1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/IR/Instructions.h"
16#include "LLVMContextImpl.h"
17#include "llvm/IR/CallSite.h"
18#include "llvm/IR/ConstantRange.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//                            CallSite Class
31//===----------------------------------------------------------------------===//
32
33User::op_iterator CallSite::getCallee() const {
34  Instruction *II(getInstruction());
35  return isCall()
36    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38}
39
40//===----------------------------------------------------------------------===//
41//                            TerminatorInst Class
42//===----------------------------------------------------------------------===//
43
44// Out of line virtual method, so the vtable, etc has a home.
45TerminatorInst::~TerminatorInst() {
46}
47
48//===----------------------------------------------------------------------===//
49//                           UnaryInstruction Class
50//===----------------------------------------------------------------------===//
51
52// Out of line virtual method, so the vtable, etc has a home.
53UnaryInstruction::~UnaryInstruction() {
54}
55
56//===----------------------------------------------------------------------===//
57//                              SelectInst Class
58//===----------------------------------------------------------------------===//
59
60/// areInvalidOperands - Return a string if the specified operands are invalid
61/// for a select operation, otherwise return null.
62const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63  if (Op1->getType() != Op2->getType())
64    return "both values to select must have same type";
65
66  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67    // Vector select.
68    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69      return "vector select condition element type must be i1";
70    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71    if (!ET)
72      return "selected values for vector select must be vectors";
73    if (ET->getNumElements() != VT->getNumElements())
74      return "vector select requires selected vectors to have "
75                   "the same vector length as select condition";
76  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77    return "select condition must be i1 or <n x i1>";
78  }
79  return nullptr;
80}
81
82
83//===----------------------------------------------------------------------===//
84//                               PHINode Class
85//===----------------------------------------------------------------------===//
86
87PHINode::PHINode(const PHINode &PN)
88  : Instruction(PN.getType(), Instruction::PHI,
89                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90    ReservedSpace(PN.getNumOperands()) {
91  std::copy(PN.op_begin(), PN.op_end(), op_begin());
92  std::copy(PN.block_begin(), PN.block_end(), block_begin());
93  SubclassOptionalData = PN.SubclassOptionalData;
94}
95
96PHINode::~PHINode() {
97  dropHungoffUses();
98}
99
100Use *PHINode::allocHungoffUses(unsigned N) const {
101  // Allocate the array of Uses of the incoming values, followed by a pointer
102  // (with bottom bit set) to the User, followed by the array of pointers to
103  // the incoming basic blocks.
104  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105    + N * sizeof(BasicBlock*);
106  Use *Begin = static_cast<Use*>(::operator new(size));
107  Use *End = Begin + N;
108  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109  return Use::initTags(Begin, End);
110}
111
112// removeIncomingValue - Remove an incoming value.  This is useful if a
113// predecessor basic block is deleted.
114Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115  Value *Removed = getIncomingValue(Idx);
116
117  // Move everything after this operand down.
118  //
119  // FIXME: we could just swap with the end of the list, then erase.  However,
120  // clients might not expect this to happen.  The code as it is thrashes the
121  // use/def lists, which is kinda lame.
122  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125  // Nuke the last value.
126  Op<-1>().set(nullptr);
127  --NumOperands;
128
129  // If the PHI node is dead, because it has zero entries, nuke it now.
130  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131    // If anyone is using this PHI, make them use a dummy value instead...
132    replaceAllUsesWith(UndefValue::get(getType()));
133    eraseFromParent();
134  }
135  return Removed;
136}
137
138/// growOperands - grow operands - This grows the operand list in response
139/// to a push_back style of operation.  This grows the number of ops by 1.5
140/// times.
141///
142void PHINode::growOperands() {
143  unsigned e = getNumOperands();
144  unsigned NumOps = e + e / 2;
145  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
146
147  Use *OldOps = op_begin();
148  BasicBlock **OldBlocks = block_begin();
149
150  ReservedSpace = NumOps;
151  OperandList = allocHungoffUses(ReservedSpace);
152
153  std::copy(OldOps, OldOps + e, op_begin());
154  std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156  Use::zap(OldOps, OldOps + e, true);
157}
158
159/// hasConstantValue - If the specified PHI node always merges together the same
160/// value, return the value, otherwise return null.
161Value *PHINode::hasConstantValue() const {
162  // Exploit the fact that phi nodes always have at least one entry.
163  Value *ConstantValue = getIncomingValue(0);
164  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166      if (ConstantValue != this)
167        return nullptr; // Incoming values not all the same.
168       // The case where the first value is this PHI.
169      ConstantValue = getIncomingValue(i);
170    }
171  if (ConstantValue == this)
172    return UndefValue::get(getType());
173  return ConstantValue;
174}
175
176//===----------------------------------------------------------------------===//
177//                       LandingPadInst Implementation
178//===----------------------------------------------------------------------===//
179
180LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                               unsigned NumReservedValues, const Twine &NameStr,
182                               Instruction *InsertBefore)
183  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
184  init(PersonalityFn, 1 + NumReservedValues, NameStr);
185}
186
187LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188                               unsigned NumReservedValues, const Twine &NameStr,
189                               BasicBlock *InsertAtEnd)
190  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
191  init(PersonalityFn, 1 + NumReservedValues, NameStr);
192}
193
194LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195  : Instruction(LP.getType(), Instruction::LandingPad,
196                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197    ReservedSpace(LP.getNumOperands()) {
198  Use *OL = OperandList, *InOL = LP.OperandList;
199  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200    OL[I] = InOL[I];
201
202  setCleanup(LP.isCleanup());
203}
204
205LandingPadInst::~LandingPadInst() {
206  dropHungoffUses();
207}
208
209LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210                                       unsigned NumReservedClauses,
211                                       const Twine &NameStr,
212                                       Instruction *InsertBefore) {
213  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214                            InsertBefore);
215}
216
217LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218                                       unsigned NumReservedClauses,
219                                       const Twine &NameStr,
220                                       BasicBlock *InsertAtEnd) {
221  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222                            InsertAtEnd);
223}
224
225void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226                          const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
228  NumOperands = 1;
229  OperandList = allocHungoffUses(ReservedSpace);
230  OperandList[0] = PersFn;
231  setName(NameStr);
232  setCleanup(false);
233}
234
235/// growOperands - grow operands - This grows the operand list in response to a
236/// push_back style of operation. This grows the number of ops by 2 times.
237void LandingPadInst::growOperands(unsigned Size) {
238  unsigned e = getNumOperands();
239  if (ReservedSpace >= e + Size) return;
240  ReservedSpace = (e + Size / 2) * 2;
241
242  Use *NewOps = allocHungoffUses(ReservedSpace);
243  Use *OldOps = OperandList;
244  for (unsigned i = 0; i != e; ++i)
245      NewOps[i] = OldOps[i];
246
247  OperandList = NewOps;
248  Use::zap(OldOps, OldOps + e, true);
249}
250
251void LandingPadInst::addClause(Constant *Val) {
252  unsigned OpNo = getNumOperands();
253  growOperands(1);
254  assert(OpNo < ReservedSpace && "Growing didn't work!");
255  ++NumOperands;
256  OperandList[OpNo] = Val;
257}
258
259//===----------------------------------------------------------------------===//
260//                        CallInst Implementation
261//===----------------------------------------------------------------------===//
262
263CallInst::~CallInst() {
264}
265
266void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268  Op<-1>() = Func;
269
270#ifndef NDEBUG
271  FunctionType *FTy =
272    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274  assert((Args.size() == FTy->getNumParams() ||
275          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276         "Calling a function with bad signature!");
277
278  for (unsigned i = 0; i != Args.size(); ++i)
279    assert((i >= FTy->getNumParams() ||
280            FTy->getParamType(i) == Args[i]->getType()) &&
281           "Calling a function with a bad signature!");
282#endif
283
284  std::copy(Args.begin(), Args.end(), op_begin());
285  setName(NameStr);
286}
287
288void CallInst::init(Value *Func, const Twine &NameStr) {
289  assert(NumOperands == 1 && "NumOperands not set up?");
290  Op<-1>() = Func;
291
292#ifndef NDEBUG
293  FunctionType *FTy =
294    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297#endif
298
299  setName(NameStr);
300}
301
302CallInst::CallInst(Value *Func, const Twine &Name,
303                   Instruction *InsertBefore)
304  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305                                   ->getElementType())->getReturnType(),
306                Instruction::Call,
307                OperandTraits<CallInst>::op_end(this) - 1,
308                1, InsertBefore) {
309  init(Func, Name);
310}
311
312CallInst::CallInst(Value *Func, const Twine &Name,
313                   BasicBlock *InsertAtEnd)
314  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315                                   ->getElementType())->getReturnType(),
316                Instruction::Call,
317                OperandTraits<CallInst>::op_end(this) - 1,
318                1, InsertAtEnd) {
319  init(Func, Name);
320}
321
322CallInst::CallInst(const CallInst &CI)
323  : Instruction(CI.getType(), Instruction::Call,
324                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325                CI.getNumOperands()) {
326  setAttributes(CI.getAttributes());
327  setTailCallKind(CI.getTailCallKind());
328  setCallingConv(CI.getCallingConv());
329
330  std::copy(CI.op_begin(), CI.op_end(), op_begin());
331  SubclassOptionalData = CI.SubclassOptionalData;
332}
333
334void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335  AttributeSet PAL = getAttributes();
336  PAL = PAL.addAttribute(getContext(), i, attr);
337  setAttributes(PAL);
338}
339
340void CallInst::removeAttribute(unsigned i, Attribute attr) {
341  AttributeSet PAL = getAttributes();
342  AttrBuilder B(attr);
343  LLVMContext &Context = getContext();
344  PAL = PAL.removeAttributes(Context, i,
345                             AttributeSet::get(Context, i, B));
346  setAttributes(PAL);
347}
348
349bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
350  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351    return true;
352  if (const Function *F = getCalledFunction())
353    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354  return false;
355}
356
357bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358  if (AttributeList.hasAttribute(i, A))
359    return true;
360  if (const Function *F = getCalledFunction())
361    return F->getAttributes().hasAttribute(i, A);
362  return false;
363}
364
365/// IsConstantOne - Return true only if val is constant int 1
366static bool IsConstantOne(Value *val) {
367  assert(val && "IsConstantOne does not work with NULL val");
368  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369}
370
371static Instruction *createMalloc(Instruction *InsertBefore,
372                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
373                                 Type *AllocTy, Value *AllocSize,
374                                 Value *ArraySize, Function *MallocF,
375                                 const Twine &Name) {
376  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377         "createMalloc needs either InsertBefore or InsertAtEnd");
378
379  // malloc(type) becomes:
380  //       bitcast (i8* malloc(typeSize)) to type*
381  // malloc(type, arraySize) becomes:
382  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
383  if (!ArraySize)
384    ArraySize = ConstantInt::get(IntPtrTy, 1);
385  else if (ArraySize->getType() != IntPtrTy) {
386    if (InsertBefore)
387      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388                                              "", InsertBefore);
389    else
390      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391                                              "", InsertAtEnd);
392  }
393
394  if (!IsConstantOne(ArraySize)) {
395    if (IsConstantOne(AllocSize)) {
396      AllocSize = ArraySize;         // Operand * 1 = Operand
397    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399                                                     false /*ZExt*/);
400      // Malloc arg is constant product of type size and array size
401      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402    } else {
403      // Multiply type size by the array size...
404      if (InsertBefore)
405        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406                                              "mallocsize", InsertBefore);
407      else
408        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409                                              "mallocsize", InsertAtEnd);
410    }
411  }
412
413  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414  // Create the call to Malloc.
415  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416  Module* M = BB->getParent()->getParent();
417  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418  Value *MallocFunc = MallocF;
419  if (!MallocFunc)
420    // prototype malloc as "void *malloc(size_t)"
421    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423  CallInst *MCall = nullptr;
424  Instruction *Result = nullptr;
425  if (InsertBefore) {
426    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427    Result = MCall;
428    if (Result->getType() != AllocPtrType)
429      // Create a cast instruction to convert to the right type...
430      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431  } else {
432    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433    Result = MCall;
434    if (Result->getType() != AllocPtrType) {
435      InsertAtEnd->getInstList().push_back(MCall);
436      // Create a cast instruction to convert to the right type...
437      Result = new BitCastInst(MCall, AllocPtrType, Name);
438    }
439  }
440  MCall->setTailCall();
441  if (Function *F = dyn_cast<Function>(MallocFunc)) {
442    MCall->setCallingConv(F->getCallingConv());
443    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444  }
445  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447  return Result;
448}
449
450/// CreateMalloc - Generate the IR for a call to malloc:
451/// 1. Compute the malloc call's argument as the specified type's size,
452///    possibly multiplied by the array size if the array size is not
453///    constant 1.
454/// 2. Call malloc with that argument.
455/// 3. Bitcast the result of the malloc call to the specified type.
456Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457                                    Type *IntPtrTy, Type *AllocTy,
458                                    Value *AllocSize, Value *ArraySize,
459                                    Function * MallocF,
460                                    const Twine &Name) {
461  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
462                      ArraySize, MallocF, Name);
463}
464
465/// CreateMalloc - Generate the IR for a call to malloc:
466/// 1. Compute the malloc call's argument as the specified type's size,
467///    possibly multiplied by the array size if the array size is not
468///    constant 1.
469/// 2. Call malloc with that argument.
470/// 3. Bitcast the result of the malloc call to the specified type.
471/// Note: This function does not add the bitcast to the basic block, that is the
472/// responsibility of the caller.
473Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474                                    Type *IntPtrTy, Type *AllocTy,
475                                    Value *AllocSize, Value *ArraySize,
476                                    Function *MallocF, const Twine &Name) {
477  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478                      ArraySize, MallocF, Name);
479}
480
481static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482                               BasicBlock *InsertAtEnd) {
483  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484         "createFree needs either InsertBefore or InsertAtEnd");
485  assert(Source->getType()->isPointerTy() &&
486         "Can not free something of nonpointer type!");
487
488  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489  Module* M = BB->getParent()->getParent();
490
491  Type *VoidTy = Type::getVoidTy(M->getContext());
492  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493  // prototype free as "void free(void*)"
494  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495  CallInst* Result = nullptr;
496  Value *PtrCast = Source;
497  if (InsertBefore) {
498    if (Source->getType() != IntPtrTy)
499      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501  } else {
502    if (Source->getType() != IntPtrTy)
503      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504    Result = CallInst::Create(FreeFunc, PtrCast, "");
505  }
506  Result->setTailCall();
507  if (Function *F = dyn_cast<Function>(FreeFunc))
508    Result->setCallingConv(F->getCallingConv());
509
510  return Result;
511}
512
513/// CreateFree - Generate the IR for a call to the builtin free function.
514Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515  return createFree(Source, InsertBefore, nullptr);
516}
517
518/// CreateFree - Generate the IR for a call to the builtin free function.
519/// Note: This function does not add the call to the basic block, that is the
520/// responsibility of the caller.
521Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522  Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
523  assert(FreeCall && "CreateFree did not create a CallInst");
524  return FreeCall;
525}
526
527//===----------------------------------------------------------------------===//
528//                        InvokeInst Implementation
529//===----------------------------------------------------------------------===//
530
531void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532                      ArrayRef<Value *> Args, const Twine &NameStr) {
533  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534  Op<-3>() = Fn;
535  Op<-2>() = IfNormal;
536  Op<-1>() = IfException;
537
538#ifndef NDEBUG
539  FunctionType *FTy =
540    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542  assert(((Args.size() == FTy->getNumParams()) ||
543          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544         "Invoking a function with bad signature");
545
546  for (unsigned i = 0, e = Args.size(); i != e; i++)
547    assert((i >= FTy->getNumParams() ||
548            FTy->getParamType(i) == Args[i]->getType()) &&
549           "Invoking a function with a bad signature!");
550#endif
551
552  std::copy(Args.begin(), Args.end(), op_begin());
553  setName(NameStr);
554}
555
556InvokeInst::InvokeInst(const InvokeInst &II)
557  : TerminatorInst(II.getType(), Instruction::Invoke,
558                   OperandTraits<InvokeInst>::op_end(this)
559                   - II.getNumOperands(),
560                   II.getNumOperands()) {
561  setAttributes(II.getAttributes());
562  setCallingConv(II.getCallingConv());
563  std::copy(II.op_begin(), II.op_end(), op_begin());
564  SubclassOptionalData = II.SubclassOptionalData;
565}
566
567BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568  return getSuccessor(idx);
569}
570unsigned InvokeInst::getNumSuccessorsV() const {
571  return getNumSuccessors();
572}
573void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574  return setSuccessor(idx, B);
575}
576
577bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
578  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579    return true;
580  if (const Function *F = getCalledFunction())
581    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582  return false;
583}
584
585bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586  if (AttributeList.hasAttribute(i, A))
587    return true;
588  if (const Function *F = getCalledFunction())
589    return F->getAttributes().hasAttribute(i, A);
590  return false;
591}
592
593void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594  AttributeSet PAL = getAttributes();
595  PAL = PAL.addAttribute(getContext(), i, attr);
596  setAttributes(PAL);
597}
598
599void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600  AttributeSet PAL = getAttributes();
601  AttrBuilder B(attr);
602  PAL = PAL.removeAttributes(getContext(), i,
603                             AttributeSet::get(getContext(), i, B));
604  setAttributes(PAL);
605}
606
607LandingPadInst *InvokeInst::getLandingPadInst() const {
608  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609}
610
611//===----------------------------------------------------------------------===//
612//                        ReturnInst Implementation
613//===----------------------------------------------------------------------===//
614
615ReturnInst::ReturnInst(const ReturnInst &RI)
616  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617                   OperandTraits<ReturnInst>::op_end(this) -
618                     RI.getNumOperands(),
619                   RI.getNumOperands()) {
620  if (RI.getNumOperands())
621    Op<0>() = RI.Op<0>();
622  SubclassOptionalData = RI.SubclassOptionalData;
623}
624
625ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628                   InsertBefore) {
629  if (retVal)
630    Op<0>() = retVal;
631}
632ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635                   InsertAtEnd) {
636  if (retVal)
637    Op<0>() = retVal;
638}
639ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642}
643
644unsigned ReturnInst::getNumSuccessorsV() const {
645  return getNumSuccessors();
646}
647
648/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649/// emit the vtable for the class in this translation unit.
650void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651  llvm_unreachable("ReturnInst has no successors!");
652}
653
654BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655  llvm_unreachable("ReturnInst has no successors!");
656}
657
658ReturnInst::~ReturnInst() {
659}
660
661//===----------------------------------------------------------------------===//
662//                        ResumeInst Implementation
663//===----------------------------------------------------------------------===//
664
665ResumeInst::ResumeInst(const ResumeInst &RI)
666  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667                   OperandTraits<ResumeInst>::op_begin(this), 1) {
668  Op<0>() = RI.Op<0>();
669}
670
671ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674  Op<0>() = Exn;
675}
676
677ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680  Op<0>() = Exn;
681}
682
683unsigned ResumeInst::getNumSuccessorsV() const {
684  return getNumSuccessors();
685}
686
687void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688  llvm_unreachable("ResumeInst has no successors!");
689}
690
691BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692  llvm_unreachable("ResumeInst has no successors!");
693}
694
695//===----------------------------------------------------------------------===//
696//                      UnreachableInst Implementation
697//===----------------------------------------------------------------------===//
698
699UnreachableInst::UnreachableInst(LLVMContext &Context,
700                                 Instruction *InsertBefore)
701  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702                   nullptr, 0, InsertBefore) {
703}
704UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706                   nullptr, 0, InsertAtEnd) {
707}
708
709unsigned UnreachableInst::getNumSuccessorsV() const {
710  return getNumSuccessors();
711}
712
713void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714  llvm_unreachable("UnreachableInst has no successors!");
715}
716
717BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718  llvm_unreachable("UnreachableInst has no successors!");
719}
720
721//===----------------------------------------------------------------------===//
722//                        BranchInst Implementation
723//===----------------------------------------------------------------------===//
724
725void BranchInst::AssertOK() {
726  if (isConditional())
727    assert(getCondition()->getType()->isIntegerTy(1) &&
728           "May only branch on boolean predicates!");
729}
730
731BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733                   OperandTraits<BranchInst>::op_end(this) - 1,
734                   1, InsertBefore) {
735  assert(IfTrue && "Branch destination may not be null!");
736  Op<-1>() = IfTrue;
737}
738BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739                       Instruction *InsertBefore)
740  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741                   OperandTraits<BranchInst>::op_end(this) - 3,
742                   3, InsertBefore) {
743  Op<-1>() = IfTrue;
744  Op<-2>() = IfFalse;
745  Op<-3>() = Cond;
746#ifndef NDEBUG
747  AssertOK();
748#endif
749}
750
751BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753                   OperandTraits<BranchInst>::op_end(this) - 1,
754                   1, InsertAtEnd) {
755  assert(IfTrue && "Branch destination may not be null!");
756  Op<-1>() = IfTrue;
757}
758
759BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760           BasicBlock *InsertAtEnd)
761  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762                   OperandTraits<BranchInst>::op_end(this) - 3,
763                   3, InsertAtEnd) {
764  Op<-1>() = IfTrue;
765  Op<-2>() = IfFalse;
766  Op<-3>() = Cond;
767#ifndef NDEBUG
768  AssertOK();
769#endif
770}
771
772
773BranchInst::BranchInst(const BranchInst &BI) :
774  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776                 BI.getNumOperands()) {
777  Op<-1>() = BI.Op<-1>();
778  if (BI.getNumOperands() != 1) {
779    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780    Op<-3>() = BI.Op<-3>();
781    Op<-2>() = BI.Op<-2>();
782  }
783  SubclassOptionalData = BI.SubclassOptionalData;
784}
785
786void BranchInst::swapSuccessors() {
787  assert(isConditional() &&
788         "Cannot swap successors of an unconditional branch");
789  Op<-1>().swap(Op<-2>());
790
791  // Update profile metadata if present and it matches our structural
792  // expectations.
793  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794  if (!ProfileData || ProfileData->getNumOperands() != 3)
795    return;
796
797  // The first operand is the name. Fetch them backwards and build a new one.
798  Value *Ops[] = {
799    ProfileData->getOperand(0),
800    ProfileData->getOperand(2),
801    ProfileData->getOperand(1)
802  };
803  setMetadata(LLVMContext::MD_prof,
804              MDNode::get(ProfileData->getContext(), Ops));
805}
806
807BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808  return getSuccessor(idx);
809}
810unsigned BranchInst::getNumSuccessorsV() const {
811  return getNumSuccessors();
812}
813void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814  setSuccessor(idx, B);
815}
816
817
818//===----------------------------------------------------------------------===//
819//                        AllocaInst Implementation
820//===----------------------------------------------------------------------===//
821
822static Value *getAISize(LLVMContext &Context, Value *Amt) {
823  if (!Amt)
824    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825  else {
826    assert(!isa<BasicBlock>(Amt) &&
827           "Passed basic block into allocation size parameter! Use other ctor");
828    assert(Amt->getType()->isIntegerTy() &&
829           "Allocation array size is not an integer!");
830  }
831  return Amt;
832}
833
834AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835                       const Twine &Name, Instruction *InsertBefore)
836  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838  setAlignment(0);
839  assert(!Ty->isVoidTy() && "Cannot allocate void!");
840  setName(Name);
841}
842
843AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844                       const Twine &Name, BasicBlock *InsertAtEnd)
845  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847  setAlignment(0);
848  assert(!Ty->isVoidTy() && "Cannot allocate void!");
849  setName(Name);
850}
851
852AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853                       Instruction *InsertBefore)
854  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855                     getAISize(Ty->getContext(), nullptr), InsertBefore) {
856  setAlignment(0);
857  assert(!Ty->isVoidTy() && "Cannot allocate void!");
858  setName(Name);
859}
860
861AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862                       BasicBlock *InsertAtEnd)
863  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864                     getAISize(Ty->getContext(), nullptr), InsertAtEnd) {
865  setAlignment(0);
866  assert(!Ty->isVoidTy() && "Cannot allocate void!");
867  setName(Name);
868}
869
870AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871                       const Twine &Name, Instruction *InsertBefore)
872  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874  setAlignment(Align);
875  assert(!Ty->isVoidTy() && "Cannot allocate void!");
876  setName(Name);
877}
878
879AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880                       const Twine &Name, BasicBlock *InsertAtEnd)
881  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883  setAlignment(Align);
884  assert(!Ty->isVoidTy() && "Cannot allocate void!");
885  setName(Name);
886}
887
888// Out of line virtual method, so the vtable, etc has a home.
889AllocaInst::~AllocaInst() {
890}
891
892void AllocaInst::setAlignment(unsigned Align) {
893  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894  assert(Align <= MaximumAlignment &&
895         "Alignment is greater than MaximumAlignment!");
896  setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
897                             (Log2_32(Align) + 1));
898  assert(getAlignment() == Align && "Alignment representation error!");
899}
900
901bool AllocaInst::isArrayAllocation() const {
902  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
903    return !CI->isOne();
904  return true;
905}
906
907Type *AllocaInst::getAllocatedType() const {
908  return getType()->getElementType();
909}
910
911/// isStaticAlloca - Return true if this alloca is in the entry block of the
912/// function and is a constant size.  If so, the code generator will fold it
913/// into the prolog/epilog code, so it is basically free.
914bool AllocaInst::isStaticAlloca() const {
915  // Must be constant size.
916  if (!isa<ConstantInt>(getArraySize())) return false;
917
918  // Must be in the entry block.
