1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GetElementPtrTypeIterator.h"
25#include "llvm/IR/GlobalValue.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  // We've already handled true FP case; any other FP vectors can't represent -0.0.
57  if (getType()->isFPOrFPVectorTy())
58    return false;
59
60  // Otherwise, just use +0.0.
61  return isNullValue();
62}
63
64// Return true iff this constant is positive zero (floating point), negative
65// zero (floating point), or a null value.
66bool Constant::isZeroValue() const {
67  // Floating point values have an explicit -0.0 value.
68  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69    return CFP->isZero();
70
71  // Otherwise, just use +0.0.
72  return isNullValue();
73}
74
75bool Constant::isNullValue() const {
76  // 0 is null.
77  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78    return CI->isZero();
79
80  // +0.0 is null.
81  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82    return CFP->isZero() && !CFP->isNegative();
83
84  // constant zero is zero for aggregates and cpnull is null for pointers.
85  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86}
87
88bool Constant::isAllOnesValue() const {
89  // Check for -1 integers
90  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91    return CI->isMinusOne();
92
93  // Check for FP which are bitcasted from -1 integers
94  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97  // Check for constant vectors which are splats of -1 values.
98  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99    if (Constant *Splat = CV->getSplatValue())
100      return Splat->isAllOnesValue();
101
102  // Check for constant vectors which are splats of -1 values.
103  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104    if (Constant *Splat = CV->getSplatValue())
105      return Splat->isAllOnesValue();
106
107  return false;
108}
109
110bool Constant::isMinSignedValue() const {
111  // Check for INT_MIN integers
112  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113    return CI->isMinValue(/*isSigned=*/true);
114
115  // Check for FP which are bitcasted from INT_MIN integers
116  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117    return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
118
119  // Check for constant vectors which are splats of INT_MIN values.
120  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121    if (Constant *Splat = CV->getSplatValue())
122      return Splat->isMinSignedValue();
123
124  // Check for constant vectors which are splats of INT_MIN values.
125  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126    if (Constant *Splat = CV->getSplatValue())
127      return Splat->isMinSignedValue();
128
129  return false;
130}
131
132// Constructor to create a '0' constant of arbitrary type...
133Constant *Constant::getNullValue(Type *Ty) {
134  switch (Ty->getTypeID()) {
135  case Type::IntegerTyID:
136    return ConstantInt::get(Ty, 0);
137  case Type::HalfTyID:
138    return ConstantFP::get(Ty->getContext(),
139                           APFloat::getZero(APFloat::IEEEhalf));
140  case Type::FloatTyID:
141    return ConstantFP::get(Ty->getContext(),
142                           APFloat::getZero(APFloat::IEEEsingle));
143  case Type::DoubleTyID:
144    return ConstantFP::get(Ty->getContext(),
145                           APFloat::getZero(APFloat::IEEEdouble));
146  case Type::X86_FP80TyID:
147    return ConstantFP::get(Ty->getContext(),
148                           APFloat::getZero(APFloat::x87DoubleExtended));
149  case Type::FP128TyID:
150    return ConstantFP::get(Ty->getContext(),
151                           APFloat::getZero(APFloat::IEEEquad));
152  case Type::PPC_FP128TyID:
153    return ConstantFP::get(Ty->getContext(),
154                           APFloat(APFloat::PPCDoubleDouble,
155                                   APInt::getNullValue(128)));
156  case Type::PointerTyID:
157    return ConstantPointerNull::get(cast<PointerType>(Ty));
158  case Type::StructTyID:
159  case Type::ArrayTyID:
160  case Type::VectorTyID:
161    return ConstantAggregateZero::get(Ty);
162  default:
163    // Function, Label, or Opaque type?
164    llvm_unreachable("Cannot create a null constant of that type!");
165  }
166}
167
168Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
169  Type *ScalarTy = Ty->getScalarType();
170
171  // Create the base integer constant.
172  Constant *C = ConstantInt::get(Ty->getContext(), V);
173
174  // Convert an integer to a pointer, if necessary.
175  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
176    C = ConstantExpr::getIntToPtr(C, PTy);
177
178  // Broadcast a scalar to a vector, if necessary.
179  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
180    C = ConstantVector::getSplat(VTy->getNumElements(), C);
181
182  return C;
183}
184
185Constant *Constant::getAllOnesValue(Type *Ty) {
186  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
187    return ConstantInt::get(Ty->getContext(),
188                            APInt::getAllOnesValue(ITy->getBitWidth()));
189
190  if (Ty->isFloatingPointTy()) {
191    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
192                                          !Ty->isPPC_FP128Ty());
193    return ConstantFP::get(Ty->getContext(), FL);
194  }
195
196  VectorType *VTy = cast<VectorType>(Ty);
197  return ConstantVector::getSplat(VTy->getNumElements(),
198                                  getAllOnesValue(VTy->getElementType()));
199}
200
201/// getAggregateElement - For aggregates (struct/array/vector) return the
202/// constant that corresponds to the specified element if possible, or null if
203/// not.  This can return null if the element index is a ConstantExpr, or if
204/// 'this' is a constant expr.
205Constant *Constant::getAggregateElement(unsigned Elt) const {
206  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
207    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
208
209  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
210    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
211
212  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
213    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
214
215  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
216    return CAZ->getElementValue(Elt);
217
218  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
219    return UV->getElementValue(Elt);
220
221  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
222    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
223                                       : nullptr;
224  return nullptr;
225}
226
227Constant *Constant::getAggregateElement(Constant *Elt) const {
228  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
229  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
230    return getAggregateElement(CI->getZExtValue());
231  return nullptr;
232}
233
234
235void Constant::destroyConstantImpl() {
236  // When a Constant is destroyed, there may be lingering
237  // references to the constant by other constants in the constant pool.  These
238  // constants are implicitly dependent on the module that is being deleted,
239  // but they don't know that.  Because we only find out when the CPV is
240  // deleted, we must now notify all of our users (that should only be
241  // Constants) that they are, in fact, invalid now and should be deleted.
242  //
243  while (!use_empty()) {
244    Value *V = user_back();
245#ifndef NDEBUG      // Only in -g mode...
246    if (!isa<Constant>(V)) {
247      dbgs() << "While deleting: " << *this
248             << "\n\nUse still stuck around after Def is destroyed: "
249             << *V << "\n\n";
250    }
251#endif
252    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
253    cast<Constant>(V)->destroyConstant();
254
255    // The constant should remove itself from our use list...
256    assert((use_empty() || user_back() != V) && "Constant not removed!");
257  }
258
259  // Value has no outstanding references it is safe to delete it now...
260  delete this;
261}
262
263static bool canTrapImpl(const Constant *C,
264                        SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
265  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
266  // The only thing that could possibly trap are constant exprs.
267  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
268  if (!CE)
269    return false;
270
271  // ConstantExpr traps if any operands can trap.
272  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
273    if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
274      if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
275        return true;
276    }
277  }
278
279  // Otherwise, only specific operations can trap.
280  switch (CE->getOpcode()) {
281  default:
282    return false;
283  case Instruction::UDiv:
284  case Instruction::SDiv:
285  case Instruction::FDiv:
286  case Instruction::URem:
287  case Instruction::SRem:
288  case Instruction::FRem:
289    // Div and rem can trap if the RHS is not known to be non-zero.
290    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
291      return true;
292    return false;
293  }
294}
295
296/// canTrap - Return true if evaluation of this constant could trap.  This is
297/// true for things like constant expressions that could divide by zero.
298bool Constant::canTrap() const {
299  SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
300  return canTrapImpl(this, NonTrappingOps);
301}
302
303/// Check if C contains a GlobalValue for which Predicate is true.
304static bool
305ConstHasGlobalValuePredicate(const Constant *C,
306                             bool (*Predicate)(const GlobalValue *)) {
307  SmallPtrSet<const Constant *, 8> Visited;
308  SmallVector<const Constant *, 8> WorkList;
309  WorkList.push_back(C);
310  Visited.insert(C);
311
312  while (!WorkList.empty()) {
313    const Constant *WorkItem = WorkList.pop_back_val();
314    if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
315      if (Predicate(GV))
316        return true;
317    for (const Value *Op : WorkItem->operands()) {
318      const Constant *ConstOp = dyn_cast<Constant>(Op);
319      if (!ConstOp)
320        continue;
321      if (Visited.insert(ConstOp))
322        WorkList.push_back(ConstOp);
323    }
324  }
325  return false;
326}
327
328/// Return true if the value can vary between threads.
329bool Constant::isThreadDependent() const {
330  auto DLLImportPredicate = [](const GlobalValue *GV) {
331    return GV->isThreadLocal();
332  };
333  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
334}
335
336bool Constant::isDLLImportDependent() const {
337  auto DLLImportPredicate = [](const GlobalValue *GV) {
338    return GV->hasDLLImportStorageClass();
339  };
340  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
341}
342
343/// Return true if the constant has users other than constant exprs and other
344/// dangling things.
345bool Constant::isConstantUsed() const {
346  for (const User *U : users()) {
347    const Constant *UC = dyn_cast<Constant>(U);
348    if (!UC || isa<GlobalValue>(UC))
349      return true;
350
351    if (UC->isConstantUsed())
352      return true;
353  }
354  return false;
355}
356
357
358
359/// getRelocationInfo - This method classifies the entry according to
360/// whether or not it may generate a relocation entry.  This must be
361/// conservative, so if it might codegen to a relocatable entry, it should say
362/// so.  The return values are:
363///
364///  NoRelocation: This constant pool entry is guaranteed to never have a
365///     relocation applied to it (because it holds a simple constant like
366///     '4').
367///  LocalRelocation: This entry has relocations, but the entries are
368///     guaranteed to be resolvable by the static linker, so the dynamic
369///     linker will never see them.
370///  GlobalRelocations: This entry may have arbitrary relocations.
371///
372/// FIXME: This really should not be in IR.
373Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
374  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
375    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
376      return LocalRelocation;  // Local to this file/library.
377    return GlobalRelocations;    // Global reference.
378  }
379
380  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
381    return BA->getFunction()->getRelocationInfo();
382
383  // While raw uses of blockaddress need to be relocated, differences between
384  // two of them don't when they are for labels in the same function.  This is a
385  // common idiom when creating a table for the indirect goto extension, so we
386  // handle it efficiently here.
387  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
388    if (CE->getOpcode() == Instruction::Sub) {
389      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
390      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
391      if (LHS && RHS &&
392          LHS->getOpcode() == Instruction::PtrToInt &&
393          RHS->getOpcode() == Instruction::PtrToInt &&
394          isa<BlockAddress>(LHS->getOperand(0)) &&
395          isa<BlockAddress>(RHS->getOperand(0)) &&
396          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
397            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
398        return NoRelocation;
399    }
400
401  PossibleRelocationsTy Result = NoRelocation;
402  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
403    Result = std::max(Result,
404                      cast<Constant>(getOperand(i))->getRelocationInfo());
405
406  return Result;
407}
408
409/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
410/// it.  This involves recursively eliminating any dead users of the
411/// constantexpr.
