Instructions.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/IR/Instructions.h"
16#include "LLVMContextImpl.h"
17#include "llvm/IR/CallSite.h"
18#include "llvm/IR/ConstantRange.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//                            CallSite Class
31//===----------------------------------------------------------------------===//
32
33User::op_iterator CallSite::getCallee() const {
34  Instruction *II(getInstruction());
35  return isCall()
36    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38}
39
40//===----------------------------------------------------------------------===//
41//                            TerminatorInst Class
42//===----------------------------------------------------------------------===//
43
44// Out of line virtual method, so the vtable, etc has a home.
45TerminatorInst::~TerminatorInst() {
46}
47
48//===----------------------------------------------------------------------===//
49//                           UnaryInstruction Class
50//===----------------------------------------------------------------------===//
51
52// Out of line virtual method, so the vtable, etc has a home.
53UnaryInstruction::~UnaryInstruction() {
54}
55
56//===----------------------------------------------------------------------===//
57//                              SelectInst Class
58//===----------------------------------------------------------------------===//
59
60/// areInvalidOperands - Return a string if the specified operands are invalid
61/// for a select operation, otherwise return null.
62const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63  if (Op1->getType() != Op2->getType())
64    return "both values to select must have same type";
65
66  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67    // Vector select.
68    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69      return "vector select condition element type must be i1";
70    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71    if (!ET)
72      return "selected values for vector select must be vectors";
73    if (ET->getNumElements() != VT->getNumElements())
74      return "vector select requires selected vectors to have "
75                   "the same vector length as select condition";
76  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77    return "select condition must be i1 or <n x i1>";
78  }
79  return nullptr;
80}
81
82
83//===----------------------------------------------------------------------===//
84//                               PHINode Class
85//===----------------------------------------------------------------------===//
86
87PHINode::PHINode(const PHINode &PN)
88  : Instruction(PN.getType(), Instruction::PHI,
89                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90    ReservedSpace(PN.getNumOperands()) {
91  std::copy(PN.op_begin(), PN.op_end(), op_begin());
92  std::copy(PN.block_begin(), PN.block_end(), block_begin());
93  SubclassOptionalData = PN.SubclassOptionalData;
94}
95
96PHINode::~PHINode() {
97  dropHungoffUses();
98}
99
100Use *PHINode::allocHungoffUses(unsigned N) const {
101  // Allocate the array of Uses of the incoming values, followed by a pointer
102  // (with bottom bit set) to the User, followed by the array of pointers to
103  // the incoming basic blocks.
104  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105    + N * sizeof(BasicBlock*);
106  Use *Begin = static_cast<Use*>(::operator new(size));
107  Use *End = Begin + N;
108  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109  return Use::initTags(Begin, End);
110}
111
112// removeIncomingValue - Remove an incoming value.  This is useful if a
113// predecessor basic block is deleted.
114Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115  Value *Removed = getIncomingValue(Idx);
116
117  // Move everything after this operand down.
118  //
119  // FIXME: we could just swap with the end of the list, then erase.  However,
120  // clients might not expect this to happen.  The code as it is thrashes the
121  // use/def lists, which is kinda lame.
122  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125  // Nuke the last value.
126  Op<-1>().set(nullptr);
127  --NumOperands;
128
129  // If the PHI node is dead, because it has zero entries, nuke it now.
130  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131    // If anyone is using this PHI, make them use a dummy value instead...
132    replaceAllUsesWith(UndefValue::get(getType()));
133    eraseFromParent();
134  }
135  return Removed;
136}
137
138/// growOperands - grow operands - This grows the operand list in response
139/// to a push_back style of operation.  This grows the number of ops by 1.5
140/// times.
141///
142void PHINode::growOperands() {
143  unsigned e = getNumOperands();
144  unsigned NumOps = e + e / 2;
145  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
146
147  Use *OldOps = op_begin();
148  BasicBlock **OldBlocks = block_begin();
149
150  ReservedSpace = NumOps;
151  OperandList = allocHungoffUses(ReservedSpace);
152
153  std::copy(OldOps, OldOps + e, op_begin());
154  std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156  Use::zap(OldOps, OldOps + e, true);
157}
158
159/// hasConstantValue - If the specified PHI node always merges together the same
160/// value, return the value, otherwise return null.
161Value *PHINode::hasConstantValue() const {
162  // Exploit the fact that phi nodes always have at least one entry.
163  Value *ConstantValue = getIncomingValue(0);
164  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166      if (ConstantValue != this)
167        return nullptr; // Incoming values not all the same.
168       // The case where the first value is this PHI.
169      ConstantValue = getIncomingValue(i);
170    }
171  if (ConstantValue == this)
172    return UndefValue::get(getType());
173  return ConstantValue;
174}
175
176//===----------------------------------------------------------------------===//
177//                       LandingPadInst Implementation
178//===----------------------------------------------------------------------===//
179
180LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                               unsigned NumReservedValues, const Twine &NameStr,
182                               Instruction *InsertBefore)
183  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
184  init(PersonalityFn, 1 + NumReservedValues, NameStr);
185}
186
187LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188                               unsigned NumReservedValues, const Twine &NameStr,
189                               BasicBlock *InsertAtEnd)
190  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
191  init(PersonalityFn, 1 + NumReservedValues, NameStr);
192}
193
194LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195  : Instruction(LP.getType(), Instruction::LandingPad,
196                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197    ReservedSpace(LP.getNumOperands()) {
198  Use *OL = OperandList, *InOL = LP.OperandList;
199  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200    OL[I] = InOL[I];
201
202  setCleanup(LP.isCleanup());
203}
204
205LandingPadInst::~LandingPadInst() {
206  dropHungoffUses();
207}
208
209LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210                                       unsigned NumReservedClauses,
211                                       const Twine &NameStr,
212                                       Instruction *InsertBefore) {
213  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214                            InsertBefore);
215}
216
217LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218                                       unsigned NumReservedClauses,
219                                       const Twine &NameStr,
220                                       BasicBlock *InsertAtEnd) {
221  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222                            InsertAtEnd);
223}
224
225void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226                          const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
228  NumOperands = 1;
229  OperandList = allocHungoffUses(ReservedSpace);
230  OperandList[0] = PersFn;
231  setName(NameStr);
232  setCleanup(false);
233}
234
235/// growOperands - grow operands - This grows the operand list in response to a
236/// push_back style of operation. This grows the number of ops by 2 times.
237void LandingPadInst::growOperands(unsigned Size) {
238  unsigned e = getNumOperands();
239  if (ReservedSpace >= e + Size) return;
240  ReservedSpace = (e + Size / 2) * 2;
241
242  Use *NewOps = allocHungoffUses(ReservedSpace);
243  Use *OldOps = OperandList;
244  for (unsigned i = 0; i != e; ++i)
245      NewOps[i] = OldOps[i];
246
247  OperandList = NewOps;
248  Use::zap(OldOps, OldOps + e, true);
249}
250
251void LandingPadInst::addClause(Value *Val) {
252  unsigned OpNo = getNumOperands();
253  growOperands(1);
254  assert(OpNo < ReservedSpace && "Growing didn't work!");
255  ++NumOperands;
256  OperandList[OpNo] = Val;
257}
258
259//===----------------------------------------------------------------------===//
260//                        CallInst Implementation
261//===----------------------------------------------------------------------===//
262
263CallInst::~CallInst() {
264}
265
266void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268  Op<-1>() = Func;
269
270#ifndef NDEBUG
271  FunctionType *FTy =
272    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274  assert((Args.size() == FTy->getNumParams() ||
275          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276         "Calling a function with bad signature!");
277
278  for (unsigned i = 0; i != Args.size(); ++i)
279    assert((i >= FTy->getNumParams() ||
280            FTy->getParamType(i) == Args[i]->getType()) &&
281           "Calling a function with a bad signature!");
282#endif
283
284  std::copy(Args.begin(), Args.end(), op_begin());
285  setName(NameStr);
286}
287
288void CallInst::init(Value *Func, const Twine &NameStr) {
289  assert(NumOperands == 1 && "NumOperands not set up?");
290  Op<-1>() = Func;
291
292#ifndef NDEBUG
293  FunctionType *FTy =
294    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297#endif
298
299  setName(NameStr);
300}
301
302CallInst::CallInst(Value *Func, const Twine &Name,
303                   Instruction *InsertBefore)
304  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305                                   ->getElementType())->getReturnType(),
306                Instruction::Call,
307                OperandTraits<CallInst>::op_end(this) - 1,
308                1, InsertBefore) {
309  init(Func, Name);
310}
311
312CallInst::CallInst(Value *Func, const Twine &Name,
313                   BasicBlock *InsertAtEnd)
314  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315                                   ->getElementType())->getReturnType(),
316                Instruction::Call,
317                OperandTraits<CallInst>::op_end(this) - 1,
318                1, InsertAtEnd) {
319  init(Func, Name);
320}
321
322CallInst::CallInst(const CallInst &CI)
323  : Instruction(CI.getType(), Instruction::Call,
324                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325                CI.getNumOperands()) {
326  setAttributes(CI.getAttributes());
327  setTailCallKind(CI.getTailCallKind());
328  setCallingConv(CI.getCallingConv());
329
330  std::copy(CI.op_begin(), CI.op_end(), op_begin());
331  SubclassOptionalData = CI.SubclassOptionalData;
332}
333
334void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335  AttributeSet PAL = getAttributes();
336  PAL = PAL.addAttribute(getContext(), i, attr);
337  setAttributes(PAL);
338}
339
340void CallInst::removeAttribute(unsigned i, Attribute attr) {
341  AttributeSet PAL = getAttributes();
342  AttrBuilder B(attr);
343  LLVMContext &Context = getContext();
344  PAL = PAL.removeAttributes(Context, i,
345                             AttributeSet::get(Context, i, B));
346  setAttributes(PAL);
347}
348
349bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
350  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351    return true;
352  if (const Function *F = getCalledFunction())
353    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354  return false;
355}
356
357bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358  if (AttributeList.hasAttribute(i, A))
359    return true;
360  if (const Function *F = getCalledFunction())
361    return F->getAttributes().hasAttribute(i, A);
362  return false;
363}
364
365/// IsConstantOne - Return true only if val is constant int 1
366static bool IsConstantOne(Value *val) {
367  assert(val && "IsConstantOne does not work with NULL val");
368  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369}
370
371static Instruction *createMalloc(Instruction *InsertBefore,
372                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
373                                 Type *AllocTy, Value *AllocSize,
374                                 Value *ArraySize, Function *MallocF,
375                                 const Twine &Name) {
376  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377         "createMalloc needs either InsertBefore or InsertAtEnd");
378
379  // malloc(type) becomes:
380  //       bitcast (i8* malloc(typeSize)) to type*
381  // malloc(type, arraySize) becomes:
382  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
383  if (!ArraySize)
384    ArraySize = ConstantInt::get(IntPtrTy, 1);
385  else if (ArraySize->getType() != IntPtrTy) {
386    if (InsertBefore)
387      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388                                              "", InsertBefore);
389    else
390      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391                                              "", InsertAtEnd);
392  }
393
394  if (!IsConstantOne(ArraySize)) {
395    if (IsConstantOne(AllocSize)) {
396      AllocSize = ArraySize;         // Operand * 1 = Operand
397    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399                                                     false /*ZExt*/);
400      // Malloc arg is constant product of type size and array size
401      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402    } else {
403      // Multiply type size by the array size...
404      if (InsertBefore)
405        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406                                              "mallocsize", InsertBefore);
407      else
408        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409                                              "mallocsize", InsertAtEnd);
410    }
411  }
412
413  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414  // Create the call to Malloc.
415  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416  Module* M = BB->getParent()->getParent();
417  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418  Value *MallocFunc = MallocF;
419  if (!MallocFunc)
420    // prototype malloc as "void *malloc(size_t)"
421    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423  CallInst *MCall = nullptr;
424  Instruction *Result = nullptr;
425  if (InsertBefore) {
426    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427    Result = MCall;
428    if (Result->getType() != AllocPtrType)
429      // Create a cast instruction to convert to the right type...
430      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431  } else {
432    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433    Result = MCall;
434    if (Result->getType() != AllocPtrType) {
435      InsertAtEnd->getInstList().push_back(MCall);
436      // Create a cast instruction to convert to the right type...
437      Result = new BitCastInst(MCall, AllocPtrType, Name);
438    }
439  }
440  MCall->setTailCall();
441  if (Function *F = dyn_cast<Function>(MallocFunc)) {
442    MCall->setCallingConv(F->getCallingConv());
443    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444  }
445  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447  return Result;
448}
449
450/// CreateMalloc - Generate the IR for a call to malloc:
451/// 1. Compute the malloc call's argument as the specified type's size,
452///    possibly multiplied by the array size if the array size is not
453///    constant 1.
454/// 2. Call malloc with that argument.
455/// 3. Bitcast the result of the malloc call to the specified type.
456Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457                                    Type *IntPtrTy, Type *AllocTy,
458                                    Value *AllocSize, Value *ArraySize,
459                                    Function * MallocF,
460                                    const Twine &Name) {
461  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
462                      ArraySize, MallocF, Name);
463}
464
465/// CreateMalloc - Generate the IR for a call to malloc:
466/// 1. Compute the malloc call's argument as the specified type's size,
467///    possibly multiplied by the array size if the array size is not
468///    constant 1.
469/// 2. Call malloc with that argument.
470/// 3. Bitcast the result of the malloc call to the specified type.
471/// Note: This function does not add the bitcast to the basic block, that is the
472/// responsibility of the caller.
473Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474                                    Type *IntPtrTy, Type *AllocTy,
475                                    Value *AllocSize, Value *ArraySize,
476                                    Function *MallocF, const Twine &Name) {
477  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478                      ArraySize, MallocF, Name);
479}
480
481static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482                               BasicBlock *InsertAtEnd) {
483  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484         "createFree needs either InsertBefore or InsertAtEnd");
485  assert(Source->getType()->isPointerTy() &&
486         "Can not free something of nonpointer type!");
487
488  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489  Module* M = BB->getParent()->getParent();
490
491  Type *VoidTy = Type::getVoidTy(M->getContext());
492  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493  // prototype free as "void free(void*)"
494  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495  CallInst* Result = nullptr;
496  Value *PtrCast = Source;
497  if (InsertBefore) {
498    if (Source->getType() != IntPtrTy)
499      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501  } else {
502    if (Source->getType() != IntPtrTy)
503      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504    Result = CallInst::Create(FreeFunc, PtrCast, "");
505  }
506  Result->setTailCall();
507  if (Function *F = dyn_cast<Function>(FreeFunc))
508    Result->setCallingConv(F->getCallingConv());
509
510  return Result;
511}
512
513/// CreateFree - Generate the IR for a call to the builtin free function.
514Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515  return createFree(Source, InsertBefore, nullptr);
516}
517
518/// CreateFree - Generate the IR for a call to the builtin free function.
519/// Note: This function does not add the call to the basic block, that is the
520/// responsibility of the caller.
521Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522  Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
523  assert(FreeCall && "CreateFree did not create a CallInst");
524  return FreeCall;
525}
526
527//===----------------------------------------------------------------------===//
528//                        InvokeInst Implementation
529//===----------------------------------------------------------------------===//
530
531void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532                      ArrayRef<Value *> Args, const Twine &NameStr) {
533  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534  Op<-3>() = Fn;
535  Op<-2>() = IfNormal;
536  Op<-1>() = IfException;
537
538#ifndef NDEBUG
539  FunctionType *FTy =
540    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542  assert(((Args.size() == FTy->getNumParams()) ||
543          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544         "Invoking a function with bad signature");
545
546  for (unsigned i = 0, e = Args.size(); i != e; i++)
547    assert((i >= FTy->getNumParams() ||
548            FTy->getParamType(i) == Args[i]->getType()) &&
549           "Invoking a function with a bad signature!");
550#endif
551
552  std::copy(Args.begin(), Args.end(), op_begin());
553  setName(NameStr);
554}
555
556InvokeInst::InvokeInst(const InvokeInst &II)
557  : TerminatorInst(II.getType(), Instruction::Invoke,
558                   OperandTraits<InvokeInst>::op_end(this)
559                   - II.getNumOperands(),
560                   II.getNumOperands()) {
561  setAttributes(II.getAttributes());
562  setCallingConv(II.getCallingConv());
563  std::copy(II.op_begin(), II.op_end(), op_begin());
564  SubclassOptionalData = II.SubclassOptionalData;
565}
566
567BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568  return getSuccessor(idx);
569}
570unsigned InvokeInst::getNumSuccessorsV() const {
571  return getNumSuccessors();
572}
573void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574  return setSuccessor(idx, B);
575}
576
577bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
578  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579    return true;
580  if (const Function *F = getCalledFunction())
581    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582  return false;
583}
584
585bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586  if (AttributeList.hasAttribute(i, A))
587    return true;
588  if (const Function *F = getCalledFunction())
589    return F->getAttributes().hasAttribute(i, A);
590  return false;
591}
592
593void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594  AttributeSet PAL = getAttributes();
595  PAL = PAL.addAttribute(getContext(), i, attr);
596  setAttributes(PAL);
597}
598
599void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600  AttributeSet PAL = getAttributes();
601  AttrBuilder B(attr);
602  PAL = PAL.removeAttributes(getContext(), i,
603                             AttributeSet::get(getContext(), i, B));
604  setAttributes(PAL);
605}
606
607LandingPadInst *InvokeInst::getLandingPadInst() const {
608  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609}
610
611//===----------------------------------------------------------------------===//
612//                        ReturnInst Implementation
613//===----------------------------------------------------------------------===//
614
615ReturnInst::ReturnInst(const ReturnInst &RI)
616  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617                   OperandTraits<ReturnInst>::op_end(this) -
618                     RI.getNumOperands(),
619                   RI.getNumOperands()) {
620  if (RI.getNumOperands())
621    Op<0>() = RI.Op<0>();
622  SubclassOptionalData = RI.SubclassOptionalData;
623}
624
625ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628                   InsertBefore) {
629  if (retVal)
630    Op<0>() = retVal;
631}
632ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635                   InsertAtEnd) {
636  if (retVal)
637    Op<0>() = retVal;
638}
639ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642}
643
644unsigned ReturnInst::getNumSuccessorsV() const {
645  return getNumSuccessors();
646}
647
648/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649/// emit the vtable for the class in this translation unit.
650void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651  llvm_unreachable("ReturnInst has no successors!");
652}
653
654BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655  llvm_unreachable("ReturnInst has no successors!");
656}
657
658ReturnInst::~ReturnInst() {
659}
660
661//===----------------------------------------------------------------------===//
662//                        ResumeInst Implementation
663//===----------------------------------------------------------------------===//
664
665ResumeInst::ResumeInst(const ResumeInst &RI)
666  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667                   OperandTraits<ResumeInst>::op_begin(this), 1) {
668  Op<0>() = RI.Op<0>();
669}
670
671ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674  Op<0>() = Exn;
675}
676
677ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680  Op<0>() = Exn;
681}
682
683unsigned ResumeInst::getNumSuccessorsV() const {
684  return getNumSuccessors();
685}
686
687void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688  llvm_unreachable("ResumeInst has no successors!");
689}
690
691BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692  llvm_unreachable("ResumeInst has no successors!");
693}
694
695//===----------------------------------------------------------------------===//
696//                      UnreachableInst Implementation
697//===----------------------------------------------------------------------===//
698
699UnreachableInst::UnreachableInst(LLVMContext &Context,
700                                 Instruction *InsertBefore)
701  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702                   nullptr, 0, InsertBefore) {
703}
704UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706                   nullptr, 0, InsertAtEnd) {
707}
708
709unsigned UnreachableInst::getNumSuccessorsV() const {
710  return getNumSuccessors();
711}
712
713void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714  llvm_unreachable("UnreachableInst has no successors!");
715}
716
717BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718  llvm_unreachable("UnreachableInst has no successors!");
719}
720
721//===----------------------------------------------------------------------===//
722//                        BranchInst Implementation
723//===----------------------------------------------------------------------===//
724
725void BranchInst::AssertOK() {
726  if (isConditional())
727    assert(getCondition()->getType()->isIntegerTy(1) &&
728           "May only branch on boolean predicates!");
729}
730
731BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733                   OperandTraits<BranchInst>::op_end(this) - 1,
734                   1, InsertBefore) {
735  assert(IfTrue && "Branch destination may not be null!");
736  Op<-1>() = IfTrue;
737}
738BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739                       Instruction *InsertBefore)
740  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741                   OperandTraits<BranchInst>::op_end(this) - 3,
742                   3, InsertBefore) {
743  Op<-1>() = IfTrue;
744  Op<-2>() = IfFalse;
745  Op<-3>() = Cond;
746#ifndef NDEBUG
747  AssertOK();
748#endif
749}
750
751BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753                   OperandTraits<BranchInst>::op_end(this) - 1,
754                   1, InsertAtEnd) {
755  assert(IfTrue && "Branch destination may not be null!");
756  Op<-1>() = IfTrue;
757}
758
759BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760           BasicBlock *InsertAtEnd)
761  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762                   OperandTraits<BranchInst>::op_end(this) - 3,
763                   3, InsertAtEnd) {
764  Op<-1>() = IfTrue;
765  Op<-2>() = IfFalse;
766  Op<-3>() = Cond;
767#ifndef NDEBUG
768  AssertOK();
769#endif
770}
771
772
773BranchInst::BranchInst(const BranchInst &BI) :
774  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776                 BI.getNumOperands()) {
777  Op<-1>() = BI.Op<-1>();
778  if (BI.getNumOperands() != 1) {
779    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780    Op<-3>() = BI.Op<-3>();
781    Op<-2>() = BI.Op<-2>();
782  }
783  SubclassOptionalData = BI.SubclassOptionalData;
784}
785
786void BranchInst::swapSuccessors() {
787  assert(isConditional() &&
788         "Cannot swap successors of an unconditional branch");
789  Op<-1>().swap(Op<-2>());
790
791  // Update profile metadata if present and it matches our structural
792  // expectations.
793  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794  if (!ProfileData || ProfileData->getNumOperands() != 3)
795    return;
796
797  // The first operand is the name. Fetch them backwards and build a new one.
798  Value *Ops[] = {
799    ProfileData->getOperand(0),
800    ProfileData->getOperand(2),
801    ProfileData->getOperand(1)
802  };
803  setMetadata(LLVMContext::MD_prof,
804              MDNode::get(ProfileData->getContext(), Ops));
805}
806
807BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808  return getSuccessor(idx);
809}
810unsigned BranchInst::getNumSuccessorsV() const {
811  return getNumSuccessors();
812}
813void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814  setSuccessor(idx, B);
815}
816
817
818//===----------------------------------------------------------------------===//
819//                        AllocaInst Implementation
820//===----------------------------------------------------------------------===//
821
822static Value *getAISize(LLVMContext &Context, Value *Amt) {
823  if (!Amt)
824    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825  else {
826    assert(!isa<BasicBlock>(Amt) &&
827           "Passed basic block into allocation size parameter! Use other ctor");
828    assert(Amt->getType()->isIntegerTy() &&
829           "Allocation array size is not an integer!");
830  }
831  return Amt;
832}
833
834AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835                       const Twine &Name, Instruction *InsertBefore)
836  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838  setAlignment(0);
839  assert(!Ty->isVoidTy() && "Cannot allocate void!");
840  setName(Name);
841}
842
843AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844                       const Twine &Name, BasicBlock *InsertAtEnd)
845  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847  setAlignment(0);
848  assert(!Ty->isVoidTy() && "Cannot allocate void!");
849  setName(Name);
850}
851
852AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853                       Instruction *InsertBefore)
854  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855                     getAISize(Ty->getContext(), nullptr), InsertBefore) {
856  setAlignment(0);
857  assert(!Ty->isVoidTy() && "Cannot allocate void!");
858  setName(Name);
859}
860
861AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862                       BasicBlock *InsertAtEnd)
863  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864                     getAISize(Ty->getContext(), nullptr), InsertAtEnd) {
865  setAlignment(0);
866  assert(!Ty->isVoidTy() && "Cannot allocate void!");
867  setName(Name);
868}
869
870AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871                       const Twine &Name, Instruction *InsertBefore)
872  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874  setAlignment(Align);
875  assert(!Ty->isVoidTy() && "Cannot allocate void!");
876  setName(Name);
877}
878
879AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880                       const Twine &Name, BasicBlock *InsertAtEnd)
881  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883  setAlignment(Align);
884  assert(!Ty->isVoidTy() && "Cannot allocate void!");
885  setName(Name);
886}
887
888// Out of line virtual method, so the vtable, etc has a home.
889AllocaInst::~AllocaInst() {
890}
891
892void AllocaInst::setAlignment(unsigned Align) {
893  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894  assert(Align <= MaximumAlignment &&
895         "Alignment is greater than MaximumAlignment!");
896  setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
897                             (Log2_32(Align) + 1));
898  assert(getAlignment() == Align && "Alignment representation error!");
899}
900
901bool AllocaInst::isArrayAllocation() const {
902  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
903    return !CI->isOne();
904  return true;
905}
906
907Type *AllocaInst::getAllocatedType() const {
908  return getType()->getElementType();
909}
910
911/// isStaticAlloca - Return true if this alloca is in the entry block of the
912/// function and is a constant size.  If so, the code generator will fold it
913/// into the prolog/epilog code, so it is basically free.
914bool AllocaInst::isStaticAlloca() const {
915  // Must be constant size.
916  if (!isa<ConstantInt>(getArraySize())) return false;
917
918  // Must be in the entry block.
