Dominators.cpp revision c2c50cdcdc19a1bca993c06d13d8cdca87083ce4
1//===- Dominators.cpp - Dominator Calculation -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements simple dominator construction algorithms for finding
11// forward dominators.  Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed.  Forward dominators are
13// needed to support the Verifier pass.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/Dominators.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Analysis/DominatorInternals.h"
22#include "llvm/Assembly/Writer.h"
23#include "llvm/Instructions.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30using namespace llvm;
31
32// Always verify dominfo if expensive checking is enabled.
33#ifdef XDEBUG
34static bool VerifyDomInfo = true;
35#else
36static bool VerifyDomInfo = false;
37#endif
38static cl::opt<bool,true>
39VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40               cl::desc("Verify dominator info (time consuming)"));
41
42bool BasicBlockEdge::isSingleEdge() const {
43  const TerminatorInst *TI = Start->getTerminator();
44  unsigned NumEdgesToEnd = 0;
45  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46    if (TI->getSuccessor(i) == End)
47      ++NumEdgesToEnd;
48    if (NumEdgesToEnd >= 2)
49      return false;
50  }
51  assert(NumEdgesToEnd == 1);
52  return true;
53}
54
55//===----------------------------------------------------------------------===//
56//  DominatorTree Implementation
57//===----------------------------------------------------------------------===//
58//
59// Provide public access to DominatorTree information.  Implementation details
60// can be found in DominatorInternals.h.
61//
62//===----------------------------------------------------------------------===//
63
64TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
65TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
66
67char DominatorTree::ID = 0;
68INITIALIZE_PASS(DominatorTree, "domtree",
69                "Dominator Tree Construction", true, true)
70
71bool DominatorTree::runOnFunction(Function &F) {
72  DT->recalculate(F);
73  return false;
74}
75
76void DominatorTree::verifyAnalysis() const {
77  if (!VerifyDomInfo) return;
78
79  Function &F = *getRoot()->getParent();
80
81  DominatorTree OtherDT;
82  OtherDT.getBase().recalculate(F);
83  if (compare(OtherDT)) {
84    errs() << "DominatorTree is not up to date!\nComputed:\n";
85    print(errs());
86    errs() << "\nActual:\n";
87    OtherDT.print(errs());
88    abort();
89  }
90}
91
92void DominatorTree::print(raw_ostream &OS, const Module *) const {
93  DT->print(OS);
94}
95
96// dominates - Return true if Def dominates a use in User. This performs
97// the special checks necessary if Def and User are in the same basic block.
98// Note that Def doesn't dominate a use in Def itself!
99bool DominatorTree::dominates(const Instruction *Def,
100                              const Instruction *User) const {
101  const BasicBlock *UseBB = User->getParent();
102  const BasicBlock *DefBB = Def->getParent();
103
104  // Any unreachable use is dominated, even if Def == User.
105  if (!isReachableFromEntry(UseBB))
106    return true;
107
108  // Unreachable definitions don't dominate anything.
109  if (!isReachableFromEntry(DefBB))
110    return false;
111
112  // An instruction doesn't dominate a use in itself.
113  if (Def == User)
114    return false;
115
116  // The value defined by an invoke dominates an instruction only if
117  // it dominates every instruction in UseBB.
118  // A PHI is dominated only if the instruction dominates every possible use
119  // in the UseBB.
120  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
121    return dominates(Def, UseBB);
122
123  if (DefBB != UseBB)
124    return dominates(DefBB, UseBB);
125
126  // Loop through the basic block until we find Def or User.
127  BasicBlock::const_iterator I = DefBB->begin();
128  for (; &*I != Def && &*I != User; ++I)
129    /*empty*/;
130
131  return &*I == Def;
132}
133
134// true if Def would dominate a use in any instruction in UseBB.
135// note that dominates(Def, Def->getParent()) is false.
136bool DominatorTree::dominates(const Instruction *Def,
137                              const BasicBlock *UseBB) const {
138  const BasicBlock *DefBB = Def->getParent();
139
140  // Any unreachable use is dominated, even if DefBB == UseBB.
141  if (!isReachableFromEntry(UseBB))
142    return true;
143
144  // Unreachable definitions don't dominate anything.
145  if (!isReachableFromEntry(DefBB))
146    return false;
147
148  if (DefBB == UseBB)
149    return false;
150
151  const InvokeInst *II = dyn_cast<InvokeInst>(Def);
152  if (!II)
153    return dominates(DefBB, UseBB);
154
155  // Invoke results are only usable in the normal destination, not in the
156  // exceptional destination.
157  BasicBlock *NormalDest = II->getNormalDest();
158  BasicBlockEdge E(DefBB, NormalDest);
159  return dominates(E, UseBB);
160}
161
162bool DominatorTree::dominates(const BasicBlockEdge &BBE,
163                              const BasicBlock *UseBB) const {
164  // Assert that we have a single edge. We could handle them by simply
165  // returning false, but since isSingleEdge is linear on the number of
166  // edges, the callers can normally handle them more efficiently.