412static bool removeDeadUsersOfConstant(const Constant *C) {
413  if (isa<GlobalValue>(C)) return false; // Cannot remove this
414
415  while (!C->use_empty()) {
416    const Constant *User = dyn_cast<Constant>(C->user_back());
417    if (!User) return false; // Non-constant usage;
418    if (!removeDeadUsersOfConstant(User))
419      return false; // Constant wasn't dead
420  }
421
422  const_cast<Constant*>(C)->destroyConstant();
423  return true;
424}
425
426
427/// removeDeadConstantUsers - If there are any dead constant users dangling
428/// off of this constant, remove them.  This method is useful for clients
429/// that want to check to see if a global is unused, but don't want to deal
430/// with potentially dead constants hanging off of the globals.
431void Constant::removeDeadConstantUsers() const {
432  Value::const_user_iterator I = user_begin(), E = user_end();
433  Value::const_user_iterator LastNonDeadUser = E;
434  while (I != E) {
435    const Constant *User = dyn_cast<Constant>(*I);
436    if (!User) {
437      LastNonDeadUser = I;
438      ++I;
439      continue;
440    }
441
442    if (!removeDeadUsersOfConstant(User)) {
443      // If the constant wasn't dead, remember that this was the last live use
444      // and move on to the next constant.
445      LastNonDeadUser = I;
446      ++I;
447      continue;
448    }
449
450    // If the constant was dead, then the iterator is invalidated.
451    if (LastNonDeadUser == E) {
452      I = user_begin();
453      if (I == E) break;
454    } else {
455      I = LastNonDeadUser;
456      ++I;
457    }
458  }
459}
460
461
462
463//===----------------------------------------------------------------------===//
464//                                ConstantInt
465//===----------------------------------------------------------------------===//
466
467void ConstantInt::anchor() { }
468
469ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
470  : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
471  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
472}
473
474ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
475  LLVMContextImpl *pImpl = Context.pImpl;
476  if (!pImpl->TheTrueVal)
477    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
478  return pImpl->TheTrueVal;
479}
480
481ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
482  LLVMContextImpl *pImpl = Context.pImpl;
483  if (!pImpl->TheFalseVal)
484    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
485  return pImpl->TheFalseVal;
486}
487
488Constant *ConstantInt::getTrue(Type *Ty) {
489  VectorType *VTy = dyn_cast<VectorType>(Ty);
490  if (!VTy) {
491    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
492    return ConstantInt::getTrue(Ty->getContext());
493  }
494  assert(VTy->getElementType()->isIntegerTy(1) &&
495         "True must be vector of i1 or i1.");
496  return ConstantVector::getSplat(VTy->getNumElements(),
497                                  ConstantInt::getTrue(Ty->getContext()));
498}
499
500Constant *ConstantInt::getFalse(Type *Ty) {
501  VectorType *VTy = dyn_cast<VectorType>(Ty);
502  if (!VTy) {
503    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
504    return ConstantInt::getFalse(Ty->getContext());
505  }
506  assert(VTy->getElementType()->isIntegerTy(1) &&
507         "False must be vector of i1 or i1.");
508  return ConstantVector::getSplat(VTy->getNumElements(),
509                                  ConstantInt::getFalse(Ty->getContext()));
510}
511
512
513// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
514// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
515// operator== and operator!= to ensure that the DenseMap doesn't attempt to
516// compare APInt's of different widths, which would violate an APInt class
517// invariant which generates an assertion.
518ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
519  // Get the corresponding integer type for the bit width of the value.
520  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
521  // get an existing value or the insertion position
522  LLVMContextImpl *pImpl = Context.pImpl;
523  ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
524  if (!Slot) Slot = new ConstantInt(ITy, V);
525  return Slot;
526}
527
528Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
529  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
530
531  // For vectors, broadcast the value.
532  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
533    return ConstantVector::getSplat(VTy->getNumElements(), C);
534
535  return C;
536}
537
538ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
539                              bool isSigned) {
540  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
541}
542
543ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
544  return get(Ty, V, true);
545}
546
547Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
548  return get(Ty, V, true);
549}
550
551Constant *ConstantInt::get(Type *Ty, const APInt& V) {
552  ConstantInt *C = get(Ty->getContext(), V);
553  assert(C->getType() == Ty->getScalarType() &&
554         "ConstantInt type doesn't match the type implied by its value!");
555
556  // For vectors, broadcast the value.
557  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
558    return ConstantVector::getSplat(VTy->getNumElements(), C);
559
560  return C;
561}
562
563ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
564                              uint8_t radix) {
565  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
566}
567
568//===----------------------------------------------------------------------===//
569//                                ConstantFP
570//===----------------------------------------------------------------------===//
571
572static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
573  if (Ty->isHalfTy())
574    return &APFloat::IEEEhalf;
575  if (Ty->isFloatTy())
576    return &APFloat::IEEEsingle;
577  if (Ty->isDoubleTy())
578    return &APFloat::IEEEdouble;
579  if (Ty->isX86_FP80Ty())
580    return &APFloat::x87DoubleExtended;
581  else if (Ty->isFP128Ty())
582    return &APFloat::IEEEquad;
583
584  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
585  return &APFloat::PPCDoubleDouble;
586}
587
588void ConstantFP::anchor() { }
589
590/// get() - This returns a constant fp for the specified value in the
591/// specified type.  This should only be used for simple constant values like
592/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
593Constant *ConstantFP::get(Type *Ty, double V) {
594  LLVMContext &Context = Ty->getContext();
595
596  APFloat FV(V);
597  bool ignored;
598  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
599             APFloat::rmNearestTiesToEven, &ignored);
600  Constant *C = get(Context, FV);
601
602  // For vectors, broadcast the value.
603  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
604    return ConstantVector::getSplat(VTy->getNumElements(), C);
605
606  return C;
607}
608
609
610Constant *ConstantFP::get(Type *Ty, StringRef Str) {
611  LLVMContext &Context = Ty->getContext();
612
613  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
614  Constant *C = get(Context, FV);
615
616  // For vectors, broadcast the value.
617  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
618    return ConstantVector::getSplat(VTy->getNumElements(), C);
619
620  return C;
621}
622
623Constant *ConstantFP::getNegativeZero(Type *Ty) {
624  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
625  APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
626  Constant *C = get(Ty->getContext(), NegZero);
627
628  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
629    return ConstantVector::getSplat(VTy->getNumElements(), C);
630
631  return C;
632}
633
634
635Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
636  if (Ty->isFPOrFPVectorTy())
637    return getNegativeZero(Ty);
638
639  return Constant::getNullValue(Ty);
640}
641
642
643// ConstantFP accessors.
644ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
645  LLVMContextImpl* pImpl = Context.pImpl;
646
647  ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
648
649  if (!Slot) {
650    Type *Ty;
651    if (&V.getSemantics() == &APFloat::IEEEhalf)
652      Ty = Type::getHalfTy(Context);
653    else if (&V.getSemantics() == &APFloat::IEEEsingle)
654      Ty = Type::getFloatTy(Context);
655    else if (&V.getSemantics() == &APFloat::IEEEdouble)
656      Ty = Type::getDoubleTy(Context);
657    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
658      Ty = Type::getX86_FP80Ty(Context);
659    else if (&V.getSemantics() == &APFloat::IEEEquad)
660      Ty = Type::getFP128Ty(Context);
661    else {
662      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
663             "Unknown FP format");
664      Ty = Type::getPPC_FP128Ty(Context);
665    }
666    Slot = new ConstantFP(Ty, V);
667  }
668
669  return Slot;
670}
671
672Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
673  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
674  Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
675
676  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
677    return ConstantVector::getSplat(VTy->getNumElements(), C);
678
679  return C;
680}
681
682ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
683  : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
684  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
685         "FP type Mismatch");
686}
687
688bool ConstantFP::isExactlyValue(const APFloat &V) const {
689  return Val.bitwiseIsEqual(V);
690}
691
692//===----------------------------------------------------------------------===//
693//                   ConstantAggregateZero Implementation
694//===----------------------------------------------------------------------===//
695
696/// getSequentialElement - If this CAZ has array or vector type, return a zero
697/// with the right element type.
698Constant *ConstantAggregateZero::getSequentialElement() const {
699  return Constant::getNullValue(getType()->getSequentialElementType());
700}
701
702/// getStructElement - If this CAZ has struct type, return a zero with the
703/// right element type for the specified element.
704Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
705  return Constant::getNullValue(getType()->getStructElementType(Elt));
706}
707
708/// getElementValue - Return a zero of the right value for the specified GEP
709/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
710Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
711  if (isa<SequentialType>(getType()))
712    return getSequentialElement();
713  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
714}
715
716/// getElementValue - Return a zero of the right value for the specified GEP
717/// index.
718Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
719  if (isa<SequentialType>(getType()))
720    return getSequentialElement();
721  return getStructElement(Idx);
722}
723
724
725//===----------------------------------------------------------------------===//
726//                         UndefValue Implementation
727//===----------------------------------------------------------------------===//
728
729/// getSequentialElement - If this undef has array or vector type, return an
730/// undef with the right element type.
731UndefValue *UndefValue::getSequentialElement() const {
732  return UndefValue::get(getType()->getSequentialElementType());
733}
734
735/// getStructElement - If this undef has struct type, return a zero with the
736/// right element type for the specified element.
737UndefValue *UndefValue::getStructElement(unsigned Elt) const {
738  return UndefValue::get(getType()->getStructElementType(Elt));
739}
740
741/// getElementValue - Return an undef of the right value for the specified GEP
742/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
743UndefValue *UndefValue::getElementValue(Constant *C) const {
744  if (isa<SequentialType>(getType()))
745    return getSequentialElement();
746  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
747}
748
749/// getElementValue - Return an undef of the right value for the specified GEP
750/// index.
751UndefValue *UndefValue::getElementValue(unsigned Idx) const {
752  if (isa<SequentialType>(getType()))
753    return getSequentialElement();
754  return getStructElement(Idx);
755}
756
757
758
759//===----------------------------------------------------------------------===//
760//                            ConstantXXX Classes
761//===----------------------------------------------------------------------===//
762
763template <typename ItTy, typename EltTy>
764static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
765  for (; Start != End; ++Start)
766    if (*Start != Elt)
767      return false;
768  return true;
769}
770
771ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
772  : Constant(T, ConstantArrayVal,
773             OperandTraits<ConstantArray>::op_end(this) - V.size(),
774             V.size()) {
775  assert(V.size() == T->getNumElements() &&
776         "Invalid initializer vector for constant array");
777  for (unsigned i = 0, e = V.size(); i != e; ++i)
778    assert(V[i]->getType() == T->getElementType() &&
779           "Initializer for array element doesn't match array element type!");
780  std::copy(V.begin(), V.end(), op_begin());
781}
782
783Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
784  // Empty arrays are canonicalized to ConstantAggregateZero.