919  const BasicBlock *Parent = getParent();
920  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
921}
922
923//===----------------------------------------------------------------------===//
924//                           LoadInst Implementation
925//===----------------------------------------------------------------------===//
926
927void LoadInst::AssertOK() {
928  assert(getOperand(0)->getType()->isPointerTy() &&
929         "Ptr must have pointer type.");
930  assert(!(isAtomic() && getAlignment() == 0) &&
931         "Alignment required for atomic load");
932}
933
934LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
935  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
936                     Load, Ptr, InsertBef) {
937  setVolatile(false);
938  setAlignment(0);
939  setAtomic(NotAtomic);
940  AssertOK();
941  setName(Name);
942}
943
944LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
945  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
946                     Load, Ptr, InsertAE) {
947  setVolatile(false);
948  setAlignment(0);
949  setAtomic(NotAtomic);
950  AssertOK();
951  setName(Name);
952}
953
954LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
955                   Instruction *InsertBef)
956  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
957                     Load, Ptr, InsertBef) {
958  setVolatile(isVolatile);
959  setAlignment(0);
960  setAtomic(NotAtomic);
961  AssertOK();
962  setName(Name);
963}
964
965LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
966                   BasicBlock *InsertAE)
967  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
968                     Load, Ptr, InsertAE) {
969  setVolatile(isVolatile);
970  setAlignment(0);
971  setAtomic(NotAtomic);
972  AssertOK();
973  setName(Name);
974}
975
976LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
977                   unsigned Align, Instruction *InsertBef)
978  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
979                     Load, Ptr, InsertBef) {
980  setVolatile(isVolatile);
981  setAlignment(Align);
982  setAtomic(NotAtomic);
983  AssertOK();
984  setName(Name);
985}
986
987LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
988                   unsigned Align, BasicBlock *InsertAE)
989  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
990                     Load, Ptr, InsertAE) {
991  setVolatile(isVolatile);
992  setAlignment(Align);
993  setAtomic(NotAtomic);
994  AssertOK();
995  setName(Name);
996}
997
998LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
999                   unsigned Align, AtomicOrdering Order,
1000                   SynchronizationScope SynchScope,
1001                   Instruction *InsertBef)
1002  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1003                     Load, Ptr, InsertBef) {
1004  setVolatile(isVolatile);
1005  setAlignment(Align);
1006  setAtomic(Order, SynchScope);
1007  AssertOK();
1008  setName(Name);
1009}
1010
1011LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1012                   unsigned Align, AtomicOrdering Order,
1013                   SynchronizationScope SynchScope,
1014                   BasicBlock *InsertAE)
1015  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1016                     Load, Ptr, InsertAE) {
1017  setVolatile(isVolatile);
1018  setAlignment(Align);
1019  setAtomic(Order, SynchScope);
1020  AssertOK();
1021  setName(Name);
1022}
1023
1024LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1025  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1026                     Load, Ptr, InsertBef) {
1027  setVolatile(false);
1028  setAlignment(0);
1029  setAtomic(NotAtomic);
1030  AssertOK();
1031  if (Name && Name[0]) setName(Name);
1032}
1033
1034LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1035  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1036                     Load, Ptr, InsertAE) {
1037  setVolatile(false);
1038  setAlignment(0);
1039  setAtomic(NotAtomic);
1040  AssertOK();
1041  if (Name && Name[0]) setName(Name);
1042}
1043
1044LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1045                   Instruction *InsertBef)
1046: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1047                   Load, Ptr, InsertBef) {
1048  setVolatile(isVolatile);
1049  setAlignment(0);
1050  setAtomic(NotAtomic);
1051  AssertOK();
1052  if (Name && Name[0]) setName(Name);
1053}
1054
1055LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1056                   BasicBlock *InsertAE)
1057  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1058                     Load, Ptr, InsertAE) {
1059  setVolatile(isVolatile);
1060  setAlignment(0);
1061  setAtomic(NotAtomic);
1062  AssertOK();
1063  if (Name && Name[0]) setName(Name);
1064}
1065
1066void LoadInst::setAlignment(unsigned Align) {
1067  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1068  assert(Align <= MaximumAlignment &&
1069         "Alignment is greater than MaximumAlignment!");
1070  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1071                             ((Log2_32(Align)+1)<<1));
1072  assert(getAlignment() == Align && "Alignment representation error!");
1073}
1074
1075//===----------------------------------------------------------------------===//
1076//                           StoreInst Implementation
1077//===----------------------------------------------------------------------===//
1078
1079void StoreInst::AssertOK() {
1080  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1081  assert(getOperand(1)->getType()->isPointerTy() &&
1082         "Ptr must have pointer type!");
1083  assert(getOperand(0)->getType() ==
1084                 cast<PointerType>(getOperand(1)->getType())->getElementType()
1085         && "Ptr must be a pointer to Val type!");
1086  assert(!(isAtomic() && getAlignment() == 0) &&
1087         "Alignment required for atomic store");
1088}
1089
1090
1091StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1092  : Instruction(Type::getVoidTy(val->getContext()), Store,
1093                OperandTraits<StoreInst>::op_begin(this),
1094                OperandTraits<StoreInst>::operands(this),
1095                InsertBefore) {
1096  Op<0>() = val;
1097  Op<1>() = addr;
1098  setVolatile(false);
1099  setAlignment(0);
1100  setAtomic(NotAtomic);
1101  AssertOK();
1102}
1103
1104StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1105  : Instruction(Type::getVoidTy(val->getContext()), Store,
1106                OperandTraits<StoreInst>::op_begin(this),
1107                OperandTraits<StoreInst>::operands(this),
1108                InsertAtEnd) {
1109  Op<0>() = val;
1110  Op<1>() = addr;
1111  setVolatile(false);
1112  setAlignment(0);
1113  setAtomic(NotAtomic);
1114  AssertOK();
1115}
1116
1117StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1118                     Instruction *InsertBefore)
1119  : Instruction(Type::getVoidTy(val->getContext()), Store,
1120                OperandTraits<StoreInst>::op_begin(this),
1121                OperandTraits<StoreInst>::operands(this),
1122                InsertBefore) {
1123  Op<0>() = val;
1124  Op<1>() = addr;
1125  setVolatile(isVolatile);
1126  setAlignment(0);
1127  setAtomic(NotAtomic);
1128  AssertOK();
1129}
1130
1131StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1132                     unsigned Align, Instruction *InsertBefore)
1133  : Instruction(Type::getVoidTy(val->getContext()), Store,
1134                OperandTraits<StoreInst>::op_begin(this),
1135                OperandTraits<StoreInst>::operands(this),
1136                InsertBefore) {
1137  Op<0>() = val;
1138  Op<1>() = addr;
1139  setVolatile(isVolatile);
1140  setAlignment(Align);
1141  setAtomic(NotAtomic);
1142  AssertOK();
1143}
1144
1145StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1146                     unsigned Align, AtomicOrdering Order,
1147                     SynchronizationScope SynchScope,
1148                     Instruction *InsertBefore)
1149  : Instruction(Type::getVoidTy(val->getContext()), Store,
1150                OperandTraits<StoreInst>::op_begin(this),
1151                OperandTraits<StoreInst>::operands(this),
1152                InsertBefore) {
1153  Op<0>() = val;
1154  Op<1>() = addr;
1155  setVolatile(isVolatile);
1156  setAlignment(Align);
1157  setAtomic(Order, SynchScope);
1158  AssertOK();
1159}
1160
1161StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1162                     BasicBlock *InsertAtEnd)
1163  : Instruction(Type::getVoidTy(val->getContext()), Store,
1164                OperandTraits<StoreInst>::op_begin(this),
1165                OperandTraits<StoreInst>::operands(this),
1166                InsertAtEnd) {
1167  Op<0>() = val;
1168  Op<1>() = addr;
1169  setVolatile(isVolatile);
1170  setAlignment(0);
1171  setAtomic(NotAtomic);
1172  AssertOK();
1173}
1174
1175StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1176                     unsigned Align, BasicBlock *InsertAtEnd)
1177  : Instruction(Type::getVoidTy(val->getContext()), Store,
1178                OperandTraits<StoreInst>::op_begin(this),
1179                OperandTraits<StoreInst>::operands(this),
1180                InsertAtEnd) {
1181  Op<0>() = val;
1182  Op<1>() = addr;
1183  setVolatile(isVolatile);
1184  setAlignment(Align);
1185  setAtomic(NotAtomic);
1186  AssertOK();
1187}
1188
1189StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1190                     unsigned Align, AtomicOrdering Order,
1191                     SynchronizationScope SynchScope,
1192                     BasicBlock *InsertAtEnd)
1193  : Instruction(Type::getVoidTy(val->getContext()), Store,
1194                OperandTraits<StoreInst>::op_begin(this),
1195                OperandTraits<StoreInst>::operands(this),
1196                InsertAtEnd) {
1197  Op<0>() = val;
1198  Op<1>() = addr;
1199  setVolatile(isVolatile);
1200  setAlignment(Align);
1201  setAtomic(Order, SynchScope);
1202  AssertOK();
1203}
1204
1205void StoreInst::setAlignment(unsigned Align) {
1206  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1207  assert(Align <= MaximumAlignment &&
1208         "Alignment is greater than MaximumAlignment!");
1209  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1210                             ((Log2_32(Align)+1) << 1));
1211  assert(getAlignment() == Align && "Alignment representation error!");
1212}
1213
1214//===----------------------------------------------------------------------===//
1215//                       AtomicCmpXchgInst Implementation
1216//===----------------------------------------------------------------------===//
1217
1218void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1219                             AtomicOrdering SuccessOrdering,
1220                             AtomicOrdering FailureOrdering,
1221                             SynchronizationScope SynchScope) {
1222  Op<0>() = Ptr;
1223  Op<1>() = Cmp;
1224  Op<2>() = NewVal;
1225  setSuccessOrdering(SuccessOrdering);
1226  setFailureOrdering(FailureOrdering);
1227  setSynchScope(SynchScope);
1228
1229  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1230         "All operands must be non-null!");
1231  assert(getOperand(0)->getType()->isPointerTy() &&
1232         "Ptr must have pointer type!");
1233  assert(getOperand(1)->getType() ==
1234                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1235         && "Ptr must be a pointer to Cmp type!");
1236  assert(getOperand(2)->getType() ==
1237                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1238         && "Ptr must be a pointer to NewVal type!");
1239  assert(SuccessOrdering != NotAtomic &&
1240         "AtomicCmpXchg instructions must be atomic!");
1241  assert(FailureOrdering != NotAtomic &&
1242         "AtomicCmpXchg instructions must be atomic!");
1243  assert(SuccessOrdering >= FailureOrdering &&
1244         "AtomicCmpXchg success ordering must be at least as strong as fail");
1245  assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1246         "AtomicCmpXchg failure ordering cannot include release semantics");
1247}
1248
1249AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1250                                     AtomicOrdering SuccessOrdering,
1251                                     AtomicOrdering FailureOrdering,
1252                                     SynchronizationScope SynchScope,
1253                                     Instruction *InsertBefore)
1254    : Instruction(
1255          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1256                          nullptr),
1257          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1258          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1259  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1260}
1261
1262AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1263                                     AtomicOrdering SuccessOrdering,
1264                                     AtomicOrdering FailureOrdering,
1265                                     SynchronizationScope SynchScope,
1266                                     BasicBlock *InsertAtEnd)
1267    : Instruction(
1268          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1269                          nullptr),
1270          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1271          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1272  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1273}
1274
1275//===----------------------------------------------------------------------===//
1276//                       AtomicRMWInst Implementation
1277//===----------------------------------------------------------------------===//
1278
1279void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1280                         AtomicOrdering Ordering,
1281                         SynchronizationScope SynchScope) {
1282  Op<0>() = Ptr;
1283  Op<1>() = Val;
1284  setOperation(Operation);
1285  setOrdering(Ordering);
1286  setSynchScope(SynchScope);
1287
1288  assert(getOperand(0) && getOperand(1) &&
1289         "All operands must be non-null!");
1290  assert(getOperand(0)->getType()->isPointerTy() &&
1291         "Ptr must have pointer type!");
1292  assert(getOperand(1)->getType() ==
1293         cast<PointerType>(getOperand(0)->getType())->getElementType()
1294         && "Ptr must be a pointer to Val type!");
1295  assert(Ordering != NotAtomic &&
1296         "AtomicRMW instructions must be atomic!");
1297}
1298
1299AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1300                             AtomicOrdering Ordering,
1301                             SynchronizationScope SynchScope,
1302                             Instruction *InsertBefore)
1303  : Instruction(Val->getType(), AtomicRMW,
1304                OperandTraits<AtomicRMWInst>::op_begin(this),
1305                OperandTraits<AtomicRMWInst>::operands(this),
1306                InsertBefore) {
1307  Init(Operation, Ptr, Val, Ordering, SynchScope);
1308}
1309
1310AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1311                             AtomicOrdering Ordering,
1312                             SynchronizationScope SynchScope,
1313                             BasicBlock *InsertAtEnd)
1314  : Instruction(Val->getType(), AtomicRMW,
1315                OperandTraits<AtomicRMWInst>::op_begin(this),
1316                OperandTraits<AtomicRMWInst>::operands(this),
1317                InsertAtEnd) {
1318  Init(Operation, Ptr, Val, Ordering, SynchScope);
1319}
1320
1321//===----------------------------------------------------------------------===//
1322//                       FenceInst Implementation
1323//===----------------------------------------------------------------------===//
1324
1325FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1326                     SynchronizationScope SynchScope,
1327                     Instruction *InsertBefore)
1328  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1329  setOrdering(Ordering);
1330  setSynchScope(SynchScope);
1331}
1332
1333FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1334                     SynchronizationScope SynchScope,
1335                     BasicBlock *InsertAtEnd)
1336  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1337  setOrdering(Ordering);
1338  setSynchScope(SynchScope);
1339}
1340
1341//===----------------------------------------------------------------------===//
1342//                       GetElementPtrInst Implementation
1343//===----------------------------------------------------------------------===//
1344
1345void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1346                             const Twine &Name) {
1347  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1348  OperandList[0] = Ptr;
1349  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1350  setName(Name);
1351}
1352
1353GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1354  : Instruction(GEPI.getType(), GetElementPtr,
1355                OperandTraits<GetElementPtrInst>::op_end(this)
1356                - GEPI.getNumOperands(),
1357                GEPI.getNumOperands()) {
1358  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1359  SubclassOptionalData = GEPI.SubclassOptionalData;
1360}
1361
1362/// getIndexedType - Returns the type of the element that would be accessed with
1363/// a gep instruction with the specified parameters.
1364///
1365/// The Idxs pointer should point to a continuous piece of memory containing the
1366/// indices, either as Value* or uint64_t.
1367///
1368/// A null type is returned if the indices are invalid for the specified
1369/// pointer type.
1370///
1371template <typename IndexTy>
1372static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1373  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1374  if (!PTy) return nullptr;   // Type isn't a pointer type!
1375  Type *Agg = PTy->getElementType();
1376
1377  // Handle the special case of the empty set index set, which is always valid.
1378  if (IdxList.empty())
1379    return Agg;
1380
1381  // If there is at least one index, the top level type must be sized, otherwise
1382  // it cannot be 'stepped over'.
1383  if (!Agg->isSized())
1384    return nullptr;
1385
1386  unsigned CurIdx = 1;
1387  for (; CurIdx != IdxList.size(); ++CurIdx) {
1388    CompositeType *CT = dyn_cast<CompositeType>(Agg);
1389    if (!CT || CT->isPointerTy()) return nullptr;
1390    IndexTy Index = IdxList[CurIdx];
1391    if (!CT->indexValid(Index)) return nullptr;
1392    Agg = CT->getTypeAtIndex(Index);
1393  }
1394  return CurIdx == IdxList.size() ? Agg : nullptr;
1395}
1396
1397Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1398  return getIndexedTypeInternal(Ptr, IdxList);
1399}
1400
1401Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1402                                        ArrayRef<Constant *> IdxList) {
1403  return getIndexedTypeInternal(Ptr, IdxList);
1404}
1405
1406Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1407  return getIndexedTypeInternal(Ptr, IdxList);
1408}
1409
1410/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1411/// zeros.  If so, the result pointer and the first operand have the same
1412/// value, just potentially different types.
1413bool GetElementPtrInst::hasAllZeroIndices() const {
1414  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1415    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1416      if (!CI->isZero()) return false;
1417    } else {
1418      return false;
1419    }
1420  }
1421  return true;
1422}
1423
1424/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1425/// constant integers.  If so, the result pointer and the first operand have
1426/// a constant offset between them.
