1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/IR/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstIterator.h"
65#include "llvm/IR/InstVisitor.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/PassManager.h"
71#include "llvm/Pass.h"
72#include "llvm/Support/CommandLine.h"
73#include "llvm/Support/Debug.h"
74#include "llvm/Support/ErrorHandling.h"
75#include "llvm/Support/raw_ostream.h"
76#include <algorithm>
77#include <cstdarg>
78using namespace llvm;
79
80static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
81
82namespace {
83struct VerifierSupport {
84  raw_ostream &OS;
85  const Module *M;
86
87  /// \brief Track the brokenness of the module while recursively visiting.
88  bool Broken;
89
90  explicit VerifierSupport(raw_ostream &OS)
91      : OS(OS), M(nullptr), Broken(false) {}
92
93  void WriteValue(const Value *V) {
94    if (!V)
95      return;
96    if (isa<Instruction>(V)) {
97      OS << *V << '\n';
98    } else {
99      V->printAsOperand(OS, true, M);
100      OS << '\n';
101    }
102  }
103
104  void WriteType(Type *T) {
105    if (!T)
106      return;
107    OS << ' ' << *T;
108  }
109
110  void WriteComdat(const Comdat *C) {
111    if (!C)
112      return;
113    OS << *C;
114  }
115
116  // CheckFailed - A check failed, so print out the condition and the message
117  // that failed.  This provides a nice place to put a breakpoint if you want
118  // to see why something is not correct.
119  void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
120                   const Value *V2 = nullptr, const Value *V3 = nullptr,
121                   const Value *V4 = nullptr) {
122    OS << Message.str() << "\n";
123    WriteValue(V1);
124    WriteValue(V2);
125    WriteValue(V3);
126    WriteValue(V4);
127    Broken = true;
128  }
129
130  void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
131                   const Value *V3 = nullptr) {
132    OS << Message.str() << "\n";
133    WriteValue(V1);
134    WriteType(T2);
135    WriteValue(V3);
136    Broken = true;
137  }
138
139  void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
140                   Type *T3 = nullptr) {
141    OS << Message.str() << "\n";
142    WriteType(T1);
143    WriteType(T2);
144    WriteType(T3);
145    Broken = true;
146  }
147
148  void CheckFailed(const Twine &Message, const Comdat *C) {
149    OS << Message.str() << "\n";
150    WriteComdat(C);
151    Broken = true;
152  }
153};
154class Verifier : public InstVisitor<Verifier>, VerifierSupport {
155  friend class InstVisitor<Verifier>;
156
157  LLVMContext *Context;
158  const DataLayout *DL;
159  DominatorTree DT;
160
161  /// \brief When verifying a basic block, keep track of all of the
162  /// instructions we have seen so far.
163  ///
164  /// This allows us to do efficient dominance checks for the case when an
165  /// instruction has an operand that is an instruction in the same block.
166  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
167
168  /// \brief Keep track of the metadata nodes that have been checked already.
169  SmallPtrSet<MDNode *, 32> MDNodes;
170
171  /// \brief The personality function referenced by the LandingPadInsts.
172  /// All LandingPadInsts within the same function must use the same
173  /// personality function.
174  const Value *PersonalityFn;
175
176public:
177  explicit Verifier(raw_ostream &OS = dbgs())
178      : VerifierSupport(OS), Context(nullptr), DL(nullptr),
179        PersonalityFn(nullptr) {}
180
181  bool verify(const Function &F) {
182    M = F.getParent();
183    Context = &M->getContext();
184
185    // First ensure the function is well-enough formed to compute dominance
186    // information.
187    if (F.empty()) {
188      OS << "Function '" << F.getName()
189         << "' does not contain an entry block!\n";
190      return false;
191    }
192    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
193      if (I->empty() || !I->back().isTerminator()) {
194        OS << "Basic Block in function '" << F.getName()
195           << "' does not have terminator!\n";
196        I->printAsOperand(OS, true);
197        OS << "\n";
198        return false;
199      }
200    }
201
202    // Now directly compute a dominance tree. We don't rely on the pass
203    // manager to provide this as it isolates us from a potentially
204    // out-of-date dominator tree and makes it significantly more complex to
205    // run this code outside of a pass manager.
206    // FIXME: It's really gross that we have to cast away constness here.
207    DT.recalculate(const_cast<Function &>(F));
208
209    Broken = false;
210    // FIXME: We strip const here because the inst visitor strips const.
211    visit(const_cast<Function &>(F));
212    InstsInThisBlock.clear();
213    PersonalityFn = nullptr;
214
215    return !Broken;
216  }
217
218  bool verify(const Module &M) {
219    this->M = &M;
220    Context = &M.getContext();
221    Broken = false;
222
223    // Scan through, checking all of the external function's linkage now...
224    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
225      visitGlobalValue(*I);
226
227      // Check to make sure function prototypes are okay.
228      if (I->isDeclaration())
229        visitFunction(*I);
230    }
231
232    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
233         I != E; ++I)
234      visitGlobalVariable(*I);
235
236    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
237         I != E; ++I)
238      visitGlobalAlias(*I);
239
240    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
241                                               E = M.named_metadata_end();
242         I != E; ++I)
243      visitNamedMDNode(*I);
244
245    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
246      visitComdat(SMEC.getValue());
247
248    visitModuleFlags(M);
249    visitModuleIdents(M);
250
251    return !Broken;
252  }
253
254private:
255  // Verification methods...
256  void visitGlobalValue(const GlobalValue &GV);
257  void visitGlobalVariable(const GlobalVariable &GV);
258  void visitGlobalAlias(const GlobalAlias &GA);
259  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
260  void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
261                           const GlobalAlias &A, const Constant &C);
262  void visitNamedMDNode(const NamedMDNode &NMD);
263  void visitMDNode(MDNode &MD, Function *F);
264  void visitComdat(const Comdat &C);
265  void visitModuleIdents(const Module &M);
266  void visitModuleFlags(const Module &M);
267  void visitModuleFlag(const MDNode *Op,
268                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
269                       SmallVectorImpl<const MDNode *> &Requirements);
270  void visitFunction(const Function &F);
271  void visitBasicBlock(BasicBlock &BB);
272
273  // InstVisitor overrides...
274  using InstVisitor<Verifier>::visit;
275  void visit(Instruction &I);
276
277  void visitTruncInst(TruncInst &I);
278  void visitZExtInst(ZExtInst &I);
279  void visitSExtInst(SExtInst &I);
280  void visitFPTruncInst(FPTruncInst &I);
281  void visitFPExtInst(FPExtInst &I);
282  void visitFPToUIInst(FPToUIInst &I);
283  void visitFPToSIInst(FPToSIInst &I);
284  void visitUIToFPInst(UIToFPInst &I);
285  void visitSIToFPInst(SIToFPInst &I);
286  void visitIntToPtrInst(IntToPtrInst &I);
287  void visitPtrToIntInst(PtrToIntInst &I);
288  void visitBitCastInst(BitCastInst &I);
289  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
290  void visitPHINode(PHINode &PN);
291  void visitBinaryOperator(BinaryOperator &B);
292  void visitICmpInst(ICmpInst &IC);
293  void visitFCmpInst(FCmpInst &FC);
294  void visitExtractElementInst(ExtractElementInst &EI);
295  void visitInsertElementInst(InsertElementInst &EI);
296  void visitShuffleVectorInst(ShuffleVectorInst &EI);
297  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
298  void visitCallInst(CallInst &CI);
299  void visitInvokeInst(InvokeInst &II);
300  void visitGetElementPtrInst(GetElementPtrInst &GEP);
301  void visitLoadInst(LoadInst &LI);
302  void visitStoreInst(StoreInst &SI);
303  void verifyDominatesUse(Instruction &I, unsigned i);
304  void visitInstruction(Instruction &I);
305  void visitTerminatorInst(TerminatorInst &I);
306  void visitBranchInst(BranchInst &BI);
307  void visitReturnInst(ReturnInst &RI);
308  void visitSwitchInst(SwitchInst &SI);
309  void visitIndirectBrInst(IndirectBrInst &BI);
310  void visitSelectInst(SelectInst &SI);
311  void visitUserOp1(Instruction &I);
312  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
313  void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
314  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
315  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
316  void visitFenceInst(FenceInst &FI);
317  void visitAllocaInst(AllocaInst &AI);
318  void visitExtractValueInst(ExtractValueInst &EVI);
319  void visitInsertValueInst(InsertValueInst &IVI);
320  void visitLandingPadInst(LandingPadInst &LPI);
321
322  void VerifyCallSite(CallSite CS);
323  void verifyMustTailCall(CallInst &CI);
324  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
325                        unsigned ArgNo, std::string &Suffix);
326  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
327                           SmallVectorImpl<Type *> &ArgTys);
328  bool VerifyIntrinsicIsVarArg(bool isVarArg,
329                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
330  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
331  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
332                            const Value *V);
333  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
334                            bool isReturnValue, const Value *V);
335  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
336                           const Value *V);
337
338  void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
339  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
340};
341class DebugInfoVerifier : public VerifierSupport {
342public:
343  explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
344
345  bool verify(const Module &M) {
346    this->M = &M;
347    verifyDebugInfo();
348    return !Broken;
349  }
350
351private:
352  void verifyDebugInfo();
353  void processInstructions(DebugInfoFinder &Finder);
354  void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
355};
356} // End anonymous namespace
357
358// Assert - We know that cond should be true, if not print an error message.