785  if (V.empty())
786    return ConstantAggregateZero::get(Ty);
787
788  for (unsigned i = 0, e = V.size(); i != e; ++i) {
789    assert(V[i]->getType() == Ty->getElementType() &&
790           "Wrong type in array element initializer");
791  }
792  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
793
794  // If this is an all-zero array, return a ConstantAggregateZero object.  If
795  // all undef, return an UndefValue, if "all simple", then return a
796  // ConstantDataArray.
797  Constant *C = V[0];
798  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
799    return UndefValue::get(Ty);
800
801  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
802    return ConstantAggregateZero::get(Ty);
803
804  // Check to see if all of the elements are ConstantFP or ConstantInt and if
805  // the element type is compatible with ConstantDataVector.  If so, use it.
806  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
807    // We speculatively build the elements here even if it turns out that there
808    // is a constantexpr or something else weird in the array, since it is so
809    // uncommon for that to happen.
810    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
811      if (CI->getType()->isIntegerTy(8)) {
812        SmallVector<uint8_t, 16> Elts;
813        for (unsigned i = 0, e = V.size(); i != e; ++i)
814          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
815            Elts.push_back(CI->getZExtValue());
816          else
817            break;
818        if (Elts.size() == V.size())
819          return ConstantDataArray::get(C->getContext(), Elts);
820      } else if (CI->getType()->isIntegerTy(16)) {
821        SmallVector<uint16_t, 16> Elts;
822        for (unsigned i = 0, e = V.size(); i != e; ++i)
823          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
824            Elts.push_back(CI->getZExtValue());
825          else
826            break;
827        if (Elts.size() == V.size())
828          return ConstantDataArray::get(C->getContext(), Elts);
829      } else if (CI->getType()->isIntegerTy(32)) {
830        SmallVector<uint32_t, 16> Elts;
831        for (unsigned i = 0, e = V.size(); i != e; ++i)
832          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
833            Elts.push_back(CI->getZExtValue());
834          else
835            break;
836        if (Elts.size() == V.size())
837          return ConstantDataArray::get(C->getContext(), Elts);
838      } else if (CI->getType()->isIntegerTy(64)) {
839        SmallVector<uint64_t, 16> Elts;
840        for (unsigned i = 0, e = V.size(); i != e; ++i)
841          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
842            Elts.push_back(CI->getZExtValue());
843          else
844            break;
845        if (Elts.size() == V.size())
846          return ConstantDataArray::get(C->getContext(), Elts);
847      }
848    }
849
850    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
851      if (CFP->getType()->isFloatTy()) {
852        SmallVector<float, 16> Elts;
853        for (unsigned i = 0, e = V.size(); i != e; ++i)
854          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
855            Elts.push_back(CFP->getValueAPF().convertToFloat());
856          else
857            break;
858        if (Elts.size() == V.size())
859          return ConstantDataArray::get(C->getContext(), Elts);
860      } else if (CFP->getType()->isDoubleTy()) {
861        SmallVector<double, 16> Elts;
862        for (unsigned i = 0, e = V.size(); i != e; ++i)
863          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
864            Elts.push_back(CFP->getValueAPF().convertToDouble());
865          else
866            break;
867        if (Elts.size() == V.size())
868          return ConstantDataArray::get(C->getContext(), Elts);
869      }
870    }
871  }
872
873  // Otherwise, we really do want to create a ConstantArray.
874  return pImpl->ArrayConstants.getOrCreate(Ty, V);
875}
876
877/// getTypeForElements - Return an anonymous struct type to use for a constant
878/// with the specified set of elements.  The list must not be empty.
879StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
880                                               ArrayRef<Constant*> V,
881                                               bool Packed) {
882  unsigned VecSize = V.size();
883  SmallVector<Type*, 16> EltTypes(VecSize);
884  for (unsigned i = 0; i != VecSize; ++i)
885    EltTypes[i] = V[i]->getType();
886
887  return StructType::get(Context, EltTypes, Packed);
888}
889
890
891StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
892                                               bool Packed) {
893  assert(!V.empty() &&
894         "ConstantStruct::getTypeForElements cannot be called on empty list");
895  return getTypeForElements(V[0]->getContext(), V, Packed);
896}
897
898
899ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
900  : Constant(T, ConstantStructVal,
901             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
902             V.size()) {
903  assert(V.size() == T->getNumElements() &&
904         "Invalid initializer vector for constant structure");
905  for (unsigned i = 0, e = V.size(); i != e; ++i)
906    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
907           "Initializer for struct element doesn't match struct element type!");
908  std::copy(V.begin(), V.end(), op_begin());
909}
910
911// ConstantStruct accessors.
912Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
913  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
914         "Incorrect # elements specified to ConstantStruct::get");
915
916  // Create a ConstantAggregateZero value if all elements are zeros.
917  bool isZero = true;
918  bool isUndef = false;
919
920  if (!V.empty()) {
921    isUndef = isa<UndefValue>(V[0]);
922    isZero = V[0]->isNullValue();
923    if (isUndef || isZero) {
924      for (unsigned i = 0, e = V.size(); i != e; ++i) {
925        if (!V[i]->isNullValue())
926          isZero = false;
927        if (!isa<UndefValue>(V[i]))
928          isUndef = false;
929      }
930    }
931  }
932  if (isZero)
933    return ConstantAggregateZero::get(ST);
934  if (isUndef)
935    return UndefValue::get(ST);
936
937  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
938}
939
940Constant *ConstantStruct::get(StructType *T, ...) {
941  va_list ap;
942  SmallVector<Constant*, 8> Values;
943  va_start(ap, T);
944  while (Constant *Val = va_arg(ap, llvm::Constant*))
945    Values.push_back(Val);
946  va_end(ap);
947  return get(T, Values);
948}
949
950ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
951  : Constant(T, ConstantVectorVal,
952             OperandTraits<ConstantVector>::op_end(this) - V.size(),
953             V.size()) {
954  for (size_t i = 0, e = V.size(); i != e; i++)
955    assert(V[i]->getType() == T->getElementType() &&
956           "Initializer for vector element doesn't match vector element type!");
957  std::copy(V.begin(), V.end(), op_begin());
958}
959
960// ConstantVector accessors.
961Constant *ConstantVector::get(ArrayRef<Constant*> V) {
962  assert(!V.empty() && "Vectors can't be empty");
963  VectorType *T = VectorType::get(V.front()->getType(), V.size());
964  LLVMContextImpl *pImpl = T->getContext().pImpl;
965
966  // If this is an all-undef or all-zero vector, return a
967  // ConstantAggregateZero or UndefValue.
968  Constant *C = V[0];
969  bool isZero = C->isNullValue();
970  bool isUndef = isa<UndefValue>(C);
971
972  if (isZero || isUndef) {
973    for (unsigned i = 1, e = V.size(); i != e; ++i)
974      if (V[i] != C) {
975        isZero = isUndef = false;
976        break;
977      }
978  }
979
980  if (isZero)
981    return ConstantAggregateZero::get(T);
982  if (isUndef)
983    return UndefValue::get(T);
984
985  // Check to see if all of the elements are ConstantFP or ConstantInt and if
986  // the element type is compatible with ConstantDataVector.  If so, use it.
987  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
988    // We speculatively build the elements here even if it turns out that there
989    // is a constantexpr or something else weird in the array, since it is so
990    // uncommon for that to happen.
991    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
992      if (CI->getType()->isIntegerTy(8)) {
993        SmallVector<uint8_t, 16> Elts;
994        for (unsigned i = 0, e = V.size(); i != e; ++i)
995          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
996            Elts.push_back(CI->getZExtValue());
997          else
998            break;
999        if (Elts.size() == V.size())
1000          return ConstantDataVector::get(C->getContext(), Elts);
1001      } else if (CI->getType()->isIntegerTy(16)) {
1002        SmallVector<uint16_t, 16> Elts;
1003        for (unsigned i = 0, e = V.size(); i != e; ++i)
1004          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1005            Elts.push_back(CI->getZExtValue());
1006          else
1007            break;
1008        if (Elts.size() == V.size())
1009          return ConstantDataVector::get(C->getContext(), Elts);
1010      } else if (CI->getType()->isIntegerTy(32)) {
1011        SmallVector<uint32_t, 16> Elts;
1012        for (unsigned i = 0, e = V.size(); i != e; ++i)
1013          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1014            Elts.push_back(CI->getZExtValue());
1015          else
1016            break;
1017        if (Elts.size() == V.size())
1018          return ConstantDataVector::get(C->getContext(), Elts);
1019      } else if (CI->getType()->isIntegerTy(64)) {
1020        SmallVector<uint64_t, 16> Elts;
1021        for (unsigned i = 0, e = V.size(); i != e; ++i)
1022          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1023            Elts.push_back(CI->getZExtValue());
1024          else
1025            break;
1026        if (Elts.size() == V.size())
1027          return ConstantDataVector::get(C->getContext(), Elts);
1028      }
1029    }
1030
1031    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1032      if (CFP->getType()->isFloatTy()) {
1033        SmallVector<float, 16> Elts;
1034        for (unsigned i = 0, e = V.size(); i != e; ++i)
1035          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1036            Elts.push_back(CFP->getValueAPF().convertToFloat());
1037          else
1038            break;
1039        if (Elts.size() == V.size())
1040          return ConstantDataVector::get(C->getContext(), Elts);
1041      } else if (CFP->getType()->isDoubleTy()) {
1042        SmallVector<double, 16> Elts;
1043        for (unsigned i = 0, e = V.size(); i != e; ++i)
1044          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1045            Elts.push_back(CFP->getValueAPF().convertToDouble());
1046          else
1047            break;
1048        if (Elts.size() == V.size())
1049          return ConstantDataVector::get(C->getContext(), Elts);
1050      }
1051    }
1052  }
1053
1054  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1055  // the operand list constants a ConstantExpr or something else strange.
1056  return pImpl->VectorConstants.getOrCreate(T, V);
1057}
1058
1059Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1060  // If this splat is compatible with ConstantDataVector, use it instead of
1061  // ConstantVector.
1062  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1063      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1064    return ConstantDataVector::getSplat(NumElts, V);
1065
1066  SmallVector<Constant*, 32> Elts(NumElts, V);
1067  return get(Elts);
1068}
1069
1070
1071// Utility function for determining if a ConstantExpr is a CastOp or not. This
1072// can't be inline because we don't want to #include Instruction.h into
1073// Constant.h
1074bool ConstantExpr::isCast() const {
1075  return Instruction::isCast(getOpcode());
1076}
1077
1078bool ConstantExpr::isCompare() const {
1079  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1080}
1081
1082bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1083  if (getOpcode() != Instruction::GetElementPtr) return false;
1084
1085  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1086  User::const_op_iterator OI = std::next(this->op_begin());
1087
1088  // Skip the first index, as it has no static limit.