919  const BasicBlock *Parent = getParent();
920  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
921}
922
923//===----------------------------------------------------------------------===//
924//                           LoadInst Implementation
925//===----------------------------------------------------------------------===//
926
927void LoadInst::AssertOK() {
928  assert(getOperand(0)->getType()->isPointerTy() &&
929         "Ptr must have pointer type.");
930  assert(!(isAtomic() && getAlignment() == 0) &&
931         "Alignment required for atomic load");
932}
933
934LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
935  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
936                     Load, Ptr, InsertBef) {
937  setVolatile(false);
938  setAlignment(0);
939  setAtomic(NotAtomic);
940  AssertOK();
941  setName(Name);
942}
943
944LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
945  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
946                     Load, Ptr, InsertAE) {
947  setVolatile(false);
948  setAlignment(0);
949  setAtomic(NotAtomic);
950  AssertOK();
951  setName(Name);
952}
953
954LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
955                   Instruction *InsertBef)
956  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
957                     Load, Ptr, InsertBef) {
958  setVolatile(isVolatile);
959  setAlignment(0);
960  setAtomic(NotAtomic);
961  AssertOK();
962  setName(Name);
963}
964
965LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
966                   BasicBlock *InsertAE)
967  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
968                     Load, Ptr, InsertAE) {
969  setVolatile(isVolatile);
970  setAlignment(0);
971  setAtomic(NotAtomic);
972  AssertOK();
973  setName(Name);
974}
975
976LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
977                   unsigned Align, Instruction *InsertBef)
978  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
979                     Load, Ptr, InsertBef) {
980  setVolatile(isVolatile);
981  setAlignment(Align);
982  setAtomic(NotAtomic);
983  AssertOK();
984  setName(Name);
985}
986
987LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
988                   unsigned Align, BasicBlock *InsertAE)
989  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
990                     Load, Ptr, InsertAE) {
991  setVolatile(isVolatile);
992  setAlignment(Align);
993  setAtomic(NotAtomic);
994  AssertOK();
995  setName(Name);
996}
997
998LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
999                   unsigned Align, AtomicOrdering Order,
1000                   SynchronizationScope SynchScope,
1001                   Instruction *InsertBef)
1002  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1003                     Load, Ptr, InsertBef) {
1004  setVolatile(isVolatile);
1005  setAlignment(Align);
1006  setAtomic(Order, SynchScope);
1007  AssertOK();
1008  setName(Name);
1009}
1010
1011LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1012                   unsigned Align, AtomicOrdering Order,
1013                   SynchronizationScope SynchScope,
1014                   BasicBlock *InsertAE)
1015  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1016                     Load, Ptr, InsertAE) {
1017  setVolatile(isVolatile);
1018  setAlignment(Align);
1019  setAtomic(Order, SynchScope);
1020  AssertOK();
1021  setName(Name);
1022}
1023
1024LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1025  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1026                     Load, Ptr, InsertBef) {
1027  setVolatile(false);
1028  setAlignment(0);
1029  setAtomic(NotAtomic);
1030  AssertOK();
1031  if (Name && Name[0]) setName(Name);
1032}
1033
1034LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1035  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1036                     Load, Ptr, InsertAE) {
1037  setVolatile(false);
1038  setAlignment(0);
1039  setAtomic(NotAtomic);
1040  AssertOK();
1041  if (Name && Name[0]) setName(Name);
1042}
1043
1044LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1045                   Instruction *InsertBef)
1046: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1047                   Load, Ptr, InsertBef) {
1048  setVolatile(isVolatile);
1049  setAlignment(0);
1050  setAtomic(NotAtomic);
1051  AssertOK();
1052  if (Name && Name[0]) setName(Name);
1053}
1054
1055LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1056                   BasicBlock *InsertAE)
1057  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1058                     Load, Ptr, InsertAE) {
1059  setVolatile(isVolatile);
1060  setAlignment(0);
1061  setAtomic(NotAtomic);
1062  AssertOK();
1063  if (Name && Name[0]) setName(Name);
1064}
1065
1066void LoadInst::setAlignment(unsigned Align) {
1067  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1068  assert(Align <= MaximumAlignment &&
1069         "Alignment is greater than MaximumAlignment!");
1070  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1071                             ((Log2_32(Align)+1)<<1));
1072  assert(getAlignment() == Align && "Alignment representation error!");
1073}
1074
1075//===----------------------------------------------------------------------===//
1076//                           StoreInst Implementation
1077//===----------------------------------------------------------------------===//
1078
1079void StoreInst::AssertOK() {
1080  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1081  assert(getOperand(1)->getType()->isPointerTy() &&
1082         "Ptr must have pointer type!");
1083  assert(getOperand(0)->getType() ==
1084                 cast<PointerType>(getOperand(1)->getType())->getElementType()
1085         && "Ptr must be a pointer to Val type!");
1086  assert(!(isAtomic() && getAlignment() == 0) &&
1087         "Alignment required for atomic store");
1088}
1089
1090
1091StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1092  : Instruction(Type::getVoidTy(val->getContext()), Store,
1093                OperandTraits<StoreInst>::op_begin(this),
1094                OperandTraits<StoreInst>::operands(this),
1095                InsertBefore) {
1096  Op<0>() = val;
1097  Op<1>() = addr;
1098  setVolatile(false);
1099  setAlignment(0);
1100  setAtomic(NotAtomic);
1101  AssertOK();
1102}
1103
1104StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1105  : Instruction(Type::getVoidTy(val->getContext()), Store,
1106                OperandTraits<StoreInst>::op_begin(this),
1107                OperandTraits<StoreInst>::operands(this),
1108                InsertAtEnd) {
1109  Op<0>() = val;
1110  Op<1>() = addr;
1111  setVolatile(false);
1112  setAlignment(0);
1113  setAtomic(NotAtomic);
1114  AssertOK();
1115}
1116
1117StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1118                     Instruction *InsertBefore)
1119  : Instruction(Type::getVoidTy(val->getContext()), Store,
1120                OperandTraits<StoreInst>::op_begin(this),
1121                OperandTraits<StoreInst>::operands(this),
1122                InsertBefore) {
1123  Op<0>() = val;
1124  Op<1>() = addr;
1125  setVolatile(isVolatile);
1126  setAlignment(0);
1127  setAtomic(NotAtomic);
1128  AssertOK();
1129}
1130
1131StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1132                     unsigned Align, Instruction *InsertBefore)
1133  : Instruction(Type::getVoidTy(val->getContext()), Store,
1134                OperandTraits<StoreInst>::op_begin(this),
1135                OperandTraits<StoreInst>::operands(this),
1136                InsertBefore) {
1137  Op<0>() = val;
1138  Op<1>() = addr;
1139  setVolatile(isVolatile);
1140  setAlignment(Align);
1141  setAtomic(NotAtomic);
1142  AssertOK();
1143}
1144
1145StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1146                     unsigned Align, AtomicOrdering Order,
1147                     SynchronizationScope SynchScope,
1148                     Instruction *InsertBefore)
1149  : Instruction(Type::getVoidTy(val->getContext()), Store,
1150                OperandTraits<StoreInst>::op_begin(this),
1151                OperandTraits<StoreInst>::operands(this),
1152                InsertBefore) {
1153  Op<0>() = val;
1154  Op<1>() = addr;
1155  setVolatile(isVolatile);
1156  setAlignment(Align);
1157  setAtomic(Order, SynchScope);
1158  AssertOK();
1159}
1160
1161StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1162                     BasicBlock *InsertAtEnd)
1163  : Instruction(Type::getVoidTy(val->getContext()), Store,
1164                OperandTraits<StoreInst>::op_begin(this),
1165                OperandTraits<StoreInst>::operands(this),
1166                InsertAtEnd) {
1167  Op<0>() = val;
1168  Op<1>() = addr;
1169  setVolatile(isVolatile);
1170  setAlignment(0);
1171  setAtomic(NotAtomic);
1172  AssertOK();
1173}
1174
1175StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1176                     unsigned Align, BasicBlock *InsertAtEnd)
1177  : Instruction(Type::getVoidTy(val->getContext()), Store,
1178                OperandTraits<StoreInst>::op_begin(this),
1179                OperandTraits<StoreInst>::operands(this),
1180                InsertAtEnd) {
1181  Op<0>() = val;
1182  Op<1>() = addr;
1183  setVolatile(isVolatile);
1184  setAlignment(Align);
1185  setAtomic(NotAtomic);
1186  AssertOK();
1187}
1188
1189StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1190                     unsigned Align, AtomicOrdering Order,
1191                     SynchronizationScope SynchScope,
1192                     BasicBlock *InsertAtEnd)
1193  : Instruction(Type::getVoidTy(val->getContext()), Store,
1194                OperandTraits<StoreInst>::op_begin(this),
1195                OperandTraits<StoreInst>::operands(this),
1196                InsertAtEnd) {
1197  Op<0>() = val;
1198  Op<1>() = addr;
1199  setVolatile(isVolatile);
1200  setAlignment(Align);
1201  setAtomic(Order, SynchScope);
1202  AssertOK();
1203}
1204
1205void StoreInst::setAlignment(unsigned Align) {
1206  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1207  assert(Align <= MaximumAlignment &&
1208         "Alignment is greater than MaximumAlignment!");
1209  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1210                             ((Log2_32(Align)+1) << 1));
1211  assert(getAlignment() == Align && "Alignment representation error!");
1212}
1213
1214//===----------------------------------------------------------------------===//
1215//                       AtomicCmpXchgInst Implementation
1216//===----------------------------------------------------------------------===//
1217
1218void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1219                             AtomicOrdering SuccessOrdering,
1220                             AtomicOrdering FailureOrdering,
1221                             SynchronizationScope SynchScope) {
1222  Op<0>() = Ptr;
1223  Op<1>() = Cmp;
1224  Op<2>() = NewVal;
1225  setSuccessOrdering(SuccessOrdering);
1226  setFailureOrdering(FailureOrdering);
1227  setSynchScope(SynchScope);
1228
1229  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1230         "All operands must be non-null!");
1231  assert(getOperand(0)->getType()->isPointerTy() &&
1232         "Ptr must have pointer type!");
1233  assert(getOperand(1)->getType() ==
1234                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1235         && "Ptr must be a pointer to Cmp type!");
1236  assert(getOperand(2)->getType() ==
1237                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1238         && "Ptr must be a pointer to NewVal type!");
1239  assert(SuccessOrdering != NotAtomic &&
1240         "AtomicCmpXchg instructions must be atomic!");
1241  assert(FailureOrdering != NotAtomic &&
1242         "AtomicCmpXchg instructions must be atomic!");
1243  assert(SuccessOrdering >= FailureOrdering &&
1244         "AtomicCmpXchg success ordering must be at least as strong as fail");
1245  assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1246         "AtomicCmpXchg failure ordering cannot include release semantics");
1247}
1248
1249AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1250                                     AtomicOrdering SuccessOrdering,
1251                                     AtomicOrdering FailureOrdering,
1252                                     SynchronizationScope SynchScope,
1253                                     Instruction *InsertBefore)
1254  : Instruction(Cmp->getType(), AtomicCmpXchg,
1255                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1256                OperandTraits<AtomicCmpXchgInst>::operands(this),
1257                InsertBefore) {
1258  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1259}
1260
1261AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1262                                     AtomicOrdering SuccessOrdering,
1263                                     AtomicOrdering FailureOrdering,
1264                                     SynchronizationScope SynchScope,
1265                                     BasicBlock *InsertAtEnd)
1266  : Instruction(Cmp->getType(), AtomicCmpXchg,
1267                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1268                OperandTraits<AtomicCmpXchgInst>::operands(this),
1269                InsertAtEnd) {
1270  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1271}
1272
1273//===----------------------------------------------------------------------===//
1274//                       AtomicRMWInst Implementation
1275//===----------------------------------------------------------------------===//
1276
1277void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1278                         AtomicOrdering Ordering,
1279                         SynchronizationScope SynchScope) {
1280  Op<0>() = Ptr;
1281  Op<1>() = Val;
1282  setOperation(Operation);
1283  setOrdering(Ordering);
1284  setSynchScope(SynchScope);
1285
1286  assert(getOperand(0) && getOperand(1) &&
1287         "All operands must be non-null!");
1288  assert(getOperand(0)->getType()->isPointerTy() &&
1289         "Ptr must have pointer type!");
1290  assert(getOperand(1)->getType() ==
1291         cast<PointerType>(getOperand(0)->getType())->getElementType()
1292         && "Ptr must be a pointer to Val type!");
1293  assert(Ordering != NotAtomic &&
1294         "AtomicRMW instructions must be atomic!");
1295}
1296
1297AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1298                             AtomicOrdering Ordering,
1299                             SynchronizationScope SynchScope,
1300                             Instruction *InsertBefore)
1301  : Instruction(Val->getType(), AtomicRMW,
1302                OperandTraits<AtomicRMWInst>::op_begin(this),
1303                OperandTraits<AtomicRMWInst>::operands(this),
1304                InsertBefore) {
1305  Init(Operation, Ptr, Val, Ordering, SynchScope);
1306}
1307
1308AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1309                             AtomicOrdering Ordering,
1310                             SynchronizationScope SynchScope,
1311                             BasicBlock *InsertAtEnd)
1312  : Instruction(Val->getType(), AtomicRMW,
1313                OperandTraits<AtomicRMWInst>::op_begin(this),
1314                OperandTraits<AtomicRMWInst>::operands(this),
1315                InsertAtEnd) {
1316  Init(Operation, Ptr, Val, Ordering, SynchScope);
1317}
1318
1319//===----------------------------------------------------------------------===//
1320//                       FenceInst Implementation
1321//===----------------------------------------------------------------------===//
1322
1323FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1324                     SynchronizationScope SynchScope,
1325                     Instruction *InsertBefore)
1326  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1327  setOrdering(Ordering);
1328  setSynchScope(SynchScope);
1329}
1330
1331FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1332                     SynchronizationScope SynchScope,
1333                     BasicBlock *InsertAtEnd)
1334  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1335  setOrdering(Ordering);
1336  setSynchScope(SynchScope);
1337}
1338
1339//===----------------------------------------------------------------------===//
1340//                       GetElementPtrInst Implementation
1341//===----------------------------------------------------------------------===//
1342
1343void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1344                             const Twine &Name) {
1345  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1346  OperandList[0] = Ptr;
1347  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1348  setName(Name);
1349}
1350
1351GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1352  : Instruction(GEPI.getType(), GetElementPtr,
1353                OperandTraits<GetElementPtrInst>::op_end(this)
1354                - GEPI.getNumOperands(),
1355                GEPI.getNumOperands()) {
1356  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1357  SubclassOptionalData = GEPI.SubclassOptionalData;
1358}
1359
1360/// getIndexedType - Returns the type of the element that would be accessed with
1361/// a gep instruction with the specified parameters.
1362///
1363/// The Idxs pointer should point to a continuous piece of memory containing the
1364/// indices, either as Value* or uint64_t.
1365///
1366/// A null type is returned if the indices are invalid for the specified
1367/// pointer type.
1368///
1369template <typename IndexTy>
1370static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1371  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1372  if (!PTy) return nullptr;   // Type isn't a pointer type!
1373  Type *Agg = PTy->getElementType();
1374
1375  // Handle the special case of the empty set index set, which is always valid.
1376  if (IdxList.empty())
1377    return Agg;
1378
1379  // If there is at least one index, the top level type must be sized, otherwise
1380  // it cannot be 'stepped over'.
1381  if (!Agg->isSized())
1382    return nullptr;
1383
1384  unsigned CurIdx = 1;
1385  for (; CurIdx != IdxList.size(); ++CurIdx) {
1386    CompositeType *CT = dyn_cast<CompositeType>(Agg);
1387    if (!CT || CT->isPointerTy()) return nullptr;
1388    IndexTy Index = IdxList[CurIdx];
1389    if (!CT->indexValid(Index)) return nullptr;
1390    Agg = CT->getTypeAtIndex(Index);
1391  }
1392  return CurIdx == IdxList.size() ? Agg : nullptr;
1393}
1394
1395Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1396  return getIndexedTypeInternal(Ptr, IdxList);
1397}
1398
1399Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1400                                        ArrayRef<Constant *> IdxList) {
1401  return getIndexedTypeInternal(Ptr, IdxList);
1402}
1403
1404Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1405  return getIndexedTypeInternal(Ptr, IdxList);
1406}
1407
1408/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1409/// zeros.  If so, the result pointer and the first operand have the same
1410/// value, just potentially different types.
