Instruction.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- Instruction.cpp - Implement the Instruction class -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Instruction class for the IR library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Instruction.h"
15#include "llvm/IR/CallSite.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/Instructions.h"
18#include "llvm/IR/LeakDetector.h"
19#include "llvm/IR/Module.h"
20#include "llvm/IR/Operator.h"
21#include "llvm/IR/Type.h"
22using namespace llvm;
23
24Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
25                         Instruction *InsertBefore)
26  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
27  // Make sure that we get added to a basicblock
28  LeakDetector::addGarbageObject(this);
29
30  // If requested, insert this instruction into a basic block...
31  if (InsertBefore) {
32    assert(InsertBefore->getParent() &&
33           "Instruction to insert before is not in a basic block!");
34    InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
35  }
36}
37
38const DataLayout *Instruction::getDataLayout() const {
39  return getParent()->getDataLayout();
40}
41
42Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
43                         BasicBlock *InsertAtEnd)
44  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
45  // Make sure that we get added to a basicblock
46  LeakDetector::addGarbageObject(this);
47
48  // append this instruction into the basic block
49  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
50  InsertAtEnd->getInstList().push_back(this);
51}
52
53
54// Out of line virtual method, so the vtable, etc has a home.
55Instruction::~Instruction() {
56  assert(Parent == 0 && "Instruction still linked in the program!");
57  if (hasMetadataHashEntry())
58    clearMetadataHashEntries();
59}
60
61
62void Instruction::setParent(BasicBlock *P) {
63  if (getParent()) {
64    if (!P) LeakDetector::addGarbageObject(this);
65  } else {
66    if (P) LeakDetector::removeGarbageObject(this);
67  }
68
69  Parent = P;
70}
71
72void Instruction::removeFromParent() {
73  getParent()->getInstList().remove(this);
74}
75
76void Instruction::eraseFromParent() {
77  getParent()->getInstList().erase(this);
78}
79
80/// insertBefore - Insert an unlinked instructions into a basic block
81/// immediately before the specified instruction.
82void Instruction::insertBefore(Instruction *InsertPos) {
83  InsertPos->getParent()->getInstList().insert(InsertPos, this);
84}
85
86/// insertAfter - Insert an unlinked instructions into a basic block
87/// immediately after the specified instruction.
88void Instruction::insertAfter(Instruction *InsertPos) {
89  InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
90}
91
92/// moveBefore - Unlink this instruction from its current basic block and
93/// insert it into the basic block that MovePos lives in, right before
94/// MovePos.
95void Instruction::moveBefore(Instruction *MovePos) {
96  MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
97                                             this);
98}
99
100/// Set or clear the unsafe-algebra flag on this instruction, which must be an
101/// operator which supports this flag. See LangRef.html for the meaning of this
102/// flag.
103void Instruction::setHasUnsafeAlgebra(bool B) {
104  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
105  cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
106}
107
108/// Set or clear the NoNaNs flag on this instruction, which must be an operator
109/// which supports this flag. See LangRef.html for the meaning of this flag.
110void Instruction::setHasNoNaNs(bool B) {
111  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
112  cast<FPMathOperator>(this)->setHasNoNaNs(B);
113}
114
115/// Set or clear the no-infs flag on this instruction, which must be an operator
116/// which supports this flag. See LangRef.html for the meaning of this flag.
117void Instruction::setHasNoInfs(bool B) {
118  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
119  cast<FPMathOperator>(this)->setHasNoInfs(B);
120}
121
122/// Set or clear the no-signed-zeros flag on this instruction, which must be an
123/// operator which supports this flag. See LangRef.html for the meaning of this
124/// flag.
125void Instruction::setHasNoSignedZeros(bool B) {
126  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
127  cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
128}
129
130/// Set or clear the allow-reciprocal flag on this instruction, which must be an
131/// operator which supports this flag. See LangRef.html for the meaning of this
132/// flag.
133void Instruction::setHasAllowReciprocal(bool B) {
134  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
135  cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
136}
137
138/// Convenience function for setting all the fast-math flags on this
139/// instruction, which must be an operator which supports these flags. See
140/// LangRef.html for the meaning of these flats.
141void Instruction::setFastMathFlags(FastMathFlags FMF) {
142  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
143  cast<FPMathOperator>(this)->setFastMathFlags(FMF);
144}
145
146/// Determine whether the unsafe-algebra flag is set.
147bool Instruction::hasUnsafeAlgebra() const {
148  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
149  return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
150}
151
152/// Determine whether the no-NaNs flag is set.
