CE)->isInBounds());
2039      }
2040    }
2041
2042    // Attempt to fold casts to the same type away.  For example, folding:
2043    //
2044    //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2045    //                       i64 0, i64 0)
2046    // into:
2047    //
2048    //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2049    //
2050    // Don't fold if the cast is changing address spaces.
2051    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2052      PointerType *SrcPtrTy =
2053        dyn_cast<PointerType>(CE->getOperand(0)->getType());
2054      PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2055      if (SrcPtrTy && DstPtrTy) {
2056        ArrayType *SrcArrayTy =
2057          dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2058        ArrayType *DstArrayTy =
2059          dyn_cast<ArrayType>(DstPtrTy->getElementType());
2060        if (SrcArrayTy && DstArrayTy
2061            && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2062            && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2063          return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
2064                                                Idxs, inBounds);
2065      }
2066    }
2067  }
2068
2069  // Check to see if any array indices are not within the corresponding
2070  // notional array or vector bounds. If so, try to determine if they can be
2071  // factored out into preceding dimensions.
2072  bool Unknown = false;
2073  SmallVector<Constant *, 8> NewIdxs;
2074  Type *Ty = C->getType();
2075  Type *Prev = nullptr;
2076  for (unsigned i = 0, e = Idxs.size(); i != e;
2077       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2078    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2079      if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
2080        if (CI->getSExtValue() > 0 &&
2081            !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
2082          if (isa<SequentialType>(Prev)) {
2083            // It's out of range, but we can factor it into the prior
2084            // dimension.
2085            NewIdxs.resize(Idxs.size());
2086            uint64_t NumElements = 0;
2087            if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2088              NumElements = ATy->getNumElements();
2089            else
2090              NumElements = cast<VectorType>(Ty)->getNumElements();
2091
2092            ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
2093            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2094
2095            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2096            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2097
2098            // Before adding, extend both operands to i64 to avoid
2099            // overflow trouble.
2100            if (!PrevIdx->getType()->isIntegerTy(64))
2101              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2102                                           Type::getInt64Ty(Div->getContext()));
2103            if (!Div->getType()->isIntegerTy(64))
2104              Div = ConstantExpr::getSExt(Div,
2105                                          Type::getInt64Ty(Div->getContext()));
2106
2107            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2108          } else {
2109            // It's out of range, but the prior dimension is a struct
2110            // so we can't do anything about it.
2111            Unknown = true;
2112          }
2113        }
2114    } else {
2115      // We don't know if it's in range or not.
2116      Unknown = true;
2117    }
2118  }
2119
2120  // If we did any factoring, start over with the adjusted indices.
2121  if (!NewIdxs.empty()) {
2122    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2123      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2124    return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2125  }
2126
2127  // If all indices are known integers and normalized, we can do a simple
2128  // check for the "inbounds" property.
2129  if (!Unknown && !inBounds &&
2130      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2131    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2132
2133  return nullptr;
2134}
2135
2136Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2137                                          bool inBounds,
2138                                          ArrayRef<Constant *> Idxs) {
2139  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2140}
2141
2142Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2143                                          bool inBounds,
2144                                          ArrayRef<Value *> Idxs) {
2145  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2146}
2147