359#define Assert(C, M) \
360  do { if (!(C)) { CheckFailed(M); return; } } while (0)
361#define Assert1(C, M, V1) \
362  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
363#define Assert2(C, M, V1, V2) \
364  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
365#define Assert3(C, M, V1, V2, V3) \
366  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
367#define Assert4(C, M, V1, V2, V3, V4) \
368  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
369
370void Verifier::visit(Instruction &I) {
371  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
372    Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
373  InstVisitor<Verifier>::visit(I);
374}
375
376
377void Verifier::visitGlobalValue(const GlobalValue &GV) {
378  Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
379              GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
380          "Global is external, but doesn't have external or weak linkage!",
381          &GV);
382
383  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
384          "Only global variables can have appending linkage!", &GV);
385
386  if (GV.hasAppendingLinkage()) {
387    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
388    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
389            "Only global arrays can have appending linkage!", GVar);
390  }
391}
392
393void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
394  if (GV.hasInitializer()) {
395    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
396            "Global variable initializer type does not match global "
397            "variable type!", &GV);
398
399    // If the global has common linkage, it must have a zero initializer and
400    // cannot be constant.
401    if (GV.hasCommonLinkage()) {
402      Assert1(GV.getInitializer()->isNullValue(),
403              "'common' global must have a zero initializer!", &GV);
404      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
405              &GV);
406      Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
407    }
408  } else {
409    Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
410            "invalid linkage type for global declaration", &GV);
411  }
412
413  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
414                       GV.getName() == "llvm.global_dtors")) {
415    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
416            "invalid linkage for intrinsic global variable", &GV);
417    // Don't worry about emitting an error for it not being an array,
418    // visitGlobalValue will complain on appending non-array.
419    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
420      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
421      PointerType *FuncPtrTy =
422          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
423      // FIXME: Reject the 2-field form in LLVM 4.0.
424      Assert1(STy && (STy->getNumElements() == 2 ||
425                      STy->getNumElements() == 3) &&
426              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
427              STy->getTypeAtIndex(1) == FuncPtrTy,
428              "wrong type for intrinsic global variable", &GV);
429      if (STy->getNumElements() == 3) {
430        Type *ETy = STy->getTypeAtIndex(2);
431        Assert1(ETy->isPointerTy() &&
432                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
433                "wrong type for intrinsic global variable", &GV);
434      }
435    }
436  }
437
438  if (GV.hasName() && (GV.getName() == "llvm.used" ||
439                       GV.getName() == "llvm.compiler.used")) {
440    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
441            "invalid linkage for intrinsic global variable", &GV);
442    Type *GVType = GV.getType()->getElementType();
443    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
444      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
445      Assert1(PTy, "wrong type for intrinsic global variable", &GV);
446      if (GV.hasInitializer()) {
447        const Constant *Init = GV.getInitializer();
448        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
449        Assert1(InitArray, "wrong initalizer for intrinsic global variable",
450                Init);
451        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
452          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
453          Assert1(
454              isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
455              "invalid llvm.used member", V);
456          Assert1(V->hasName(), "members of llvm.used must be named", V);
457        }
458      }
459    }
460  }
461
462  Assert1(!GV.hasDLLImportStorageClass() ||
463          (GV.isDeclaration() && GV.hasExternalLinkage()) ||
464          GV.hasAvailableExternallyLinkage(),
465          "Global is marked as dllimport, but not external", &GV);
466
467  if (!GV.hasInitializer()) {
468    visitGlobalValue(GV);
469    return;
470  }
471
472  // Walk any aggregate initializers looking for bitcasts between address spaces
473  SmallPtrSet<const Value *, 4> Visited;
474  SmallVector<const Value *, 4> WorkStack;
475  WorkStack.push_back(cast<Value>(GV.getInitializer()));
476
477  while (!WorkStack.empty()) {
478    const Value *V = WorkStack.pop_back_val();
479    if (!Visited.insert(V))
480      continue;
481
482    if (const User *U = dyn_cast<User>(V)) {
483      for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
484        WorkStack.push_back(U->getOperand(I));
485    }
486
487    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
488      VerifyConstantExprBitcastType(CE);
489      if (Broken)
490        return;
491    }
492  }
493
494  visitGlobalValue(GV);
495}
496
497void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
498  SmallPtrSet<const GlobalAlias*, 4> Visited;
499  Visited.insert(&GA);
500  visitAliaseeSubExpr(Visited, GA, C);
501}
502
503void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
504                                   const GlobalAlias &GA, const Constant &C) {
505  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
506    Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
507
508    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
509      Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
510
511      Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
512              &GA);
513    } else {
514      // Only continue verifying subexpressions of GlobalAliases.
515      // Do not recurse into global initializers.
516      return;
517    }
518  }
519
520  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
521    VerifyConstantExprBitcastType(CE);
522
523  for (const Use &U : C.operands()) {
524    Value *V = &*U;
525    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
526      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
527    else if (const auto *C2 = dyn_cast<Constant>(V))
528      visitAliaseeSubExpr(Visited, GA, *C2);
529  }
530}
531
532void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
533  Assert1(!GA.getName().empty(),
534          "Alias name cannot be empty!", &GA);
535  Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
536          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
537          "weak_odr, or external linkage!",
538          &GA);
539  const Constant *Aliasee = GA.getAliasee();
540  Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
541  Assert1(GA.getType() == Aliasee->getType(),
542          "Alias and aliasee types should match!", &GA);
543
544  Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
545          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
546
547  visitAliaseeSubExpr(GA, *Aliasee);
548
549  visitGlobalValue(GA);
550}
551
552void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
553  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
554    MDNode *MD = NMD.getOperand(i);
555    if (!MD)
556      continue;
557
558    Assert1(!MD->isFunctionLocal(),
559            "Named metadata operand cannot be function local!", MD);
560    visitMDNode(*MD, nullptr);
561  }
562}
563
564void Verifier::visitMDNode(MDNode &MD, Function *F) {
565  // Only visit each node once.  Metadata can be mutually recursive, so this
566  // avoids infinite recursion here, as well as being an optimization.
567  if (!MDNodes.insert(&MD))
568    return;
569
570  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
571    Value *Op = MD.getOperand(i);
572    if (!Op)
573      continue;
574    if (isa<Constant>(Op) || isa<MDString>(Op))
575      continue;
576    if (MDNode *N = dyn_cast<MDNode>(Op)) {
577      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
578              "Global metadata operand cannot be function local!", &MD, N);
579      visitMDNode(*N, F);
580      continue;
581    }
582    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
583
584    // If this was an instruction, bb, or argument, verify that it is in the
585    // function that we expect.