1427bool GetElementPtrInst::hasAllConstantIndices() const {
1428  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1429    if (!isa<ConstantInt>(getOperand(i)))
1430      return false;
1431  }
1432  return true;
1433}
1434
1435void GetElementPtrInst::setIsInBounds(bool B) {
1436  cast<GEPOperator>(this)->setIsInBounds(B);
1437}
1438
1439bool GetElementPtrInst::isInBounds() const {
1440  return cast<GEPOperator>(this)->isInBounds();
1441}
1442
1443bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1444                                                 APInt &Offset) const {
1445  // Delegate to the generic GEPOperator implementation.
1446  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1447}
1448
1449//===----------------------------------------------------------------------===//
1450//                           ExtractElementInst Implementation
1451//===----------------------------------------------------------------------===//
1452
1453ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1454                                       const Twine &Name,
1455                                       Instruction *InsertBef)
1456  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1457                ExtractElement,
1458                OperandTraits<ExtractElementInst>::op_begin(this),
1459                2, InsertBef) {
1460  assert(isValidOperands(Val, Index) &&
1461         "Invalid extractelement instruction operands!");
1462  Op<0>() = Val;
1463  Op<1>() = Index;
1464  setName(Name);
1465}
1466
1467ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1468                                       const Twine &Name,
1469                                       BasicBlock *InsertAE)
1470  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1471                ExtractElement,
1472                OperandTraits<ExtractElementInst>::op_begin(this),
1473                2, InsertAE) {
1474  assert(isValidOperands(Val, Index) &&
1475         "Invalid extractelement instruction operands!");
1476
1477  Op<0>() = Val;
1478  Op<1>() = Index;
1479  setName(Name);
1480}
1481
1482
1483bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1484  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1485    return false;
1486  return true;
1487}
1488
1489
1490//===----------------------------------------------------------------------===//
1491//                           InsertElementInst Implementation
1492//===----------------------------------------------------------------------===//
1493
1494InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1495                                     const Twine &Name,
1496                                     Instruction *InsertBef)
1497  : Instruction(Vec->getType(), InsertElement,
1498                OperandTraits<InsertElementInst>::op_begin(this),
1499                3, InsertBef) {
1500  assert(isValidOperands(Vec, Elt, Index) &&
1501         "Invalid insertelement instruction operands!");
1502  Op<0>() = Vec;
1503  Op<1>() = Elt;
1504  Op<2>() = Index;
1505  setName(Name);
1506}
1507
1508InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1509                                     const Twine &Name,
1510                                     BasicBlock *InsertAE)
1511  : Instruction(Vec->getType(), InsertElement,
1512                OperandTraits<InsertElementInst>::op_begin(this),
1513                3, InsertAE) {
1514  assert(isValidOperands(Vec, Elt, Index) &&
1515         "Invalid insertelement instruction operands!");
1516
1517  Op<0>() = Vec;
1518  Op<1>() = Elt;
1519  Op<2>() = Index;
1520  setName(Name);
1521}
1522
1523bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1524                                        const Value *Index) {
1525  if (!Vec->getType()->isVectorTy())
1526    return false;   // First operand of insertelement must be vector type.
1527
1528  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1529    return false;// Second operand of insertelement must be vector element type.
1530
1531  if (!Index->getType()->isIntegerTy())
1532    return false;  // Third operand of insertelement must be i32.
1533  return true;
1534}
1535
1536
1537//===----------------------------------------------------------------------===//
1538//                      ShuffleVectorInst Implementation
1539//===----------------------------------------------------------------------===//
1540
1541ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1542                                     const Twine &Name,
1543                                     Instruction *InsertBefore)
1544: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1545                cast<VectorType>(Mask->getType())->getNumElements()),
1546              ShuffleVector,
1547              OperandTraits<ShuffleVectorInst>::op_begin(this),
1548              OperandTraits<ShuffleVectorInst>::operands(this),
1549              InsertBefore) {
1550  assert(isValidOperands(V1, V2, Mask) &&
1551         "Invalid shuffle vector instruction operands!");
1552  Op<0>() = V1;
1553  Op<1>() = V2;
1554  Op<2>() = Mask;
1555  setName(Name);
1556}
1557
1558ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1559                                     const Twine &Name,
1560                                     BasicBlock *InsertAtEnd)
1561: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1562                cast<VectorType>(Mask->getType())->getNumElements()),
1563              ShuffleVector,
1564              OperandTraits<ShuffleVectorInst>::op_begin(this),
1565              OperandTraits<ShuffleVectorInst>::operands(this),
1566              InsertAtEnd) {
1567  assert(isValidOperands(V1, V2, Mask) &&
1568         "Invalid shuffle vector instruction operands!");
1569
1570  Op<0>() = V1;
1571  Op<1>() = V2;
1572  Op<2>() = Mask;
1573  setName(Name);
1574}
1575
1576bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1577                                        const Value *Mask) {
1578  // V1 and V2 must be vectors of the same type.
1579  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1580    return false;
1581
1582  // Mask must be vector of i32.
1583  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1584  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1585    return false;
1586
1587  // Check to see if Mask is valid.
1588  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1589    return true;
1590
1591  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1592    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1593    for (Value *Op : MV->operands()) {
1594      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1595        if (CI->uge(V1Size*2))
1596          return false;
1597      } else if (!isa<UndefValue>(Op)) {
1598        return false;
1599      }
1600    }
1601    return true;
1602  }
1603
1604  if (const ConstantDataSequential *CDS =
1605        dyn_cast<ConstantDataSequential>(Mask)) {
1606    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1607    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1608      if (CDS->getElementAsInteger(i) >= V1Size*2)
1609        return false;
1610    return true;
1611  }
1612
1613  // The bitcode reader can create a place holder for a forward reference
1614  // used as the shuffle mask. When this occurs, the shuffle mask will
1615  // fall into this case and fail. To avoid this error, do this bit of
1616  // ugliness to allow such a mask pass.
1617  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1618    if (CE->getOpcode() == Instruction::UserOp1)
1619      return true;
1620
1621  return false;
1622}
1623
1624/// getMaskValue - Return the index from the shuffle mask for the specified
1625/// output result.  This is either -1 if the element is undef or a number less
1626/// than 2*numelements.
1627int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1628  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1629  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1630    return CDS->getElementAsInteger(i);
1631  Constant *C = Mask->getAggregateElement(i);
1632  if (isa<UndefValue>(C))
1633    return -1;
1634  return cast<ConstantInt>(C)->getZExtValue();
1635}
1636
1637/// getShuffleMask - Return the full mask for this instruction, where each
1638/// element is the element number and undef's are returned as -1.
1639void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1640                                       SmallVectorImpl<int> &Result) {
1641  unsigned NumElts = Mask->getType()->getVectorNumElements();
1642
1643  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1644    for (unsigned i = 0; i != NumElts; ++i)
1645      Result.push_back(CDS->getElementAsInteger(i));
1646    return;
1647  }
1648  for (unsigned i = 0; i != NumElts; ++i) {
1649    Constant *C = Mask->getAggregateElement(i);
1650    Result.push_back(isa<UndefValue>(C) ? -1 :
1651                     cast<ConstantInt>(C)->getZExtValue());
1652  }
1653}
1654
1655
1656//===----------------------------------------------------------------------===//
1657//                             InsertValueInst Class
1658//===----------------------------------------------------------------------===//
1659
1660void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1661                           const Twine &Name) {
1662  assert(NumOperands == 2 && "NumOperands not initialized?");
1663
1664  // There's no fundamental reason why we require at least one index
1665  // (other than weirdness with &*IdxBegin being invalid; see
1666  // getelementptr's init routine for example). But there's no
1667  // present need to support it.
1668  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1669
1670  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1671         Val->getType() && "Inserted value must match indexed type!");
1672  Op<0>() = Agg;
1673  Op<1>() = Val;
1674
1675  Indices.append(Idxs.begin(), Idxs.end());
1676  setName(Name);
1677}
1678
1679InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1680  : Instruction(IVI.getType(), InsertValue,
1681                OperandTraits<InsertValueInst>::op_begin(this), 2),
1682    Indices(IVI.Indices) {
1683  Op<0>() = IVI.getOperand(0);
1684  Op<1>() = IVI.getOperand(1);
1685  SubclassOptionalData = IVI.SubclassOptionalData;
1686}
1687
1688//===----------------------------------------------------------------------===//
1689//                             ExtractValueInst Class
1690//===----------------------------------------------------------------------===//
1691
1692void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1693  assert(NumOperands == 1 && "NumOperands not initialized?");
1694
1695  // There's no fundamental reason why we require at least one index.
1696  // But there's no present need to support it.
1697  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1698
1699  Indices.append(Idxs.begin(), Idxs.end());
1700  setName(Name);
1701}
1702
1703ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1704  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1705    Indices(EVI.Indices) {
1706  SubclassOptionalData = EVI.SubclassOptionalData;
1707}
1708
1709// getIndexedType - Returns the type of the element that would be extracted
1710// with an extractvalue instruction with the specified parameters.
1711//
1712// A null type is returned if the indices are invalid for the specified
1713// pointer type.
1714//
1715Type *ExtractValueInst::getIndexedType(Type *Agg,
1716                                       ArrayRef<unsigned> Idxs) {
1717  for (unsigned Index : Idxs) {
1718    // We can't use CompositeType::indexValid(Index) here.
1719    // indexValid() always returns true for arrays because getelementptr allows
1720    // out-of-bounds indices. Since we don't allow those for extractvalue and
1721    // insertvalue we need to check array indexing manually.
1722    // Since the only other types we can index into are struct types it's just
1723    // as easy to check those manually as well.
1724    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1725      if (Index >= AT->getNumElements())
1726        return nullptr;
1727    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1728      if (Index >= ST->getNumElements())
1729        return nullptr;
1730    } else {
1731      // Not a valid type to index into.
1732      return nullptr;
1733    }
1734
1735    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1736  }
1737  return const_cast<Type*>(Agg);
1738}
1739
1740//===----------------------------------------------------------------------===//
1741//                             BinaryOperator Class
1742//===----------------------------------------------------------------------===//
1743
1744BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1745                               Type *Ty, const Twine &Name,
1746                               Instruction *InsertBefore)
1747  : Instruction(Ty, iType,
1748                OperandTraits<BinaryOperator>::op_begin(this),
1749                OperandTraits<BinaryOperator>::operands(this),
1750                InsertBefore) {
1751  Op<0>() = S1;
1752  Op<1>() = S2;
1753  init(iType);
1754  setName(Name);
1755}
1756
1757BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1758                               Type *Ty, const Twine &Name,
1759                               BasicBlock *InsertAtEnd)
1760  : Instruction(Ty, iType,
1761                OperandTraits<BinaryOperator>::op_begin(this),
1762                OperandTraits<BinaryOperator>::operands(this),
1763                InsertAtEnd) {
1764  Op<0>() = S1;
1765  Op<1>() = S2;
1766  init(iType);
1767  setName(Name);
1768}
1769
1770
1771void BinaryOperator::init(BinaryOps iType) {
1772  Value *LHS = getOperand(0), *RHS = getOperand(1);
1773  (void)LHS; (void)RHS; // Silence warnings.