1411bool GetElementPtrInst::hasAllZeroIndices() const {
1412  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1413    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1414      if (!CI->isZero()) return false;
1415    } else {
1416      return false;
1417    }
1418  }
1419  return true;
1420}
1421
1422/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1423/// constant integers.  If so, the result pointer and the first operand have
1424/// a constant offset between them.
1425bool GetElementPtrInst::hasAllConstantIndices() const {
1426  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1427    if (!isa<ConstantInt>(getOperand(i)))
1428      return false;
1429  }
1430  return true;
1431}
1432
1433void GetElementPtrInst::setIsInBounds(bool B) {
1434  cast<GEPOperator>(this)->setIsInBounds(B);
1435}
1436
1437bool GetElementPtrInst::isInBounds() const {
1438  return cast<GEPOperator>(this)->isInBounds();
1439}
1440
1441bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1442                                                 APInt &Offset) const {
1443  // Delegate to the generic GEPOperator implementation.
1444  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1445}
1446
1447//===----------------------------------------------------------------------===//
1448//                           ExtractElementInst Implementation
1449//===----------------------------------------------------------------------===//
1450
1451ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1452                                       const Twine &Name,
1453                                       Instruction *InsertBef)
1454  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1455                ExtractElement,
1456                OperandTraits<ExtractElementInst>::op_begin(this),
1457                2, InsertBef) {
1458  assert(isValidOperands(Val, Index) &&
1459         "Invalid extractelement instruction operands!");
1460  Op<0>() = Val;
1461  Op<1>() = Index;
1462  setName(Name);
1463}
1464
1465ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1466                                       const Twine &Name,
1467                                       BasicBlock *InsertAE)
1468  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1469                ExtractElement,
1470                OperandTraits<ExtractElementInst>::op_begin(this),
1471                2, InsertAE) {
1472  assert(isValidOperands(Val, Index) &&
1473         "Invalid extractelement instruction operands!");
1474
1475  Op<0>() = Val;
1476  Op<1>() = Index;
1477  setName(Name);
1478}
1479
1480
1481bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1482  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1483    return false;
1484  return true;
1485}
1486
1487
1488//===----------------------------------------------------------------------===//
1489//                           InsertElementInst Implementation
1490//===----------------------------------------------------------------------===//
1491
1492InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1493                                     const Twine &Name,
1494                                     Instruction *InsertBef)
1495  : Instruction(Vec->getType(), InsertElement,
1496                OperandTraits<InsertElementInst>::op_begin(this),
1497                3, InsertBef) {
1498  assert(isValidOperands(Vec, Elt, Index) &&
1499         "Invalid insertelement instruction operands!");
1500  Op<0>() = Vec;
1501  Op<1>() = Elt;
1502  Op<2>() = Index;
1503  setName(Name);
1504}
1505
1506InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1507                                     const Twine &Name,
1508                                     BasicBlock *InsertAE)
1509  : Instruction(Vec->getType(), InsertElement,
1510                OperandTraits<InsertElementInst>::op_begin(this),
1511                3, InsertAE) {
1512  assert(isValidOperands(Vec, Elt, Index) &&
1513         "Invalid insertelement instruction operands!");
1514
1515  Op<0>() = Vec;
1516  Op<1>() = Elt;
1517  Op<2>() = Index;
1518  setName(Name);
1519}
1520
1521bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1522                                        const Value *Index) {
1523  if (!Vec->getType()->isVectorTy())
1524    return false;   // First operand of insertelement must be vector type.
1525
1526  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1527    return false;// Second operand of insertelement must be vector element type.
1528
1529  if (!Index->getType()->isIntegerTy())
1530    return false;  // Third operand of insertelement must be i32.
1531  return true;
1532}
1533
1534
1535//===----------------------------------------------------------------------===//
1536//                      ShuffleVectorInst Implementation
1537//===----------------------------------------------------------------------===//
1538
1539ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1540                                     const Twine &Name,
1541                                     Instruction *InsertBefore)
1542: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1543                cast<VectorType>(Mask->getType())->getNumElements()),
1544              ShuffleVector,
1545              OperandTraits<ShuffleVectorInst>::op_begin(this),
1546              OperandTraits<ShuffleVectorInst>::operands(this),
1547              InsertBefore) {
1548  assert(isValidOperands(V1, V2, Mask) &&
1549         "Invalid shuffle vector instruction operands!");
1550  Op<0>() = V1;
1551  Op<1>() = V2;
1552  Op<2>() = Mask;
1553  setName(Name);
1554}
1555
1556ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1557                                     const Twine &Name,
1558                                     BasicBlock *InsertAtEnd)
1559: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1560                cast<VectorType>(Mask->getType())->getNumElements()),
1561              ShuffleVector,
1562              OperandTraits<ShuffleVectorInst>::op_begin(this),
1563              OperandTraits<ShuffleVectorInst>::operands(this),
1564              InsertAtEnd) {
1565  assert(isValidOperands(V1, V2, Mask) &&
1566         "Invalid shuffle vector instruction operands!");
1567
1568  Op<0>() = V1;
1569  Op<1>() = V2;
1570  Op<2>() = Mask;
1571  setName(Name);
1572}
1573
1574bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1575                                        const Value *Mask) {
1576  // V1 and V2 must be vectors of the same type.
1577  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1578    return false;
1579
1580  // Mask must be vector of i32.
1581  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1582  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1583    return false;
1584
1585  // Check to see if Mask is valid.
1586  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1587    return true;
1588
1589  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1590    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1591    for (Value *Op : MV->operands()) {
1592      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1593        if (CI->uge(V1Size*2))
1594          return false;
1595      } else if (!isa<UndefValue>(Op)) {
1596        return false;
1597      }
1598    }
1599    return true;
1600  }
1601
1602  if (const ConstantDataSequential *CDS =
1603        dyn_cast<ConstantDataSequential>(Mask)) {
1604    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1605    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1606      if (CDS->getElementAsInteger(i) >= V1Size*2)
1607        return false;
1608    return true;
1609  }
1610
1611  // The bitcode reader can create a place holder for a forward reference
1612  // used as the shuffle mask. When this occurs, the shuffle mask will
1613  // fall into this case and fail. To avoid this error, do this bit of
1614  // ugliness to allow such a mask pass.
1615  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1616    if (CE->getOpcode() == Instruction::UserOp1)
1617      return true;
1618
1619  return false;
1620}
1621
1622/// getMaskValue - Return the index from the shuffle mask for the specified
1623/// output result.  This is either -1 if the element is undef or a number less
1624/// than 2*numelements.
1625int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1626  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1627  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1628    return CDS->getElementAsInteger(i);
1629  Constant *C = Mask->getAggregateElement(i);
1630  if (isa<UndefValue>(C))
1631    return -1;
1632  return cast<ConstantInt>(C)->getZExtValue();
1633}
1634
1635/// getShuffleMask - Return the full mask for this instruction, where each
1636/// element is the element number and undef's are returned as -1.
1637void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1638                                       SmallVectorImpl<int> &Result) {
1639  unsigned NumElts = Mask->getType()->getVectorNumElements();
1640
1641  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1642    for (unsigned i = 0; i != NumElts; ++i)
1643      Result.push_back(CDS->getElementAsInteger(i));
1644    return;
1645  }
1646  for (unsigned i = 0; i != NumElts; ++i) {
1647    Constant *C = Mask->getAggregateElement(i);
1648    Result.push_back(isa<UndefValue>(C) ? -1 :
1649                     cast<ConstantInt>(C)->getZExtValue());
1650  }
1651}
1652
1653
1654//===----------------------------------------------------------------------===//
1655//                             InsertValueInst Class
1656//===----------------------------------------------------------------------===//
1657
1658void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1659                           const Twine &Name) {
1660  assert(NumOperands == 2 && "NumOperands not initialized?");
1661
1662  // There's no fundamental reason why we require at least one index
1663  // (other than weirdness with &*IdxBegin being invalid; see
1664  // getelementptr's init routine for example). But there's no
1665  // present need to support it.
1666  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1667
1668  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1669         Val->getType() && "Inserted value must match indexed type!");
1670  Op<0>() = Agg;
1671  Op<1>() = Val;
1672
1673  Indices.append(Idxs.begin(), Idxs.end());
1674  setName(Name);
1675}
1676
1677InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1678  : Instruction(IVI.getType(), InsertValue,
1679                OperandTraits<InsertValueInst>::op_begin(this), 2),
1680    Indices(IVI.Indices) {
1681  Op<0>() = IVI.getOperand(0);
1682  Op<1>() = IVI.getOperand(1);
1683  SubclassOptionalData = IVI.SubclassOptionalData;
1684}
1685
1686//===----------------------------------------------------------------------===//
1687//                             ExtractValueInst Class
1688//===----------------------------------------------------------------------===//
1689
1690void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1691  assert(NumOperands == 1 && "NumOperands not initialized?");
1692
1693  // There's no fundamental reason why we require at least one index.
1694  // But there's no present need to support it.
1695  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1696
1697  Indices.append(Idxs.begin(), Idxs.end());
1698  setName(Name);
1699}
1700
1701ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1702  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1703    Indices(EVI.Indices) {
1704  SubclassOptionalData = EVI.SubclassOptionalData;
1705}
1706
1707// getIndexedType - Returns the type of the element that would be extracted
1708// with an extractvalue instruction with the specified parameters.
1709//
1710// A null type is returned if the indices are invalid for the specified
1711// pointer type.
1712//
1713Type *ExtractValueInst::getIndexedType(Type *Agg,
1714                                       ArrayRef<unsigned> Idxs) {
1715  for (unsigned Index : Idxs) {
1716    // We can't use CompositeType::indexValid(Index) here.
1717    // indexValid() always returns true for arrays because getelementptr allows
1718    // out-of-bounds indices. Since we don't allow those for extractvalue and
1719    // insertvalue we need to check array indexing manually.
1720    // Since the only other types we can index into are struct types it's just
1721    // as easy to check those manually as well.
1722    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1723      if (Index >= AT->getNumElements())
1724        return nullptr;
1725    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1726      if (Index >= ST->getNumElements())
1727        return nullptr;
1728    } else {
1729      // Not a valid type to index into.
1730      return nullptr;
1731    }
1732
1733    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1734  }
1735  return const_cast<Type*>(Agg);
1736}
1737
1738//===----------------------------------------------------------------------===//
1739//                             BinaryOperator Class
1740//===----------------------------------------------------------------------===//
1741
1742BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1743                               Type *Ty, const Twine &Name,
1744                               Instruction *InsertBefore)
1745  : Instruction(Ty, iType,
1746                OperandTraits<BinaryOperator>::op_begin(this),
1747                OperandTraits<BinaryOperator>::operands(this),
1748                InsertBefore) {
1749  Op<0>() = S1;
1750  Op<1>() = S2;
1751  init(iType);
1752  setName(Name);
1753}
1754
1755BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1756                               Type *Ty, const Twine &Name,
1757                               BasicBlock *InsertAtEnd)
1758  : Instruction(Ty, iType,
1759                OperandTraits<BinaryOperator>::op_begin(this),
1760                OperandTraits<BinaryOperator>::operands(this),
1761                InsertAtEnd) {
1762  Op<0>() = S1;
1763  Op<1>() = S2;
1764  init(iType);
1765  setName(Name);
1766}
1767
1768
1769void BinaryOperator::init(BinaryOps iType) {
1770  Value *LHS = getOperand(0), *RHS = getOperand(1);
1771  (void)LHS; (void)RHS; // Silence warnings.