586    Function *ActualF = nullptr;
587    if (Instruction *I = dyn_cast<Instruction>(Op))
588      ActualF = I->getParent()->getParent();
589    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
590      ActualF = BB->getParent();
591    else if (Argument *A = dyn_cast<Argument>(Op))
592      ActualF = A->getParent();
593    assert(ActualF && "Unimplemented function local metadata case!");
594
595    Assert2(ActualF == F, "function-local metadata used in wrong function",
596            &MD, Op);
597  }
598}
599
600void Verifier::visitComdat(const Comdat &C) {
601  // All Comdat::SelectionKind values other than Comdat::Any require a
602  // GlobalValue with the same name as the Comdat.
603  const GlobalValue *GV = M->getNamedValue(C.getName());
604  if (C.getSelectionKind() != Comdat::Any)
605    Assert1(GV,
606            "comdat selection kind requires a global value with the same name",
607            &C);
608  // The Module is invalid if the GlobalValue has local linkage.  Allowing
609  // otherwise opens us up to seeing the underling global value get renamed if
610  // collisions occur.
611  if (GV)
612    Assert1(!GV->hasLocalLinkage(), "comdat global value has local linkage",
613            GV);
614}
615
616void Verifier::visitModuleIdents(const Module &M) {
617  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
618  if (!Idents)
619    return;
620
621  // llvm.ident takes a list of metadata entry. Each entry has only one string.
622  // Scan each llvm.ident entry and make sure that this requirement is met.
623  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
624    const MDNode *N = Idents->getOperand(i);
625    Assert1(N->getNumOperands() == 1,
626            "incorrect number of operands in llvm.ident metadata", N);
627    Assert1(isa<MDString>(N->getOperand(0)),
628            ("invalid value for llvm.ident metadata entry operand"
629             "(the operand should be a string)"),
630            N->getOperand(0));
631  }
632}
633
634void Verifier::visitModuleFlags(const Module &M) {
635  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
636  if (!Flags) return;
637
638  // Scan each flag, and track the flags and requirements.
639  DenseMap<const MDString*, const MDNode*> SeenIDs;
640  SmallVector<const MDNode*, 16> Requirements;
641  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
642    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
643  }
644
645  // Validate that the requirements in the module are valid.
646  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
647    const MDNode *Requirement = Requirements[I];
648    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
649    const Value *ReqValue = Requirement->getOperand(1);
650
651    const MDNode *Op = SeenIDs.lookup(Flag);
652    if (!Op) {
653      CheckFailed("invalid requirement on flag, flag is not present in module",
654                  Flag);
655      continue;
656    }
657
658    if (Op->getOperand(2) != ReqValue) {
659      CheckFailed(("invalid requirement on flag, "
660                   "flag does not have the required value"),
661                  Flag);
662      continue;
663    }
664  }
665}
666
667void
668Verifier::visitModuleFlag(const MDNode *Op,
669                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
670                          SmallVectorImpl<const MDNode *> &Requirements) {
671  // Each module flag should have three arguments, the merge behavior (a
672  // constant int), the flag ID (an MDString), and the value.
673  Assert1(Op->getNumOperands() == 3,
674          "incorrect number of operands in module flag", Op);
675  ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
676  MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
677  Assert1(Behavior,
678          "invalid behavior operand in module flag (expected constant integer)",
679          Op->getOperand(0));
680  unsigned BehaviorValue = Behavior->getZExtValue();
681  Assert1(ID,
682          "invalid ID operand in module flag (expected metadata string)",
683          Op->getOperand(1));
684
685  // Sanity check the values for behaviors with additional requirements.
686  switch (BehaviorValue) {
687  default:
688    Assert1(false,
689            "invalid behavior operand in module flag (unexpected constant)",
690            Op->getOperand(0));
691    break;
692
693  case Module::Error:
694  case Module::Warning:
695  case Module::Override:
696    // These behavior types accept any value.
697    break;
698
699  case Module::Require: {
700    // The value should itself be an MDNode with two operands, a flag ID (an
701    // MDString), and a value.
702    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
703    Assert1(Value && Value->getNumOperands() == 2,
704            "invalid value for 'require' module flag (expected metadata pair)",
705            Op->getOperand(2));
706    Assert1(isa<MDString>(Value->getOperand(0)),
707            ("invalid value for 'require' module flag "
708             "(first value operand should be a string)"),
709            Value->getOperand(0));
710
711    // Append it to the list of requirements, to check once all module flags are
712    // scanned.
713    Requirements.push_back(Value);
714    break;
715  }
716
717  case Module::Append:
718  case Module::AppendUnique: {
719    // These behavior types require the operand be an MDNode.
720    Assert1(isa<MDNode>(Op->getOperand(2)),
721            "invalid value for 'append'-type module flag "
722            "(expected a metadata node)", Op->getOperand(2));
723    break;
724  }
725  }
726
727  // Unless this is a "requires" flag, check the ID is unique.
728  if (BehaviorValue != Module::Require) {
729    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
730    Assert1(Inserted,
731            "module flag identifiers must be unique (or of 'require' type)",
732            ID);
733  }
734}
735
736void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
737                                    bool isFunction, const Value *V) {
738  unsigned Slot = ~0U;
739  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
740    if (Attrs.getSlotIndex(I) == Idx) {
741      Slot = I;
742      break;
743    }
744
745  assert(Slot != ~0U && "Attribute set inconsistency!");
746
747  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
748         I != E; ++I) {
749    if (I->isStringAttribute())
750      continue;
751
752    if (I->getKindAsEnum() == Attribute::NoReturn ||
753        I->getKindAsEnum() == Attribute::NoUnwind ||
754        I->getKindAsEnum() == Attribute::NoInline ||
755        I->getKindAsEnum() == Attribute::AlwaysInline ||
756        I->getKindAsEnum() == Attribute::OptimizeForSize ||
757        I->getKindAsEnum() == Attribute::StackProtect ||
758        I->getKindAsEnum() == Attribute::StackProtectReq ||
759        I->getKindAsEnum() == Attribute::StackProtectStrong ||
760        I->getKindAsEnum() == Attribute::NoRedZone ||
761        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
762        I->getKindAsEnum() == Attribute::Naked ||
763        I->getKindAsEnum() == Attribute::InlineHint ||
764        I->getKindAsEnum() == Attribute::StackAlignment ||
765        I->getKindAsEnum() == Attribute::UWTable ||
766        I->getKindAsEnum() == Attribute::NonLazyBind ||
767        I->getKindAsEnum() == Attribute::ReturnsTwice ||
768        I->getKindAsEnum() == Attribute::SanitizeAddress ||
769        I->getKindAsEnum() == Attribute::SanitizeThread ||
770        I->getKindAsEnum() == Attribute::SanitizeMemory ||
771        I->getKindAsEnum() == Attribute::MinSize ||
772        I->getKindAsEnum() == Attribute::NoDuplicate ||
773        I->getKindAsEnum() == Attribute::Builtin ||
774        I->getKindAsEnum() == Attribute::NoBuiltin ||
775        I->getKindAsEnum() == Attribute::Cold ||
776        I->getKindAsEnum() == Attribute::OptimizeNone ||
777        I->getKindAsEnum() == Attribute::JumpTable) {
778      if (!isFunction) {
779        CheckFailed("Attribute '" + I->getAsString() +
780                    "' only applies to functions!", V);
781        return;
782      }
783    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
784               I->getKindAsEnum() == Attribute::ReadNone) {
785      if (Idx == 0) {
786        CheckFailed("Attribute '" + I->getAsString() +
787                    "' does not apply to function returns");
788        return;
789      }
790    } else if (isFunction) {
791      CheckFailed("Attribute '" + I->getAsString() +
792                  "' does not apply to functions!", V);
793      return;
794    }
795  }
796}
797
798// VerifyParameterAttrs - Check the given attributes for an argument or return
799// value of the specified type.  The value V is printed in error messages.