1089  ++GEPI;
1090  ++OI;
1091
1092  // The remaining indices must be compile-time known integers within the
1093  // bounds of the corresponding notional static array types.
1094  for (; GEPI != E; ++GEPI, ++OI) {
1095    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1096    if (!CI) return false;
1097    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1098      if (CI->getValue().getActiveBits() > 64 ||
1099          CI->getZExtValue() >= ATy->getNumElements())
1100        return false;
1101  }
1102
1103  // All the indices checked out.
1104  return true;
1105}
1106
1107bool ConstantExpr::hasIndices() const {
1108  return getOpcode() == Instruction::ExtractValue ||
1109         getOpcode() == Instruction::InsertValue;
1110}
1111
1112ArrayRef<unsigned> ConstantExpr::getIndices() const {
1113  if (const ExtractValueConstantExpr *EVCE =
1114        dyn_cast<ExtractValueConstantExpr>(this))
1115    return EVCE->Indices;
1116
1117  return cast<InsertValueConstantExpr>(this)->Indices;
1118}
1119
1120unsigned ConstantExpr::getPredicate() const {
1121  assert(isCompare());
1122  return ((const CompareConstantExpr*)this)->predicate;
1123}
1124
1125/// getWithOperandReplaced - Return a constant expression identical to this
1126/// one, but with the specified operand set to the specified value.
1127Constant *
1128ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1129  assert(Op->getType() == getOperand(OpNo)->getType() &&
1130         "Replacing operand with value of different type!");
1131  if (getOperand(OpNo) == Op)
1132    return const_cast<ConstantExpr*>(this);
1133
1134  SmallVector<Constant*, 8> NewOps;
1135  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1136    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1137
1138  return getWithOperands(NewOps);
1139}
1140
1141/// getWithOperands - This returns the current constant expression with the
1142/// operands replaced with the specified values.  The specified array must
1143/// have the same number of operands as our current one.
1144Constant *ConstantExpr::
1145getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1146  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1147  bool AnyChange = Ty != getType();
1148  for (unsigned i = 0; i != Ops.size(); ++i)
1149    AnyChange |= Ops[i] != getOperand(i);
1150
1151  if (!AnyChange)  // No operands changed, return self.
1152    return const_cast<ConstantExpr*>(this);
1153
1154  switch (getOpcode()) {
1155  case Instruction::Trunc:
1156  case Instruction::ZExt:
1157  case Instruction::SExt:
1158  case Instruction::FPTrunc:
1159  case Instruction::FPExt:
1160  case Instruction::UIToFP:
1161  case Instruction::SIToFP:
1162  case Instruction::FPToUI:
1163  case Instruction::FPToSI:
1164  case Instruction::PtrToInt:
1165  case Instruction::IntToPtr:
1166  case Instruction::BitCast:
1167  case Instruction::AddrSpaceCast:
1168    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1169  case Instruction::Select:
1170    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1171  case Instruction::InsertElement:
1172    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1173  case Instruction::ExtractElement:
1174    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1175  case Instruction::InsertValue:
1176    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1177  case Instruction::ExtractValue:
1178    return ConstantExpr::getExtractValue(Ops[0], getIndices());
1179  case Instruction::ShuffleVector:
1180    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1181  case Instruction::GetElementPtr:
1182    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1183                                      cast<GEPOperator>(this)->isInBounds());
1184  case Instruction::ICmp:
1185  case Instruction::FCmp:
1186    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1187  default:
1188    assert(getNumOperands() == 2 && "Must be binary operator?");
1189    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1190  }
1191}
1192
1193
1194//===----------------------------------------------------------------------===//
1195//                      isValueValidForType implementations
1196
1197bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1198  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1199  if (Ty->isIntegerTy(1))
1200    return Val == 0 || Val == 1;
1201  if (NumBits >= 64)
1202    return true; // always true, has to fit in largest type
1203  uint64_t Max = (1ll << NumBits) - 1;
1204  return Val <= Max;
1205}
1206
1207bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1208  unsigned NumBits = Ty->getIntegerBitWidth();
1209  if (Ty->isIntegerTy(1))
1210    return Val == 0 || Val == 1 || Val == -1;
1211  if (NumBits >= 64)
1212    return true; // always true, has to fit in largest type
1213  int64_t Min = -(1ll << (NumBits-1));
1214  int64_t Max = (1ll << (NumBits-1)) - 1;
1215  return (Val >= Min && Val <= Max);
1216}
1217
1218bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1219  // convert modifies in place, so make a copy.
1220  APFloat Val2 = APFloat(Val);
1221  bool losesInfo;
1222  switch (Ty->getTypeID()) {
1223  default:
1224    return false;         // These can't be represented as floating point!
1225
1226  // FIXME rounding mode needs to be more flexible
1227  case Type::HalfTyID: {
1228    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1229      return true;
1230    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1231    return !losesInfo;
1232  }
1233  case Type::FloatTyID: {
1234    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1235      return true;
1236    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1237    return !losesInfo;
1238  }
1239  case Type::DoubleTyID: {
1240    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1241        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1242        &Val2.getSemantics() == &APFloat::IEEEdouble)
1243      return true;
1244    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1245    return !losesInfo;
1246  }
1247  case Type::X86_FP80TyID:
1248    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1249           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1250           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1251           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1252  case Type::FP128TyID:
1253    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1254           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1255           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1256           &Val2.getSemantics() == &APFloat::IEEEquad;
1257  case Type::PPC_FP128TyID:
1258    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1259           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1260           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1261           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1262  }
1263}
1264
1265
1266//===----------------------------------------------------------------------===//
1267//                      Factory Function Implementation
1268
1269ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1270  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1271         "Cannot create an aggregate zero of non-aggregate type!");
1272
1273  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1274  if (!Entry)
1275    Entry = new ConstantAggregateZero(Ty);
1276
1277  return Entry;
1278}
1279
1280/// destroyConstant - Remove the constant from the constant table.
1281///
1282void ConstantAggregateZero::destroyConstant() {
1283  getContext().pImpl->CAZConstants.erase(getType());
1284  destroyConstantImpl();
1285}
1286
1287/// destroyConstant - Remove the constant from the constant table...
1288///
1289void ConstantArray::destroyConstant() {
1290  getType()->getContext().pImpl->ArrayConstants.remove(this);
1291  destroyConstantImpl();
1292}
1293
1294
1295//---- ConstantStruct::get() implementation...
1296//
1297
1298// destroyConstant - Remove the constant from the constant table...
1299//
1300void ConstantStruct::destroyConstant() {
1301  getType()->getContext().pImpl->StructConstants.remove(this);
1302  destroyConstantImpl();
1303}
1304
1305// destroyConstant - Remove the constant from the constant table...
1306//
1307void ConstantVector::destroyConstant() {
1308  getType()->getContext().pImpl->VectorConstants.remove(this);
1309  destroyConstantImpl();
1310}
1311
1312/// getSplatValue - If this is a splat vector constant, meaning that all of
1313/// the elements have the same value, return that value. Otherwise return 0.
1314Constant *Constant::getSplatValue() const {
1315  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1316  if (isa<ConstantAggregateZero>(this))
1317    return getNullValue(this->getType()->getVectorElementType());
1318  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1319    return CV->getSplatValue();
1320  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1321    return CV->getSplatValue();
1322  return nullptr;
1323}
1324
1325/// getSplatValue - If this is a splat constant, where all of the
1326/// elements have the same value, return that value. Otherwise return null.
1327Constant *ConstantVector::getSplatValue() const {
1328  // Check out first element.
1329  Constant *Elt = getOperand(0);
1330  // Then make sure all remaining elements point to the same value.
1331  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1332    if (getOperand(I) != Elt)
1333      return nullptr;
1334  return Elt;
1335}
1336
1337/// If C is a constant integer then return its value, otherwise C must be a
1338/// vector of constant integers, all equal, and the common value is returned.
1339const APInt &Constant::getUniqueInteger() const {
1340  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1341    return CI->getValue();
1342  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1343  const Constant *C = this->getAggregateElement(0U);
1344  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1345  return cast<ConstantInt>(C)->getValue();
1346}
1347
1348
1349//---- ConstantPointerNull::get() implementation.
1350//
1351
1352ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1353  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1354  if (!Entry)
1355    Entry = new ConstantPointerNull(Ty);
1356
1357  return Entry;
1358}
1359
1360// destroyConstant - Remove the constant from the constant table...
1361//
1362void ConstantPointerNull::destroyConstant() {
1363  getContext().pImpl->CPNConstants.erase(getType());
1364  // Free the constant and any dangling references to it.
1365  destroyConstantImpl();
1366}
1367
1368
1369//---- UndefValue::get() implementation.
1370//
1371
1372UndefValue *UndefValue::get(Type *Ty) {
1373  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1374  if (!Entry)
1375    Entry = new UndefValue(Ty);
1376
1377  return Entry;
1378}
1379
1380// destroyConstant - Remove the constant from the constant table.
1381//
1382void UndefValue::destroyConstant() {
1383  // Free the constant and any dangling references to it.
1384  getContext().pImpl->UVConstants.erase(getType());
1385  destroyConstantImpl();
1386}
1387
1388//---- BlockAddress::get() implementation.
1389//
1390
1391BlockAddress *BlockAddress::get(BasicBlock *BB) {
1392  assert(BB->getParent() && "Block must have a parent");
1393  return get(BB->getParent(), BB);
1394}
1395
1396BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1397  BlockAddress *&BA =
1398    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1399  if (!BA)
1400    BA = new BlockAddress(F, BB);
1401
1402  assert(BA->getFunction() == F && "Basic block moved between functions");
1403  return BA;
1404}
1405
1406BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1407: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1408           &Op<0>(), 2) {
1409  setOperand(0, F);
1410  setOperand(1, BB);
1411  BB->AdjustBlockAddressRefCount(1);
1412}
1413
1414BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1415  if (!BB->hasAddressTaken())
1416    return nullptr;
1417
1418  const Function *F = BB->getParent();
1419  assert(F && "Block must have a parent");
1420  BlockAddress *BA =
1421      F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1422  assert(BA && "Refcount and block address map disagree!");
1423  return BA;
1424}
1425
1426// destroyConstant - Remove the constant from the constant table.
1427//
1428void BlockAddress::destroyConstant() {
1429  getFunction()->getType()->getContext().pImpl
1430    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1431  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1432  destroyConstantImpl();
1433}
1434
1435void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1436  // This could be replacing either the Basic Block or the Function.  In either
1437  // case, we have to remove the map entry.