1772  assert(LHS->getType() == RHS->getType() &&
1773         "Binary operator operand types must match!");
1774#ifndef NDEBUG
1775  switch (iType) {
1776  case Add: case Sub:
1777  case Mul:
1778    assert(getType() == LHS->getType() &&
1779           "Arithmetic operation should return same type as operands!");
1780    assert(getType()->isIntOrIntVectorTy() &&
1781           "Tried to create an integer operation on a non-integer type!");
1782    break;
1783  case FAdd: case FSub:
1784  case FMul:
1785    assert(getType() == LHS->getType() &&
1786           "Arithmetic operation should return same type as operands!");
1787    assert(getType()->isFPOrFPVectorTy() &&
1788           "Tried to create a floating-point operation on a "
1789           "non-floating-point type!");
1790    break;
1791  case UDiv:
1792  case SDiv:
1793    assert(getType() == LHS->getType() &&
1794           "Arithmetic operation should return same type as operands!");
1795    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1796            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1797           "Incorrect operand type (not integer) for S/UDIV");
1798    break;
1799  case FDiv:
1800    assert(getType() == LHS->getType() &&
1801           "Arithmetic operation should return same type as operands!");
1802    assert(getType()->isFPOrFPVectorTy() &&
1803           "Incorrect operand type (not floating point) for FDIV");
1804    break;
1805  case URem:
1806  case SRem:
1807    assert(getType() == LHS->getType() &&
1808           "Arithmetic operation should return same type as operands!");
1809    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1810            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1811           "Incorrect operand type (not integer) for S/UREM");
1812    break;
1813  case FRem:
1814    assert(getType() == LHS->getType() &&
1815           "Arithmetic operation should return same type as operands!");
1816    assert(getType()->isFPOrFPVectorTy() &&
1817           "Incorrect operand type (not floating point) for FREM");
1818    break;
1819  case Shl:
1820  case LShr:
1821  case AShr:
1822    assert(getType() == LHS->getType() &&
1823           "Shift operation should return same type as operands!");
1824    assert((getType()->isIntegerTy() ||
1825            (getType()->isVectorTy() &&
1826             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1827           "Tried to create a shift operation on a non-integral type!");
1828    break;
1829  case And: case Or:
1830  case Xor:
1831    assert(getType() == LHS->getType() &&
1832           "Logical operation should return same type as operands!");
1833    assert((getType()->isIntegerTy() ||
1834            (getType()->isVectorTy() &&
1835             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1836           "Tried to create a logical operation on a non-integral type!");
1837    break;
1838  default:
1839    break;
1840  }
1841#endif
1842}
1843
1844BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1845                                       const Twine &Name,
1846                                       Instruction *InsertBefore) {
1847  assert(S1->getType() == S2->getType() &&
1848         "Cannot create binary operator with two operands of differing type!");
1849  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1850}
1851
1852BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1853                                       const Twine &Name,
1854                                       BasicBlock *InsertAtEnd) {
1855  BinaryOperator *Res = Create(Op, S1, S2, Name);
1856  InsertAtEnd->getInstList().push_back(Res);
1857  return Res;
1858}
1859
1860BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1861                                          Instruction *InsertBefore) {
1862  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1863  return new BinaryOperator(Instruction::Sub,
1864                            zero, Op,
1865                            Op->getType(), Name, InsertBefore);
1866}
1867
1868BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1869                                          BasicBlock *InsertAtEnd) {
1870  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1871  return new BinaryOperator(Instruction::Sub,
1872                            zero, Op,
1873                            Op->getType(), Name, InsertAtEnd);
1874}
1875
1876BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1877                                             Instruction *InsertBefore) {
1878  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1879  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1880}
1881
1882BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1883                                             BasicBlock *InsertAtEnd) {
1884  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1885  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1886}
1887
1888BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1889                                             Instruction *InsertBefore) {
1890  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1891  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1892}
1893
1894BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1895                                             BasicBlock *InsertAtEnd) {
1896  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1897  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1898}
1899
1900BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1901                                           Instruction *InsertBefore) {
1902  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1903  return new BinaryOperator(Instruction::FSub, zero, Op,
1904                            Op->getType(), Name, InsertBefore);
1905}
1906
1907BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1908                                           BasicBlock *InsertAtEnd) {
1909  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1910  return new BinaryOperator(Instruction::FSub, zero, Op,
1911                            Op->getType(), Name, InsertAtEnd);
1912}
1913
1914BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1915                                          Instruction *InsertBefore) {
1916  Constant *C = Constant::getAllOnesValue(Op->getType());
1917  return new BinaryOperator(Instruction::Xor, Op, C,
1918                            Op->getType(), Name, InsertBefore);
1919}
1920
1921BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1922                                          BasicBlock *InsertAtEnd) {
1923  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1924  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1925                            Op->getType(), Name, InsertAtEnd);
1926}
1927
1928
1929// isConstantAllOnes - Helper function for several functions below
1930static inline bool isConstantAllOnes(const Value *V) {
1931  if (const Constant *C = dyn_cast<Constant>(V))
1932    return C->isAllOnesValue();
1933  return false;
1934}
1935
1936bool BinaryOperator::isNeg(const Value *V) {
1937  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1938    if (Bop->getOpcode() == Instruction::Sub)
1939      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1940        return C->isNegativeZeroValue();
1941  return false;
1942}
1943
1944bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1945  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1946    if (Bop->getOpcode() == Instruction::FSub)
1947      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1948        if (!IgnoreZeroSign)
1949          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1950        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1951      }
1952  return false;
1953}
1954
1955bool BinaryOperator::isNot(const Value *V) {
1956  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1957    return (Bop->getOpcode() == Instruction::Xor &&
1958            (isConstantAllOnes(Bop->getOperand(1)) ||
1959             isConstantAllOnes(Bop->getOperand(0))));
1960  return false;
1961}
1962
1963Value *BinaryOperator::getNegArgument(Value *BinOp) {
1964  return cast<BinaryOperator>(BinOp)->getOperand(1);
1965}
1966
1967const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1968  return getNegArgument(const_cast<Value*>(BinOp));
1969}
1970
1971Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1972  return cast<BinaryOperator>(BinOp)->getOperand(1);
1973}
1974
1975const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1976  return getFNegArgument(const_cast<Value*>(BinOp));
1977}
1978
1979Value *BinaryOperator::getNotArgument(Value *BinOp) {
1980  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1981  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1982  Value *Op0 = BO->getOperand(0);
1983  Value *Op1 = BO->getOperand(1);
1984  if (isConstantAllOnes(Op0)) return Op1;
1985
1986  assert(isConstantAllOnes(Op1));
1987  return Op0;
1988}
1989
1990const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1991  return getNotArgument(const_cast<Value*>(BinOp));
1992}
1993
1994
1995// swapOperands - Exchange the two operands to this instruction.  This
1996// instruction is safe to use on any binary instruction and does not
1997// modify the semantics of the instruction.  If the instruction is
1998// order dependent (SetLT f.e.) the opcode is changed.
1999//
2000bool BinaryOperator::swapOperands() {
2001  if (!isCommutative())
2002    return true; // Can't commute operands
2003  Op<0>().swap(Op<1>());
2004  return false;
2005}
2006
2007void BinaryOperator::setHasNoUnsignedWrap(bool b) {
2008  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
2009}
2010
2011void BinaryOperator::setHasNoSignedWrap(bool b) {
2012  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2013}
2014
2015void BinaryOperator::setIsExact(bool b) {
2016  cast<PossiblyExactOperator>(this)->setIsExact(b);
2017}
2018
2019bool BinaryOperator::hasNoUnsignedWrap() const {
2020  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2021}
2022
2023bool BinaryOperator::hasNoSignedWrap() const {
2024  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2025}
2026
2027bool BinaryOperator::isExact() const {
2028  return cast<PossiblyExactOperator>(this)->isExact();
2029}
2030
2031//===----------------------------------------------------------------------===//
2032//                             FPMathOperator Class
2033//===----------------------------------------------------------------------===//
2034
2035/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2036/// An accuracy of 0.0 means that the operation should be performed with the
2037/// default precision.
2038float FPMathOperator::getFPAccuracy() const {
2039  const MDNode *MD =
2040    cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2041  if (!MD)
2042    return 0.0;
2043  ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2044  return Accuracy->getValueAPF().convertToFloat();
2045}
2046
2047
2048//===----------------------------------------------------------------------===//
2049//                                CastInst Class
2050//===----------------------------------------------------------------------===//
2051
2052void CastInst::anchor() {}
2053
2054// Just determine if this cast only deals with integral->integral conversion.
2055bool CastInst::isIntegerCast() const {
2056  switch (getOpcode()) {
2057    default: return false;
2058    case Instruction::ZExt:
2059    case Instruction::SExt:
2060    case Instruction::Trunc:
2061      return true;
2062    case Instruction::BitCast:
2063      return getOperand(0)->getType()->isIntegerTy() &&
2064        getType()->isIntegerTy();
2065  }
2066}
2067
2068bool CastInst::isLosslessCast() const {
2069  // Only BitCast can be lossless, exit fast if we're not BitCast
2070  if (getOpcode() != Instruction::BitCast)
2071    return false;
2072
2073  // Identity cast is always lossless
2074  Type* SrcTy = getOperand(0)->getType();
2075  Type* DstTy = getType();
2076  if (SrcTy == DstTy)
2077    return true;
2078
2079  // Pointer to pointer is always lossless.
2080  if (SrcTy->isPointerTy())
2081    return DstTy->isPointerTy();
2082  return false;  // Other types have no identity values
2083}
2084
2085/// This function determines if the CastInst does not require any bits to be
2086/// changed in order to effect the cast. Essentially, it identifies cases where
2087/// no code gen is necessary for the cast, hence the name no-op cast.  For
2088/// example, the following are all no-op casts:
2089/// # bitcast i32* %x to i8*
2090/// # bitcast <2 x i32> %x to <4 x i16>
2091/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2092/// @brief Determine if the described cast is a no-op.
2093bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2094                          Type *SrcTy,
2095                          Type *DestTy,
2096                          Type *IntPtrTy) {
2097  switch (Opcode) {
2098    default: llvm_unreachable("Invalid CastOp");
2099    case Instruction::Trunc:
2100    case Instruction::ZExt:
2101    case Instruction::SExt:
2102    case Instruction::FPTrunc:
2103    case Instruction::FPExt:
2104    case Instruction::UIToFP:
2105    case Instruction::SIToFP:
2106    case Instruction::FPToUI:
2107    case Instruction::FPToSI:
2108    case Instruction::AddrSpaceCast:
2109      // TODO: Target informations may give a more accurate answer here.
2110      return false;
2111    case Instruction::BitCast:
2112      return true;  // BitCast never modifies bits.
2113    case Instruction::PtrToInt:
2114      return IntPtrTy->getScalarSizeInBits() ==
2115             DestTy->getScalarSizeInBits();
2116    case Instruction::IntToPtr:
2117      return IntPtrTy->getScalarSizeInBits() ==
2118             SrcTy->getScalarSizeInBits();
2119  }
2120}
2121
2122/// @brief Determine if a cast is a no-op.
2123bool CastInst::isNoopCast(Type *IntPtrTy) const {
2124  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2125}
2126
2127bool CastInst::isNoopCast(const DataLayout *DL) const {
2128  if (!DL) {
2129    // Assume maximum pointer size.
2130    return isNoopCast(Type::getInt64Ty(getContext()));
2131  }
2132
2133  Type *PtrOpTy = nullptr;
2134  if (getOpcode() == Instruction::PtrToInt)
2135    PtrOpTy = getOperand(0)->getType();
2136  else if (getOpcode() == Instruction::IntToPtr)
2137    PtrOpTy = getType();
2138
2139  Type *IntPtrTy = PtrOpTy
2140                 ? DL->getIntPtrType(PtrOpTy)
2141                 : DL->getIntPtrType(getContext(), 0);
2142
2143  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2144}
2145
2146/// This function determines if a pair of casts can be eliminated and what
2147/// opcode should be used in the elimination. This assumes that there are two
2148/// instructions like this:
2149/// *  %F = firstOpcode SrcTy %x to MidTy
2150/// *  %S = secondOpcode MidTy %F to DstTy
2151/// The function returns a resultOpcode so these two casts can be replaced with:
2152/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2153/// If no such cast is permited, the function returns 0.
2154unsigned CastInst::isEliminableCastPair(
2155  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2156  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2157  Type *DstIntPtrTy) {
2158  // Define the 144 possibilities for these two cast instructions. The values
2159  // in this matrix determine what to do in a given situation and select the
2160  // case in the switch below.  The rows correspond to firstOp, the columns
2161  // correspond to secondOp.  In looking at the table below, keep in  mind
2162  // the following cast properties:
2163  //
2164  //          Size Compare       Source               Destination
2165  // Operator  Src ? Size   Type       Sign         Type       Sign
2166  // -------- ------------ -------------------   ---------------------
2167  // TRUNC         >       Integer      Any        Integral     Any
2168  // ZEXT          <       Integral   Unsigned     Integer      Any
2169  // SEXT          <       Integral    Signed      Integer      Any
2170  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2171  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2172  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2173  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2174  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2175  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2176  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2177  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2178  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2179  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2180  //
2181  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2182  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2183  // into "fptoui double to i64", but this loses information about the range
2184  // of the produced value (we no longer know the top-part is all zeros).
2185  // Further this conversion is often much more expensive for typical hardware,
2186  // and causes issues when building libgcc.  We disallow fptosi+sext for the
2187  // same reason.
2188  const unsigned numCastOps =
2189    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2190  static const uint8_t CastResults[numCastOps][numCastOps] = {
2191    // T        F  F  U  S  F  F  P  I  B  A  -+
2192    // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2193    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2194    // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2195    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2196    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2197    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt           |
2198    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2199    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2200    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2201    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2202    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2203    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc        |
2204    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2205    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2206    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2207    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2208    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2209  };
2210
2211  // If either of the casts are a bitcast from scalar to vector, disallow the
2212  // merging. However, bitcast of A->B->A are allowed.
2213  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2214  bool isSecondBitcast = (secondOp == Instruction::BitCast);
2215  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2216
2217  // Check if any of the bitcasts convert scalars<->vectors.
2218  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2219      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2220    // Unless we are bitcasing to the original type, disallow optimizations.
2221    if (!chainedBitcast) return 0;
2222
2223  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2224                            [secondOp-Instruction::CastOpsBegin];
2225  switch (ElimCase) {
2226    case 0:
2227      // Categorically disallowed.
2228      return 0;
2229    case 1:
2230      // Allowed, use first cast's opcode.
2231      return firstOp;
2232    case 2:
2233      // Allowed, use second cast's opcode.
2234      return secondOp;
2235    case 3:
2236      // No-op cast in second op implies firstOp as long as the DestTy
2237      // is integer and we are not converting between a vector and a
2238      // non-vector type.
2239      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2240        return firstOp;
2241      return 0;
2242    case 4:
2243      // No-op cast in second op implies firstOp as long as the DestTy
2244      // is floating point.
2245      if (DstTy->isFloatingPointTy())
2246        return firstOp;
2247      return 0;
2248    case 5:
2249      // No-op cast in first op implies secondOp as long as the SrcTy
2250      // is an integer.
2251      if (SrcTy->isIntegerTy())
2252        return secondOp;
2253      return 0;
2254    case 6:
2255      // No-op cast in first op implies secondOp as long as the SrcTy
2256      // is a floating point.
2257      if (SrcTy->isFloatingPointTy())
2258        return secondOp;
2259      return 0;
2260    case 7: {
2261      // Cannot simplify if address spaces are different!
2262      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2263        return 0;
2264
2265      unsigned MidSize = MidTy->getScalarSizeInBits();
2266      // We can still fold this without knowing the actual sizes as long we
2267      // know that the intermediate pointer is the largest possible
2268      // pointer size.
2269      // FIXME: Is this always true?
2270      if (MidSize == 64)
2271        return Instruction::BitCast;
2272
2273      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2274      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2275        return 0;
2276      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2277      if (MidSize >= PtrSize)
2278        return Instruction::BitCast;
2279      return 0;
2280    }
2281    case 8: {
2282      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2283      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2284      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2285      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2286      unsigned DstSize = DstTy->getScalarSizeInBits();
2287      if (SrcSize == DstSize)
2288        return Instruction::BitCast;
2289      else if (SrcSize < DstSize)
2290        return firstOp;
2291      return secondOp;
2292    }
2293    case 9:
2294      // zext, sext -> zext, because sext can't sign extend after zext
2295      return Instruction::ZExt;
2296    case 10:
2297      // fpext followed by ftrunc is allowed if the bit size returned to is
2298      // the same as the original, in which case its just a bitcast
2299      if (SrcTy == DstTy)
2300        return Instruction::BitCast;
2301      return 0; // If the types are not the same we can't eliminate it.