800void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
801                                    bool isReturnValue, const Value *V) {
802  if (!Attrs.hasAttributes(Idx))
803    return;
804
805  VerifyAttributeTypes(Attrs, Idx, false, V);
806
807  if (isReturnValue)
808    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
809            !Attrs.hasAttribute(Idx, Attribute::Nest) &&
810            !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
811            !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
812            !Attrs.hasAttribute(Idx, Attribute::Returned) &&
813            !Attrs.hasAttribute(Idx, Attribute::InAlloca),
814            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
815            "'returned' do not apply to return values!", V);
816
817  // Check for mutually incompatible attributes.  Only inreg is compatible with
818  // sret.
819  unsigned AttrCount = 0;
820  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
821  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
822  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
823               Attrs.hasAttribute(Idx, Attribute::InReg);
824  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
825  Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
826                          "and 'sret' are incompatible!", V);
827
828  Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
829            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
830          "'inalloca and readonly' are incompatible!", V);
831
832  Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
833            Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
834          "'sret and returned' are incompatible!", V);
835
836  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
837            Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
838          "'zeroext and signext' are incompatible!", V);
839
840  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
841            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
842          "'readnone and readonly' are incompatible!", V);
843
844  Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
845            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
846          "'noinline and alwaysinline' are incompatible!", V);
847
848  Assert1(!AttrBuilder(Attrs, Idx).
849            hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
850          "Wrong types for attribute: " +
851          AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
852
853  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
854    if (!PTy->getElementType()->isSized()) {
855      Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
856              !Attrs.hasAttribute(Idx, Attribute::InAlloca),
857              "Attributes 'byval' and 'inalloca' do not support unsized types!",
858              V);
859    }
860  } else {
861    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
862            "Attribute 'byval' only applies to parameters with pointer type!",
863            V);
864  }
865}
866
867// VerifyFunctionAttrs - Check parameter attributes against a function type.
868// The value V is printed in error messages.
869void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
870                                   const Value *V) {
871  if (Attrs.isEmpty())
872    return;
873
874  bool SawNest = false;
875  bool SawReturned = false;
876  bool SawSRet = false;
877
878  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
879    unsigned Idx = Attrs.getSlotIndex(i);
880
881    Type *Ty;
882    if (Idx == 0)
883      Ty = FT->getReturnType();
884    else if (Idx-1 < FT->getNumParams())
885      Ty = FT->getParamType(Idx-1);
886    else
887      break;  // VarArgs attributes, verified elsewhere.
888
889    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
890
891    if (Idx == 0)
892      continue;
893
894    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
895      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
896      SawNest = true;
897    }
898
899    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
900      Assert1(!SawReturned, "More than one parameter has attribute returned!",
901              V);
902      Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
903              "argument and return types for 'returned' attribute", V);
904      SawReturned = true;
905    }
906
907    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
908      Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
909      Assert1(Idx == 1 || Idx == 2,
910              "Attribute 'sret' is not on first or second parameter!", V);
911      SawSRet = true;
912    }
913
914    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
915      Assert1(Idx == FT->getNumParams(),
916              "inalloca isn't on the last parameter!", V);
917    }
918  }
919
920  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
921    return;
922
923  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
924
925  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
926                               Attribute::ReadNone) &&
927            Attrs.hasAttribute(AttributeSet::FunctionIndex,
928                               Attribute::ReadOnly)),
929          "Attributes 'readnone and readonly' are incompatible!", V);
930
931  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
932                               Attribute::NoInline) &&
933            Attrs.hasAttribute(AttributeSet::FunctionIndex,
934                               Attribute::AlwaysInline)),
935          "Attributes 'noinline and alwaysinline' are incompatible!", V);
936
937  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
938                         Attribute::OptimizeNone)) {
939    Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
940                               Attribute::NoInline),
941            "Attribute 'optnone' requires 'noinline'!", V);
942
943    Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
944                                Attribute::OptimizeForSize),
945            "Attributes 'optsize and optnone' are incompatible!", V);
946
947    Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
948                                Attribute::MinSize),
949            "Attributes 'minsize and optnone' are incompatible!", V);
950  }
951
952  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
953                         Attribute::JumpTable)) {
954    const GlobalValue *GV = cast<GlobalValue>(V);
955    Assert1(GV->hasUnnamedAddr(),
956            "Attribute 'jumptable' requires 'unnamed_addr'", V);
957
958  }
959}
960
961void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
962  // Get the size of the types in bits, we'll need this later
963  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
964  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
965
966  // BitCast implies a no-op cast of type only. No bits change.
967  // However, you can't cast pointers to anything but pointers.
968  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
969          "Bitcast requires both operands to be pointer or neither", V);
970  Assert1(SrcBitSize == DestBitSize,
971          "Bitcast requires types of same width", V);
972
973  // Disallow aggregates.
974  Assert1(!SrcTy->isAggregateType(),
975          "Bitcast operand must not be aggregate", V);
976  Assert1(!DestTy->isAggregateType(),
977          "Bitcast type must not be aggregate", V);
978
979  // Without datalayout, assume all address spaces are the same size.
980  // Don't check if both types are not pointers.
981  // Skip casts between scalars and vectors.
982  if (!DL ||
983      !SrcTy->isPtrOrPtrVectorTy() ||
984      !DestTy->isPtrOrPtrVectorTy() ||
985      SrcTy->isVectorTy() != DestTy->isVectorTy()) {
986    return;
987  }
988
989  unsigned SrcAS = SrcTy->getPointerAddressSpace();
990  unsigned DstAS = DestTy->getPointerAddressSpace();
991
992  Assert1(SrcAS == DstAS,
993          "Bitcasts between pointers of different address spaces is not legal."
994          "Use AddrSpaceCast instead.", V);
995}
996
997void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
998  if (CE->getOpcode() == Instruction::BitCast) {
999    Type *SrcTy = CE->getOperand(0)->getType();
1000    Type *DstTy = CE->getType();
1001    VerifyBitcastType(CE, DstTy, SrcTy);
1002  }
1003}
1004
1005bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1006  if (Attrs.getNumSlots() == 0)
1007    return true;
1008
1009  unsigned LastSlot = Attrs.getNumSlots() - 1;
1010  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1011  if (LastIndex <= Params
1012      || (LastIndex == AttributeSet::FunctionIndex
1013          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1014    return true;
1015
1016  return false;
1017}
1018
1019// visitFunction - Verify that a function is ok.
1020//
1021void Verifier::visitFunction(const Function &F) {
1022  // Check function arguments.
1023  FunctionType *FT = F.getFunctionType();
1024  unsigned NumArgs = F.arg_size();
1025
1026  Assert1(Context == &F.getContext(),
1027          "Function context does not match Module context!", &F);
1028
1029  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1030  Assert2(FT->getNumParams() == NumArgs,
1031          "# formal arguments must match # of arguments for function type!",
1032          &F, FT);
1033  Assert1(F.getReturnType()->isFirstClassType() ||
1034          F.getReturnType()->isVoidTy() ||
1035          F.getReturnType()->isStructTy(),
1036          "Functions cannot return aggregate values!", &F);
1037
1038  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1039          "Invalid struct return type!", &F);
1040
1041  AttributeSet Attrs = F.getAttributes();
1042
1043  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
1044          "Attribute after last parameter!", &F);
1045
1046  // Check function attributes.
1047  VerifyFunctionAttrs(FT, Attrs, &F);
1048
1049  // On function declarations/definitions, we do not support the builtin
1050  // attribute. We do not check this in VerifyFunctionAttrs since that is
1051  // checking for Attributes that can/can not ever be on functions.
1052  Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1053                              Attribute::Builtin),
1054          "Attribute 'builtin' can only be applied to a callsite.", &F);
1055
1056  // Check that this function meets the restrictions on this calling convention.
1057  switch (F.getCallingConv()) {
1058  default:
1059    break;
1060  case CallingConv::C:
1061    break;
1062  case CallingConv::Fast:
1063  case CallingConv::Cold:
1064  case CallingConv::X86_FastCall:
1065  case CallingConv::X86_ThisCall:
1066  case CallingConv::Intel_OCL_BI:
1067  case CallingConv::PTX_Kernel:
1068  case CallingConv::PTX_Device:
1069    Assert1(!F.isVarArg(),
1070            "Varargs functions must have C calling conventions!", &F);
1071    break;
1072  }
1073
1074  bool isLLVMdotName = F.getName().size() >= 5 &&
1075                       F.getName().substr(0, 5) == "llvm.";
1076
1077  // Check that the argument values match the function type for this function...