1438  Function *NewF = getFunction();
1439  BasicBlock *NewBB = getBasicBlock();
1440
1441  if (U == &Op<0>())
1442    NewF = cast<Function>(To->stripPointerCasts());
1443  else
1444    NewBB = cast<BasicBlock>(To);
1445
1446  // See if the 'new' entry already exists, if not, just update this in place
1447  // and return early.
1448  BlockAddress *&NewBA =
1449    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1450  if (!NewBA) {
1451    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1452
1453    // Remove the old entry, this can't cause the map to rehash (just a
1454    // tombstone will get added).
1455    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1456                                                            getBasicBlock()));
1457    NewBA = this;
1458    setOperand(0, NewF);
1459    setOperand(1, NewBB);
1460    getBasicBlock()->AdjustBlockAddressRefCount(1);
1461    return;
1462  }
1463
1464  // Otherwise, I do need to replace this with an existing value.
1465  assert(NewBA != this && "I didn't contain From!");
1466
1467  // Everyone using this now uses the replacement.
1468  replaceAllUsesWith(NewBA);
1469
1470  destroyConstant();
1471}
1472
1473//---- ConstantExpr::get() implementations.
1474//
1475
1476/// This is a utility function to handle folding of casts and lookup of the
1477/// cast in the ExprConstants map. It is used by the various get* methods below.
1478static inline Constant *getFoldedCast(
1479  Instruction::CastOps opc, Constant *C, Type *Ty) {
1480  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1481  // Fold a few common cases
1482  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1483    return FC;
1484
1485  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1486
1487  // Look up the constant in the table first to ensure uniqueness.
1488  ExprMapKeyType Key(opc, C);
1489
1490  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1491}
1492
1493Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1494  Instruction::CastOps opc = Instruction::CastOps(oc);
1495  assert(Instruction::isCast(opc) && "opcode out of range");
1496  assert(C && Ty && "Null arguments to getCast");
1497  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1498
1499  switch (opc) {
1500  default:
1501    llvm_unreachable("Invalid cast opcode");
1502  case Instruction::Trunc:    return getTrunc(C, Ty);
1503  case Instruction::ZExt:     return getZExt(C, Ty);
1504  case Instruction::SExt:     return getSExt(C, Ty);
1505  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1506  case Instruction::FPExt:    return getFPExtend(C, Ty);
1507  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1508  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1509  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1510  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1511  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1512  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1513  case Instruction::BitCast:  return getBitCast(C, Ty);
1514  case Instruction::AddrSpaceCast:  return getAddrSpaceCast(C, Ty);
1515  }
1516}
1517
1518Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1519  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1520    return getBitCast(C, Ty);
1521  return getZExt(C, Ty);
1522}
1523
1524Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1525  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1526    return getBitCast(C, Ty);
1527  return getSExt(C, Ty);
1528}
1529
1530Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1531  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1532    return getBitCast(C, Ty);
1533  return getTrunc(C, Ty);
1534}
1535
1536Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1537  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1538  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1539          "Invalid cast");
1540
1541  if (Ty->isIntOrIntVectorTy())
1542    return getPtrToInt(S, Ty);
1543
1544  unsigned SrcAS = S->getType()->getPointerAddressSpace();
1545  if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1546    return getAddrSpaceCast(S, Ty);
1547
1548  return getBitCast(S, Ty);
1549}
1550
1551Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1552                                                         Type *Ty) {
1553  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1554  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1555
1556  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1557    return getAddrSpaceCast(S, Ty);
1558
1559  return getBitCast(S, Ty);
1560}
1561
1562Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1563                                       bool isSigned) {
1564  assert(C->getType()->isIntOrIntVectorTy() &&
1565         Ty->isIntOrIntVectorTy() && "Invalid cast");
1566  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1567  unsigned DstBits = Ty->getScalarSizeInBits();
1568  Instruction::CastOps opcode =
1569    (SrcBits == DstBits ? Instruction::BitCast :
1570     (SrcBits > DstBits ? Instruction::Trunc :
1571      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1572  return getCast(opcode, C, Ty);
1573}
1574
1575Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1576  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1577         "Invalid cast");
1578  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1579  unsigned DstBits = Ty->getScalarSizeInBits();
1580  if (SrcBits == DstBits)
1581    return C; // Avoid a useless cast
1582  Instruction::CastOps opcode =
1583    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1584  return getCast(opcode, C, Ty);
1585}
1586
1587Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1588#ifndef NDEBUG
1589  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1590  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1591#endif
1592  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1593  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1594  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1595  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1596         "SrcTy must be larger than DestTy for Trunc!");
1597
1598  return getFoldedCast(Instruction::Trunc, C, Ty);
1599}
1600
1601Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1602#ifndef NDEBUG
1603  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1604  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1605#endif
1606  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1607  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1608  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1609  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1610         "SrcTy must be smaller than DestTy for SExt!");
1611
1612  return getFoldedCast(Instruction::SExt, C, Ty);
1613}
1614
1615Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1616#ifndef NDEBUG
1617  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1618  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1619#endif
1620  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1621  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1622  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1623  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1624         "SrcTy must be smaller than DestTy for ZExt!");
1625
1626  return getFoldedCast(Instruction::ZExt, C, Ty);
1627}
1628
1629Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1630#ifndef NDEBUG
1631  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1632  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1633#endif
1634  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1635  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1636         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1637         "This is an illegal floating point truncation!");
1638  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1639}
1640
1641Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1642#ifndef NDEBUG
1643  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1644  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1645#endif
1646  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1647  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1648         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1649         "This is an illegal floating point extension!");
1650  return getFoldedCast(Instruction::FPExt, C, Ty);
1651}
1652
1653Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1654#ifndef NDEBUG
1655  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1656  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1657#endif
1658  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1659  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1660         "This is an illegal uint to floating point cast!");
1661  return getFoldedCast(Instruction::UIToFP, C, Ty);
1662}
1663
1664Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1665#ifndef NDEBUG
1666  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1667  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1668#endif
1669  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1670  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1671         "This is an illegal sint to floating point cast!");
1672  return getFoldedCast(Instruction::SIToFP, C, Ty);
1673}
1674
1675Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1676#ifndef NDEBUG
1677  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1678  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1679#endif
1680  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1681  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1682         "This is an illegal floating point to uint cast!");
1683  return getFoldedCast(Instruction::FPToUI, C, Ty);
1684}
1685
1686Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1687#ifndef NDEBUG
1688  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1689  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1690#endif
1691  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1692  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1693         "This is an illegal floating point to sint cast!");
1694  return getFoldedCast(Instruction::FPToSI, C, Ty);
1695}
1696
1697Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1698  assert(C->getType()->getScalarType()->isPointerTy() &&
1699         "PtrToInt source must be pointer or pointer vector");
1700  assert(DstTy->getScalarType()->isIntegerTy() &&
1701         "PtrToInt destination must be integer or integer vector");
1702  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1703  if (isa<VectorType>(C->getType()))
1704    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1705           "Invalid cast between a different number of vector elements");
1706  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1707}
1708
1709Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1710  assert(C->getType()->getScalarType()->isIntegerTy() &&
1711         "IntToPtr source must be integer or integer vector");
1712  assert(DstTy->getScalarType()->isPointerTy() &&
1713         "IntToPtr destination must be a pointer or pointer vector");
1714  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1715  if (isa<VectorType>(C->getType()))
1716    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1717           "Invalid cast between a different number of vector elements");
1718  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1719}
1720
1721Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1722  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1723         "Invalid constantexpr bitcast!");
1724
1725  // It is common to ask for a bitcast of a value to its own type, handle this
1726  // speedily.
1727  if (C->getType() == DstTy) return C;
1728
1729  return getFoldedCast(Instruction::BitCast, C, DstTy);
1730}
1731
1732Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
1733  assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1734         "Invalid constantexpr addrspacecast!");
1735
1736  // Canonicalize addrspacecasts between different pointer types by first
1737  // bitcasting the pointer type and then converting the address space.
1738  PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1739  PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1740  Type *DstElemTy = DstScalarTy->getElementType();
1741  if (SrcScalarTy->getElementType() != DstElemTy) {
1742    Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1743    if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1744      // Handle vectors of pointers.
1745      MidTy = VectorType::get(MidTy, VT->getNumElements());
1746    }
1747    C = getBitCast(C, MidTy);
1748  }
1749  return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
1750}
1751
1752Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1753                            unsigned Flags) {
1754  // Check the operands for consistency first.
1755  assert(Opcode >= Instruction::BinaryOpsBegin &&
1756         Opcode <  Instruction::BinaryOpsEnd   &&
1757         "Invalid opcode in binary constant expression");
1758  assert(C1->getType() == C2->getType() &&
1759         "Operand types in binary constant expression should match");
1760
1761#ifndef NDEBUG
1762  switch (Opcode) {
1763  case Instruction::Add:
1764  case Instruction::Sub:
1765  case Instruction::Mul:
1766    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1767    assert(C1->getType()->isIntOrIntVectorTy() &&
1768           "Tried to create an integer operation on a non-integer type!");
1769    break;
1770  case Instruction::FAdd:
1771  case Instruction::FSub:
1772  case Instruction::FMul:
1773    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1774    assert(C1->getType()->isFPOrFPVectorTy() &&
1775           "Tried to create a floating-point operation on a "
1776           "non-floating-point type!");
1777    break;
1778  case Instruction::UDiv:
1779  case Instruction::SDiv:
1780    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1781    assert(C1->getType()->isIntOrIntVectorTy() &&
1782           "Tried to create an arithmetic operation on a non-arithmetic type!");
1783    break;
1784  case Instruction::FDiv:
1785    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1786    assert(C1->getType()->isFPOrFPVectorTy() &&
1787           "Tried to create an arithmetic operation on a non-arithmetic type!");
1788    break;
1789  case Instruction::URem:
1790  case Instruction::SRem:
1791    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1792    assert(C1->getType()->isIntOrIntVectorTy() &&
1793           "Tried to create an arithmetic operation on a non-arithmetic type!");
1794    break;
1795  case Instruction::FRem:
1796    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1797    assert(C1->getType()->isFPOrFPVectorTy() &&
1798           "Tried to create an arithmetic operation on a non-arithmetic type!");
1799    break;
1800  case Instruction::And:
1801  case Instruction::Or:
1802  case Instruction::Xor:
1803    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1804    assert(C1->getType()->isIntOrIntVectorTy() &&
1805           "Tried to create a logical operation on a non-integral type!");
1806    break;
1807  case Instruction::Shl:
1808  case Instruction::LShr:
1809  case Instruction::AShr:
1810    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1811    assert(C1->getType()->isIntOrIntVectorTy() &&
1812           "Tried to create a shift operation on a non-integer type!");
1813    break;
1814  default:
1815    break;
1816  }
1817#endif
1818
1819  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1820    return FC;          // Fold a few common cases.
