Value.cpp revision 59d3ae6cdc4316ad338cd848251f33a236ccb36c
1//===-- Value.cpp - Implement the Value class -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Value, ValueHandle, and User classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Value.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/IR/Constant.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/InstrTypes.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/ValueSymbolTable.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/LeakDetector.h"
30#include "llvm/Support/ManagedStatic.h"
31#include "llvm/Support/ValueHandle.h"
32#include <algorithm>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36//                                Value Class
37//===----------------------------------------------------------------------===//
38
39static inline Type *checkType(Type *Ty) {
40  assert(Ty && "Value defined with a null type: Error!");
41  return const_cast<Type*>(Ty);
42}
43
44Value::Value(Type *ty, unsigned scid)
45  : SubclassID(scid), HasValueHandle(0),
46    SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
47    UseList(0), Name(0) {
48  // FIXME: Why isn't this in the subclass gunk??
49  // Note, we cannot call isa<CallInst> before the CallInst has been
50  // constructed.
51  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
52    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
53           "invalid CallInst type!");
54  else if (SubclassID != BasicBlockVal &&
55           (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
56    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
57           "Cannot create non-first-class values except for constants!");
58}
59
60Value::~Value() {
61  // Notify all ValueHandles (if present) that this value is going away.
62  if (HasValueHandle)
63    ValueHandleBase::ValueIsDeleted(this);
64
65#ifndef NDEBUG      // Only in -g mode...
66  // Check to make sure that there are no uses of this value that are still
67  // around when the value is destroyed.  If there are, then we have a dangling
68  // reference and something is wrong.  This code is here to print out what is
69  // still being referenced.  The value in question should be printed as
70  // a <badref>
71  //
72  if (!use_empty()) {
73    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
74    for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
75      dbgs() << "Use still stuck around after Def is destroyed:"
76           << **I << "\n";
77  }
78#endif
79  assert(use_empty() && "Uses remain when a value is destroyed!");
80
81  // If this value is named, destroy the name.  This should not be in a symtab
82  // at this point.
83  if (Name && SubclassID != MDStringVal)
84    Name->Destroy();
85
86  // There should be no uses of this object anymore, remove it.
87  LeakDetector::removeGarbageObject(this);
88}
89
90/// hasNUses - Return true if this Value has exactly N users.
91///
92bool Value::hasNUses(unsigned N) const {
93  const_use_iterator UI = use_begin(), E = use_end();
94
95  for (; N; --N, ++UI)
96    if (UI == E) return false;  // Too few.
97  return UI == E;
98}
99
100/// hasNUsesOrMore - Return true if this value has N users or more.  This is
101/// logically equivalent to getNumUses() >= N.
102///
103bool Value::hasNUsesOrMore(unsigned N) const {
104  const_use_iterator UI = use_begin(), E = use_end();
105
106  for (; N; --N, ++UI)
107    if (UI == E) return false;  // Too few.
108
109  return true;
110}
111
112/// isUsedInBasicBlock - Return true if this value is used in the specified
113/// basic block.
114bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
115  // This can be computed either by scanning the instructions in BB, or by
116  // scanning the use list of this Value. Both lists can be very long, but
117  // usually one is quite short.
118  //
119  // Scan both lists simultaneously until one is exhausted. This limits the
120  // search to the shorter list.
121  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
122  const_use_iterator UI = use_begin(), UE = use_end();
123  for (; BI != BE && UI != UE; ++BI, ++UI) {
124    // Scan basic block: Check if this Value is used by the instruction at BI.
125    if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
126      return true;
127    // Scan use list: Check if the use at UI is in BB.
128    const Instruction *User = dyn_cast<Instruction>(*UI);
129    if (User && User->getParent() == BB)
130      return true;
131  }
132  return false;
133}
134
135
136/// getNumUses - This method computes the number of uses of this Value.  This
137/// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
138/// values.
139unsigned Value::getNumUses() const {
140  return (unsigned)std::distance(use_begin(), use_end());
141}
142
143static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
144  ST = 0;
145  if (Instruction *I = dyn_cast<Instruction>(V)) {
146    if (BasicBlock *P = I->getParent())
147      if (Function *PP = P->getParent())
148        ST = &PP->getValueSymbolTable();
149  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
150    if (Function *P = BB->getParent())
151      ST = &P->getValueSymbolTable();
152  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
153    if (Module *P = GV->getParent())
154      ST = &P->getValueSymbolTable();
155  } else if (Argument *A = dyn_cast<Argument>(V)) {
156    if (Function *P = A->getParent())
157      ST = &P->getValueSymbolTable();
158  } else if (isa<MDString>(V))
159    return true;
160  else {
161    assert(isa<Constant>(V) && "Unknown value type!");
162    return true;  // no name is setable for this.