1078  unsigned i = 0;
1079  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1080       ++I, ++i) {
1081    Assert2(I->getType() == FT->getParamType(i),
1082            "Argument value does not match function argument type!",
1083            I, FT->getParamType(i));
1084    Assert1(I->getType()->isFirstClassType(),
1085            "Function arguments must have first-class types!", I);
1086    if (!isLLVMdotName)
1087      Assert2(!I->getType()->isMetadataTy(),
1088              "Function takes metadata but isn't an intrinsic", I, &F);
1089  }
1090
1091  if (F.isMaterializable()) {
1092    // Function has a body somewhere we can't see.
1093  } else if (F.isDeclaration()) {
1094    Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1095            "invalid linkage type for function declaration", &F);
1096  } else {
1097    // Verify that this function (which has a body) is not named "llvm.*".  It
1098    // is not legal to define intrinsics.
1099    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1100
1101    // Check the entry node
1102    const BasicBlock *Entry = &F.getEntryBlock();
1103    Assert1(pred_begin(Entry) == pred_end(Entry),
1104            "Entry block to function must not have predecessors!", Entry);
1105
1106    // The address of the entry block cannot be taken, unless it is dead.
1107    if (Entry->hasAddressTaken()) {
1108      Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
1109              "blockaddress may not be used with the entry block!", Entry);
1110    }
1111  }
1112
1113  // If this function is actually an intrinsic, verify that it is only used in
1114  // direct call/invokes, never having its "address taken".
1115  if (F.getIntrinsicID()) {
1116    const User *U;
1117    if (F.hasAddressTaken(&U))
1118      Assert1(0, "Invalid user of intrinsic instruction!", U);
1119  }
1120
1121  Assert1(!F.hasDLLImportStorageClass() ||
1122          (F.isDeclaration() && F.hasExternalLinkage()) ||
1123          F.hasAvailableExternallyLinkage(),
1124          "Function is marked as dllimport, but not external.", &F);
1125}
1126
1127// verifyBasicBlock - Verify that a basic block is well formed...
1128//
1129void Verifier::visitBasicBlock(BasicBlock &BB) {
1130  InstsInThisBlock.clear();
1131
1132  // Ensure that basic blocks have terminators!
1133  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1134
1135  // Check constraints that this basic block imposes on all of the PHI nodes in
1136  // it.
1137  if (isa<PHINode>(BB.front())) {
1138    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1139    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1140    std::sort(Preds.begin(), Preds.end());
1141    PHINode *PN;
1142    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1143      // Ensure that PHI nodes have at least one entry!
1144      Assert1(PN->getNumIncomingValues() != 0,
1145              "PHI nodes must have at least one entry.  If the block is dead, "
1146              "the PHI should be removed!", PN);
1147      Assert1(PN->getNumIncomingValues() == Preds.size(),
1148              "PHINode should have one entry for each predecessor of its "
1149              "parent basic block!", PN);
1150
1151      // Get and sort all incoming values in the PHI node...
1152      Values.clear();
1153      Values.reserve(PN->getNumIncomingValues());
1154      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1155        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1156                                        PN->getIncomingValue(i)));
1157      std::sort(Values.begin(), Values.end());
1158
1159      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1160        // Check to make sure that if there is more than one entry for a
1161        // particular basic block in this PHI node, that the incoming values are
1162        // all identical.
1163        //
1164        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
1165                Values[i].second == Values[i-1].second,
1166                "PHI node has multiple entries for the same basic block with "
1167                "different incoming values!", PN, Values[i].first,
1168                Values[i].second, Values[i-1].second);
1169
1170        // Check to make sure that the predecessors and PHI node entries are
1171        // matched up.
1172        Assert3(Values[i].first == Preds[i],
1173                "PHI node entries do not match predecessors!", PN,
1174                Values[i].first, Preds[i]);
1175      }
1176    }
1177  }
1178}
1179
1180void Verifier::visitTerminatorInst(TerminatorInst &I) {
1181  // Ensure that terminators only exist at the end of the basic block.
1182  Assert1(&I == I.getParent()->getTerminator(),
1183          "Terminator found in the middle of a basic block!", I.getParent());
1184  visitInstruction(I);
1185}
1186
1187void Verifier::visitBranchInst(BranchInst &BI) {
1188  if (BI.isConditional()) {
1189    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
1190            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1191  }
1192  visitTerminatorInst(BI);
1193}
1194
1195void Verifier::visitReturnInst(ReturnInst &RI) {
1196  Function *F = RI.getParent()->getParent();
1197  unsigned N = RI.getNumOperands();
1198  if (F->getReturnType()->isVoidTy())
1199    Assert2(N == 0,
1200            "Found return instr that returns non-void in Function of void "
1201            "return type!", &RI, F->getReturnType());
1202  else
1203    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1204            "Function return type does not match operand "
1205            "type of return inst!", &RI, F->getReturnType());
1206
1207  // Check to make sure that the return value has necessary properties for
1208  // terminators...
1209  visitTerminatorInst(RI);
1210}
1211
1212void Verifier::visitSwitchInst(SwitchInst &SI) {
1213  // Check to make sure that all of the constants in the switch instruction
1214  // have the same type as the switched-on value.
1215  Type *SwitchTy = SI.getCondition()->getType();
1216  SmallPtrSet<ConstantInt*, 32> Constants;
1217  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1218    Assert1(i.getCaseValue()->getType() == SwitchTy,
1219            "Switch constants must all be same type as switch value!", &SI);
1220    Assert2(Constants.insert(i.getCaseValue()),
1221            "Duplicate integer as switch case", &SI, i.getCaseValue());
1222  }
1223
1224  visitTerminatorInst(SI);
1225}
1226
1227void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1228  Assert1(BI.getAddress()->getType()->isPointerTy(),
1229          "Indirectbr operand must have pointer type!", &BI);
1230  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1231    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1232            "Indirectbr destinations must all have pointer type!", &BI);
1233
1234  visitTerminatorInst(BI);
1235}
1236
1237void Verifier::visitSelectInst(SelectInst &SI) {
1238  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1239                                          SI.getOperand(2)),
1240          "Invalid operands for select instruction!", &SI);
1241
1242  Assert1(SI.getTrueValue()->getType() == SI.getType(),
1243          "Select values must have same type as select instruction!", &SI);
1244  visitInstruction(SI);
1245}
1246
1247/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1248/// a pass, if any exist, it's an error.