1821
1822  Constant *ArgVec[] = { C1, C2 };
1823  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1824
1825  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1826  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1827}
1828
1829Constant *ConstantExpr::getSizeOf(Type* Ty) {
1830  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1831  // Note that a non-inbounds gep is used, as null isn't within any object.
1832  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1833  Constant *GEP = getGetElementPtr(
1834                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1835  return getPtrToInt(GEP,
1836                     Type::getInt64Ty(Ty->getContext()));
1837}
1838
1839Constant *ConstantExpr::getAlignOf(Type* Ty) {
1840  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1841  // Note that a non-inbounds gep is used, as null isn't within any object.
1842  Type *AligningTy =
1843    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1844  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1845  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1846  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1847  Constant *Indices[2] = { Zero, One };
1848  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1849  return getPtrToInt(GEP,
1850                     Type::getInt64Ty(Ty->getContext()));
1851}
1852
1853Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1854  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1855                                           FieldNo));
1856}
1857
1858Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1859  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1860  // Note that a non-inbounds gep is used, as null isn't within any object.
1861  Constant *GEPIdx[] = {
1862    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1863    FieldNo
1864  };
1865  Constant *GEP = getGetElementPtr(
1866                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1867  return getPtrToInt(GEP,
1868                     Type::getInt64Ty(Ty->getContext()));
1869}
1870
1871Constant *ConstantExpr::getCompare(unsigned short Predicate,
1872                                   Constant *C1, Constant *C2) {
1873  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1874
1875  switch (Predicate) {
1876  default: llvm_unreachable("Invalid CmpInst predicate");
1877  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1878  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1879  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1880  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1881  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1882  case CmpInst::FCMP_TRUE:
1883    return getFCmp(Predicate, C1, C2);
1884
1885  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1886  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1887  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1888  case CmpInst::ICMP_SLE:
1889    return getICmp(Predicate, C1, C2);
1890  }
1891}
1892
1893Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1894  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1895
1896  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1897    return SC;        // Fold common cases
1898
1899  Constant *ArgVec[] = { C, V1, V2 };
1900  ExprMapKeyType Key(Instruction::Select, ArgVec);
1901
1902  LLVMContextImpl *pImpl = C->getContext().pImpl;
1903  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1904}
1905
1906Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1907                                         bool InBounds) {
1908  assert(C->getType()->isPtrOrPtrVectorTy() &&
1909         "Non-pointer type for constant GetElementPtr expression");
1910
1911  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1912    return FC;          // Fold a few common cases.
1913
1914  // Get the result type of the getelementptr!
1915  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1916  assert(Ty && "GEP indices invalid!");
1917  unsigned AS = C->getType()->getPointerAddressSpace();
1918  Type *ReqTy = Ty->getPointerTo(AS);
1919  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1920    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1921
1922  // Look up the constant in the table first to ensure uniqueness
1923  std::vector<Constant*> ArgVec;
1924  ArgVec.reserve(1 + Idxs.size());
1925  ArgVec.push_back(C);
1926  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1927    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1928           "getelementptr index type missmatch");
1929    assert((!Idxs[i]->getType()->isVectorTy() ||
1930            ReqTy->getVectorNumElements() ==
1931            Idxs[i]->getType()->getVectorNumElements()) &&
1932           "getelementptr index type missmatch");
1933    ArgVec.push_back(cast<Constant>(Idxs[i]));
1934  }
1935  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1936                           InBounds ? GEPOperator::IsInBounds : 0);
1937
1938  LLVMContextImpl *pImpl = C->getContext().pImpl;
1939  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1940}
1941
1942Constant *
1943ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1944  assert(LHS->getType() == RHS->getType());
1945  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1946         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1947
1948  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1949    return FC;          // Fold a few common cases...
1950
1951  // Look up the constant in the table first to ensure uniqueness
1952  Constant *ArgVec[] = { LHS, RHS };
1953  // Get the key type with both the opcode and predicate
1954  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1955
1956  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1957  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1958    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1959
1960  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1961  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1962}
1963
1964Constant *
1965ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1966  assert(LHS->getType() == RHS->getType());
1967  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1968
1969  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1970    return FC;          // Fold a few common cases...
1971
1972  // Look up the constant in the table first to ensure uniqueness
1973  Constant *ArgVec[] = { LHS, RHS };
1974  // Get the key type with both the opcode and predicate
1975  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1976
1977  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1978  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1979    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1980
1981  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1982  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1983}
1984
1985Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1986  assert(Val->getType()->isVectorTy() &&
1987         "Tried to create extractelement operation on non-vector type!");
1988  assert(Idx->getType()->isIntegerTy() &&
1989         "Extractelement index must be an integer type!");
1990
1991  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1992    return FC;          // Fold a few common cases.
1993
1994  // Look up the constant in the table first to ensure uniqueness
1995  Constant *ArgVec[] = { Val, Idx };
1996  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1997
1998  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1999  Type *ReqTy = Val->getType()->getVectorElementType();
2000  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2001}
2002
2003Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2004                                         Constant *Idx) {
2005  assert(Val->getType()->isVectorTy() &&
2006         "Tried to create insertelement operation on non-vector type!");
2007  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2008         "Insertelement types must match!");
2009  assert(Idx->getType()->isIntegerTy() &&
2010         "Insertelement index must be i32 type!");
2011
2012  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2013    return FC;          // Fold a few common cases.
2014  // Look up the constant in the table first to ensure uniqueness
2015  Constant *ArgVec[] = { Val, Elt, Idx };
2016  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
2017
2018  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2019  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2020}
2021
2022Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2023                                         Constant *Mask) {
2024  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2025         "Invalid shuffle vector constant expr operands!");
2026
2027  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2028    return FC;          // Fold a few common cases.
2029
2030  unsigned NElts = Mask->getType()->getVectorNumElements();
2031  Type *EltTy = V1->getType()->getVectorElementType();
2032  Type *ShufTy = VectorType::get(EltTy, NElts);
2033
2034  // Look up the constant in the table first to ensure uniqueness
2035  Constant *ArgVec[] = { V1, V2, Mask };
2036  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
2037
2038  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2039  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2040}
2041
2042Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2043                                       ArrayRef<unsigned> Idxs) {
2044  assert(Agg->getType()->isFirstClassType() &&
2045         "Non-first-class type for constant insertvalue expression");
2046
2047  assert(ExtractValueInst::getIndexedType(Agg->getType(),
2048                                          Idxs) == Val->getType() &&
2049         "insertvalue indices invalid!");
2050  Type *ReqTy = Val->getType();
2051
2052  if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2053    return FC;
2054
2055  Constant *ArgVec[] = { Agg, Val };
2056  const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2057
2058  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2059  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2060}
2061
2062Constant *ConstantExpr::getExtractValue(Constant *Agg,
2063                                        ArrayRef<unsigned> Idxs) {
2064  assert(Agg->getType()->isFirstClassType() &&
2065         "Tried to create extractelement operation on non-first-class type!");
2066
2067  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2068  (void)ReqTy;
2069  assert(ReqTy && "extractvalue indices invalid!");
2070
2071  assert(Agg->getType()->isFirstClassType() &&
2072         "Non-first-class type for constant extractvalue expression");
2073  if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2074    return FC;
2075
2076  Constant *ArgVec[] = { Agg };
2077  const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2078
2079  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2080  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2081}
2082
2083Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2084  assert(C->getType()->isIntOrIntVectorTy() &&
2085         "Cannot NEG a nonintegral value!");
2086  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2087                C, HasNUW, HasNSW);
2088}
2089
2090Constant *ConstantExpr::getFNeg(Constant *C) {
2091  assert(C->getType()->isFPOrFPVectorTy() &&
2092         "Cannot FNEG a non-floating-point value!");
2093  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2094}
2095
2096Constant *ConstantExpr::getNot(Constant *C) {
2097  assert(C->getType()->isIntOrIntVectorTy() &&
2098         "Cannot NOT a nonintegral value!");
2099  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2100}
2101
2102Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2103                               bool HasNUW, bool HasNSW) {
2104  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2105                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2106  return get(Instruction::Add, C1, C2, Flags);
2107}
2108
2109Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2110  return get(Instruction::FAdd, C1, C2);
2111}
2112
2113Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2114                               bool HasNUW, bool HasNSW) {
2115  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2116                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2117  return get(Instruction::Sub, C1, C2, Flags);
2118}
2119
2120Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2121  return get(Instruction::FSub, C1, C2);
2122}
2123
2124Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2125                               bool HasNUW, bool HasNSW) {
2126  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2127                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2128  return get(Instruction::Mul, C1, C2, Flags);
2129}
2130
2131Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2132  return get(Instruction::FMul, C1, C2);
2133}
2134
2135Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2136  return get(Instruction::UDiv, C1, C2,
2137             isExact ? PossiblyExactOperator::IsExact : 0);
2138}
2139
2140Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2141  return get(Instruction::SDiv, C1, C2,
2142             isExact ? PossiblyExactOperator::IsExact : 0);
2143}
2144
2145Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2146  return get(Instruction::FDiv, C1, C2);
2147}
2148
2149Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2150  return get(Instruction::URem, C1, C2);
2151}
2152
2153Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2154  return get(Instruction::SRem, C1, C2);
2155}
2156
2157Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2158  return get(Instruction::FRem, C1, C2);
2159}
2160
2161Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2162  return get(Instruction::And, C1, C2);
2163}
2164
2165Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2166  return get(Instruction::Or, C1, C2);
2167}
2168
2169Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2170  return get(Instruction::Xor, C1, C2);
2171}
2172
2173Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2174                               bool HasNUW, bool HasNSW) {
2175  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2176                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2177  return get(Instruction::Shl, C1, C2, Flags);
2178}
2179
2180Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2181  return get(Instruction::LShr, C1, C2,
2182             isExact ? PossiblyExactOperator::IsExact : 0);
2183}
2184
2185Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2186  return get(Instruction::AShr, C1, C2,
2187             isExact ? PossiblyExactOperator::IsExact : 0);
2188}
2189
2190/// getBinOpIdentity - Return the identity for the given binary operation,
2191/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2192/// returns null if the operator doesn't have an identity.
2193Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2194  switch (Opcode) {
2195  default:
2196    // Doesn't have an identity.
2197    return nullptr;
2198
2199  case Instruction::Add:
2200  case Instruction::Or:
2201  case Instruction::Xor:
2202    return Constant::getNullValue(Ty);
2203
2204  case Instruction::Mul:
2205    return ConstantInt::get(Ty, 1);
2206
2207  case Instruction::And:
2208    return Constant::getAllOnesValue(Ty);
2209  }
2210}
2211
2212/// getBinOpAbsorber - Return the absorbing element for the given binary
2213/// operation, i.e. a constant C such that X op C = C and C op X = C for
2214/// every X.  For example, this returns zero for integer multiplication.