153bool Instruction::hasNoNaNs() const {
154  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
155  return cast<FPMathOperator>(this)->hasNoNaNs();
156}
157
158/// Determine whether the no-infs flag is set.
159bool Instruction::hasNoInfs() const {
160  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
161  return cast<FPMathOperator>(this)->hasNoInfs();
162}
163
164/// Determine whether the no-signed-zeros flag is set.
165bool Instruction::hasNoSignedZeros() const {
166  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
167  return cast<FPMathOperator>(this)->hasNoSignedZeros();
168}
169
170/// Determine whether the allow-reciprocal flag is set.
171bool Instruction::hasAllowReciprocal() const {
172  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
173  return cast<FPMathOperator>(this)->hasAllowReciprocal();
174}
175
176/// Convenience function for getting all the fast-math flags, which must be an
177/// operator which supports these flags. See LangRef.html for the meaning of
178/// these flats.
179FastMathFlags Instruction::getFastMathFlags() const {
180  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
181  return cast<FPMathOperator>(this)->getFastMathFlags();
182}
183
184/// Copy I's fast-math flags
185void Instruction::copyFastMathFlags(const Instruction *I) {
186  setFastMathFlags(I->getFastMathFlags());
187}
188
189
190const char *Instruction::getOpcodeName(unsigned OpCode) {
191  switch (OpCode) {
192  // Terminators
193  case Ret:    return "ret";
194  case Br:     return "br";
195  case Switch: return "switch";
196  case IndirectBr: return "indirectbr";
197  case Invoke: return "invoke";
198  case Resume: return "resume";
199  case Unreachable: return "unreachable";
200
201  // Standard binary operators...
202  case Add: return "add";
203  case FAdd: return "fadd";
204  case Sub: return "sub";
205  case FSub: return "fsub";
206  case Mul: return "mul";
207  case FMul: return "fmul";
208  case UDiv: return "udiv";
209  case SDiv: return "sdiv";
210  case FDiv: return "fdiv";
211  case URem: return "urem";
212  case SRem: return "srem";
213  case FRem: return "frem";
214
215  // Logical operators...
216  case And: return "and";
217  case Or : return "or";
218  case Xor: return "xor";
219
220  // Memory instructions...
221  case Alloca:        return "alloca";
222  case Load:          return "load";
223  case Store:         return "store";
224  case AtomicCmpXchg: return "cmpxchg";
225  case AtomicRMW:     return "atomicrmw";
226  case Fence:         return "fence";
227  case GetElementPtr: return "getelementptr";
228
229  // Convert instructions...
230  case Trunc:         return "trunc";
231  case ZExt:          return "zext";
232  case SExt:          return "sext";
233  case FPTrunc:       return "fptrunc";
234  case FPExt:         return "fpext";
235  case FPToUI:        return "fptoui";
236  case FPToSI:        return "fptosi";
237  case UIToFP:        return "uitofp";
238  case SIToFP:        return "sitofp";
239  case IntToPtr:      return "inttoptr";
240  case PtrToInt:      return "ptrtoint";
241  case BitCast:       return "bitcast";
242  case AddrSpaceCast: return "addrspacecast";
243
244  // Other instructions...
245  case ICmp:           return "icmp";
246  case FCmp:           return "fcmp";
247  case PHI:            return "phi";
248  case Select:         return "select";
249  case Call:           return "call";
250  case Shl:            return "shl";
251  case LShr:           return "lshr";
252  case AShr:           return "ashr";
253  case VAArg:          return "va_arg";
254  case ExtractElement: return "extractelement";
255  case InsertElement:  return "insertelement";
256  case ShuffleVector:  return "shufflevector";
257  case ExtractValue:   return "extractvalue";
258  case InsertValue:    return "insertvalue";
259  case LandingPad:     return "landingpad";
260
261  default: return "<Invalid operator> ";
262  }
263}
264
265/// isIdenticalTo - Return true if the specified instruction is exactly
266/// identical to the current one.  This means that all operands match and any
267/// extra information (e.g. load is volatile) agree.
268bool Instruction::isIdenticalTo(const Instruction *I) const {
269  return isIdenticalToWhenDefined(I) &&
270         SubclassOptionalData == I->SubclassOptionalData;
271}
272
273/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
274/// ignores the SubclassOptionalData flags, which specify conditions
275/// under which the instruction's result is undefined.
276bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
277  if (getOpcode() != I->getOpcode() ||
278      getNumOperands() != I->getNumOperands() ||
279      getType() != I->getType())
280    return false;
281
282  // We have two instructions of identical opcode and #operands.  Check to see
283  // if all operands are the same.
284  if (!std::equal(op_begin(), op_end(), I->op_begin()))
285    return false;
286
287  // Check special state that is a part of some instructions.
288  if (const LoadInst *LI = dyn_cast<LoadInst>(this))
289    return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
290           LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
291           LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
292           LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
293  if (const StoreInst *SI = dyn_cast<StoreInst>(this))
294    return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
295           SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
296           SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
297           SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
298  if (const CmpInst *CI = dyn_cast<CmpInst>(this))
299    return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
300  if (const CallInst *CI = dyn_cast<CallInst>(this))
301    return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
302           CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
303           CI->getAttributes() == cast<CallInst>(I)->getAttributes();
304  if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
305    return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
306           CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
307  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
308    return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
309  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
310    return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
311  if (const FenceInst *FI = dyn_cast<FenceInst>(this))
312    return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
313           FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
314  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
315    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
316           CXI->getSuccessOrdering() ==
317               cast<AtomicCmpXchgInst>(I)->getSuccessOrdering() &&
318           CXI->getFailureOrdering() ==
319               cast<AtomicCmpXchgInst>(I)->getFailureOrdering() &&
320           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
321  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
322    return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
323           RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
324           RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
325           RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
326  if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
327    const PHINode *otherPHI = cast<PHINode>(I);
328    return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
329                      otherPHI->block_begin());
330  }
331  return true;
332}
333
334// isSameOperationAs
335// This should be kept in sync with isEquivalentOperation in
336// lib/Transforms/IPO/MergeFunctions.cpp.
337bool Instruction::isSameOperationAs(const Instruction *I,
338                                    unsigned flags) const {
339  bool IgnoreAlignment = flags & CompareIgnoringAlignment;
340  bool UseScalarTypes  = flags & CompareUsingScalarTypes;
341
342  if (getOpcode() != I->getOpcode() ||
343      getNumOperands() != I->getNumOperands() ||
344      (UseScalarTypes ?
345       getType()->getScalarType() != I->getType()->getScalarType() :
346       getType() != I->getType()))
347    return false;
348
349  // We have two instructions of identical opcode and #operands.  Check to see
350  // if all operands are the same type
351  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
352    if (UseScalarTypes ?
353        getOperand(i)->getType()->getScalarType() !=
354          I->getOperand(i)->getType()->getScalarType() :
355        getOperand(i)->getType() != I->getOperand(i)->getType())
356      return false;
357
358  // Check special state that is a part of some instructions.
359  if (const LoadInst *LI = dyn_cast<LoadInst>(this))
360    return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
361           (LI->getAlignment() == cast<LoadInst>(I)->getAlignment() ||
362            IgnoreAlignment) &&
363           LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
364           LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
365  if (const StoreInst *SI = dyn_cast<StoreInst>(this))
366    return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
367           (SI->getAlignment() == cast<StoreInst>(I)->getAlignment() ||
368            IgnoreAlignment) &&
369           SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
370           SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
371  if (const CmpInst *CI = dyn_cast<CmpInst>(this))
372    return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
373  if (const CallInst *CI = dyn_cast<CallInst>(this))
374    return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
375           CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
376           CI->getAttributes() == cast<CallInst>(I)->getAttributes();
377  if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
378    return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
379           CI->getAttributes() ==
380             cast<InvokeInst>(I)->getAttributes();
381  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
382    return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
383  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
384    return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
385  if (const FenceInst *FI = dyn_cast<FenceInst>(this))
386    return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
387           FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
388  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
389    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
390           CXI->getSuccessOrdering() ==
391               cast<AtomicCmpXchgInst>(I)->getSuccessOrdering() &&
392           CXI->getFailureOrdering() ==
393               cast<AtomicCmpXchgInst>(I)->getFailureOrdering() &&
394           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
395  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
396    return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
397           RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
398           RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
399           RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
400
401  return true;
402}
403
404/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
405/// specified block.  Note that PHI nodes are considered to evaluate their
406/// operands in the corresponding predecessor block.
407bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
408  for (const Use &U : uses()) {
409    // PHI nodes uses values in the corresponding predecessor block.  For other
410    // instructions, just check to see whether the parent of the use matches up.