167  assert(BBE.isSingleEdge());
168
169  // If the BB the edge ends in doesn't dominate the use BB, then the
170  // edge also doesn't.
171  const BasicBlock *Start = BBE.getStart();
172  const BasicBlock *End = BBE.getEnd();
173  if (!dominates(End, UseBB))
174    return false;
175
176  // Simple case: if the end BB has a single predecessor, the fact that it
177  // dominates the use block implies that the edge also does.
178  if (End->getSinglePredecessor())
179    return true;
180
181  // The normal edge from the invoke is critical. Conceptually, what we would
182  // like to do is split it and check if the new block dominates the use.
183  // With X being the new block, the graph would look like:
184  //
185  //        DefBB
186  //          /\      .  .
187  //         /  \     .  .
188  //        /    \    .  .
189  //       /      \   |  |
190  //      A        X  B  C
191  //      |         \ | /
192  //      .          \|/
193  //      .      NormalDest
194  //      .
195  //
196  // Given the definition of dominance, NormalDest is dominated by X iff X
197  // dominates all of NormalDest's predecessors (X, B, C in the example). X
198  // trivially dominates itself, so we only have to find if it dominates the
199  // other predecessors. Since the only way out of X is via NormalDest, X can
200  // only properly dominate a node if NormalDest dominates that node too.
201  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
202       PI != E; ++PI) {
203    const BasicBlock *BB = *PI;
204    if (BB == Start)
205      continue;
206
207    if (!dominates(End, BB))
208      return false;
209  }
210  return true;
211}
212
213bool DominatorTree::dominates(const BasicBlockEdge &BBE,
214                              const Use &U) const {
215  // Assert that we have a single edge. We could handle them by simply
216  // returning false, but since isSingleEdge is linear on the number of
217  // edges, the callers can normally handle them more efficiently.
218  assert(BBE.isSingleEdge());
219
220  Instruction *UserInst = cast<Instruction>(U.getUser());
221  // A PHI in the end of the edge is dominated by it.
222  PHINode *PN = dyn_cast<PHINode>(UserInst);
223  if (PN && PN->getParent() == BBE.getEnd() &&
224      PN->getIncomingBlock(U) == BBE.getStart())
225    return true;
226
227  // Otherwise use the edge-dominates-block query, which
228  // handles the crazy critical edge cases properly.
229  const BasicBlock *UseBB;
230  if (PN)
231    UseBB = PN->getIncomingBlock(U);
232  else
233    UseBB = UserInst->getParent();
234  return dominates(BBE, UseBB);
235}
236
237bool DominatorTree::dominates(const Instruction *Def,
238                              const Use &U) const {
239  Instruction *UserInst = cast<Instruction>(U.getUser());
240  const BasicBlock *DefBB = Def->getParent();
241
242  // Determine the block in which the use happens. PHI nodes use
243  // their operands on edges; simulate this by thinking of the use
244  // happening at the end of the predecessor block.
245  const BasicBlock *UseBB;
246  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
247    UseBB = PN->getIncomingBlock(U);
248  else
249    UseBB = UserInst->getParent();
250
251  // Any unreachable use is dominated, even if Def == User.
252  if (!isReachableFromEntry(UseBB))
253    return true;
254
255  // Unreachable definitions don't dominate anything.
256  if (!isReachableFromEntry(DefBB))
257    return false;
258
259  // Invoke instructions define their return values on the edges
260  // to their normal successors, so we have to handle them specially.
261  // Among other things, this means they don't dominate anything in
262  // their own block, except possibly a phi, so we don't need to
263  // walk the block in any case.
264  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
265    BasicBlock *NormalDest = II->getNormalDest();
266    BasicBlockEdge E(DefBB, NormalDest);
267    return dominates(E, U);
268  }
269
270  // If the def and use are in different blocks, do a simple CFG dominator
271  // tree query.
272  if (DefBB != UseBB)
273    return dominates(DefBB, UseBB);
274
275  // Ok, def and use are in the same block. If the def is an invoke, it
276  // doesn't dominate anything in the block. If it's a PHI, it dominates
277  // everything in the block.
278  if (isa<PHINode>(UserInst))
279    return true;
280
281  // Otherwise, just loop through the basic block until we find Def or User.
282  BasicBlock::const_iterator I = DefBB->begin();
283  for (; &*I != Def && &*I != UserInst; ++I)
284    /*empty*/;
285
286  return &*I != UserInst;
287}
288
289bool DominatorTree::isReachableFromEntry(const Use &U) const {
290  Instruction *I = dyn_cast<Instruction>(U.getUser());
291
292  // ConstantExprs aren't really reachable from the entry block, but they
293  // don't need to be treated like unreachable code either.
294  if (!I) return true;
295
296  // PHI nodes use their operands on their incoming edges.
297  if (PHINode *PN = dyn_cast<PHINode>(I))
298    return isReachableFromEntry(PN->getIncomingBlock(U));
299
300  // Everything else uses their operands in their own block.
301  return isReachableFromEntry(I->getParent());
302}
303