2302    case 11: {
2303      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2304      if (!MidIntPtrTy)
2305        return 0;
2306      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2307      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2308      unsigned DstSize = DstTy->getScalarSizeInBits();
2309      if (SrcSize <= PtrSize && SrcSize == DstSize)
2310        return Instruction::BitCast;
2311      return 0;
2312    }
2313    case 12: {
2314      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2315      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2316      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2317        return Instruction::AddrSpaceCast;
2318      return Instruction::BitCast;
2319    }
2320    case 13:
2321      // FIXME: this state can be merged with (1), but the following assert
2322      // is useful to check the correcteness of the sequence due to semantic
2323      // change of bitcast.
2324      assert(
2325        SrcTy->isPtrOrPtrVectorTy() &&
2326        MidTy->isPtrOrPtrVectorTy() &&
2327        DstTy->isPtrOrPtrVectorTy() &&
2328        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2329        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2330        "Illegal addrspacecast, bitcast sequence!");
2331      // Allowed, use first cast's opcode
2332      return firstOp;
2333    case 14:
2334      // FIXME: this state can be merged with (2), but the following assert
2335      // is useful to check the correcteness of the sequence due to semantic
2336      // change of bitcast.
2337      assert(
2338        SrcTy->isPtrOrPtrVectorTy() &&
2339        MidTy->isPtrOrPtrVectorTy() &&
2340        DstTy->isPtrOrPtrVectorTy() &&
2341        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2342        MidTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace() &&
2343        "Illegal bitcast, addrspacecast sequence!");
2344      // Allowed, use second cast's opcode
2345      return secondOp;
2346    case 15:
2347      // FIXME: this state can be merged with (1), but the following assert
2348      // is useful to check the correcteness of the sequence due to semantic
2349      // change of bitcast.
2350      assert(
2351        SrcTy->isIntOrIntVectorTy() &&
2352        MidTy->isPtrOrPtrVectorTy() &&
2353        DstTy->isPtrOrPtrVectorTy() &&
2354        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2355        "Illegal inttoptr, bitcast sequence!");
2356      // Allowed, use first cast's opcode
2357      return firstOp;
2358    case 16:
2359      // FIXME: this state can be merged with (2), but the following assert
2360      // is useful to check the correcteness of the sequence due to semantic
2361      // change of bitcast.
2362      assert(
2363        SrcTy->isPtrOrPtrVectorTy() &&
2364        MidTy->isPtrOrPtrVectorTy() &&
2365        DstTy->isIntOrIntVectorTy() &&
2366        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2367        "Illegal bitcast, ptrtoint sequence!");
2368      // Allowed, use second cast's opcode
2369      return secondOp;
2370    case 99:
2371      // Cast combination can't happen (error in input). This is for all cases
2372      // where the MidTy is not the same for the two cast instructions.
2373      llvm_unreachable("Invalid Cast Combination");
2374    default:
2375      llvm_unreachable("Error in CastResults table!!!");
2376  }
2377}
2378
2379CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2380  const Twine &Name, Instruction *InsertBefore) {
2381  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2382  // Construct and return the appropriate CastInst subclass
2383  switch (op) {
2384  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2385  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2386  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2387  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2388  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2389  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2390  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2391  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2392  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2393  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2394  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2395  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2396  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2397  default: llvm_unreachable("Invalid opcode provided");
2398  }
2399}
2400
2401CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2402  const Twine &Name, BasicBlock *InsertAtEnd) {
2403  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2404  // Construct and return the appropriate CastInst subclass
2405  switch (op) {
2406  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2407  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2408  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2409  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2410  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2411  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2412  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2413  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2414  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2415  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2416  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2417  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2418  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2419  default: llvm_unreachable("Invalid opcode provided");
2420  }
2421}
2422
2423CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2424                                        const Twine &Name,
2425                                        Instruction *InsertBefore) {
2426  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2427    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2428  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2429}
2430
2431CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2432                                        const Twine &Name,
2433                                        BasicBlock *InsertAtEnd) {
2434  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2435    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2436  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2437}
2438
2439CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2440                                        const Twine &Name,
2441                                        Instruction *InsertBefore) {
2442  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2443    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2444  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2445}
2446
2447CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2448                                        const Twine &Name,
2449                                        BasicBlock *InsertAtEnd) {
2450  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2451    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2452  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2453}
2454
2455CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2456                                         const Twine &Name,
2457                                         Instruction *InsertBefore) {
2458  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2459    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2460  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2461}
2462
2463CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2464                                         const Twine &Name,
2465                                         BasicBlock *InsertAtEnd) {
2466  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2467    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2468  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2469}
2470
2471CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2472                                      const Twine &Name,
2473                                      BasicBlock *InsertAtEnd) {
2474  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2475  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2476         "Invalid cast");
2477  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2478  assert((!Ty->isVectorTy() ||
2479          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2480         "Invalid cast");
2481
2482  if (Ty->isIntOrIntVectorTy())
2483    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2484
2485  Type *STy = S->getType();
2486  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2487    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2488
2489  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2490}
2491
2492/// @brief Create a BitCast or a PtrToInt cast instruction
2493CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2494                                      const Twine &Name,
2495                                      Instruction *InsertBefore) {
2496  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2497  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2498         "Invalid cast");
2499  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2500  assert((!Ty->isVectorTy() ||
2501          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2502         "Invalid cast");
2503
2504  if (Ty->isIntOrIntVectorTy())
2505    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2506
2507  Type *STy = S->getType();
2508  if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2509    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2510
2511  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2512}
2513
2514CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2515                                      bool isSigned, const Twine &Name,
2516                                      Instruction *InsertBefore) {
2517  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2518         "Invalid integer cast");
2519  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2520  unsigned DstBits = Ty->getScalarSizeInBits();
2521  Instruction::CastOps opcode =
2522    (SrcBits == DstBits ? Instruction::BitCast :
2523     (SrcBits > DstBits ? Instruction::Trunc :
2524      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2525  return Create(opcode, C, Ty, Name, InsertBefore);
2526}
2527
2528CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2529                                      bool isSigned, const Twine &Name,
2530                                      BasicBlock *InsertAtEnd) {
2531  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2532         "Invalid cast");
2533  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2534  unsigned DstBits = Ty->getScalarSizeInBits();
2535  Instruction::CastOps opcode =
2536    (SrcBits == DstBits ? Instruction::BitCast :
2537     (SrcBits > DstBits ? Instruction::Trunc :
2538      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2539  return Create(opcode, C, Ty, Name, InsertAtEnd);
2540}
2541
2542CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2543                                 const Twine &Name,
2544                                 Instruction *InsertBefore) {
2545  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2546         "Invalid cast");
2547  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2548  unsigned DstBits = Ty->getScalarSizeInBits();
2549  Instruction::CastOps opcode =
2550    (SrcBits == DstBits ? Instruction::BitCast :
2551     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2552  return Create(opcode, C, Ty, Name, InsertBefore);
2553}
2554
2555CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2556                                 const Twine &Name,
2557                                 BasicBlock *InsertAtEnd) {
2558  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2559         "Invalid cast");
2560  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2561  unsigned DstBits = Ty->getScalarSizeInBits();
2562  Instruction::CastOps opcode =
2563    (SrcBits == DstBits ? Instruction::BitCast :
2564     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2565  return Create(opcode, C, Ty, Name, InsertAtEnd);
2566}
2567
2568// Check whether it is valid to call getCastOpcode for these types.
2569// This routine must be kept in sync with getCastOpcode.
2570bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2571  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2572    return false;
2573
2574  if (SrcTy == DestTy)
2575    return true;
2576
2577  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2578    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2579      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2580        // An element by element cast.  Valid if casting the elements is valid.
2581        SrcTy = SrcVecTy->getElementType();
2582        DestTy = DestVecTy->getElementType();
2583      }
2584
2585  // Get the bit sizes, we'll need these
2586  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2587  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2588
2589  // Run through the possibilities ...
2590  if (DestTy->isIntegerTy()) {               // Casting to integral
2591    if (SrcTy->isIntegerTy()) {                // Casting from integral
2592        return true;
2593    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2594      return true;
2595    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2596      return DestBits == SrcBits;
2597    } else {                                   // Casting from something else
2598      return SrcTy->isPointerTy();
2599    }
2600  } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2601    if (SrcTy->isIntegerTy()) {                // Casting from integral
2602      return true;
2603    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2604      return true;
2605    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2606      return DestBits == SrcBits;
2607    } else {                                   // Casting from something else
2608      return false;
2609    }
2610  } else if (DestTy->isVectorTy()) {         // Casting to vector
2611    return DestBits == SrcBits;
2612  } else if (DestTy->isPointerTy()) {        // Casting to pointer
2613    if (SrcTy->isPointerTy()) {                // Casting from pointer
2614      return true;
2615    } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2616      return true;
2617    } else {                                   // Casting from something else
2618      return false;
2619    }
2620  } else if (DestTy->isX86_MMXTy()) {
2621    if (SrcTy->isVectorTy()) {
2622      return DestBits == SrcBits;       // 64-bit vector to MMX
2623    } else {
2624      return false;
2625    }
2626  } else {                                   // Casting to something else
2627    return false;
2628  }
2629}
2630
2631bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2632  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2633    return false;
2634
2635  if (SrcTy == DestTy)
2636    return true;
2637
2638  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2639    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2640      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2641        // An element by element cast. Valid if casting the elements is valid.
2642        SrcTy = SrcVecTy->getElementType();
2643        DestTy = DestVecTy->getElementType();
2644      }
2645    }
2646  }
2647
2648  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2649    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2650      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2651    }
2652  }
2653
2654  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2655  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2656
2657  // Could still have vectors of pointers if the number of elements doesn't
2658  // match
2659  if (SrcBits == 0 || DestBits == 0)
2660    return false;
2661
2662  if (SrcBits != DestBits)
2663    return false;
2664
2665  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2666    return false;
2667
2668  return true;
2669}
2670
2671// Provide a way to get a "cast" where the cast opcode is inferred from the
2672// types and size of the operand. This, basically, is a parallel of the
2673// logic in the castIsValid function below.  This axiom should hold:
2674//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2675// should not assert in castIsValid. In other words, this produces a "correct"
2676// casting opcode for the arguments passed to it.
2677// This routine must be kept in sync with isCastable.
2678Instruction::CastOps
2679CastInst::getCastOpcode(
2680  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2681  Type *SrcTy = Src->getType();
2682
2683  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2684         "Only first class types are castable!");
2685
2686  if (SrcTy == DestTy)
2687    return BitCast;
2688
2689  // FIXME: Check address space sizes here
2690  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2691    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2692      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2693        // An element by element cast.  Find the appropriate opcode based on the
2694        // element types.
2695        SrcTy = SrcVecTy->getElementType();
2696        DestTy = DestVecTy->getElementType();
2697      }
2698
2699  // Get the bit sizes, we'll need these
2700  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2701  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2702
2703  // Run through the possibilities ...
2704  if (DestTy->isIntegerTy()) {                      // Casting to integral
2705    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2706      if (DestBits < SrcBits)
2707        return Trunc;                               // int -> smaller int
2708      else if (DestBits > SrcBits) {                // its an extension
2709        if (SrcIsSigned)
2710          return SExt;                              // signed -> SEXT
2711        else
2712          return ZExt;                              // unsigned -> ZEXT
2713      } else {
2714        return BitCast;                             // Same size, No-op cast
2715      }
2716    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2717      if (DestIsSigned)
2718        return FPToSI;                              // FP -> sint
2719      else
2720        return FPToUI;                              // FP -> uint
2721    } else if (SrcTy->isVectorTy()) {
2722      assert(DestBits == SrcBits &&
2723             "Casting vector to integer of different width");
2724      return BitCast;                             // Same size, no-op cast
2725    } else {
2726      assert(SrcTy->isPointerTy() &&
2727             "Casting from a value that is not first-class type");
2728      return PtrToInt;                              // ptr -> int
2729    }
2730  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2731    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2732      if (SrcIsSigned)
2733        return SIToFP;                              // sint -> FP
2734      else
2735        return UIToFP;                              // uint -> FP
2736    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2737      if (DestBits < SrcBits) {
2738        return FPTrunc;                             // FP -> smaller FP
2739      } else if (DestBits > SrcBits) {
2740        return FPExt;                               // FP -> larger FP
2741      } else  {
2742        return BitCast;                             // same size, no-op cast
2743      }
2744    } else if (SrcTy->isVectorTy()) {
2745      assert(DestBits == SrcBits &&
2746             "Casting vector to floating point of different width");
2747      return BitCast;                             // same size, no-op cast
2748    }
2749    llvm_unreachable("Casting pointer or non-first class to float");
2750  } else if (DestTy->isVectorTy()) {
2751    assert(DestBits == SrcBits &&
2752           "Illegal cast to vector (wrong type or size)");
2753    return BitCast;
2754  } else if (DestTy->isPointerTy()) {
2755    if (SrcTy->isPointerTy()) {
2756      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2757        return AddrSpaceCast;
2758      return BitCast;                               // ptr -> ptr
2759    } else if (SrcTy->isIntegerTy()) {
2760      return IntToPtr;                              // int -> ptr
2761    }
2762    llvm_unreachable("Casting pointer to other than pointer or int");
2763  } else if (DestTy->isX86_MMXTy()) {
2764    if (SrcTy->isVectorTy()) {
2765      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2766      return BitCast;                               // 64-bit vector to MMX
2767    }
2768    llvm_unreachable("Illegal cast to X86_MMX");
2769  }
2770  llvm_unreachable("Casting to type that is not first-class");
2771}
2772
2773//===----------------------------------------------------------------------===//
2774//                    CastInst SubClass Constructors
2775//===----------------------------------------------------------------------===//
2776
2777/// Check that the construction parameters for a CastInst are correct. This
2778/// could be broken out into the separate constructors but it is useful to have
2779/// it in one place and to eliminate the redundant code for getting the sizes
2780/// of the types involved.
2781bool
2782CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2783
2784  // Check for type sanity on the arguments
2785  Type *SrcTy = S->getType();
2786
2787  // If this is a cast to the same type then it's trivially true.