1774  assert(LHS->getType() == RHS->getType() &&
1775         "Binary operator operand types must match!");
1776#ifndef NDEBUG
1777  switch (iType) {
1778  case Add: case Sub:
1779  case Mul:
1780    assert(getType() == LHS->getType() &&
1781           "Arithmetic operation should return same type as operands!");
1782    assert(getType()->isIntOrIntVectorTy() &&
1783           "Tried to create an integer operation on a non-integer type!");
1784    break;
1785  case FAdd: case FSub:
1786  case FMul:
1787    assert(getType() == LHS->getType() &&
1788           "Arithmetic operation should return same type as operands!");
1789    assert(getType()->isFPOrFPVectorTy() &&
1790           "Tried to create a floating-point operation on a "
1791           "non-floating-point type!");
1792    break;
1793  case UDiv:
1794  case SDiv:
1795    assert(getType() == LHS->getType() &&
1796           "Arithmetic operation should return same type as operands!");
1797    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1798            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1799           "Incorrect operand type (not integer) for S/UDIV");
1800    break;
1801  case FDiv:
1802    assert(getType() == LHS->getType() &&
1803           "Arithmetic operation should return same type as operands!");
1804    assert(getType()->isFPOrFPVectorTy() &&
1805           "Incorrect operand type (not floating point) for FDIV");
1806    break;
1807  case URem:
1808  case SRem:
1809    assert(getType() == LHS->getType() &&
1810           "Arithmetic operation should return same type as operands!");
1811    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1812            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1813           "Incorrect operand type (not integer) for S/UREM");
1814    break;
1815  case FRem:
1816    assert(getType() == LHS->getType() &&
1817           "Arithmetic operation should return same type as operands!");
1818    assert(getType()->isFPOrFPVectorTy() &&
1819           "Incorrect operand type (not floating point) for FREM");
1820    break;
1821  case Shl:
1822  case LShr:
1823  case AShr:
1824    assert(getType() == LHS->getType() &&
1825           "Shift operation should return same type as operands!");
1826    assert((getType()->isIntegerTy() ||
1827            (getType()->isVectorTy() &&
1828             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1829           "Tried to create a shift operation on a non-integral type!");
1830    break;
1831  case And: case Or:
1832  case Xor:
1833    assert(getType() == LHS->getType() &&
1834           "Logical operation should return same type as operands!");
1835    assert((getType()->isIntegerTy() ||
1836            (getType()->isVectorTy() &&
1837             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1838           "Tried to create a logical operation on a non-integral type!");
1839    break;
1840  default:
1841    break;
1842  }
1843#endif
1844}
1845
1846BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1847                                       const Twine &Name,
1848                                       Instruction *InsertBefore) {
1849  assert(S1->getType() == S2->getType() &&
1850         "Cannot create binary operator with two operands of differing type!");
1851  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1852}
1853
1854BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1855                                       const Twine &Name,
1856                                       BasicBlock *InsertAtEnd) {
1857  BinaryOperator *Res = Create(Op, S1, S2, Name);
1858  InsertAtEnd->getInstList().push_back(Res);
1859  return Res;
1860}
1861
1862BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1863                                          Instruction *InsertBefore) {
1864  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1865  return new BinaryOperator(Instruction::Sub,
1866                            zero, Op,
1867                            Op->getType(), Name, InsertBefore);
1868}
1869
1870BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1871                                          BasicBlock *InsertAtEnd) {
1872  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1873  return new BinaryOperator(Instruction::Sub,
1874                            zero, Op,
1875                            Op->getType(), Name, InsertAtEnd);
1876}
1877
1878BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1879                                             Instruction *InsertBefore) {
1880  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1881  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1882}
1883
1884BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1885                                             BasicBlock *InsertAtEnd) {
1886  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1888}
1889
1890BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1891                                             Instruction *InsertBefore) {
1892  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1894}
1895
1896BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1897                                             BasicBlock *InsertAtEnd) {
1898  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1899  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1900}
1901
1902BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1903                                           Instruction *InsertBefore) {
1904  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1905  return new BinaryOperator(Instruction::FSub, zero, Op,
1906                            Op->getType(), Name, InsertBefore);
1907}
1908
1909BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1910                                           BasicBlock *InsertAtEnd) {
1911  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1912  return new BinaryOperator(Instruction::FSub, zero, Op,
1913                            Op->getType(), Name, InsertAtEnd);
1914}
1915
1916BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1917                                          Instruction *InsertBefore) {
1918  Constant *C = Constant::getAllOnesValue(Op->getType());
1919  return new BinaryOperator(Instruction::Xor, Op, C,
1920                            Op->getType(), Name, InsertBefore);
1921}
1922
1923BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1924                                          BasicBlock *InsertAtEnd) {
1925  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1926  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1927                            Op->getType(), Name, InsertAtEnd);
1928}
1929
1930
1931// isConstantAllOnes - Helper function for several functions below
1932static inline bool isConstantAllOnes(const Value *V) {
1933  if (const Constant *C = dyn_cast<Constant>(V))
1934    return C->isAllOnesValue();
1935  return false;
1936}
1937
1938bool BinaryOperator::isNeg(const Value *V) {
1939  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1940    if (Bop->getOpcode() == Instruction::Sub)
1941      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1942        return C->isNegativeZeroValue();
1943  return false;
1944}
1945
1946bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1947  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1948    if (Bop->getOpcode() == Instruction::FSub)
1949      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1950        if (!IgnoreZeroSign)
1951          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1952        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1953      }
1954  return false;
1955}
1956
1957bool BinaryOperator::isNot(const Value *V) {
1958  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1959    return (Bop->getOpcode() == Instruction::Xor &&
1960            (isConstantAllOnes(Bop->getOperand(1)) ||
1961             isConstantAllOnes(Bop->getOperand(0))));
1962  return false;
1963}
1964
1965Value *BinaryOperator::getNegArgument(Value *BinOp) {
1966  return cast<BinaryOperator>(BinOp)->getOperand(1);
1967}
1968
1969const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1970  return getNegArgument(const_cast<Value*>(BinOp));
1971}
1972
1973Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1974  return cast<BinaryOperator>(BinOp)->getOperand(1);
1975}
1976
1977const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1978  return getFNegArgument(const_cast<Value*>(BinOp));
1979}
1980
1981Value *BinaryOperator::getNotArgument(Value *BinOp) {
1982  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1983  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1984  Value *Op0 = BO->getOperand(0);
1985  Value *Op1 = BO->getOperand(1);
1986  if (isConstantAllOnes(Op0)) return Op1;
1987
1988  assert(isConstantAllOnes(Op1));
1989  return Op0;
1990}
1991
1992const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1993  return getNotArgument(const_cast<Value*>(BinOp));
1994}
1995
1996
1997// swapOperands - Exchange the two operands to this instruction.  This
1998// instruction is safe to use on any binary instruction and does not
1999// modify the semantics of the instruction.  If the instruction is
2000// order dependent (SetLT f.e.) the opcode is changed.
2001//
2002bool BinaryOperator::swapOperands() {
2003  if (!isCommutative())
2004    return true; // Can't commute operands
2005  Op<0>().swap(Op<1>());
2006  return false;
2007}
2008
2009void BinaryOperator::setHasNoUnsignedWrap(bool b) {
2010  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
2011}
2012
2013void BinaryOperator::setHasNoSignedWrap(bool b) {
2014  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2015}
2016
2017void BinaryOperator::setIsExact(bool b) {
2018  cast<PossiblyExactOperator>(this)->setIsExact(b);
2019}
2020
2021bool BinaryOperator::hasNoUnsignedWrap() const {
2022  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2023}
2024
2025bool BinaryOperator::hasNoSignedWrap() const {
2026  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2027}
2028
2029bool BinaryOperator::isExact() const {
2030  return cast<PossiblyExactOperator>(this)->isExact();
2031}
2032
2033//===----------------------------------------------------------------------===//
2034//                             FPMathOperator Class
2035//===----------------------------------------------------------------------===//
2036
2037/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2038/// An accuracy of 0.0 means that the operation should be performed with the
2039/// default precision.
2040float FPMathOperator::getFPAccuracy() const {
2041  const MDNode *MD =
2042    cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2043  if (!MD)
2044    return 0.0;
2045  ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2046  return Accuracy->getValueAPF().convertToFloat();
2047}
2048
2049
2050//===----------------------------------------------------------------------===//
2051//                                CastInst Class
2052//===----------------------------------------------------------------------===//
2053
2054void CastInst::anchor() {}
2055
2056// Just determine if this cast only deals with integral->integral conversion.
2057bool CastInst::isIntegerCast() const {
2058  switch (getOpcode()) {
2059    default: return false;
2060    case Instruction::ZExt:
2061    case Instruction::SExt:
2062    case Instruction::Trunc:
2063      return true;
2064    case Instruction::BitCast:
2065      return getOperand(0)->getType()->isIntegerTy() &&
2066        getType()->isIntegerTy();
2067  }
2068}
2069
2070bool CastInst::isLosslessCast() const {
2071  // Only BitCast can be lossless, exit fast if we're not BitCast
2072  if (getOpcode() != Instruction::BitCast)
2073    return false;
2074
2075  // Identity cast is always lossless
2076  Type* SrcTy = getOperand(0)->getType();
2077  Type* DstTy = getType();
2078  if (SrcTy == DstTy)
2079    return true;
2080
2081  // Pointer to pointer is always lossless.
2082  if (SrcTy->isPointerTy())
2083    return DstTy->isPointerTy();
2084  return false;  // Other types have no identity values
2085}
2086
2087/// This function determines if the CastInst does not require any bits to be
2088/// changed in order to effect the cast. Essentially, it identifies cases where
2089/// no code gen is necessary for the cast, hence the name no-op cast.  For
2090/// example, the following are all no-op casts:
2091/// # bitcast i32* %x to i8*
2092/// # bitcast <2 x i32> %x to <4 x i16>
2093/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2094/// @brief Determine if the described cast is a no-op.
2095bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2096                          Type *SrcTy,
2097                          Type *DestTy,
2098                          Type *IntPtrTy) {
2099  switch (Opcode) {
2100    default: llvm_unreachable("Invalid CastOp");
2101    case Instruction::Trunc:
2102    case Instruction::ZExt:
2103    case Instruction::SExt:
2104    case Instruction::FPTrunc:
2105    case Instruction::FPExt:
2106    case Instruction::UIToFP:
2107    case Instruction::SIToFP:
2108    case Instruction::FPToUI:
2109    case Instruction::FPToSI:
2110    case Instruction::AddrSpaceCast:
2111      // TODO: Target informations may give a more accurate answer here.
2112      return false;
2113    case Instruction::BitCast:
2114      return true;  // BitCast never modifies bits.
2115    case Instruction::PtrToInt:
2116      return IntPtrTy->getScalarSizeInBits() ==
2117             DestTy->getScalarSizeInBits();
2118    case Instruction::IntToPtr:
2119      return IntPtrTy->getScalarSizeInBits() ==
2120             SrcTy->getScalarSizeInBits();
2121  }
2122}
2123
2124/// @brief Determine if a cast is a no-op.
2125bool CastInst::isNoopCast(Type *IntPtrTy) const {
2126  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2127}
2128
2129bool CastInst::isNoopCast(const DataLayout *DL) const {
2130  if (!DL) {
2131    // Assume maximum pointer size.
2132    return isNoopCast(Type::getInt64Ty(getContext()));
2133  }
2134
2135  Type *PtrOpTy = nullptr;
2136  if (getOpcode() == Instruction::PtrToInt)
2137    PtrOpTy = getOperand(0)->getType();
2138  else if (getOpcode() == Instruction::IntToPtr)
2139    PtrOpTy = getType();
2140
2141  Type *IntPtrTy = PtrOpTy
2142                 ? DL->getIntPtrType(PtrOpTy)
2143                 : DL->getIntPtrType(getContext(), 0);
2144
2145  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2146}
2147
2148/// This function determines if a pair of casts can be eliminated and what
2149/// opcode should be used in the elimination. This assumes that there are two
2150/// instructions like this:
2151/// *  %F = firstOpcode SrcTy %x to MidTy
2152/// *  %S = secondOpcode MidTy %F to DstTy
2153/// The function returns a resultOpcode so these two casts can be replaced with:
2154/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2155/// If no such cast is permited, the function returns 0.
2156unsigned CastInst::isEliminableCastPair(
2157  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2158  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2159  Type *DstIntPtrTy) {
2160  // Define the 144 possibilities for these two cast instructions. The values
2161  // in this matrix determine what to do in a given situation and select the
2162  // case in the switch below.  The rows correspond to firstOp, the columns
2163  // correspond to secondOp.  In looking at the table below, keep in  mind
2164  // the following cast properties:
2165  //
2166  //          Size Compare       Source               Destination
2167  // Operator  Src ? Size   Type       Sign         Type       Sign
2168  // -------- ------------ -------------------   ---------------------
2169  // TRUNC         >       Integer      Any        Integral     Any
2170  // ZEXT          <       Integral   Unsigned     Integer      Any
2171  // SEXT          <       Integral    Signed      Integer      Any
2172  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2173  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2174  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2175  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2176  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2177  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2178  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2179  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2180  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2181  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2182  //
2183  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2184  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2185  // into "fptoui double to i64", but this loses information about the range
2186  // of the produced value (we no longer know the top-part is all zeros).
2187  // Further this conversion is often much more expensive for typical hardware,
2188  // and causes issues when building libgcc.  We disallow fptosi+sext for the
2189  // same reason.
2190  const unsigned numCastOps =
2191    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2192  static const uint8_t CastResults[numCastOps][numCastOps] = {
2193    // T        F  F  U  S  F  F  P  I  B  A  -+
2194    // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2195    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2196    // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2197    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2198    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2199    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt           |
2200    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2201    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2202    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2203    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2204    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2205    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc        |
2206    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2207    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2208    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2209    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2210    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2211  };
2212
2213  // If either of the casts are a bitcast from scalar to vector, disallow the
2214  // merging. However, bitcast of A->B->A are allowed.
2215  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2216  bool isSecondBitcast = (secondOp == Instruction::BitCast);
2217  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2218
2219  // Check if any of the bitcasts convert scalars<->vectors.
2220  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2221      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2222    // Unless we are bitcasing to the original type, disallow optimizations.
2223    if (!chainedBitcast) return 0;
2224
2225  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2226                            [secondOp-Instruction::CastOpsBegin];
2227  switch (ElimCase) {
2228    case 0:
2229      // Categorically disallowed.
2230      return 0;
2231    case 1:
2232      // Allowed, use first cast's opcode.
2233      return firstOp;
2234    case 2:
2235      // Allowed, use second cast's opcode.
2236      return secondOp;
2237    case 3:
2238      // No-op cast in second op implies firstOp as long as the DestTy
2239      // is integer and we are not converting between a vector and a
2240      // non-vector type.
2241      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2242        return firstOp;
2243      return 0;
2244    case 4:
2245      // No-op cast in second op implies firstOp as long as the DestTy
2246      // is floating point.
2247      if (DstTy->isFloatingPointTy())
2248        return firstOp;
2249      return 0;
2250    case 5:
2251      // No-op cast in first op implies secondOp as long as the SrcTy
2252      // is an integer.
2253      if (SrcTy->isIntegerTy())
2254        return secondOp;
2255      return 0;
2256    case 6:
2257      // No-op cast in first op implies secondOp as long as the SrcTy
2258      // is a floating point.
2259      if (SrcTy->isFloatingPointTy())
2260        return secondOp;
2261      return 0;
2262    case 7: {
2263      // Cannot simplify if address spaces are different!
2264      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2265        return 0;
2266
2267      unsigned MidSize = MidTy->getScalarSizeInBits();
2268      // We can still fold this without knowing the actual sizes as long we
2269      // know that the intermediate pointer is the largest possible
2270      // pointer size.
2271      // FIXME: Is this always true?
2272      if (MidSize == 64)
2273        return Instruction::BitCast;
2274
2275      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2276      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2277        return 0;
2278      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2279      if (MidSize >= PtrSize)
2280        return Instruction::BitCast;
2281      return 0;
2282    }
2283    case 8: {
2284      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2285      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2286      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2287      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2288      unsigned DstSize = DstTy->getScalarSizeInBits();
2289      if (SrcSize == DstSize)
2290        return Instruction::BitCast;
2291      else if (SrcSize < DstSize)
2292        return firstOp;
2293      return secondOp;
2294    }
2295    case 9:
2296      // zext, sext -> zext, because sext can't sign extend after zext
2297      return Instruction::ZExt;
2298    case 10:
2299      // fpext followed by ftrunc is allowed if the bit size returned to is
2300      // the same as the original, in which case its just a bitcast
2301      if (SrcTy == DstTy)
2302        return Instruction::BitCast;
2303      return 0; // If the types are not the same we can't eliminate it.