1249///
1250void Verifier::visitUserOp1(Instruction &I) {
1251  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1252}
1253
1254void Verifier::visitTruncInst(TruncInst &I) {
1255  // Get the source and destination types
1256  Type *SrcTy = I.getOperand(0)->getType();
1257  Type *DestTy = I.getType();
1258
1259  // Get the size of the types in bits, we'll need this later
1260  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1261  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1262
1263  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1264  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1265  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1266          "trunc source and destination must both be a vector or neither", &I);
1267  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1268
1269  visitInstruction(I);
1270}
1271
1272void Verifier::visitZExtInst(ZExtInst &I) {
1273  // Get the source and destination types
1274  Type *SrcTy = I.getOperand(0)->getType();
1275  Type *DestTy = I.getType();
1276
1277  // Get the size of the types in bits, we'll need this later
1278  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1279  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1280  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1281          "zext source and destination must both be a vector or neither", &I);
1282  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1283  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1284
1285  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1286
1287  visitInstruction(I);
1288}
1289
1290void Verifier::visitSExtInst(SExtInst &I) {
1291  // Get the source and destination types
1292  Type *SrcTy = I.getOperand(0)->getType();
1293  Type *DestTy = I.getType();
1294
1295  // Get the size of the types in bits, we'll need this later
1296  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1297  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1298
1299  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1300  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1301  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1302          "sext source and destination must both be a vector or neither", &I);
1303  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1304
1305  visitInstruction(I);
1306}
1307
1308void Verifier::visitFPTruncInst(FPTruncInst &I) {
1309  // Get the source and destination types
1310  Type *SrcTy = I.getOperand(0)->getType();
1311  Type *DestTy = I.getType();
1312  // Get the size of the types in bits, we'll need this later
1313  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1314  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1315
1316  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1317  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1318  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1319          "fptrunc source and destination must both be a vector or neither",&I);
1320  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1321
1322  visitInstruction(I);
1323}
1324
1325void Verifier::visitFPExtInst(FPExtInst &I) {
1326  // Get the source and destination types
1327  Type *SrcTy = I.getOperand(0)->getType();
1328  Type *DestTy = I.getType();
1329
1330  // Get the size of the types in bits, we'll need this later
1331  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1332  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1333
1334  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1335  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1336  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1337          "fpext source and destination must both be a vector or neither", &I);
1338  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1339
1340  visitInstruction(I);
1341}
1342
1343void Verifier::visitUIToFPInst(UIToFPInst &I) {
1344  // Get the source and destination types
1345  Type *SrcTy = I.getOperand(0)->getType();
1346  Type *DestTy = I.getType();
1347
1348  bool SrcVec = SrcTy->isVectorTy();
1349  bool DstVec = DestTy->isVectorTy();
1350
1351  Assert1(SrcVec == DstVec,
1352          "UIToFP source and dest must both be vector or scalar", &I);
1353  Assert1(SrcTy->isIntOrIntVectorTy(),
1354          "UIToFP source must be integer or integer vector", &I);
1355  Assert1(DestTy->isFPOrFPVectorTy(),
1356          "UIToFP result must be FP or FP vector", &I);
1357
1358  if (SrcVec && DstVec)
1359    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1360            cast<VectorType>(DestTy)->getNumElements(),
1361            "UIToFP source and dest vector length mismatch", &I);
1362
1363  visitInstruction(I);
1364}
1365
1366void Verifier::visitSIToFPInst(SIToFPInst &I) {
1367  // Get the source and destination types
1368  Type *SrcTy = I.getOperand(0)->getType();
1369  Type *DestTy = I.getType();
1370
1371  bool SrcVec = SrcTy->isVectorTy();
1372  bool DstVec = DestTy->isVectorTy();
1373
1374  Assert1(SrcVec == DstVec,
1375          "SIToFP source and dest must both be vector or scalar", &I);
1376  Assert1(SrcTy->isIntOrIntVectorTy(),
1377          "SIToFP source must be integer or integer vector", &I);
1378  Assert1(DestTy->isFPOrFPVectorTy(),
1379          "SIToFP result must be FP or FP vector", &I);
1380
1381  if (SrcVec && DstVec)
1382    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1383            cast<VectorType>(DestTy)->getNumElements(),
1384            "SIToFP source and dest vector length mismatch", &I);
1385
1386  visitInstruction(I);
1387}
1388
1389void Verifier::visitFPToUIInst(FPToUIInst &I) {
1390  // Get the source and destination types
1391  Type *SrcTy = I.getOperand(0)->getType();
1392  Type *DestTy = I.getType();
1393
1394  bool SrcVec = SrcTy->isVectorTy();
1395  bool DstVec = DestTy->isVectorTy();
1396
1397  Assert1(SrcVec == DstVec,
1398          "FPToUI source and dest must both be vector or scalar", &I);
1399  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1400          &I);
1401  Assert1(DestTy->isIntOrIntVectorTy(),
1402          "FPToUI result must be integer or integer vector", &I);
1403
1404  if (SrcVec && DstVec)
1405    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1406            cast<VectorType>(DestTy)->getNumElements(),
1407            "FPToUI source and dest vector length mismatch", &I);
1408
1409  visitInstruction(I);
1410}
1411
1412void Verifier::visitFPToSIInst(FPToSIInst &I) {
1413  // Get the source and destination types
1414  Type *SrcTy = I.getOperand(0)->getType();
1415  Type *DestTy = I.getType();
1416
1417  bool SrcVec = SrcTy->isVectorTy();
1418  bool DstVec = DestTy->isVectorTy();
1419
1420  Assert1(SrcVec == DstVec,
1421          "FPToSI source and dest must both be vector or scalar", &I);
1422  Assert1(SrcTy->isFPOrFPVectorTy(),
1423          "FPToSI source must be FP or FP vector", &I);
1424  Assert1(DestTy->isIntOrIntVectorTy(),
1425          "FPToSI result must be integer or integer vector", &I);
1426
1427  if (SrcVec && DstVec)
1428    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1429            cast<VectorType>(DestTy)->getNumElements(),
1430            "FPToSI source and dest vector length mismatch", &I);
1431
1432  visitInstruction(I);
1433}
1434
1435void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1436  // Get the source and destination types
1437  Type *SrcTy = I.getOperand(0)->getType();
1438  Type *DestTy = I.getType();
1439
1440  Assert1(SrcTy->getScalarType()->isPointerTy(),
1441          "PtrToInt source must be pointer", &I);
1442  Assert1(DestTy->getScalarType()->isIntegerTy(),
1443          "PtrToInt result must be integral", &I);
1444  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1445          "PtrToInt type mismatch", &I);
1446
1447  if (SrcTy->isVectorTy()) {
1448    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1449    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1450    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1451          "PtrToInt Vector width mismatch", &I);
1452  }
1453
1454  visitInstruction(I);
1455}
1456
1457void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1458  // Get the source and destination types
1459  Type *SrcTy = I.getOperand(0)->getType();
1460  Type *DestTy = I.getType();
1461
1462  Assert1(SrcTy->getScalarType()->isIntegerTy(),
1463          "IntToPtr source must be an integral", &I);
1464  Assert1(DestTy->getScalarType()->isPointerTy(),
1465          "IntToPtr result must be a pointer",&I);
1466  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1467          "IntToPtr type mismatch", &I);
1468  if (SrcTy->isVectorTy()) {
1469    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1470    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1471    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1472          "IntToPtr Vector width mismatch", &I);
1473  }
1474  visitInstruction(I);
1475}
1476
1477void Verifier::visitBitCastInst(BitCastInst &I) {
1478  Type *SrcTy = I.getOperand(0)->getType();
1479  Type *DestTy = I.getType();
1480  VerifyBitcastType(&I, DestTy, SrcTy);
1481  visitInstruction(I);
1482}
1483
1484void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
1485  Type *SrcTy = I.getOperand(0)->getType();
1486  Type *DestTy = I.getType();
1487
1488  Assert1(SrcTy->isPtrOrPtrVectorTy(),
1489          "AddrSpaceCast source must be a pointer", &I);
1490  Assert1(DestTy->isPtrOrPtrVectorTy(),
1491          "AddrSpaceCast result must be a pointer", &I);
1492  Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
1493          "AddrSpaceCast must be between different address spaces", &I);
1494  if (SrcTy->isVectorTy())
1495    Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
1496            "AddrSpaceCast vector pointer number of elements mismatch", &I);
1497  visitInstruction(I);
1498}
1499
1500/// visitPHINode - Ensure that a PHI node is well formed.
1501///
1502void Verifier::visitPHINode(PHINode &PN) {
1503  // Ensure that the PHI nodes are all grouped together at the top of the block.
1504  // This can be tested by checking whether the instruction before this is
1505  // either nonexistent (because this is begin()) or is a PHI node.  If not,
1506  // then there is some other instruction before a PHI.
1507  Assert2(&PN == &PN.getParent()->front() ||
1508          isa<PHINode>(--BasicBlock::iterator(&PN)),
1509          "PHI nodes not grouped at top of basic block!",
1510          &PN, PN.getParent());
1511
1512  // Check that all of the values of the PHI node have the same type as the
1513  // result, and that the incoming blocks are really basic blocks.
1514  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1515    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1516            "PHI node operands are not the same type as the result!", &PN);
1517  }
1518
1519  // All other PHI node constraints are checked in the visitBasicBlock method.