163  }
164  return false;
165}
166
167StringRef Value::getName() const {
168  // Make sure the empty string is still a C string. For historical reasons,
169  // some clients want to call .data() on the result and expect it to be null
170  // terminated.
171  if (!Name) return StringRef("", 0);
172  return Name->getKey();
173}
174
175void Value::setName(const Twine &NewName) {
176  assert(SubclassID != MDStringVal &&
177         "Cannot set the name of MDString with this method!");
178
179  // Fast path for common IRBuilder case of setName("") when there is no name.
180  if (NewName.isTriviallyEmpty() && !hasName())
181    return;
182
183  SmallString<256> NameData;
184  StringRef NameRef = NewName.toStringRef(NameData);
185
186  // Name isn't changing?
187  if (getName() == NameRef)
188    return;
189
190  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
191
192  // Get the symbol table to update for this object.
193  ValueSymbolTable *ST;
194  if (getSymTab(this, ST))
195    return;  // Cannot set a name on this value (e.g. constant).
196
197  if (Function *F = dyn_cast<Function>(this))
198    getContext().pImpl->IntrinsicIDCache.erase(F);
199
200  if (!ST) { // No symbol table to update?  Just do the change.
201    if (NameRef.empty()) {
202      // Free the name for this value.
203      Name->Destroy();
204      Name = 0;
205      return;
206    }
207
208    if (Name)
209      Name->Destroy();
210
211    // NOTE: Could optimize for the case the name is shrinking to not deallocate
212    // then reallocated.
213
214    // Create the new name.
215    Name = ValueName::Create(NameRef.begin(), NameRef.end());
216    Name->setValue(this);
217    return;
218  }
219
220  // NOTE: Could optimize for the case the name is shrinking to not deallocate
221  // then reallocated.
222  if (hasName()) {
223    // Remove old name.
224    ST->removeValueName(Name);
225    Name->Destroy();
226    Name = 0;
227
228    if (NameRef.empty())
229      return;
230  }
231
232  // Name is changing to something new.
233  Name = ST->createValueName(NameRef, this);
234}
235
236
237/// takeName - transfer the name from V to this value, setting V's name to
238/// empty.  It is an error to call V->takeName(V).
239void Value::takeName(Value *V) {
240  assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
241
242  ValueSymbolTable *ST = 0;
243  // If this value has a name, drop it.
244  if (hasName()) {
245    // Get the symtab this is in.
246    if (getSymTab(this, ST)) {
247      // We can't set a name on this value, but we need to clear V's name if
248      // it has one.
249      if (V->hasName()) V->setName("");
250      return;  // Cannot set a name on this value (e.g. constant).
251    }
252
253    // Remove old name.
254    if (ST)
255      ST->removeValueName(Name);
256    Name->Destroy();
257    Name = 0;
258  }
259
260  // Now we know that this has no name.
261
262  // If V has no name either, we're done.
263  if (!V->hasName()) return;
264
265  // Get this's symtab if we didn't before.
266  if (!ST) {
267    if (getSymTab(this, ST)) {
268      // Clear V's name.
269      V->setName("");
270      return;  // Cannot set a name on this value (e.g. constant).
271    }
272  }
273
274  // Get V's ST, this should always succed, because V has a name.
275  ValueSymbolTable *VST;
276  bool Failure = getSymTab(V, VST);
277  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
278
279  // If these values are both in the same symtab, we can do this very fast.
280  // This works even if both values have no symtab yet.
281  if (ST == VST) {
282    // Take the name!
283    Name = V->Name;
284    V->Name = 0;
285    Name->setValue(this);
286    return;
287  }
288
289  // Otherwise, things are slightly more complex.  Remove V's name from VST and
290  // then reinsert it into ST.
291
292  if (VST)
293    VST->removeValueName(V->Name);
294  Name = V->Name;
295  V->Name = 0;
296  Name->setValue(this);
297
298  if (ST)
299    ST->reinsertValue(this);
300}
301
302
303void Value::replaceAllUsesWith(Value *New) {
304  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
305  assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
306  assert(New->getType() == getType() &&
307         "replaceAllUses of value with new value of different type!");
308
309  // Notify all ValueHandles (if present) that this value is going away.
310  if (HasValueHandle)
311    ValueHandleBase::ValueIsRAUWd(this, New);
312
313  while (!use_empty()) {
314    Use &U = *UseList;
315    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
316    // constant because they are uniqued.