2304    case 11: {
2305      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2306      if (!MidIntPtrTy)
2307        return 0;
2308      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2309      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2310      unsigned DstSize = DstTy->getScalarSizeInBits();
2311      if (SrcSize <= PtrSize && SrcSize == DstSize)
2312        return Instruction::BitCast;
2313      return 0;
2314    }
2315    case 12: {
2316      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2317      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2318      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2319        return Instruction::AddrSpaceCast;
2320      return Instruction::BitCast;
2321    }
2322    case 13:
2323      // FIXME: this state can be merged with (1), but the following assert
2324      // is useful to check the correcteness of the sequence due to semantic
2325      // change of bitcast.
2326      assert(
2327        SrcTy->isPtrOrPtrVectorTy() &&
2328        MidTy->isPtrOrPtrVectorTy() &&
2329        DstTy->isPtrOrPtrVectorTy() &&
2330        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2331        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2332        "Illegal addrspacecast, bitcast sequence!");
2333      // Allowed, use first cast's opcode
2334      return firstOp;
2335    case 14:
2336      // bitcast, addrspacecast -> addrspacecast if the element type of
2337      // bitcast's source is the same as that of addrspacecast's destination.
2338      if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2339        return Instruction::AddrSpaceCast;
2340      return 0;
2341
2342    case 15:
2343      // FIXME: this state can be merged with (1), but the following assert
2344      // is useful to check the correcteness of the sequence due to semantic
2345      // change of bitcast.
2346      assert(
2347        SrcTy->isIntOrIntVectorTy() &&
2348        MidTy->isPtrOrPtrVectorTy() &&
2349        DstTy->isPtrOrPtrVectorTy() &&
2350        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2351        "Illegal inttoptr, bitcast sequence!");
2352      // Allowed, use first cast's opcode
2353      return firstOp;
2354    case 16:
2355      // FIXME: this state can be merged with (2), but the following assert
2356      // is useful to check the correcteness of the sequence due to semantic
2357      // change of bitcast.
2358      assert(
2359        SrcTy->isPtrOrPtrVectorTy() &&
2360        MidTy->isPtrOrPtrVectorTy() &&
2361        DstTy->isIntOrIntVectorTy() &&
2362        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2363        "Illegal bitcast, ptrtoint sequence!");
2364      // Allowed, use second cast's opcode
2365      return secondOp;
2366    case 99:
2367      // Cast combination can't happen (error in input). This is for all cases
2368      // where the MidTy is not the same for the two cast instructions.
2369      llvm_unreachable("Invalid Cast Combination");
2370    default:
2371      llvm_unreachable("Error in CastResults table!!!");
2372  }
2373}
2374
2375CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2376  const Twine &Name, Instruction *InsertBefore) {
2377  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2378  // Construct and return the appropriate CastInst subclass
2379  switch (op) {
2380  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2381  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2382  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2383  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2384  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2385  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2386  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2387  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2388  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2389  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2390  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2391  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2392  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2393  default: llvm_unreachable("Invalid opcode provided");
2394  }
2395}
2396
2397CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2398  const Twine &Name, BasicBlock *InsertAtEnd) {
2399  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2400  // Construct and return the appropriate CastInst subclass
2401  switch (op) {
2402  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2403  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2404  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2405  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2406  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2407  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2408  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2409  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2410  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2411  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2412  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2413  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2414  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2415  default: llvm_unreachable("Invalid opcode provided");
2416  }
2417}
2418
2419CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2420                                        const Twine &Name,
2421                                        Instruction *InsertBefore) {
2422  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2423    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2424  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2425}
2426
2427CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2428                                        const Twine &Name,
2429                                        BasicBlock *InsertAtEnd) {
2430  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2431    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2432  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2433}
2434
2435CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2436                                        const Twine &Name,
2437                                        Instruction *InsertBefore) {
2438  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2439    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2440  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2441}
2442
2443CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2444                                        const Twine &Name,
2445                                        BasicBlock *InsertAtEnd) {
2446  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2447    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2448  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2449}
2450
2451CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2452                                         const Twine &Name,
2453                                         Instruction *InsertBefore) {
2454  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2455    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2456  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2457}
2458
2459CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2460                                         const Twine &Name,
2461                                         BasicBlock *InsertAtEnd) {
2462  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2463    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2464  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2465}
2466
2467CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2468                                      const Twine &Name,
2469                                      BasicBlock *InsertAtEnd) {
2470  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2471  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2472         "Invalid cast");
2473  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2474  assert((!Ty->isVectorTy() ||
2475          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2476         "Invalid cast");
2477
2478  if (Ty->isIntOrIntVectorTy())
2479    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2480
2481  Type *STy = S->getType();
2482  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2483    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2484
2485  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2486}
2487
2488/// @brief Create a BitCast or a PtrToInt cast instruction
2489CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2490                                      const Twine &Name,
2491                                      Instruction *InsertBefore) {
2492  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2493  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2494         "Invalid cast");
2495  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2496  assert((!Ty->isVectorTy() ||
2497          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2498         "Invalid cast");
2499
2500  if (Ty->isIntOrIntVectorTy())
2501    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2502
2503  Type *STy = S->getType();
2504  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2505    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2506
2507  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2508}
2509
2510CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2511                                      bool isSigned, const Twine &Name,
2512                                      Instruction *InsertBefore) {
2513  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2514         "Invalid integer cast");
2515  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2516  unsigned DstBits = Ty->getScalarSizeInBits();
2517  Instruction::CastOps opcode =
2518    (SrcBits == DstBits ? Instruction::BitCast :
2519     (SrcBits > DstBits ? Instruction::Trunc :
2520      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2521  return Create(opcode, C, Ty, Name, InsertBefore);
2522}
2523
2524CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2525                                      bool isSigned, const Twine &Name,
2526                                      BasicBlock *InsertAtEnd) {
2527  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2528         "Invalid cast");
2529  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2530  unsigned DstBits = Ty->getScalarSizeInBits();
2531  Instruction::CastOps opcode =
2532    (SrcBits == DstBits ? Instruction::BitCast :
2533     (SrcBits > DstBits ? Instruction::Trunc :
2534      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2535  return Create(opcode, C, Ty, Name, InsertAtEnd);
2536}
2537
2538CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2539                                 const Twine &Name,
2540                                 Instruction *InsertBefore) {
2541  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2542         "Invalid cast");
2543  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2544  unsigned DstBits = Ty->getScalarSizeInBits();
2545  Instruction::CastOps opcode =
2546    (SrcBits == DstBits ? Instruction::BitCast :
2547     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2548  return Create(opcode, C, Ty, Name, InsertBefore);
2549}
2550
2551CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2552                                 const Twine &Name,
2553                                 BasicBlock *InsertAtEnd) {
2554  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2555         "Invalid cast");
2556  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2557  unsigned DstBits = Ty->getScalarSizeInBits();
2558  Instruction::CastOps opcode =
2559    (SrcBits == DstBits ? Instruction::BitCast :
2560     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2561  return Create(opcode, C, Ty, Name, InsertAtEnd);
2562}
2563
2564// Check whether it is valid to call getCastOpcode for these types.
2565// This routine must be kept in sync with getCastOpcode.
2566bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2567  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2568    return false;
2569
2570  if (SrcTy == DestTy)
2571    return true;
2572
2573  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2574    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2575      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2576        // An element by element cast.  Valid if casting the elements is valid.
2577        SrcTy = SrcVecTy->getElementType();
2578        DestTy = DestVecTy->getElementType();
2579      }
2580
2581  // Get the bit sizes, we'll need these
2582  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2583  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2584
2585  // Run through the possibilities ...
2586  if (DestTy->isIntegerTy()) {               // Casting to integral
2587    if (SrcTy->isIntegerTy()) {                // Casting from integral
2588        return true;
2589    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2590      return true;
2591    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2592      return DestBits == SrcBits;
2593    } else {                                   // Casting from something else
2594      return SrcTy->isPointerTy();
2595    }
2596  } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2597    if (SrcTy->isIntegerTy()) {                // Casting from integral
2598      return true;
2599    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2600      return true;
2601    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2602      return DestBits == SrcBits;
2603    } else {                                   // Casting from something else
2604      return false;
2605    }
2606  } else if (DestTy->isVectorTy()) {         // Casting to vector
2607    return DestBits == SrcBits;
2608  } else if (DestTy->isPointerTy()) {        // Casting to pointer
2609    if (SrcTy->isPointerTy()) {                // Casting from pointer
2610      return true;
2611    } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2612      return true;
2613    } else {                                   // Casting from something else
2614      return false;
2615    }
2616  } else if (DestTy->isX86_MMXTy()) {
2617    if (SrcTy->isVectorTy()) {
2618      return DestBits == SrcBits;       // 64-bit vector to MMX
2619    } else {
2620      return false;
2621    }
2622  } else {                                   // Casting to something else
2623    return false;
2624  }
2625}
2626
2627bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2628  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2629    return false;
2630
2631  if (SrcTy == DestTy)
2632    return true;
2633
2634  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2635    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2636      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2637        // An element by element cast. Valid if casting the elements is valid.
2638        SrcTy = SrcVecTy->getElementType();
2639        DestTy = DestVecTy->getElementType();
2640      }
2641    }
2642  }
2643
2644  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2645    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2646      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2647    }
2648  }
2649
2650  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2651  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2652
2653  // Could still have vectors of pointers if the number of elements doesn't
2654  // match
2655  if (SrcBits == 0 || DestBits == 0)
2656    return false;
2657
2658  if (SrcBits != DestBits)
2659    return false;
2660
2661  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2662    return false;
2663
2664  return true;
2665}
2666
2667// Provide a way to get a "cast" where the cast opcode is inferred from the
2668// types and size of the operand. This, basically, is a parallel of the
2669// logic in the castIsValid function below.  This axiom should hold:
2670//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2671// should not assert in castIsValid. In other words, this produces a "correct"
2672// casting opcode for the arguments passed to it.
2673// This routine must be kept in sync with isCastable.
2674Instruction::CastOps
2675CastInst::getCastOpcode(
2676  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2677  Type *SrcTy = Src->getType();
2678
2679  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2680         "Only first class types are castable!");
2681
2682  if (SrcTy == DestTy)
2683    return BitCast;
2684
2685  // FIXME: Check address space sizes here
2686  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2687    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2688      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2689        // An element by element cast.  Find the appropriate opcode based on the
2690        // element types.
2691        SrcTy = SrcVecTy->getElementType();
2692        DestTy = DestVecTy->getElementType();
2693      }
2694
2695  // Get the bit sizes, we'll need these
2696  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2697  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2698
2699  // Run through the possibilities ...
2700  if (DestTy->isIntegerTy()) {                      // Casting to integral
2701    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2702      if (DestBits < SrcBits)
2703        return Trunc;                               // int -> smaller int
2704      else if (DestBits > SrcBits) {                // its an extension
2705        if (SrcIsSigned)
2706          return SExt;                              // signed -> SEXT
2707        else
2708          return ZExt;                              // unsigned -> ZEXT
2709      } else {
2710        return BitCast;                             // Same size, No-op cast
2711      }
2712    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2713      if (DestIsSigned)
2714        return FPToSI;                              // FP -> sint
2715      else
2716        return FPToUI;                              // FP -> uint
2717    } else if (SrcTy->isVectorTy()) {
2718      assert(DestBits == SrcBits &&
2719             "Casting vector to integer of different width");
2720      return BitCast;                             // Same size, no-op cast
2721    } else {
2722      assert(SrcTy->isPointerTy() &&
2723             "Casting from a value that is not first-class type");
2724      return PtrToInt;                              // ptr -> int
2725    }
2726  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2727    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2728      if (SrcIsSigned)
2729        return SIToFP;                              // sint -> FP
2730      else
2731        return UIToFP;                              // uint -> FP
2732    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2733      if (DestBits < SrcBits) {
2734        return FPTrunc;                             // FP -> smaller FP
2735      } else if (DestBits > SrcBits) {
2736        return FPExt;                               // FP -> larger FP
2737      } else  {
2738        return BitCast;                             // same size, no-op cast
2739      }
2740    } else if (SrcTy->isVectorTy()) {
2741      assert(DestBits == SrcBits &&
2742             "Casting vector to floating point of different width");
2743      return BitCast;                             // same size, no-op cast
2744    }
2745    llvm_unreachable("Casting pointer or non-first class to float");
2746  } else if (DestTy->isVectorTy()) {
2747    assert(DestBits == SrcBits &&
2748           "Illegal cast to vector (wrong type or size)");
2749    return BitCast;
2750  } else if (DestTy->isPointerTy()) {
2751    if (SrcTy->isPointerTy()) {
2752      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2753        return AddrSpaceCast;
2754      return BitCast;                               // ptr -> ptr
2755    } else if (SrcTy->isIntegerTy()) {
2756      return IntToPtr;                              // int -> ptr
2757    }
2758    llvm_unreachable("Casting pointer to other than pointer or int");
2759  } else if (DestTy->isX86_MMXTy()) {
2760    if (SrcTy->isVectorTy()) {
2761      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2762      return BitCast;                               // 64-bit vector to MMX
2763    }
2764    llvm_unreachable("Illegal cast to X86_MMX");
2765  }
2766  llvm_unreachable("Casting to type that is not first-class");
2767}
2768
2769//===----------------------------------------------------------------------===//
2770//                    CastInst SubClass Constructors
2771//===----------------------------------------------------------------------===//
2772
2773/// Check that the construction parameters for a CastInst are correct. This
2774/// could be broken out into the separate constructors but it is useful to have
2775/// it in one place and to eliminate the redundant code for getting the sizes
2776/// of the types involved.
2777bool
2778CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2779
2780  // Check for type sanity on the arguments
2781  Type *SrcTy = S->getType();
2782
2783  // If this is a cast to the same type then it's trivially true.
2784  if (SrcTy == DstTy)
2785    return true;
2786
2787  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2788      SrcTy->isAggregateType() || DstTy->isAggregateType())
2789    return false;
2790
2791  // Get the size of the types in bits, we'll need this later
2792  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2793  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2794
2795  // If these are vector types, get the lengths of the vectors (using zero for
2796  // scalar types means that checking that vector lengths match also checks that
2797  // scalars are not being converted to vectors or vectors to scalars).