1520
1521  visitInstruction(PN);
1522}
1523
1524void Verifier::VerifyCallSite(CallSite CS) {
1525  Instruction *I = CS.getInstruction();
1526
1527  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1528          "Called function must be a pointer!", I);
1529  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1530
1531  Assert1(FPTy->getElementType()->isFunctionTy(),
1532          "Called function is not pointer to function type!", I);
1533  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1534
1535  // Verify that the correct number of arguments are being passed
1536  if (FTy->isVarArg())
1537    Assert1(CS.arg_size() >= FTy->getNumParams(),
1538            "Called function requires more parameters than were provided!",I);
1539  else
1540    Assert1(CS.arg_size() == FTy->getNumParams(),
1541            "Incorrect number of arguments passed to called function!", I);
1542
1543  // Verify that all arguments to the call match the function type.
1544  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1545    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1546            "Call parameter type does not match function signature!",
1547            CS.getArgument(i), FTy->getParamType(i), I);
1548
1549  AttributeSet Attrs = CS.getAttributes();
1550
1551  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1552          "Attribute after last parameter!", I);
1553
1554  // Verify call attributes.
1555  VerifyFunctionAttrs(FTy, Attrs, I);
1556
1557  // Conservatively check the inalloca argument.
1558  // We have a bug if we can find that there is an underlying alloca without
1559  // inalloca.
1560  if (CS.hasInAllocaArgument()) {
1561    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
1562    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
1563      Assert2(AI->isUsedWithInAlloca(),
1564              "inalloca argument for call has mismatched alloca", AI, I);
1565  }
1566
1567  if (FTy->isVarArg()) {
1568    // FIXME? is 'nest' even legal here?
1569    bool SawNest = false;
1570    bool SawReturned = false;
1571
1572    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
1573      if (Attrs.hasAttribute(Idx, Attribute::Nest))
1574        SawNest = true;
1575      if (Attrs.hasAttribute(Idx, Attribute::Returned))
1576        SawReturned = true;
1577    }
1578
1579    // Check attributes on the varargs part.
1580    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1581      Type *Ty = CS.getArgument(Idx-1)->getType();
1582      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
1583
1584      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1585        Assert1(!SawNest, "More than one parameter has attribute nest!", I);
1586        SawNest = true;
1587      }
1588
1589      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1590        Assert1(!SawReturned, "More than one parameter has attribute returned!",
1591                I);
1592        Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
1593                "Incompatible argument and return types for 'returned' "
1594                "attribute", I);
1595        SawReturned = true;
1596      }
1597
1598      Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1599              "Attribute 'sret' cannot be used for vararg call arguments!", I);
1600
1601      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
1602        Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
1603                I);
1604    }
1605  }
1606
1607  // Verify that there's no metadata unless it's a direct call to an intrinsic.
1608  if (CS.getCalledFunction() == nullptr ||
1609      !CS.getCalledFunction()->getName().startswith("llvm.")) {
1610    for (FunctionType::param_iterator PI = FTy->param_begin(),
1611           PE = FTy->param_end(); PI != PE; ++PI)
1612      Assert1(!(*PI)->isMetadataTy(),
1613              "Function has metadata parameter but isn't an intrinsic", I);
1614  }
1615
1616  visitInstruction(*I);
1617}
1618
1619/// Two types are "congruent" if they are identical, or if they are both pointer
1620/// types with different pointee types and the same address space.
1621static bool isTypeCongruent(Type *L, Type *R) {
1622  if (L == R)
1623    return true;
1624  PointerType *PL = dyn_cast<PointerType>(L);
1625  PointerType *PR = dyn_cast<PointerType>(R);
1626  if (!PL || !PR)
1627    return false;
1628  return PL->getAddressSpace() == PR->getAddressSpace();
1629}
1630
1631static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
1632  static const Attribute::AttrKind ABIAttrs[] = {
1633      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
1634      Attribute::InReg, Attribute::Returned};
1635  AttrBuilder Copy;
1636  for (auto AK : ABIAttrs) {
1637    if (Attrs.hasAttribute(I + 1, AK))
1638      Copy.addAttribute(AK);
1639  }
1640  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
1641    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
1642  return Copy;
1643}
1644
1645void Verifier::verifyMustTailCall(CallInst &CI) {
1646  Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
1647
1648  // - The caller and callee prototypes must match.  Pointer types of
1649  //   parameters or return types may differ in pointee type, but not
1650  //   address space.
1651  Function *F = CI.getParent()->getParent();
1652  auto GetFnTy = [](Value *V) {
1653    return cast<FunctionType>(
1654        cast<PointerType>(V->getType())->getElementType());
1655  };
1656  FunctionType *CallerTy = GetFnTy(F);
1657  FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
1658  Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
1659          "cannot guarantee tail call due to mismatched parameter counts", &CI);
1660  Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
1661          "cannot guarantee tail call due to mismatched varargs", &CI);
1662  Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
1663          "cannot guarantee tail call due to mismatched return types", &CI);
1664  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1665    Assert1(
1666        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
1667        "cannot guarantee tail call due to mismatched parameter types", &CI);
1668  }
1669
1670  // - The calling conventions of the caller and callee must match.
1671  Assert1(F->getCallingConv() == CI.getCallingConv(),
1672          "cannot guarantee tail call due to mismatched calling conv", &CI);
1673
1674  // - All ABI-impacting function attributes, such as sret, byval, inreg,
1675  //   returned, and inalloca, must match.
1676  AttributeSet CallerAttrs = F->getAttributes();
1677  AttributeSet CalleeAttrs = CI.getAttributes();
1678  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1679    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
1680    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
1681    Assert2(CallerABIAttrs == CalleeABIAttrs,
1682            "cannot guarantee tail call due to mismatched ABI impacting "
1683            "function attributes", &CI, CI.getOperand(I));
1684  }
1685
1686  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
1687  //   or a pointer bitcast followed by a ret instruction.
1688  // - The ret instruction must return the (possibly bitcasted) value
1689  //   produced by the call or void.
1690  Value *RetVal = &CI;
1691  Instruction *Next = CI.getNextNode();
1692
1693  // Handle the optional bitcast.
1694  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
1695    Assert1(BI->getOperand(0) == RetVal,
1696            "bitcast following musttail call must use the call", BI);
1697    RetVal = BI;
1698    Next = BI->getNextNode();
1699  }
1700
1701  // Check the return.
1702  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
1703  Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
1704          &CI);
1705  Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
1706          "musttail call result must be returned", Ret);
1707}
1708
1709void Verifier::visitCallInst(CallInst &CI) {
1710  VerifyCallSite(&CI);
1711
1712  if (CI.isMustTailCall())
1713    verifyMustTailCall(CI);
1714
1715  if (Function *F = CI.getCalledFunction())
1716    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1717      visitIntrinsicFunctionCall(ID, CI);
1718}
1719
1720void Verifier::visitInvokeInst(InvokeInst &II) {
1721  VerifyCallSite(&II);
1722
1723  // Verify that there is a landingpad instruction as the first non-PHI
1724  // instruction of the 'unwind' destination.
1725  Assert1(II.getUnwindDest()->isLandingPad(),
1726          "The unwind destination does not have a landingpad instruction!",&II);
1727
1728  visitTerminatorInst(II);
1729}
1730
1731/// visitBinaryOperator - Check that both arguments to the binary operator are
1732/// of the same type!
1733///
1734void Verifier::visitBinaryOperator(BinaryOperator &B) {
1735  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1736          "Both operands to a binary operator are not of the same type!", &B);
1737
1738  switch (B.getOpcode()) {
1739  // Check that integer arithmetic operators are only used with
1740  // integral operands.
1741  case Instruction::Add:
1742  case Instruction::Sub:
1743  case Instruction::Mul:
1744  case Instruction::SDiv:
1745  case Instruction::UDiv:
1746  case Instruction::SRem:
1747  case Instruction::URem:
1748    Assert1(B.getType()->isIntOrIntVectorTy(),
1749            "Integer arithmetic operators only work with integral types!", &B);
1750    Assert1(B.getType() == B.getOperand(0)->getType(),
1751            "Integer arithmetic operators must have same type "
1752            "for operands and result!", &B);
1753    break;
1754  // Check that floating-point arithmetic operators are only used with
1755  // floating-point operands.