317    if (Constant *C = dyn_cast<Constant>(U.getUser())) {
318      if (!isa<GlobalValue>(C)) {
319        C->replaceUsesOfWithOnConstant(this, New, &U);
320        continue;
321      }
322    }
323
324    U.set(New);
325  }
326
327  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
328    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
329}
330
331namespace {
332// Various metrics for how much to strip off of pointers.
333enum PointerStripKind {
334  PSK_ZeroIndices,
335  PSK_ZeroIndicesAndAliases,
336  PSK_InBoundsConstantIndices,
337  PSK_InBounds
338};
339
340template <PointerStripKind StripKind>
341static Value *stripPointerCastsAndOffsets(Value *V) {
342  if (!V->getType()->isPointerTy())
343    return V;
344
345  // Even though we don't look through PHI nodes, we could be called on an
346  // instruction in an unreachable block, which may be on a cycle.
347  SmallPtrSet<Value *, 4> Visited;
348
349  Visited.insert(V);
350  do {
351    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
352      switch (StripKind) {
353      case PSK_ZeroIndicesAndAliases:
354      case PSK_ZeroIndices:
355        if (!GEP->hasAllZeroIndices())
356          return V;
357        break;
358      case PSK_InBoundsConstantIndices:
359        if (!GEP->hasAllConstantIndices())
360          return V;
361        // fallthrough
362      case PSK_InBounds:
363        if (!GEP->isInBounds())
364          return V;
365        break;
366      }
367      V = GEP->getPointerOperand();
368    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
369               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
370      V = cast<Operator>(V)->getOperand(0);
371    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
372      if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
373        return V;
374      V = GA->getAliasee();
375    } else {
376      return V;
377    }
378    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
379  } while (Visited.insert(V));
380
381  return V;
382}
383} // namespace
384
385Value *Value::stripPointerCasts() {
386  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
387}
388
389Value *Value::stripPointerCastsNoFollowAliases() {
390  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
391}
392
393Value *Value::stripInBoundsConstantOffsets() {
394  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
395}
396
397Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
398                                                        APInt &Offset) {
399  if (!getType()->isPointerTy())
400    return this;
401
402  assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
403                                     getType())->getAddressSpace()) &&
404         "The offset must have exactly as many bits as our pointer.");
405
406  // Even though we don't look through PHI nodes, we could be called on an
407  // instruction in an unreachable block, which may be on a cycle.
408  SmallPtrSet<Value *, 4> Visited;
409  Visited.insert(this);
410  Value *V = this;
411  do {
412    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
413      if (!GEP->isInBounds())
414        return V;
415      APInt GEPOffset(Offset);
416      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
417        return V;
418      Offset = GEPOffset;
419      V = GEP->getPointerOperand();
420    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
421      V = cast<Operator>(V)->getOperand(0);
422    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
423      V = GA->getAliasee();
424    } else {
425      return V;
426    }
427    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
428  } while (Visited.insert(V));
429
430  return V;
431}
432
433Value *Value::stripInBoundsOffsets() {
434  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
435}
436
437/// isDereferenceablePointer - Test if this value is always a pointer to
438/// allocated and suitably aligned memory for a simple load or store.
439static bool isDereferenceablePointer(const Value *V,
440                                     SmallPtrSet<const Value *, 32> &Visited) {
441  // Note that it is not safe to speculate into a malloc'd region because
442  // malloc may return null.
443  // It's also not always safe to follow a bitcast, for example:
444  //   bitcast i8* (alloca i8) to i32*
445  // would result in a 4-byte load from a 1-byte alloca. Some cases could
446  // be handled using DataLayout to check sizes and alignments though.
447
448  // These are obviously ok.
449  if (isa<AllocaInst>(V)) return true;
450
451  // Global variables which can't collapse to null are ok.
452  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
453    return !GV->hasExternalWeakLinkage();
454
455  // byval arguments are ok.
456  if (const Argument *A = dyn_cast<Argument>(V))
457    return A->hasByValAttr();
458
459  // For GEPs, determine if the indexing lands within the allocated object.
460  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
461    // Conservatively require that the base pointer be fully dereferenceable.
462    if (!Visited.insert(GEP->getOperand(0)))
463      return false;
464    if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
465      return false;
466    // Check the indices.
467    gep_type_iterator GTI = gep_type_begin(GEP);
468    for (User::const_op_iterator I = GEP->op_begin()+1,
469         E = GEP->op_end(); I != E; ++I) {
470      Value *Index = *I;
471      Type *Ty = *GTI++;
472      // Struct indices can't be out of bounds.