2798  unsigned SrcLength = SrcTy->isVectorTy() ?
2799    cast<VectorType>(SrcTy)->getNumElements() : 0;
2800  unsigned DstLength = DstTy->isVectorTy() ?
2801    cast<VectorType>(DstTy)->getNumElements() : 0;
2802
2803  // Switch on the opcode provided
2804  switch (op) {
2805  default: return false; // This is an input error
2806  case Instruction::Trunc:
2807    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2808      SrcLength == DstLength && SrcBitSize > DstBitSize;
2809  case Instruction::ZExt:
2810    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2811      SrcLength == DstLength && SrcBitSize < DstBitSize;
2812  case Instruction::SExt:
2813    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2814      SrcLength == DstLength && SrcBitSize < DstBitSize;
2815  case Instruction::FPTrunc:
2816    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2817      SrcLength == DstLength && SrcBitSize > DstBitSize;
2818  case Instruction::FPExt:
2819    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2820      SrcLength == DstLength && SrcBitSize < DstBitSize;
2821  case Instruction::UIToFP:
2822  case Instruction::SIToFP:
2823    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2824      SrcLength == DstLength;
2825  case Instruction::FPToUI:
2826  case Instruction::FPToSI:
2827    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2828      SrcLength == DstLength;
2829  case Instruction::PtrToInt:
2830    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2831      return false;
2832    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2833      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2834        return false;
2835    return SrcTy->getScalarType()->isPointerTy() &&
2836           DstTy->getScalarType()->isIntegerTy();
2837  case Instruction::IntToPtr:
2838    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2839      return false;
2840    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2841      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2842        return false;
2843    return SrcTy->getScalarType()->isIntegerTy() &&
2844           DstTy->getScalarType()->isPointerTy();
2845  case Instruction::BitCast: {
2846    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2847    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2848
2849    // BitCast implies a no-op cast of type only. No bits change.
2850    // However, you can't cast pointers to anything but pointers.
2851    if (!SrcPtrTy != !DstPtrTy)
2852      return false;
2853
2854    // For non-pointer cases, the cast is okay if the source and destination bit
2855    // widths are identical.
2856    if (!SrcPtrTy)
2857      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2858
2859    // If both are pointers then the address spaces must match.
2860    if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
2861      return false;
2862
2863    // A vector of pointers must have the same number of elements.
2864    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2865      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2866        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2867
2868      return false;
2869    }
2870
2871    return true;
2872  }
2873  case Instruction::AddrSpaceCast: {
2874    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2875    if (!SrcPtrTy)
2876      return false;
2877
2878    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2879    if (!DstPtrTy)
2880      return false;
2881
2882    if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2883      return false;
2884
2885    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2886      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2887        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2888
2889      return false;
2890    }
2891
2892    return true;
2893  }
2894  }
2895}
2896
2897TruncInst::TruncInst(
2898  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2899) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2900  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2901}
2902
2903TruncInst::TruncInst(
2904  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2905) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2906  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2907}
2908
2909ZExtInst::ZExtInst(
2910  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2911)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2912  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2913}
2914
2915ZExtInst::ZExtInst(
2916  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2917)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2918  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2919}
2920SExtInst::SExtInst(
2921  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2922) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2923  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2924}
2925
2926SExtInst::SExtInst(
2927  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2928)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2929  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2930}
2931
2932FPTruncInst::FPTruncInst(
2933  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2934) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2935  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2936}
2937
2938FPTruncInst::FPTruncInst(
2939  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2940) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2941  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2942}
2943
2944FPExtInst::FPExtInst(
2945  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2946) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2947  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2948}
2949
2950FPExtInst::FPExtInst(
2951  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2952) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2953  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2954}
2955
2956UIToFPInst::UIToFPInst(
2957  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2958) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2959  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2960}
2961
2962UIToFPInst::UIToFPInst(
2963  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2964) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2965  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2966}
2967
2968SIToFPInst::SIToFPInst(
2969  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2970) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2971  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2972}
2973
2974SIToFPInst::SIToFPInst(
2975  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2976) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2977  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2978}
2979
2980FPToUIInst::FPToUIInst(
2981  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2982) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2983  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2984}
2985
2986FPToUIInst::FPToUIInst(
2987  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2988) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2989  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2990}
2991
2992FPToSIInst::FPToSIInst(
2993  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2994) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2995  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2996}
2997
2998FPToSIInst::FPToSIInst(
2999  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3000) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3001  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3002}
3003
3004PtrToIntInst::PtrToIntInst(
3005  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3006) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3007  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3008}
3009
3010PtrToIntInst::PtrToIntInst(
3011  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3012) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3013  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3014}
3015
3016IntToPtrInst::IntToPtrInst(
3017  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3018) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3019  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3020}
3021
3022IntToPtrInst::IntToPtrInst(
3023  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3024) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3025  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3026}
3027
3028BitCastInst::BitCastInst(
3029  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3030) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3031  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3032}
3033
3034BitCastInst::BitCastInst(
3035  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3036) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3037  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3038}
3039
3040AddrSpaceCastInst::AddrSpaceCastInst(
3041  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3042) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3043  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3044}
3045
3046AddrSpaceCastInst::AddrSpaceCastInst(
3047  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3048) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3049  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3050}
3051
3052//===----------------------------------------------------------------------===//
3053//                               CmpInst Classes
3054//===----------------------------------------------------------------------===//
3055
3056void CmpInst::anchor() {}
3057
3058CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3059                 Value *LHS, Value *RHS, const Twine &Name,
3060                 Instruction *InsertBefore)
3061  : Instruction(ty, op,
3062                OperandTraits<CmpInst>::op_begin(this),
3063                OperandTraits<CmpInst>::operands(this),
3064                InsertBefore) {
3065    Op<0>() = LHS;
3066    Op<1>() = RHS;
3067  setPredicate((Predicate)predicate);
3068  setName(Name);
3069}
3070
3071CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3072                 Value *LHS, Value *RHS, const Twine &Name,
3073                 BasicBlock *InsertAtEnd)
3074  : Instruction(ty, op,
3075                OperandTraits<CmpInst>::op_begin(this),
3076                OperandTraits<CmpInst>::operands(this),
3077                InsertAtEnd) {
3078  Op<0>() = LHS;
3079  Op<1>() = RHS;
3080  setPredicate((Predicate)predicate);
3081  setName(Name);
3082}
3083
3084CmpInst *
3085CmpInst::Create(OtherOps Op, unsigned short predicate,
3086                Value *S1, Value *S2,
3087                const Twine &Name, Instruction *InsertBefore) {
3088  if (Op == Instruction::ICmp) {
3089    if (InsertBefore)
3090      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3091                          S1, S2, Name);
3092    else
3093      return new ICmpInst(CmpInst::Predicate(predicate),
3094                          S1, S2, Name);
3095  }
3096
3097  if (InsertBefore)
3098    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3099                        S1, S2, Name);
3100  else
3101    return new FCmpInst(CmpInst::Predicate(predicate),
3102                        S1, S2, Name);
3103}
3104
3105CmpInst *
3106CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3107                const Twine &Name, BasicBlock *InsertAtEnd) {
3108  if (Op == Instruction::ICmp) {
3109    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3110                        S1, S2, Name);
3111  }
3112  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3113                      S1, S2, Name);
3114}
3115
3116void CmpInst::swapOperands() {
3117  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3118    IC->swapOperands();
3119  else
3120    cast<FCmpInst>(this)->swapOperands();
3121}
3122
3123bool CmpInst::isCommutative() const {
3124  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3125    return IC->isCommutative();
3126  return cast<FCmpInst>(this)->isCommutative();
3127}
3128
3129bool CmpInst::isEquality() const {
3130  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3131    return IC->isEquality();
3132  return cast<FCmpInst>(this)->isEquality();
3133}
3134
3135
3136CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3137  switch (pred) {
3138    default: llvm_unreachable("Unknown cmp predicate!");
3139    case ICMP_EQ: return ICMP_NE;
3140    case ICMP_NE: return ICMP_EQ;
3141    case ICMP_UGT: return ICMP_ULE;
3142    case ICMP_ULT: return ICMP_UGE;
3143    case ICMP_UGE: return ICMP_ULT;
3144    case ICMP_ULE: return ICMP_UGT;
3145    case ICMP_SGT: return ICMP_SLE;
3146    case ICMP_SLT: return ICMP_SGE;
3147    case ICMP_SGE: return ICMP_SLT;
3148    case ICMP_SLE: return ICMP_SGT;
3149
3150    case FCMP_OEQ: return FCMP_UNE;
3151    case FCMP_ONE: return FCMP_UEQ;
3152    case FCMP_OGT: return FCMP_ULE;
3153    case FCMP_OLT: return FCMP_UGE;
3154    case FCMP_OGE: return FCMP_ULT;
3155    case FCMP_OLE: return FCMP_UGT;
3156    case FCMP_UEQ: return FCMP_ONE;
3157    case FCMP_UNE: return FCMP_OEQ;
3158    case FCMP_UGT: return FCMP_OLE;
3159    case FCMP_ULT: return FCMP_OGE;
3160    case FCMP_UGE: return FCMP_OLT;
3161    case FCMP_ULE: return FCMP_OGT;
3162    case FCMP_ORD: return FCMP_UNO;
3163    case FCMP_UNO: return FCMP_ORD;
3164    case FCMP_TRUE: return FCMP_FALSE;
3165    case FCMP_FALSE: return FCMP_TRUE;
3166  }
3167}
3168
3169ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3170  switch (pred) {
3171    default: llvm_unreachable("Unknown icmp predicate!");
3172    case ICMP_EQ: case ICMP_NE:
3173    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3174       return pred;
3175    case ICMP_UGT: return ICMP_SGT;
3176    case ICMP_ULT: return ICMP_SLT;
3177    case ICMP_UGE: return ICMP_SGE;
3178    case ICMP_ULE: return ICMP_SLE;
3179  }
3180}
3181
3182ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3183  switch (pred) {
3184    default: llvm_unreachable("Unknown icmp predicate!");
3185    case ICMP_EQ: case ICMP_NE:
3186    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3187       return pred;
3188    case ICMP_SGT: return ICMP_UGT;
3189    case ICMP_SLT: return ICMP_ULT;
3190    case ICMP_SGE: return ICMP_UGE;
3191    case ICMP_SLE: return ICMP_ULE;
3192  }
3193}
3194
3195/// Initialize a set of values that all satisfy the condition with C.
3196///
3197ConstantRange
3198ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3199  APInt Lower(C);
3200  APInt Upper(C);
3201  uint32_t BitWidth = C.getBitWidth();
3202  switch (pred) {
3203  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3204  case ICmpInst::ICMP_EQ: ++Upper; break;
3205  case ICmpInst::ICMP_NE: ++Lower; break;
3206  case ICmpInst::ICMP_ULT:
3207    Lower = APInt::getMinValue(BitWidth);
3208    // Check for an empty-set condition.
3209    if (Lower == Upper)
3210      return ConstantRange(BitWidth, /*isFullSet=*/false);
3211    break;
3212  case ICmpInst::ICMP_SLT:
3213    Lower = APInt::getSignedMinValue(BitWidth);
3214    // Check for an empty-set condition.
3215    if (Lower == Upper)
3216      return ConstantRange(BitWidth, /*isFullSet=*/false);
3217    break;
3218  case ICmpInst::ICMP_UGT:
3219    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3220    // Check for an empty-set condition.
3221    if (Lower == Upper)
3222      return ConstantRange(BitWidth, /*isFullSet=*/false);
3223    break;
3224  case ICmpInst::ICMP_SGT:
3225    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3226    // Check for an empty-set condition.
3227    if (Lower == Upper)
3228      return ConstantRange(BitWidth, /*isFullSet=*/false);
3229    break;
3230  case ICmpInst::ICMP_ULE:
3231    Lower = APInt::getMinValue(BitWidth); ++Upper;
3232    // Check for a full-set condition.
3233    if (Lower == Upper)
3234      return ConstantRange(BitWidth, /*isFullSet=*/true);
3235    break;
3236  case ICmpInst::ICMP_SLE:
3237    Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3238    // Check for a full-set condition.
3239    if (Lower == Upper)
3240      return ConstantRange(BitWidth, /*isFullSet=*/true);
3241    break;
3242  case ICmpInst::ICMP_UGE:
3243    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3244    // Check for a full-set condition.
3245    if (Lower == Upper)
3246      return ConstantRange(BitWidth, /*isFullSet=*/true);
3247    break;
3248  case ICmpInst::ICMP_SGE:
3249    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3250    // Check for a full-set condition.