411    const Instruction *I = cast<Instruction>(U.getUser());
412    const PHINode *PN = dyn_cast<PHINode>(I);
413    if (PN == 0) {
414      if (I->getParent() != BB)
415        return true;
416      continue;
417    }
418
419    if (PN->getIncomingBlock(U) != BB)
420      return true;
421  }
422  return false;
423}
424
425/// mayReadFromMemory - Return true if this instruction may read memory.
426///
427bool Instruction::mayReadFromMemory() const {
428  switch (getOpcode()) {
429  default: return false;
430  case Instruction::VAArg:
431  case Instruction::Load:
432  case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
433  case Instruction::AtomicCmpXchg:
434  case Instruction::AtomicRMW:
435    return true;
436  case Instruction::Call:
437    return !cast<CallInst>(this)->doesNotAccessMemory();
438  case Instruction::Invoke:
439    return !cast<InvokeInst>(this)->doesNotAccessMemory();
440  case Instruction::Store:
441    return !cast<StoreInst>(this)->isUnordered();
442  }
443}
444
445/// mayWriteToMemory - Return true if this instruction may modify memory.
446///
447bool Instruction::mayWriteToMemory() const {
448  switch (getOpcode()) {
449  default: return false;
450  case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
451  case Instruction::Store:
452  case Instruction::VAArg:
453  case Instruction::AtomicCmpXchg:
454  case Instruction::AtomicRMW:
455    return true;
456  case Instruction::Call:
457    return !cast<CallInst>(this)->onlyReadsMemory();
458  case Instruction::Invoke:
459    return !cast<InvokeInst>(this)->onlyReadsMemory();
460  case Instruction::Load:
461    return !cast<LoadInst>(this)->isUnordered();
462  }
463}
464
465bool Instruction::mayThrow() const {
466  if (const CallInst *CI = dyn_cast<CallInst>(this))
467    return !CI->doesNotThrow();
468  return isa<ResumeInst>(this);
469}
470
471bool Instruction::mayReturn() const {
472  if (const CallInst *CI = dyn_cast<CallInst>(this))
473    return !CI->doesNotReturn();
474  return true;
475}
476
477/// isAssociative - Return true if the instruction is associative:
478///
479///   Associative operators satisfy:  x op (y op z) === (x op y) op z
480///
481/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
482///
483bool Instruction::isAssociative(unsigned Opcode) {
484  return Opcode == And || Opcode == Or || Opcode == Xor ||
485         Opcode == Add || Opcode == Mul;
486}
487
488bool Instruction::isAssociative() const {
489  unsigned Opcode = getOpcode();
490  if (isAssociative(Opcode))
491    return true;
492
493  switch (Opcode) {
494  case FMul:
495  case FAdd:
496    return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
497  default:
498    return false;
499  }
500}
501
502/// isCommutative - Return true if the instruction is commutative:
503///
504///   Commutative operators satisfy: (x op y) === (y op x)
505///
506/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
507/// applied to any type.
508///
509bool Instruction::isCommutative(unsigned op) {
510  switch (op) {
511  case Add:
512  case FAdd:
513  case Mul:
514  case FMul:
515  case And:
516  case Or:
517  case Xor:
518    return true;
519  default:
520    return false;
521  }
522}
523
524/// isIdempotent - Return true if the instruction is idempotent:
525///
526///   Idempotent operators satisfy:  x op x === x
527///
528/// In LLVM, the And and Or operators are idempotent.
529///
530bool Instruction::isIdempotent(unsigned Opcode) {
531  return Opcode == And || Opcode == Or;
532}
533
534/// isNilpotent - Return true if the instruction is nilpotent:
535///
536///   Nilpotent operators satisfy:  x op x === Id,
537///
538///   where Id is the identity for the operator, i.e. a constant such that
539///     x op Id === x and Id op x === x for all x.
540///
541/// In LLVM, the Xor operator is nilpotent.
542///
543bool Instruction::isNilpotent(unsigned Opcode) {
544  return Opcode == Xor;
545}
546
547Instruction *Instruction::clone() const {
548  Instruction *New = clone_impl();
549  New->SubclassOptionalData = SubclassOptionalData;
550  if (!hasMetadata())
551    return New;
552
553  // Otherwise, enumerate and copy over metadata from the old instruction to the
554  // new one.
555  SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
556  getAllMetadataOtherThanDebugLoc(TheMDs);
557  for (const auto &MD : TheMDs)
558    New->setMetadata(MD.first, MD.second);
559
560  New->setDebugLoc(getDebugLoc());
561  return New;
562}
563