473      if (isa<StructType>(Ty))
474        continue;
475      ConstantInt *CI = dyn_cast<ConstantInt>(Index);
476      if (!CI)
477        return false;
478      // Zero is always ok.
479      if (CI->isZero())
480        continue;
481      // Check to see that it's within the bounds of an array.
482      ArrayType *ATy = dyn_cast<ArrayType>(Ty);
483      if (!ATy)
484        return false;
485      if (CI->getValue().getActiveBits() > 64)
486        return false;
487      if (CI->getZExtValue() >= ATy->getNumElements())
488        return false;
489    }
490    // Indices check out; this is dereferenceable.
491    return true;
492  }
493
494  // If we don't know, assume the worst.
495  return false;
496}
497
498/// isDereferenceablePointer - Test if this value is always a pointer to
499/// allocated and suitably aligned memory for a simple load or store.
500bool Value::isDereferenceablePointer() const {
501  SmallPtrSet<const Value *, 32> Visited;
502  return ::isDereferenceablePointer(this, Visited);
503}
504
505/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
506/// return the value in the PHI node corresponding to PredBB.  If not, return
507/// ourself.  This is useful if you want to know the value something has in a
508/// predecessor block.
509Value *Value::DoPHITranslation(const BasicBlock *CurBB,
510                               const BasicBlock *PredBB) {
511  PHINode *PN = dyn_cast<PHINode>(this);
512  if (PN && PN->getParent() == CurBB)
513    return PN->getIncomingValueForBlock(PredBB);
514  return this;
515}
516
517LLVMContext &Value::getContext() const { return VTy->getContext(); }
518
519//===----------------------------------------------------------------------===//
520//                             ValueHandleBase Class
521//===----------------------------------------------------------------------===//
522
523/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
524/// List is known to point into the existing use list.
525void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
526  assert(List && "Handle list is null?");
527
528  // Splice ourselves into the list.
529  Next = *List;
530  *List = this;
531  setPrevPtr(List);
532  if (Next) {
533    Next->setPrevPtr(&Next);
534    assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
535  }
536}
537
538void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
539  assert(List && "Must insert after existing node");
540
541  Next = List->Next;
542  setPrevPtr(&List->Next);
543  List->Next = this;
544  if (Next)
545    Next->setPrevPtr(&Next);
546}
547
548/// AddToUseList - Add this ValueHandle to the use list for VP.
549void ValueHandleBase::AddToUseList() {
550  assert(VP.getPointer() && "Null pointer doesn't have a use list!");
551
552  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
553
554  if (VP.getPointer()->HasValueHandle) {
555    // If this value already has a ValueHandle, then it must be in the
556    // ValueHandles map already.
557    ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
558    assert(Entry != 0 && "Value doesn't have any handles?");
559    AddToExistingUseList(&Entry);
560    return;
561  }
562
563  // Ok, it doesn't have any handles yet, so we must insert it into the
564  // DenseMap.  However, doing this insertion could cause the DenseMap to
565  // reallocate itself, which would invalidate all of the PrevP pointers that
566  // point into the old table.  Handle this by checking for reallocation and
567  // updating the stale pointers only if needed.
568  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
569  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
570
571  ValueHandleBase *&Entry = Handles[VP.getPointer()];
572  assert(Entry == 0 && "Value really did already have handles?");
573  AddToExistingUseList(&Entry);
574  VP.getPointer()->HasValueHandle = true;
575
576  // If reallocation didn't happen or if this was the first insertion, don't
577  // walk the table.
578  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
579      Handles.size() == 1) {
580    return;
581  }
582
583  // Okay, reallocation did happen.  Fix the Prev Pointers.
584  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
585       E = Handles.end(); I != E; ++I) {
586    assert(I->second && I->first == I->second->VP.getPointer() &&
587           "List invariant broken!");
588    I->second->setPrevPtr(&I->second);
589  }
590}
591
592/// RemoveFromUseList - Remove this ValueHandle from its current use list.
593void ValueHandleBase::RemoveFromUseList() {
594  assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
595         "Pointer doesn't have a use list!");
596
597  // Unlink this from its use list.
598  ValueHandleBase **PrevPtr = getPrevPtr();
599  assert(*PrevPtr == this && "List invariant broken");
600
601  *PrevPtr = Next;
602  if (Next) {
603    assert(Next->getPrevPtr() == &Next && "List invariant broken");
604    Next->setPrevPtr(PrevPtr);
605    return;
606  }
607
608  // If the Next pointer was null, then it is possible that this was the last
609  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
610  // map.