2788  if (SrcTy == DstTy)
2789    return true;
2790
2791  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2792      SrcTy->isAggregateType() || DstTy->isAggregateType())
2793    return false;
2794
2795  // Get the size of the types in bits, we'll need this later
2796  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2797  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2798
2799  // If these are vector types, get the lengths of the vectors (using zero for
2800  // scalar types means that checking that vector lengths match also checks that
2801  // scalars are not being converted to vectors or vectors to scalars).
2802  unsigned SrcLength = SrcTy->isVectorTy() ?
2803    cast<VectorType>(SrcTy)->getNumElements() : 0;
2804  unsigned DstLength = DstTy->isVectorTy() ?
2805    cast<VectorType>(DstTy)->getNumElements() : 0;
2806
2807  // Switch on the opcode provided
2808  switch (op) {
2809  default: return false; // This is an input error
2810  case Instruction::Trunc:
2811    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2812      SrcLength == DstLength && SrcBitSize > DstBitSize;
2813  case Instruction::ZExt:
2814    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2815      SrcLength == DstLength && SrcBitSize < DstBitSize;
2816  case Instruction::SExt:
2817    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2818      SrcLength == DstLength && SrcBitSize < DstBitSize;
2819  case Instruction::FPTrunc:
2820    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2821      SrcLength == DstLength && SrcBitSize > DstBitSize;
2822  case Instruction::FPExt:
2823    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2824      SrcLength == DstLength && SrcBitSize < DstBitSize;
2825  case Instruction::UIToFP:
2826  case Instruction::SIToFP:
2827    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2828      SrcLength == DstLength;
2829  case Instruction::FPToUI:
2830  case Instruction::FPToSI:
2831    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2832      SrcLength == DstLength;
2833  case Instruction::PtrToInt:
2834    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2835      return false;
2836    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2837      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2838        return false;
2839    return SrcTy->getScalarType()->isPointerTy() &&
2840           DstTy->getScalarType()->isIntegerTy();
2841  case Instruction::IntToPtr:
2842    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2843      return false;
2844    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2845      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2846        return false;
2847    return SrcTy->getScalarType()->isIntegerTy() &&
2848           DstTy->getScalarType()->isPointerTy();
2849  case Instruction::BitCast: {
2850    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2851    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2852
2853    // BitCast implies a no-op cast of type only. No bits change.
2854    // However, you can't cast pointers to anything but pointers.
2855    if (!SrcPtrTy != !DstPtrTy)
2856      return false;
2857
2858    // For non-pointer cases, the cast is okay if the source and destination bit
2859    // widths are identical.
2860    if (!SrcPtrTy)
2861      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2862
2863    // If both are pointers then the address spaces must match.
2864    if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
2865      return false;
2866
2867    // A vector of pointers must have the same number of elements.
2868    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2869      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2870        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2871
2872      return false;
2873    }
2874
2875    return true;
2876  }
2877  case Instruction::AddrSpaceCast: {
2878    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2879    if (!SrcPtrTy)
2880      return false;
2881
2882    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2883    if (!DstPtrTy)
2884      return false;
2885
2886    if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2887      return false;
2888
2889    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2890      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2891        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2892
2893      return false;
2894    }
2895
2896    return true;
2897  }
2898  }
2899}
2900
2901TruncInst::TruncInst(
2902  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2903) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2904  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2905}
2906
2907TruncInst::TruncInst(
2908  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2909) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2910  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2911}
2912
2913ZExtInst::ZExtInst(
2914  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2915)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2916  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2917}
2918
2919ZExtInst::ZExtInst(
2920  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2921)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2922  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2923}
2924SExtInst::SExtInst(
2925  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2926) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2927  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2928}
2929
2930SExtInst::SExtInst(
2931  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2932)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2933  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2934}
2935
2936FPTruncInst::FPTruncInst(
2937  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2938) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2939  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2940}
2941
2942FPTruncInst::FPTruncInst(
2943  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2944) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2945  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2946}
2947
2948FPExtInst::FPExtInst(
2949  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2950) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2951  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2952}
2953
2954FPExtInst::FPExtInst(
2955  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2956) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2957  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2958}
2959
2960UIToFPInst::UIToFPInst(
2961  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2962) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2963  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2964}
2965
2966UIToFPInst::UIToFPInst(
2967  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2968) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2969  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2970}
2971
2972SIToFPInst::SIToFPInst(
2973  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2974) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2975  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2976}
2977
2978SIToFPInst::SIToFPInst(
2979  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2980) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2981  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2982}
2983
2984FPToUIInst::FPToUIInst(
2985  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2986) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2987  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2988}
2989
2990FPToUIInst::FPToUIInst(
2991  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2992) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2993  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2994}
2995
2996FPToSIInst::FPToSIInst(
2997  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2998) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2999  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3000}
3001
3002FPToSIInst::FPToSIInst(
3003  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3004) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3005  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3006}
3007
3008PtrToIntInst::PtrToIntInst(
3009  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3010) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3011  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3012}
3013
3014PtrToIntInst::PtrToIntInst(
3015  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3016) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3017  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3018}
3019
3020IntToPtrInst::IntToPtrInst(
3021  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3022) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3023  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3024}
3025
3026IntToPtrInst::IntToPtrInst(
3027  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3028) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3029  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3030}
3031
3032BitCastInst::BitCastInst(
3033  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3034) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3035  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3036}
3037
3038BitCastInst::BitCastInst(
3039  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3040) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3041  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3042}
3043
3044AddrSpaceCastInst::AddrSpaceCastInst(
3045  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3046) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3047  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3048}
3049
3050AddrSpaceCastInst::AddrSpaceCastInst(
3051  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3052) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3053  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3054}
3055
3056//===----------------------------------------------------------------------===//
3057//                               CmpInst Classes
3058//===----------------------------------------------------------------------===//
3059
3060void CmpInst::anchor() {}
3061
3062CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3063                 Value *LHS, Value *RHS, const Twine &Name,
3064                 Instruction *InsertBefore)
3065  : Instruction(ty, op,
3066                OperandTraits<CmpInst>::op_begin(this),
3067                OperandTraits<CmpInst>::operands(this),
3068                InsertBefore) {
3069    Op<0>() = LHS;
3070    Op<1>() = RHS;
3071  setPredicate((Predicate)predicate);
3072  setName(Name);
3073}
3074
3075CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3076                 Value *LHS, Value *RHS, const Twine &Name,
3077                 BasicBlock *InsertAtEnd)
3078  : Instruction(ty, op,
3079                OperandTraits<CmpInst>::op_begin(this),
3080                OperandTraits<CmpInst>::operands(this),
3081                InsertAtEnd) {
3082  Op<0>() = LHS;
3083  Op<1>() = RHS;
3084  setPredicate((Predicate)predicate);
3085  setName(Name);
3086}
3087
3088CmpInst *
3089CmpInst::Create(OtherOps Op, unsigned short predicate,
3090                Value *S1, Value *S2,
3091                const Twine &Name, Instruction *InsertBefore) {
3092  if (Op == Instruction::ICmp) {
3093    if (InsertBefore)
3094      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3095                          S1, S2, Name);
3096    else
3097      return new ICmpInst(CmpInst::Predicate(predicate),
3098                          S1, S2, Name);
3099  }
3100
3101  if (InsertBefore)
3102    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3103                        S1, S2, Name);
3104  else
3105    return new FCmpInst(CmpInst::Predicate(predicate),
3106                        S1, S2, Name);
3107}
3108
3109CmpInst *
3110CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3111                const Twine &Name, BasicBlock *InsertAtEnd) {
3112  if (Op == Instruction::ICmp) {
3113    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3114                        S1, S2, Name);
3115  }
3116  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3117                      S1, S2, Name);
3118}
3119
3120void CmpInst::swapOperands() {
3121  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3122    IC->swapOperands();
3123  else
3124    cast<FCmpInst>(this)->swapOperands();
3125}
3126
3127bool CmpInst::isCommutative() const {
3128  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3129    return IC->isCommutative();
3130  return cast<FCmpInst>(this)->isCommutative();
3131}
3132
3133bool CmpInst::isEquality() const {
3134  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3135    return IC->isEquality();
3136  return cast<FCmpInst>(this)->isEquality();
3137}
3138
3139
3140CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3141  switch (pred) {
3142    default: llvm_unreachable("Unknown cmp predicate!");
3143    case ICMP_EQ: return ICMP_NE;
3144    case ICMP_NE: return ICMP_EQ;
3145    case ICMP_UGT: return ICMP_ULE;
3146    case ICMP_ULT: return ICMP_UGE;
3147    case ICMP_UGE: return ICMP_ULT;
3148    case ICMP_ULE: return ICMP_UGT;
3149    case ICMP_SGT: return ICMP_SLE;
3150    case ICMP_SLT: return ICMP_SGE;
3151    case ICMP_SGE: return ICMP_SLT;
3152    case ICMP_SLE: return ICMP_SGT;
3153
3154    case FCMP_OEQ: return FCMP_UNE;
3155    case FCMP_ONE: return FCMP_UEQ;
3156    case FCMP_OGT: return FCMP_ULE;
3157    case FCMP_OLT: return FCMP_UGE;
3158    case FCMP_OGE: return FCMP_ULT;
3159    case FCMP_OLE: return FCMP_UGT;
3160    case FCMP_UEQ: return FCMP_ONE;
3161    case FCMP_UNE: return FCMP_OEQ;
3162    case FCMP_UGT: return FCMP_OLE;
3163    case FCMP_ULT: return FCMP_OGE;
3164    case FCMP_UGE: return FCMP_OLT;
3165    case FCMP_ULE: return FCMP_OGT;
3166    case FCMP_ORD: return FCMP_UNO;
3167    case FCMP_UNO: return FCMP_ORD;
3168    case FCMP_TRUE: return FCMP_FALSE;
3169    case FCMP_FALSE: return FCMP_TRUE;
3170  }
3171}
3172
3173ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3174  switch (pred) {
3175    default: llvm_unreachable("Unknown icmp predicate!");
3176    case ICMP_EQ: case ICMP_NE:
3177    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3178       return pred;
3179    case ICMP_UGT: return ICMP_SGT;
3180    case ICMP_ULT: return ICMP_SLT;
3181    case ICMP_UGE: return ICMP_SGE;
3182    case ICMP_ULE: return ICMP_SLE;
3183  }
3184}
3185
3186ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3187  switch (pred) {
3188    default: llvm_unreachable("Unknown icmp predicate!");
3189    case ICMP_EQ: case ICMP_NE:
3190    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3191       return pred;
3192    case ICMP_SGT: return ICMP_UGT;
3193    case ICMP_SLT: return ICMP_ULT;
3194    case ICMP_SGE: return ICMP_UGE;
3195    case ICMP_SLE: return ICMP_ULE;
3196  }
3197}
3198
3199/// Initialize a set of values that all satisfy the condition with C.
3200///
3201ConstantRange
3202ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3203  APInt Lower(C);
3204  APInt Upper(C);
3205  uint32_t BitWidth = C.getBitWidth();
3206  switch (pred) {
3207  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3208  case ICmpInst::ICMP_EQ: ++Upper; break;
3209  case ICmpInst::ICMP_NE: ++Lower; break;
3210  case ICmpInst::ICMP_ULT:
3211    Lower = APInt::getMinValue(BitWidth);
3212    // Check for an empty-set condition.
3213    if (Lower == Upper)
3214      return ConstantRange(BitWidth, /*isFullSet=*/false);
3215    break;
3216  case ICmpInst::ICMP_SLT:
3217    Lower = APInt::getSignedMinValue(BitWidth);
3218    // Check for an empty-set condition.
3219    if (Lower == Upper)
3220      return ConstantRange(BitWidth, /*isFullSet=*/false);
3221    break;
3222  case ICmpInst::ICMP_UGT:
3223    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3224    // Check for an empty-set condition.
3225    if (Lower == Upper)
3226      return ConstantRange(BitWidth, /*isFullSet=*/false);
3227    break;
3228  case ICmpInst::ICMP_SGT:
3229    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3230    // Check for an empty-set condition.
3231    if (Lower == Upper)
3232      return ConstantRange(BitWidth, /*isFullSet=*/false);
3233    break;
3234  case ICmpInst::ICMP_ULE:
3235    Lower = APInt::getMinValue(BitWidth); ++Upper;
3236    // Check for a full-set condition.
3237    if (Lower == Upper)
3238      return ConstantRange(BitWidth, /*isFullSet=*/true);
3239    break;
3240  case ICmpInst::ICMP_SLE:
3241    Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3242    // Check for a full-set condition.
3243    if (Lower == Upper)
3244      return ConstantRange(BitWidth, /*isFullSet=*/true);
3245    break;
3246  case ICmpInst::ICMP_UGE:
3247    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3248    // Check for a full-set condition.
3249    if (Lower == Upper)
3250      return ConstantRange(BitWidth, /*isFullSet=*/true);
3251    break;
3252  case ICmpInst::ICMP_SGE:
3253    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3254    // Check for a full-set condition.