2215/// It returns null if the operator doesn't have an absorbing element.
2216Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2217  switch (Opcode) {
2218  default:
2219    // Doesn't have an absorber.
2220    return nullptr;
2221
2222  case Instruction::Or:
2223    return Constant::getAllOnesValue(Ty);
2224
2225  case Instruction::And:
2226  case Instruction::Mul:
2227    return Constant::getNullValue(Ty);
2228  }
2229}
2230
2231// destroyConstant - Remove the constant from the constant table...
2232//
2233void ConstantExpr::destroyConstant() {
2234  getType()->getContext().pImpl->ExprConstants.remove(this);
2235  destroyConstantImpl();
2236}
2237
2238const char *ConstantExpr::getOpcodeName() const {
2239  return Instruction::getOpcodeName(getOpcode());
2240}
2241
2242
2243
2244GetElementPtrConstantExpr::
2245GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2246                          Type *DestTy)
2247  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2248                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2249                 - (IdxList.size()+1), IdxList.size()+1) {
2250  OperandList[0] = C;
2251  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2252    OperandList[i+1] = IdxList[i];
2253}
2254
2255//===----------------------------------------------------------------------===//
2256//                       ConstantData* implementations
2257
2258void ConstantDataArray::anchor() {}
2259void ConstantDataVector::anchor() {}
2260
2261/// getElementType - Return the element type of the array/vector.
2262Type *ConstantDataSequential::getElementType() const {
2263  return getType()->getElementType();
2264}
2265
2266StringRef ConstantDataSequential::getRawDataValues() const {
2267  return StringRef(DataElements, getNumElements()*getElementByteSize());
2268}
2269
2270/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2271/// formed with a vector or array of the specified element type.
2272/// ConstantDataArray only works with normal float and int types that are
2273/// stored densely in memory, not with things like i42 or x86_f80.
2274bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2275  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2276  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2277    switch (IT->getBitWidth()) {
2278    case 8:
2279    case 16:
2280    case 32:
2281    case 64:
2282      return true;
2283    default: break;
2284    }
2285  }
2286  return false;
2287}
2288
2289/// getNumElements - Return the number of elements in the array or vector.
2290unsigned ConstantDataSequential::getNumElements() const {
2291  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2292    return AT->getNumElements();
2293  return getType()->getVectorNumElements();
2294}
2295
2296
2297/// getElementByteSize - Return the size in bytes of the elements in the data.
2298uint64_t ConstantDataSequential::getElementByteSize() const {
2299  return getElementType()->getPrimitiveSizeInBits()/8;
2300}
2301
2302/// getElementPointer - Return the start of the specified element.
2303const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2304  assert(Elt < getNumElements() && "Invalid Elt");
2305  return DataElements+Elt*getElementByteSize();
2306}
2307
2308
2309/// isAllZeros - return true if the array is empty or all zeros.
2310static bool isAllZeros(StringRef Arr) {
2311  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2312    if (*I != 0)
2313      return false;
2314  return true;
2315}
2316
2317/// getImpl - This is the underlying implementation of all of the
2318/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2319/// the correct element type.  We take the bytes in as a StringRef because
2320/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2321Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2322  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2323  // If the elements are all zero or there are no elements, return a CAZ, which
2324  // is more dense and canonical.
2325  if (isAllZeros(Elements))
2326    return ConstantAggregateZero::get(Ty);
2327
2328  // Do a lookup to see if we have already formed one of these.
2329  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2330    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2331
2332  // The bucket can point to a linked list of different CDS's that have the same
2333  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2334  // of i8, or a 1-element array of i32.  They'll both end up in the same
2335  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2336  ConstantDataSequential **Entry = &Slot.getValue();
2337  for (ConstantDataSequential *Node = *Entry; Node;
2338       Entry = &Node->Next, Node = *Entry)
2339    if (Node->getType() == Ty)
2340      return Node;
2341
2342  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2343  // and return it.
2344  if (isa<ArrayType>(Ty))
2345    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2346
2347  assert(isa<VectorType>(Ty));
2348  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2349}
2350
2351void ConstantDataSequential::destroyConstant() {
2352  // Remove the constant from the StringMap.
2353  StringMap<ConstantDataSequential*> &CDSConstants =
2354    getType()->getContext().pImpl->CDSConstants;
2355
2356  StringMap<ConstantDataSequential*>::iterator Slot =
2357    CDSConstants.find(getRawDataValues());
2358
2359  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2360
2361  ConstantDataSequential **Entry = &Slot->getValue();
2362
2363  // Remove the entry from the hash table.
2364  if (!(*Entry)->Next) {
2365    // If there is only one value in the bucket (common case) it must be this
2366    // entry, and removing the entry should remove the bucket completely.
2367    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2368    getContext().pImpl->CDSConstants.erase(Slot);
2369  } else {
2370    // Otherwise, there are multiple entries linked off the bucket, unlink the
2371    // node we care about but keep the bucket around.
2372    for (ConstantDataSequential *Node = *Entry; ;
2373         Entry = &Node->Next, Node = *Entry) {
2374      assert(Node && "Didn't find entry in its uniquing hash table!");
2375      // If we found our entry, unlink it from the list and we're done.
2376      if (Node == this) {
2377        *Entry = Node->Next;
2378        break;
2379      }
2380    }
2381  }
2382
2383  // If we were part of a list, make sure that we don't delete the list that is
2384  // still owned by the uniquing map.
2385  Next = nullptr;
2386
2387  // Finally, actually delete it.
2388  destroyConstantImpl();
2389}
2390
2391/// get() constructors - Return a constant with array type with an element
2392/// count and element type matching the ArrayRef passed in.  Note that this
2393/// can return a ConstantAggregateZero object.
2394Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2395  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2396  const char *Data = reinterpret_cast<const char *>(Elts.data());
2397  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2398}
2399Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2400  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2401  const char *Data = reinterpret_cast<const char *>(Elts.data());
2402  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2403}
2404Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2405  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2406  const char *Data = reinterpret_cast<const char *>(Elts.data());
2407  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2408}
2409Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2410  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2411  const char *Data = reinterpret_cast<const char *>(Elts.data());
2412  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2413}
2414Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2415  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2416  const char *Data = reinterpret_cast<const char *>(Elts.data());
2417  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2418}
2419Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2420  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2421  const char *Data = reinterpret_cast<const char *>(Elts.data());
2422  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2423}
2424
2425/// getString - This method constructs a CDS and initializes it with a text
2426/// string. The default behavior (AddNull==true) causes a null terminator to
2427/// be placed at the end of the array (increasing the length of the string by
2428/// one more than the StringRef would normally indicate.  Pass AddNull=false
2429/// to disable this behavior.
2430Constant *ConstantDataArray::getString(LLVMContext &Context,
2431                                       StringRef Str, bool AddNull) {
2432  if (!AddNull) {
2433    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2434    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2435               Str.size()));
2436  }
2437
2438  SmallVector<uint8_t, 64> ElementVals;
2439  ElementVals.append(Str.begin(), Str.end());
2440  ElementVals.push_back(0);
2441  return get(Context, ElementVals);
2442}
2443
2444/// get() constructors - Return a constant with vector type with an element
2445/// count and element type matching the ArrayRef passed in.  Note that this
2446/// can return a ConstantAggregateZero object.
2447Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2448  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2449  const char *Data = reinterpret_cast<const char *>(Elts.data());
2450  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2451}
2452Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2453  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2454  const char *Data = reinterpret_cast<const char *>(Elts.data());
2455  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2456}
2457Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2458  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2459  const char *Data = reinterpret_cast<const char *>(Elts.data());
2460  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2461}
2462Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2463  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2464  const char *Data = reinterpret_cast<const char *>(Elts.data());
2465  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2466}
2467Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2468  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2469  const char *Data = reinterpret_cast<const char *>(Elts.data());
2470  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2471}
2472Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2473  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2474  const char *Data = reinterpret_cast<const char *>(Elts.data());
2475  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2476}
2477
2478Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2479  assert(isElementTypeCompatible(V->getType()) &&
2480         "Element type not compatible with ConstantData");
2481  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2482    if (CI->getType()->isIntegerTy(8)) {
2483      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2484      return get(V->getContext(), Elts);
2485    }
2486    if (CI->getType()->isIntegerTy(16)) {
2487      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2488      return get(V->getContext(), Elts);
2489    }
2490    if (CI->getType()->isIntegerTy(32)) {
2491      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2492      return get(V->getContext(), Elts);
2493    }
2494    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2495    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2496    return get(V->getContext(), Elts);
2497  }
2498
2499  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2500    if (CFP->getType()->isFloatTy()) {
2501      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2502      return get(V->getContext(), Elts);
2503    }
2504    if (CFP->getType()->isDoubleTy()) {
2505      SmallVector<double, 16> Elts(NumElts,
2506                                   CFP->getValueAPF().convertToDouble());
2507      return get(V->getContext(), Elts);
2508    }
2509  }
2510  return ConstantVector::getSplat(NumElts, V);
2511}
2512
2513
2514/// getElementAsInteger - If this is a sequential container of integers (of
2515/// any size), return the specified element in the low bits of a uint64_t.
2516uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2517  assert(isa<IntegerType>(getElementType()) &&
2518         "Accessor can only be used when element is an integer");
2519  const char *EltPtr = getElementPointer(Elt);
2520
2521  // The data is stored in host byte order, make sure to cast back to the right
2522  // type to load with the right endianness.
2523  switch (getElementType()->getIntegerBitWidth()) {
2524  default: llvm_unreachable("Invalid bitwidth for CDS");
2525  case 8:
2526    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2527  case 16:
2528    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2529  case 32:
2530    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2531  case 64:
2532    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2533  }
2534}
2535
2536/// getElementAsAPFloat - If this is a sequential container of floating point
2537/// type, return the specified element as an APFloat.
2538APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2539  const char *EltPtr = getElementPointer(Elt);
2540
2541  switch (getElementType()->getTypeID()) {
2542  default:
2543    llvm_unreachable("Accessor can only be used when element is float/double!");
2544  case Type::FloatTyID: {
2545      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2546      return APFloat(*const_cast<float *>(FloatPrt));
2547    }
2548  case Type::DoubleTyID: {
2549      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2550      return APFloat(*const_cast<double *>(DoublePtr));
2551    }
2552  }
2553}
2554
2555/// getElementAsFloat - If this is an sequential container of floats, return
2556/// the specified element as a float.
2557float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2558  assert(getElementType()->isFloatTy() &&
2559         "Accessor can only be used when element is a 'float'");
2560  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2561  return *const_cast<float *>(EltPtr);
2562}
2563
2564/// getElementAsDouble - If this is an sequential container of doubles, return
2565/// the specified element as a float.