611  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
612  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
613  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
614    Handles.erase(VP.getPointer());
615    VP.getPointer()->HasValueHandle = false;
616  }
617}
618
619
620void ValueHandleBase::ValueIsDeleted(Value *V) {
621  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
622
623  // Get the linked list base, which is guaranteed to exist since the
624  // HasValueHandle flag is set.
625  LLVMContextImpl *pImpl = V->getContext().pImpl;
626  ValueHandleBase *Entry = pImpl->ValueHandles[V];
627  assert(Entry && "Value bit set but no entries exist");
628
629  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
630  // and remove themselves from the list without breaking our iteration.  This
631  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
632  // Note that we deliberately do not the support the case when dropping a value
633  // handle results in a new value handle being permanently added to the list
634  // (as might occur in theory for CallbackVH's): the new value handle will not
635  // be processed and the checking code will mete out righteous punishment if
636  // the handle is still present once we have finished processing all the other
637  // value handles (it is fine to momentarily add then remove a value handle).
638  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
639    Iterator.RemoveFromUseList();
640    Iterator.AddToExistingUseListAfter(Entry);
641    assert(Entry->Next == &Iterator && "Loop invariant broken.");
642
643    switch (Entry->getKind()) {
644    case Assert:
645      break;
646    case Tracking:
647      // Mark that this value has been deleted by setting it to an invalid Value
648      // pointer.
649      Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
650      break;
651    case Weak:
652      // Weak just goes to null, which will unlink it from the list.
653      Entry->operator=(0);
654      break;
655    case Callback:
656      // Forward to the subclass's implementation.
657      static_cast<CallbackVH*>(Entry)->deleted();
658      break;
659    }
660  }
661
662  // All callbacks, weak references, and assertingVHs should be dropped by now.
663  if (V->HasValueHandle) {
664#ifndef NDEBUG      // Only in +Asserts mode...
665    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
666           << "\n";
667    if (pImpl->ValueHandles[V]->getKind() == Assert)
668      llvm_unreachable("An asserting value handle still pointed to this"
669                       " value!");
670
671#endif
672    llvm_unreachable("All references to V were not removed?");
673  }
674}
675
676
677void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
678  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
679  assert(Old != New && "Changing value into itself!");
680
681  // Get the linked list base, which is guaranteed to exist since the
682  // HasValueHandle flag is set.
683  LLVMContextImpl *pImpl = Old->getContext().pImpl;
684  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
685
686  assert(Entry && "Value bit set but no entries exist");
687
688  // We use a local ValueHandleBase as an iterator so that
689  // ValueHandles can add and remove themselves from the list without
690  // breaking our iteration.  This is not really an AssertingVH; we
691  // just have to give ValueHandleBase some kind.
692  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
693    Iterator.RemoveFromUseList();
694    Iterator.AddToExistingUseListAfter(Entry);
695    assert(Entry->Next == &Iterator && "Loop invariant broken.");
696
697    switch (Entry->getKind()) {
698    case Assert:
699      // Asserting handle does not follow RAUW implicitly.
700      break;
701    case Tracking:
702      // Tracking goes to new value like a WeakVH. Note that this may make it
703      // something incompatible with its templated type. We don't want to have a
704      // virtual (or inline) interface to handle this though, so instead we make
705      // the TrackingVH accessors guarantee that a client never sees this value.
706
707      // FALLTHROUGH
708    case Weak:
709      // Weak goes to the new value, which will unlink it from Old's list.
710      Entry->operator=(New);
711      break;
712    case Callback:
713      // Forward to the subclass's implementation.
714      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
715      break;
716    }
717  }
718
719#ifndef NDEBUG
720  // If any new tracking or weak value handles were added while processing the
721  // list, then complain about it now.
722  if (Old->HasValueHandle)
723    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
724      switch (Entry->getKind()) {
725      case Tracking:
726      case Weak:
727        dbgs() << "After RAUW from " << *Old->getType() << " %"
728               << Old->getName() << " to " << *New->getType() << " %"
729               << New->getName() << "\n";
730        llvm_unreachable("A tracking or weak value handle still pointed to the"
731                         " old value!\n");
732      default:
733        break;
734      }
735#endif
736}
737
738// Default implementation for CallbackVH.
739void CallbackVH::allUsesReplacedWith(Value *) {}
740
741void CallbackVH::deleted() {
742  setValPtr(NULL);
743}
744