3255    if (Lower == Upper)
3256      return ConstantRange(BitWidth, /*isFullSet=*/true);
3257    break;
3258  }
3259  return ConstantRange(Lower, Upper);
3260}
3261
3262CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3263  switch (pred) {
3264    default: llvm_unreachable("Unknown cmp predicate!");
3265    case ICMP_EQ: case ICMP_NE:
3266      return pred;
3267    case ICMP_SGT: return ICMP_SLT;
3268    case ICMP_SLT: return ICMP_SGT;
3269    case ICMP_SGE: return ICMP_SLE;
3270    case ICMP_SLE: return ICMP_SGE;
3271    case ICMP_UGT: return ICMP_ULT;
3272    case ICMP_ULT: return ICMP_UGT;
3273    case ICMP_UGE: return ICMP_ULE;
3274    case ICMP_ULE: return ICMP_UGE;
3275
3276    case FCMP_FALSE: case FCMP_TRUE:
3277    case FCMP_OEQ: case FCMP_ONE:
3278    case FCMP_UEQ: case FCMP_UNE:
3279    case FCMP_ORD: case FCMP_UNO:
3280      return pred;
3281    case FCMP_OGT: return FCMP_OLT;
3282    case FCMP_OLT: return FCMP_OGT;
3283    case FCMP_OGE: return FCMP_OLE;
3284    case FCMP_OLE: return FCMP_OGE;
3285    case FCMP_UGT: return FCMP_ULT;
3286    case FCMP_ULT: return FCMP_UGT;
3287    case FCMP_UGE: return FCMP_ULE;
3288    case FCMP_ULE: return FCMP_UGE;
3289  }
3290}
3291
3292bool CmpInst::isUnsigned(unsigned short predicate) {
3293  switch (predicate) {
3294    default: return false;
3295    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3296    case ICmpInst::ICMP_UGE: return true;
3297  }
3298}
3299
3300bool CmpInst::isSigned(unsigned short predicate) {
3301  switch (predicate) {
3302    default: return false;
3303    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3304    case ICmpInst::ICMP_SGE: return true;
3305  }
3306}
3307
3308bool CmpInst::isOrdered(unsigned short predicate) {
3309  switch (predicate) {
3310    default: return false;
3311    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3312    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3313    case FCmpInst::FCMP_ORD: return true;
3314  }
3315}
3316
3317bool CmpInst::isUnordered(unsigned short predicate) {
3318  switch (predicate) {
3319    default: return false;
3320    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3321    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3322    case FCmpInst::FCMP_UNO: return true;
3323  }
3324}
3325
3326bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3327  switch(predicate) {
3328    default: return false;
3329    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3330    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3331  }
3332}
3333
3334bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3335  switch(predicate) {
3336  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3337  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3338  default: return false;
3339  }
3340}
3341
3342
3343//===----------------------------------------------------------------------===//
3344//                        SwitchInst Implementation
3345//===----------------------------------------------------------------------===//
3346
3347void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3348  assert(Value && Default && NumReserved);
3349  ReservedSpace = NumReserved;
3350  NumOperands = 2;
3351  OperandList = allocHungoffUses(ReservedSpace);
3352
3353  OperandList[0] = Value;
3354  OperandList[1] = Default;
3355}
3356
3357/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3358/// switch on and a default destination.  The number of additional cases can
3359/// be specified here to make memory allocation more efficient.  This
3360/// constructor can also autoinsert before another instruction.
3361SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3362                       Instruction *InsertBefore)
3363  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3364                   nullptr, 0, InsertBefore) {
3365  init(Value, Default, 2+NumCases*2);
3366}
3367
3368/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3369/// switch on and a default destination.  The number of additional cases can
3370/// be specified here to make memory allocation more efficient.  This
3371/// constructor also autoinserts at the end of the specified BasicBlock.
3372SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3373                       BasicBlock *InsertAtEnd)
3374  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3375                   nullptr, 0, InsertAtEnd) {
3376  init(Value, Default, 2+NumCases*2);
3377}
3378
3379SwitchInst::SwitchInst(const SwitchInst &SI)
3380  : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3381  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3382  NumOperands = SI.getNumOperands();
3383  Use *OL = OperandList, *InOL = SI.OperandList;
3384  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3385    OL[i] = InOL[i];
3386    OL[i+1] = InOL[i+1];
3387  }
3388  SubclassOptionalData = SI.SubclassOptionalData;
3389}
3390
3391SwitchInst::~SwitchInst() {
3392  dropHungoffUses();
3393}
3394
3395
3396/// addCase - Add an entry to the switch instruction...
3397///
3398void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3399  unsigned NewCaseIdx = getNumCases();
3400  unsigned OpNo = NumOperands;
3401  if (OpNo+2 > ReservedSpace)
3402    growOperands();  // Get more space!
3403  // Initialize some new operands.
3404  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3405  NumOperands = OpNo+2;
3406  CaseIt Case(this, NewCaseIdx);
3407  Case.setValue(OnVal);
3408  Case.setSuccessor(Dest);
3409}
3410
3411/// removeCase - This method removes the specified case and its successor
3412/// from the switch instruction.
3413void SwitchInst::removeCase(CaseIt i) {
3414  unsigned idx = i.getCaseIndex();
3415
3416  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3417
3418  unsigned NumOps = getNumOperands();
3419  Use *OL = OperandList;
3420
3421  // Overwrite this case with the end of the list.
3422  if (2 + (idx + 1) * 2 != NumOps) {
3423    OL[2 + idx * 2] = OL[NumOps - 2];
3424    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3425  }
3426
3427  // Nuke the last value.
3428  OL[NumOps-2].set(nullptr);
3429  OL[NumOps-2+1].set(nullptr);
3430  NumOperands = NumOps-2;
3431}
3432
3433/// growOperands - grow operands - This grows the operand list in response
3434/// to a push_back style of operation.  This grows the number of ops by 3 times.
3435///
3436void SwitchInst::growOperands() {
3437  unsigned e = getNumOperands();
3438  unsigned NumOps = e*3;
3439
3440  ReservedSpace = NumOps;
3441  Use *NewOps = allocHungoffUses(NumOps);
3442  Use *OldOps = OperandList;
3443  for (unsigned i = 0; i != e; ++i) {
3444      NewOps[i] = OldOps[i];
3445  }
3446  OperandList = NewOps;
3447  Use::zap(OldOps, OldOps + e, true);
3448}
3449
3450
3451BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3452  return getSuccessor(idx);
3453}
3454unsigned SwitchInst::getNumSuccessorsV() const {
3455  return getNumSuccessors();
3456}
3457void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3458  setSuccessor(idx, B);
3459}
3460
3461//===----------------------------------------------------------------------===//
3462//                        IndirectBrInst Implementation
3463//===----------------------------------------------------------------------===//
3464
3465void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3466  assert(Address && Address->getType()->isPointerTy() &&
3467         "Address of indirectbr must be a pointer");
3468  ReservedSpace = 1+NumDests;
3469  NumOperands = 1;
3470  OperandList = allocHungoffUses(ReservedSpace);
3471
3472  OperandList[0] = Address;
3473}
3474
3475
3476/// growOperands - grow operands - This grows the operand list in response
3477/// to a push_back style of operation.  This grows the number of ops by 2 times.
3478///
3479void IndirectBrInst::growOperands() {
3480  unsigned e = getNumOperands();
3481  unsigned NumOps = e*2;
3482
3483  ReservedSpace = NumOps;
3484  Use *NewOps = allocHungoffUses(NumOps);
3485  Use *OldOps = OperandList;
3486  for (unsigned i = 0; i != e; ++i)
3487    NewOps[i] = OldOps[i];
3488  OperandList = NewOps;
3489  Use::zap(OldOps, OldOps + e, true);
3490}
3491
3492IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3493                               Instruction *InsertBefore)
3494: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3495                 nullptr, 0, InsertBefore) {
3496  init(Address, NumCases);
3497}
3498
3499IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3500                               BasicBlock *InsertAtEnd)
3501: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3502                 nullptr, 0, InsertAtEnd) {
3503  init(Address, NumCases);
3504}
3505
3506IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3507  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3508                   allocHungoffUses(IBI.getNumOperands()),
3509                   IBI.getNumOperands()) {
3510  Use *OL = OperandList, *InOL = IBI.OperandList;
3511  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3512    OL[i] = InOL[i];
3513  SubclassOptionalData = IBI.SubclassOptionalData;
3514}
3515
3516IndirectBrInst::~IndirectBrInst() {
3517  dropHungoffUses();
3518}
3519
3520/// addDestination - Add a destination.
3521///
3522void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3523  unsigned OpNo = NumOperands;
3524  if (OpNo+1 > ReservedSpace)
3525    growOperands();  // Get more space!
3526  // Initialize some new operands.
3527  assert(OpNo < ReservedSpace && "Growing didn't work!");
3528  NumOperands = OpNo+1;
3529  OperandList[OpNo] = DestBB;
3530}
3531
3532/// removeDestination - This method removes the specified successor from the
3533/// indirectbr instruction.
3534void IndirectBrInst::removeDestination(unsigned idx) {
3535  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3536
3537  unsigned NumOps = getNumOperands();
3538  Use *OL = OperandList;
3539
3540  // Replace this value with the last one.
3541  OL[idx+1] = OL[NumOps-1];
3542
3543  // Nuke the last value.
3544  OL[NumOps-1].set(nullptr);
3545  NumOperands = NumOps-1;
3546}
3547
3548BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3549  return getSuccessor(idx);
3550}
3551unsigned IndirectBrInst::getNumSuccessorsV() const {
3552  return getNumSuccessors();
3553}
3554void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3555  setSuccessor(idx, B);
3556}
3557
3558//===----------------------------------------------------------------------===//
3559//                           clone_impl() implementations
3560//===----------------------------------------------------------------------===//
3561
3562// Define these methods here so vtables don't get emitted into every translation
3563// unit that uses these classes.
3564
3565GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3566  return new (getNumOperands()) GetElementPtrInst(*this);
3567}
3568
3569BinaryOperator *BinaryOperator::clone_impl() const {
3570  return Create(getOpcode(), Op<0>(), Op<1>());
3571}
3572
3573FCmpInst* FCmpInst::clone_impl() const {
3574  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3575}
3576
3577ICmpInst* ICmpInst::clone_impl() const {
3578  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3579}
3580
3581ExtractValueInst *ExtractValueInst::clone_impl() const {
3582  return new ExtractValueInst(*this);
3583}
3584
3585InsertValueInst *InsertValueInst::clone_impl() const {
3586  return new InsertValueInst(*this);
3587}
3588
3589AllocaInst *AllocaInst::clone_impl() const {
3590  AllocaInst *Result = new AllocaInst(getAllocatedType(),
3591                                      (Value *)getOperand(0), getAlignment());
3592  Result->setUsedWithInAlloca(isUsedWithInAlloca());
3593  return Result;
3594}
3595
3596LoadInst *LoadInst::clone_impl() const {
3597  return new LoadInst(getOperand(0), Twine(), isVolatile(),
3598                      getAlignment(), getOrdering(), getSynchScope());
3599}
3600
3601StoreInst *StoreInst::clone_impl() const {
3602  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3603                       getAlignment(), getOrdering(), getSynchScope());
3604
3605}
3606
3607AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3608  AtomicCmpXchgInst *Result =
3609    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3610                          getSuccessOrdering(), getFailureOrdering(),
3611                          getSynchScope());
3612  Result->setVolatile(isVolatile());
3613  return Result;
3614}
3615
3616AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3617  AtomicRMWInst *Result =
3618    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3619                      getOrdering(), getSynchScope());
3620  Result->setVolatile(isVolatile());
3621  return Result;
3622}
3623
3624FenceInst *FenceInst::clone_impl() const {
3625  return new FenceInst(getContext(), getOrdering(), getSynchScope());
3626}
3627
3628TruncInst *TruncInst::clone_impl() const {
3629  return new TruncInst(getOperand(0), getType());
3630}
3631
3632ZExtInst *ZExtInst::clone_impl() const {
3633  return new ZExtInst(getOperand(0), getType());
3634}
3635
3636SExtInst *SExtInst::clone_impl() const {
3637  return new SExtInst(getOperand(0), getType());
3638}
3639
3640FPTruncInst *FPTruncInst::clone_impl() const {
3641  return new FPTruncInst(getOperand(0), getType());
3642}
3643
3644FPExtInst *FPExtInst::clone_impl() const {
3645  return new FPExtInst(getOperand(0), getType());
3646}
3647
3648UIToFPInst *UIToFPInst::clone_impl() const {
3649  return new UIToFPInst(getOperand(0), getType());
3650}
3651
3652SIToFPInst *SIToFPInst::clone_impl() const {
3653  return new SIToFPInst(getOperand(0), getType());
3654}
3655
3656FPToUIInst *FPToUIInst::clone_impl() const {
3657  return new FPToUIInst(getOperand(0), getType());
3658}
3659
3660FPToSIInst *FPToSIInst::clone_impl() const {
3661  return new FPToSIInst(getOperand(0), getType());
3662}
3663
3664PtrToIntInst *PtrToIntInst::clone_impl() const {
3665  return new PtrToIntInst(getOperand(0), getType());
3666}
3667
3668IntToPtrInst *IntToPtrInst::clone_impl() const {
3669  return new IntToPtrInst(getOperand(0), getType());
3670}
3671
3672BitCastInst *BitCastInst::clone_impl() const {
3673  return new BitCastInst(getOperand(0), getType());
3674}
3675
3676AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
3677  return new AddrSpaceCastInst(getOperand(0), getType());
3678}
3679
3680CallInst *CallInst::clone_impl() const {
3681  return  new(getNumOperands()) CallInst(*this);
3682}
3683
3684SelectInst *SelectInst::clone_impl() const {
3685  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3686}
3687
3688VAArgInst *VAArgInst::clone_impl() const {
3689  return new VAArgInst(getOperand(0), getType());
3690}
3691
3692ExtractElementInst *ExtractElementInst::clone_impl() const {
3693  return ExtractElementInst::Create(getOperand(0), getOperand(1));
3694}
3695
3696InsertElementInst *InsertElementInst::clone_impl() const {
3697  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3698}
3699
3700ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3701  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3702}
3703
3704PHINode *PHINode::clone_impl() const {
3705  return new PHINode(*this);
3706}
3707
3708LandingPadInst *LandingPadInst::clone_impl() const {
3709  return new LandingPadInst(*this);
3710}
3711
3712ReturnInst *ReturnInst::clone_impl() const {
3713  return new(getNumOperands()) ReturnInst(*this);
3714}
3715
3716BranchInst *BranchInst::clone_impl() const {
3717  return new(getNumOperands()) BranchInst(*this);
3718}
3719
3720SwitchInst *SwitchInst::clone_impl() const {
3721  return new SwitchInst(*this);
3722}
3723
3724IndirectBrInst *IndirectBrInst::clone_impl() const {
3725  return new IndirectBrInst(*this);
3726}
3727
3728
3729InvokeInst *InvokeInst::clone_impl() const {
3730  return new(getNumOperands()) InvokeInst(*this);
3731}
3732
3733ResumeInst *ResumeInst::clone_impl() const {
3734  return new(1) ResumeInst(*this);
3735}
3736
3737UnreachableInst *UnreachableInst::clone_impl() const {
3738  LLVMContext &Context = getContext();
3739  return new UnreachableInst(Context);
3740}
3741