3251    if (Lower == Upper)
3252      return ConstantRange(BitWidth, /*isFullSet=*/true);
3253    break;
3254  }
3255  return ConstantRange(Lower, Upper);
3256}
3257
3258CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3259  switch (pred) {
3260    default: llvm_unreachable("Unknown cmp predicate!");
3261    case ICMP_EQ: case ICMP_NE:
3262      return pred;
3263    case ICMP_SGT: return ICMP_SLT;
3264    case ICMP_SLT: return ICMP_SGT;
3265    case ICMP_SGE: return ICMP_SLE;
3266    case ICMP_SLE: return ICMP_SGE;
3267    case ICMP_UGT: return ICMP_ULT;
3268    case ICMP_ULT: return ICMP_UGT;
3269    case ICMP_UGE: return ICMP_ULE;
3270    case ICMP_ULE: return ICMP_UGE;
3271
3272    case FCMP_FALSE: case FCMP_TRUE:
3273    case FCMP_OEQ: case FCMP_ONE:
3274    case FCMP_UEQ: case FCMP_UNE:
3275    case FCMP_ORD: case FCMP_UNO:
3276      return pred;
3277    case FCMP_OGT: return FCMP_OLT;
3278    case FCMP_OLT: return FCMP_OGT;
3279    case FCMP_OGE: return FCMP_OLE;
3280    case FCMP_OLE: return FCMP_OGE;
3281    case FCMP_UGT: return FCMP_ULT;
3282    case FCMP_ULT: return FCMP_UGT;
3283    case FCMP_UGE: return FCMP_ULE;
3284    case FCMP_ULE: return FCMP_UGE;
3285  }
3286}
3287
3288bool CmpInst::isUnsigned(unsigned short predicate) {
3289  switch (predicate) {
3290    default: return false;
3291    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3292    case ICmpInst::ICMP_UGE: return true;
3293  }
3294}
3295
3296bool CmpInst::isSigned(unsigned short predicate) {
3297  switch (predicate) {
3298    default: return false;
3299    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3300    case ICmpInst::ICMP_SGE: return true;
3301  }
3302}
3303
3304bool CmpInst::isOrdered(unsigned short predicate) {
3305  switch (predicate) {
3306    default: return false;
3307    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3308    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3309    case FCmpInst::FCMP_ORD: return true;
3310  }
3311}
3312
3313bool CmpInst::isUnordered(unsigned short predicate) {
3314  switch (predicate) {
3315    default: return false;
3316    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3317    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3318    case FCmpInst::FCMP_UNO: return true;
3319  }
3320}
3321
3322bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3323  switch(predicate) {
3324    default: return false;
3325    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3326    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3327  }
3328}
3329
3330bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3331  switch(predicate) {
3332  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3333  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3334  default: return false;
3335  }
3336}
3337
3338
3339//===----------------------------------------------------------------------===//
3340//                        SwitchInst Implementation
3341//===----------------------------------------------------------------------===//
3342
3343void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3344  assert(Value && Default && NumReserved);
3345  ReservedSpace = NumReserved;
3346  NumOperands = 2;
3347  OperandList = allocHungoffUses(ReservedSpace);
3348
3349  OperandList[0] = Value;
3350  OperandList[1] = Default;
3351}
3352
3353/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3354/// switch on and a default destination.  The number of additional cases can
3355/// be specified here to make memory allocation more efficient.  This
3356/// constructor can also autoinsert before another instruction.
3357SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3358                       Instruction *InsertBefore)
3359  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3360                   nullptr, 0, InsertBefore) {
3361  init(Value, Default, 2+NumCases*2);
3362}
3363
3364/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3365/// switch on and a default destination.  The number of additional cases can
3366/// be specified here to make memory allocation more efficient.  This
3367/// constructor also autoinserts at the end of the specified BasicBlock.
3368SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3369                       BasicBlock *InsertAtEnd)
3370  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3371                   nullptr, 0, InsertAtEnd) {
3372  init(Value, Default, 2+NumCases*2);
3373}
3374
3375SwitchInst::SwitchInst(const SwitchInst &SI)
3376  : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3377  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3378  NumOperands = SI.getNumOperands();
3379  Use *OL = OperandList, *InOL = SI.OperandList;
3380  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3381    OL[i] = InOL[i];
3382    OL[i+1] = InOL[i+1];
3383  }
3384  SubclassOptionalData = SI.SubclassOptionalData;
3385}
3386
3387SwitchInst::~SwitchInst() {
3388  dropHungoffUses();
3389}
3390
3391
3392/// addCase - Add an entry to the switch instruction...
3393///
3394void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3395  unsigned NewCaseIdx = getNumCases();
3396  unsigned OpNo = NumOperands;
3397  if (OpNo+2 > ReservedSpace)
3398    growOperands();  // Get more space!
3399  // Initialize some new operands.
3400  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3401  NumOperands = OpNo+2;
3402  CaseIt Case(this, NewCaseIdx);
3403  Case.setValue(OnVal);
3404  Case.setSuccessor(Dest);
3405}
3406
3407/// removeCase - This method removes the specified case and its successor
3408/// from the switch instruction.
3409void SwitchInst::removeCase(CaseIt i) {
3410  unsigned idx = i.getCaseIndex();
3411
3412  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3413
3414  unsigned NumOps = getNumOperands();
3415  Use *OL = OperandList;
3416
3417  // Overwrite this case with the end of the list.
3418  if (2 + (idx + 1) * 2 != NumOps) {
3419    OL[2 + idx * 2] = OL[NumOps - 2];
3420    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3421  }
3422
3423  // Nuke the last value.
3424  OL[NumOps-2].set(nullptr);
3425  OL[NumOps-2+1].set(nullptr);
3426  NumOperands = NumOps-2;
3427}
3428
3429/// growOperands - grow operands - This grows the operand list in response
3430/// to a push_back style of operation.  This grows the number of ops by 3 times.
3431///
3432void SwitchInst::growOperands() {
3433  unsigned e = getNumOperands();
3434  unsigned NumOps = e*3;
3435
3436  ReservedSpace = NumOps;
3437  Use *NewOps = allocHungoffUses(NumOps);
3438  Use *OldOps = OperandList;
3439  for (unsigned i = 0; i != e; ++i) {
3440      NewOps[i] = OldOps[i];
3441  }
3442  OperandList = NewOps;
3443  Use::zap(OldOps, OldOps + e, true);
3444}
3445
3446
3447BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3448  return getSuccessor(idx);
3449}
3450unsigned SwitchInst::getNumSuccessorsV() const {
3451  return getNumSuccessors();
3452}
3453void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3454  setSuccessor(idx, B);
3455}
3456
3457//===----------------------------------------------------------------------===//
3458//                        IndirectBrInst Implementation
3459//===----------------------------------------------------------------------===//
3460
3461void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3462  assert(Address && Address->getType()->isPointerTy() &&
3463         "Address of indirectbr must be a pointer");
3464  ReservedSpace = 1+NumDests;
3465  NumOperands = 1;
3466  OperandList = allocHungoffUses(ReservedSpace);
3467
3468  OperandList[0] = Address;
3469}
3470
3471
3472/// growOperands - grow operands - This grows the operand list in response
3473/// to a push_back style of operation.  This grows the number of ops by 2 times.
3474///
3475void IndirectBrInst::growOperands() {
3476  unsigned e = getNumOperands();
3477  unsigned NumOps = e*2;
3478
3479  ReservedSpace = NumOps;
3480  Use *NewOps = allocHungoffUses(NumOps);
3481  Use *OldOps = OperandList;
3482  for (unsigned i = 0; i != e; ++i)
3483    NewOps[i] = OldOps[i];
3484  OperandList = NewOps;
3485  Use::zap(OldOps, OldOps + e, true);
3486}
3487
3488IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3489                               Instruction *InsertBefore)
3490: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3491                 nullptr, 0, InsertBefore) {
3492  init(Address, NumCases);
3493}
3494
3495IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3496                               BasicBlock *InsertAtEnd)
3497: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3498                 nullptr, 0, InsertAtEnd) {
3499  init(Address, NumCases);
3500}
3501
3502IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3503  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3504                   allocHungoffUses(IBI.getNumOperands()),
3505                   IBI.getNumOperands()) {
3506  Use *OL = OperandList, *InOL = IBI.OperandList;
3507  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3508    OL[i] = InOL[i];
3509  SubclassOptionalData = IBI.SubclassOptionalData;
3510}
3511
3512IndirectBrInst::~IndirectBrInst() {
3513  dropHungoffUses();
3514}
3515
3516/// addDestination - Add a destination.
3517///
3518void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3519  unsigned OpNo = NumOperands;
3520  if (OpNo+1 > ReservedSpace)
3521    growOperands();  // Get more space!
3522  // Initialize some new operands.
3523  assert(OpNo < ReservedSpace && "Growing didn't work!");
3524  NumOperands = OpNo+1;
3525  OperandList[OpNo] = DestBB;
3526}
3527
3528/// removeDestination - This method removes the specified successor from the
3529/// indirectbr instruction.
3530void IndirectBrInst::removeDestination(unsigned idx) {
3531  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3532
3533  unsigned NumOps = getNumOperands();
3534  Use *OL = OperandList;
3535
3536  // Replace this value with the last one.
3537  OL[idx+1] = OL[NumOps-1];
3538
3539  // Nuke the last value.
3540  OL[NumOps-1].set(nullptr);
3541  NumOperands = NumOps-1;
3542}
3543
3544BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3545  return getSuccessor(idx);
3546}
3547unsigned IndirectBrInst::getNumSuccessorsV() const {
3548  return getNumSuccessors();
3549}
3550void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3551  setSuccessor(idx, B);
3552}
3553
3554//===----------------------------------------------------------------------===//
3555//                           clone_impl() implementations
3556//===----------------------------------------------------------------------===//
3557
3558// Define these methods here so vtables don't get emitted into every translation
3559// unit that uses these classes.
3560
3561GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3562  return new (getNumOperands()) GetElementPtrInst(*this);
3563}
3564
3565BinaryOperator *BinaryOperator::clone_impl() const {
3566  return Create(getOpcode(), Op<0>(), Op<1>());
3567}
3568
3569FCmpInst* FCmpInst::clone_impl() const {
3570  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3571}
3572
3573ICmpInst* ICmpInst::clone_impl() const {
3574  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3575}
3576
3577ExtractValueInst *ExtractValueInst::clone_impl() const {
3578  return new ExtractValueInst(*this);
3579}
3580
3581InsertValueInst *InsertValueInst::clone_impl() const {
3582  return new InsertValueInst(*this);
3583}
3584
3585AllocaInst *AllocaInst::clone_impl() const {
3586  AllocaInst *Result = new AllocaInst(getAllocatedType(),
3587                                      (Value *)getOperand(0), getAlignment());
3588  Result->setUsedWithInAlloca(isUsedWithInAlloca());
3589  return Result;
3590}
3591
3592LoadInst *LoadInst::clone_impl() const {
3593  return new LoadInst(getOperand(0), Twine(), isVolatile(),
3594                      getAlignment(), getOrdering(), getSynchScope());
3595}
3596
3597StoreInst *StoreInst::clone_impl() const {
3598  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3599                       getAlignment(), getOrdering(), getSynchScope());
3600
3601}
3602
3603AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3604  AtomicCmpXchgInst *Result =
3605    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3606                          getSuccessOrdering(), getFailureOrdering(),
3607                          getSynchScope());
3608  Result->setVolatile(isVolatile());
3609  Result->setWeak(isWeak());
3610  return Result;
3611}
3612
3613AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3614  AtomicRMWInst *Result =
3615    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3616                      getOrdering(), getSynchScope());
3617  Result->setVolatile(isVolatile());
3618  return Result;
3619}
3620
3621FenceInst *FenceInst::clone_impl() const {
3622  return new FenceInst(getContext(), getOrdering(), getSynchScope());
3623}
3624
3625TruncInst *TruncInst::clone_impl() const {
3626  return new TruncInst(getOperand(0), getType());
3627}
3628
3629ZExtInst *ZExtInst::clone_impl() const {
3630  return new ZExtInst(getOperand(0), getType());
3631}
3632
3633SExtInst *SExtInst::clone_impl() const {
3634  return new SExtInst(getOperand(0), getType());
3635}
3636
3637FPTruncInst *FPTruncInst::clone_impl() const {
3638  return new FPTruncInst(getOperand(0), getType());
3639}
3640
3641FPExtInst *FPExtInst::clone_impl() const {
3642  return new FPExtInst(getOperand(0), getType());
3643}
3644
3645UIToFPInst *UIToFPInst::clone_impl() const {
3646  return new UIToFPInst(getOperand(0), getType());
3647}
3648
3649SIToFPInst *SIToFPInst::clone_impl() const {
3650  return new SIToFPInst(getOperand(0), getType());
3651}
3652
3653FPToUIInst *FPToUIInst::clone_impl() const {
3654  return new FPToUIInst(getOperand(0), getType());
3655}
3656
3657FPToSIInst *FPToSIInst::clone_impl() const {
3658  return new FPToSIInst(getOperand(0), getType());
3659}
3660
3661PtrToIntInst *PtrToIntInst::clone_impl() const {
3662  return new PtrToIntInst(getOperand(0), getType());
3663}
3664
3665IntToPtrInst *IntToPtrInst::clone_impl() const {
3666  return new IntToPtrInst(getOperand(0), getType());
3667}
3668
3669BitCastInst *BitCastInst::clone_impl() const {
3670  return new BitCastInst(getOperand(0), getType());
3671}
3672
3673AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
3674  return new AddrSpaceCastInst(getOperand(0), getType());
3675}
3676
3677CallInst *CallInst::clone_impl() const {
3678  return  new(getNumOperands()) CallInst(*this);
3679}
3680
3681SelectInst *SelectInst::clone_impl() const {
3682  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3683}
3684
3685VAArgInst *VAArgInst::clone_impl() const {
3686  return new VAArgInst(getOperand(0), getType());
3687}
3688
3689ExtractElementInst *ExtractElementInst::clone_impl() const {
3690  return ExtractElementInst::Create(getOperand(0), getOperand(1));
3691}
3692
3693InsertElementInst *InsertElementInst::clone_impl() const {
3694  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3695}
3696
3697ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3698  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3699}
3700
3701PHINode *PHINode::clone_impl() const {
3702  return new PHINode(*this);
3703}
3704
3705LandingPadInst *LandingPadInst::clone_impl() const {
3706  return new LandingPadInst(*this);
3707}
3708
3709ReturnInst *ReturnInst::clone_impl() const {
3710  return new(getNumOperands()) ReturnInst(*this);
3711}
3712
3713BranchInst *BranchInst::clone_impl() const {
3714  return new(getNumOperands()) BranchInst(*this);
3715}
3716
3717SwitchInst *SwitchInst::clone_impl() const {
3718  return new SwitchInst(*this);
3719}
3720
3721IndirectBrInst *IndirectBrInst::clone_impl() const {
3722  return new IndirectBrInst(*this);
3723}
3724
3725
3726InvokeInst *InvokeInst::clone_impl() const {
3727  return new(getNumOperands()) InvokeInst(*this);
3728}
3729
3730ResumeInst *ResumeInst::clone_impl() const {
3731  return new(1) ResumeInst(*this);
3732}
3733
3734UnreachableInst *UnreachableInst::clone_impl() const {
3735  LLVMContext &Context = getContext();
3736  return new UnreachableInst(Context);
3737}
3738