2566double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2567  assert(getElementType()->isDoubleTy() &&
2568         "Accessor can only be used when element is a 'float'");
2569  const double *EltPtr =
2570      reinterpret_cast<const double *>(getElementPointer(Elt));
2571  return *const_cast<double *>(EltPtr);
2572}
2573
2574/// getElementAsConstant - Return a Constant for a specified index's element.
2575/// Note that this has to compute a new constant to return, so it isn't as
2576/// efficient as getElementAsInteger/Float/Double.
2577Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2578  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2579    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2580
2581  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2582}
2583
2584/// isString - This method returns true if this is an array of i8.
2585bool ConstantDataSequential::isString() const {
2586  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2587}
2588
2589/// isCString - This method returns true if the array "isString", ends with a
2590/// nul byte, and does not contains any other nul bytes.
2591bool ConstantDataSequential::isCString() const {
2592  if (!isString())
2593    return false;
2594
2595  StringRef Str = getAsString();
2596
2597  // The last value must be nul.
2598  if (Str.back() != 0) return false;
2599
2600  // Other elements must be non-nul.
2601  return Str.drop_back().find(0) == StringRef::npos;
2602}
2603
2604/// getSplatValue - If this is a splat constant, meaning that all of the
2605/// elements have the same value, return that value. Otherwise return NULL.
2606Constant *ConstantDataVector::getSplatValue() const {
2607  const char *Base = getRawDataValues().data();
2608
2609  // Compare elements 1+ to the 0'th element.
2610  unsigned EltSize = getElementByteSize();
2611  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2612    if (memcmp(Base, Base+i*EltSize, EltSize))
2613      return nullptr;
2614
2615  // If they're all the same, return the 0th one as a representative.
2616  return getElementAsConstant(0);
2617}
2618
2619//===----------------------------------------------------------------------===//
2620//                replaceUsesOfWithOnConstant implementations
2621
2622/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2623/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2624/// etc.
2625///
2626/// Note that we intentionally replace all uses of From with To here.  Consider
2627/// a large array that uses 'From' 1000 times.  By handling this case all here,
2628/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2629/// single invocation handles all 1000 uses.  Handling them one at a time would
2630/// work, but would be really slow because it would have to unique each updated
2631/// array instance.
2632///
2633void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2634                                                Use *U) {
2635  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2636  Constant *ToC = cast<Constant>(To);
2637
2638  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2639
2640  SmallVector<Constant*, 8> Values;
2641  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2642  Lookup.first = cast<ArrayType>(getType());
2643  Values.reserve(getNumOperands());  // Build replacement array.
2644
2645  // Fill values with the modified operands of the constant array.  Also,
2646  // compute whether this turns into an all-zeros array.
2647  unsigned NumUpdated = 0;
2648
2649  // Keep track of whether all the values in the array are "ToC".
2650  bool AllSame = true;
2651  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2652    Constant *Val = cast<Constant>(O->get());
2653    if (Val == From) {
2654      Val = ToC;
2655      ++NumUpdated;
2656    }
2657    Values.push_back(Val);
2658    AllSame &= Val == ToC;
2659  }
2660
2661  Constant *Replacement = nullptr;
2662  if (AllSame && ToC->isNullValue()) {
2663    Replacement = ConstantAggregateZero::get(getType());
2664  } else if (AllSame && isa<UndefValue>(ToC)) {
2665    Replacement = UndefValue::get(getType());
2666  } else {
2667    // Check to see if we have this array type already.
2668    Lookup.second = makeArrayRef(Values);
2669    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2670      pImpl->ArrayConstants.find(Lookup);
2671
2672    if (I != pImpl->ArrayConstants.map_end()) {
2673      Replacement = I->first;
2674    } else {
2675      // Okay, the new shape doesn't exist in the system yet.  Instead of
2676      // creating a new constant array, inserting it, replaceallusesof'ing the
2677      // old with the new, then deleting the old... just update the current one
2678      // in place!
2679      pImpl->ArrayConstants.remove(this);
2680
2681      // Update to the new value.  Optimize for the case when we have a single
2682      // operand that we're changing, but handle bulk updates efficiently.
2683      if (NumUpdated == 1) {
2684        unsigned OperandToUpdate = U - OperandList;
2685        assert(getOperand(OperandToUpdate) == From &&
2686               "ReplaceAllUsesWith broken!");
2687        setOperand(OperandToUpdate, ToC);
2688      } else {
2689        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2690          if (getOperand(i) == From)
2691            setOperand(i, ToC);
2692      }
2693      pImpl->ArrayConstants.insert(this);
2694      return;
2695    }
2696  }
2697
2698  // Otherwise, I do need to replace this with an existing value.
2699  assert(Replacement != this && "I didn't contain From!");
2700
2701  // Everyone using this now uses the replacement.
2702  replaceAllUsesWith(Replacement);
2703
2704  // Delete the old constant!
2705  destroyConstant();
2706}
2707
2708void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2709                                                 Use *U) {
2710  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2711  Constant *ToC = cast<Constant>(To);
2712
2713  unsigned OperandToUpdate = U-OperandList;
2714  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2715
2716  SmallVector<Constant*, 8> Values;
2717  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2718  Lookup.first = cast<StructType>(getType());
2719  Values.reserve(getNumOperands());  // Build replacement struct.
2720
2721  // Fill values with the modified operands of the constant struct.  Also,
2722  // compute whether this turns into an all-zeros struct.
2723  bool isAllZeros = false;
2724  bool isAllUndef = false;
2725  if (ToC->isNullValue()) {
2726    isAllZeros = true;
2727    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2728      Constant *Val = cast<Constant>(O->get());
2729      Values.push_back(Val);
2730      if (isAllZeros) isAllZeros = Val->isNullValue();
2731    }
2732  } else if (isa<UndefValue>(ToC)) {
2733    isAllUndef = true;
2734    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2735      Constant *Val = cast<Constant>(O->get());
2736      Values.push_back(Val);
2737      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2738    }
2739  } else {
2740    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2741      Values.push_back(cast<Constant>(O->get()));
2742  }
2743  Values[OperandToUpdate] = ToC;
2744
2745  LLVMContextImpl *pImpl = getContext().pImpl;
2746
2747  Constant *Replacement = nullptr;
2748  if (isAllZeros) {
2749    Replacement = ConstantAggregateZero::get(getType());
2750  } else if (isAllUndef) {
2751    Replacement = UndefValue::get(getType());
2752  } else {
2753    // Check to see if we have this struct type already.
2754    Lookup.second = makeArrayRef(Values);
2755    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2756      pImpl->StructConstants.find(Lookup);
2757
2758    if (I != pImpl->StructConstants.map_end()) {
2759      Replacement = I->first;
2760    } else {
2761      // Okay, the new shape doesn't exist in the system yet.  Instead of
2762      // creating a new constant struct, inserting it, replaceallusesof'ing the
2763      // old with the new, then deleting the old... just update the current one
2764      // in place!
2765      pImpl->StructConstants.remove(this);
2766
2767      // Update to the new value.
2768      setOperand(OperandToUpdate, ToC);
2769      pImpl->StructConstants.insert(this);
2770      return;
2771    }
2772  }
2773
2774  assert(Replacement != this && "I didn't contain From!");
2775
2776  // Everyone using this now uses the replacement.
2777  replaceAllUsesWith(Replacement);
2778
2779  // Delete the old constant!
2780  destroyConstant();
2781}
2782
2783void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2784                                                 Use *U) {
2785  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2786
2787  SmallVector<Constant*, 8> Values;
2788  Values.reserve(getNumOperands());  // Build replacement array...
2789  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2790    Constant *Val = getOperand(i);
2791    if (Val == From) Val = cast<Constant>(To);
2792    Values.push_back(Val);
2793  }
2794
2795  Constant *Replacement = get(Values);
2796  assert(Replacement != this && "I didn't contain From!");
2797
2798  // Everyone using this now uses the replacement.
2799  replaceAllUsesWith(Replacement);
2800
2801  // Delete the old constant!
2802  destroyConstant();
2803}
2804
2805void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2806                                               Use *U) {
2807  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2808  Constant *To = cast<Constant>(ToV);
2809
2810  SmallVector<Constant*, 8> NewOps;
2811  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2812    Constant *Op = getOperand(i);
2813    NewOps.push_back(Op == From ? To : Op);
2814  }
2815
2816  Constant *Replacement = getWithOperands(NewOps);
2817  assert(Replacement != this && "I didn't contain From!");
2818
2819  // Everyone using this now uses the replacement.
2820  replaceAllUsesWith(Replacement);
2821
2822  // Delete the old constant!
2823  destroyConstant();
2824}
2825
2826Instruction *ConstantExpr::getAsInstruction() {
2827  SmallVector<Value*,4> ValueOperands;
2828  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2829    ValueOperands.push_back(cast<Value>(I));
2830
2831  ArrayRef<Value*> Ops(ValueOperands);
2832
2833  switch (getOpcode()) {
2834  case Instruction::Trunc:
2835  case Instruction::ZExt:
2836  case Instruction::SExt:
2837  case Instruction::FPTrunc:
2838  case Instruction::FPExt:
2839  case Instruction::UIToFP:
2840  case Instruction::SIToFP:
2841  case Instruction::FPToUI:
2842  case Instruction::FPToSI:
2843  case Instruction::PtrToInt:
2844  case Instruction::IntToPtr:
2845  case Instruction::BitCast:
2846  case Instruction::AddrSpaceCast:
2847    return CastInst::Create((Instruction::CastOps)getOpcode(),
2848                            Ops[0], getType());
2849  case Instruction::Select:
2850    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2851  case Instruction::InsertElement:
2852    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2853  case Instruction::ExtractElement:
2854    return ExtractElementInst::Create(Ops[0], Ops[1]);
2855  case Instruction::InsertValue:
2856    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2857  case Instruction::ExtractValue:
2858    return ExtractValueInst::Create(Ops[0], getIndices());
2859  case Instruction::ShuffleVector:
2860    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2861
2862  case Instruction::GetElementPtr:
2863    if (cast<GEPOperator>(this)->isInBounds())
2864      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2865    else
2866      return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2867
2868  case Instruction::ICmp:
2869  case Instruction::FCmp:
2870    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2871                           getPredicate(), Ops[0], Ops[1]);
2872
2873  default:
2874    assert(getNumOperands() == 2 && "Must be binary operator?");
2875    BinaryOperator *BO =
2876      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2877                             Ops[0], Ops[1]);
2878    if (isa<OverflowingBinaryOperator>(BO)) {
2879      BO->setHasNoUnsignedWrap(SubclassOptionalData &
2880                               OverflowingBinaryOperator::NoUnsignedWrap);
2881      BO->setHasNoSignedWrap(SubclassOptionalData &
2882                             OverflowingBinaryOperator::NoSignedWrap);
2883    }
2884    if (isa<PossiblyExactOperator>(BO))
2885      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2886    return BO;
2887  }
2888}
2889