1756  case Instruction::FAdd:
1757  case Instruction::FSub:
1758  case Instruction::FMul:
1759  case Instruction::FDiv:
1760  case Instruction::FRem:
1761    Assert1(B.getType()->isFPOrFPVectorTy(),
1762            "Floating-point arithmetic operators only work with "
1763            "floating-point types!", &B);
1764    Assert1(B.getType() == B.getOperand(0)->getType(),
1765            "Floating-point arithmetic operators must have same type "
1766            "for operands and result!", &B);
1767    break;
1768  // Check that logical operators are only used with integral operands.
1769  case Instruction::And:
1770  case Instruction::Or:
1771  case Instruction::Xor:
1772    Assert1(B.getType()->isIntOrIntVectorTy(),
1773            "Logical operators only work with integral types!", &B);
1774    Assert1(B.getType() == B.getOperand(0)->getType(),
1775            "Logical operators must have same type for operands and result!",
1776            &B);
1777    break;
1778  case Instruction::Shl:
1779  case Instruction::LShr:
1780  case Instruction::AShr:
1781    Assert1(B.getType()->isIntOrIntVectorTy(),
1782            "Shifts only work with integral types!", &B);
1783    Assert1(B.getType() == B.getOperand(0)->getType(),
1784            "Shift return type must be same as operands!", &B);
1785    break;
1786  default:
1787    llvm_unreachable("Unknown BinaryOperator opcode!");
1788  }
1789
1790  visitInstruction(B);
1791}
1792
1793void Verifier::visitICmpInst(ICmpInst &IC) {
1794  // Check that the operands are the same type
1795  Type *Op0Ty = IC.getOperand(0)->getType();
1796  Type *Op1Ty = IC.getOperand(1)->getType();
1797  Assert1(Op0Ty == Op1Ty,
1798          "Both operands to ICmp instruction are not of the same type!", &IC);
1799  // Check that the operands are the right type
1800  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1801          "Invalid operand types for ICmp instruction", &IC);
1802  // Check that the predicate is valid.
1803  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1804          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1805          "Invalid predicate in ICmp instruction!", &IC);
1806
1807  visitInstruction(IC);
1808}
1809
1810void Verifier::visitFCmpInst(FCmpInst &FC) {
1811  // Check that the operands are the same type
1812  Type *Op0Ty = FC.getOperand(0)->getType();
1813  Type *Op1Ty = FC.getOperand(1)->getType();
1814  Assert1(Op0Ty == Op1Ty,
1815          "Both operands to FCmp instruction are not of the same type!", &FC);
1816  // Check that the operands are the right type
1817  Assert1(Op0Ty->isFPOrFPVectorTy(),
1818          "Invalid operand types for FCmp instruction", &FC);
1819  // Check that the predicate is valid.
1820  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1821          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1822          "Invalid predicate in FCmp instruction!", &FC);
1823
1824  visitInstruction(FC);
1825}
1826
1827void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1828  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1829                                              EI.getOperand(1)),
1830          "Invalid extractelement operands!", &EI);
1831  visitInstruction(EI);
1832}
1833
1834void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1835  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1836                                             IE.getOperand(1),
1837                                             IE.getOperand(2)),
1838          "Invalid insertelement operands!", &IE);
1839  visitInstruction(IE);
1840}
1841
1842void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1843  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1844                                             SV.getOperand(2)),
1845          "Invalid shufflevector operands!", &SV);
1846  visitInstruction(SV);
1847}
1848
1849void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1850  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1851
1852  Assert1(isa<PointerType>(TargetTy),
1853    "GEP base pointer is not a vector or a vector of pointers", &GEP);
1854  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1855          "GEP into unsized type!", &GEP);
1856  Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1857          GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1858          &GEP);
1859
1860  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1861  Type *ElTy =
1862    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1863  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1864
1865  Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1866          cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1867          == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1868
1869  if (GEP.getPointerOperandType()->isVectorTy()) {
1870    // Additional checks for vector GEPs.
1871    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1872    Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1873            "Vector GEP result width doesn't match operand's", &GEP);
1874    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1875      Type *IndexTy = Idxs[i]->getType();
1876      Assert1(IndexTy->isVectorTy(),
1877              "Vector GEP must have vector indices!", &GEP);
1878      unsigned IndexWidth = IndexTy->getVectorNumElements();
1879      Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1880    }
1881  }
1882  visitInstruction(GEP);
1883}
1884
1885static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1886  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1887}
1888
1889void Verifier::visitLoadInst(LoadInst &LI) {
1890  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1891  Assert1(PTy, "Load operand must be a pointer.", &LI);
1892  Type *ElTy = PTy->getElementType();
1893  Assert2(ElTy == LI.getType(),
1894          "Load result type does not match pointer operand type!", &LI, ElTy);
1895  if (LI.isAtomic()) {
1896    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1897            "Load cannot have Release ordering", &LI);
1898    Assert1(LI.getAlignment() != 0,
1899            "Atomic load must specify explicit alignment", &LI);
1900    if (!ElTy->isPointerTy()) {
1901      Assert2(ElTy->isIntegerTy(),
1902              "atomic load operand must have integer type!",
1903              &LI, ElTy);
1904      unsigned Size = ElTy->getPrimitiveSizeInBits();
1905      Assert2(Size >= 8 && !(Size & (Size - 1)),
1906              "atomic load operand must be power-of-two byte-sized integer",
1907              &LI, ElTy);
1908    }
1909  } else {
1910    Assert1(LI.getSynchScope() == CrossThread,
1911            "Non-atomic load cannot have SynchronizationScope specified", &LI);
1912  }
1913
1914  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1915    unsigned NumOperands = Range->getNumOperands();
1916    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1917    unsigned NumRanges = NumOperands / 2;
1918    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1919
1920    ConstantRange LastRange(1); // Dummy initial value
1921    for (unsigned i = 0; i < NumRanges; ++i) {
1922      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1923      Assert1(Low, "The lower limit must be an integer!", Low);
1924      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1925      Assert1(High, "The upper limit must be an integer!", High);
1926      Assert1(High->getType() == Low->getType() &&
1927              High->getType() == ElTy, "Range types must match load type!",
1928              &LI);
1929
1930      APInt HighV = High->getValue();
1931      APInt LowV = Low->getValue();
1932      ConstantRange CurRange(LowV, HighV);
1933      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1934              "Range must not be empty!", Range);
1935      if (i != 0) {
1936        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1937                "Intervals are overlapping", Range);
1938        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1939                Range);
1940        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1941                Range);
1942      }
1943      LastRange = ConstantRange(LowV, HighV);
1944    }
1945    if (NumRanges > 2) {
1946      APInt FirstLow =
1947        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1948      APInt FirstHigh =
1949        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1950      ConstantRange FirstRange(FirstLow, FirstHigh);
1951      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1952              "Intervals are overlapping", Range);
1953      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1954              Range);
1955    }
1956
1957
1958  }
1959
1960  visitInstruction(LI);
1961}
1962
1963void Verifier::visitStoreInst(StoreInst &SI) {
1964  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1965  Assert1(PTy, "Store operand must be a pointer.", &SI);
1966  Type *ElTy = PTy->getElementType();
1967  Assert2(ElTy == SI.getOperand(0)->getType(),
1968          "Stored value type does not match pointer operand type!",
1969          &SI, ElTy);
1970  if (SI.isAtomic()) {
1971    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1972            "Store cannot have Acquire ordering", &SI);
1973    Assert1(SI.getAlignment() != 0,
1974            "Atomic store must specify explicit alignment", &SI);
1975    if (!ElTy->isPointerTy()) {
1976      Assert2(ElTy->isIntegerTy(),
1977              "atomic store operand must have integer type!",
1978              &SI, ElTy);
1979      unsigned Size = ElTy->getPrimitiveSizeInBits();
1980      Assert2(Size >= 8 && !(Size & (Size - 1)),
1981              "atomic store operand must be power-of-two byte-sized integer",
1982              &SI, ElTy);
1983    }
1984  } else {
1985    Assert1(SI.getSynchScope() == CrossThread,
1986            "Non-atomic store cannot have SynchronizationScope specified", &SI);
1987  }
1988  visitInstruction(SI);
1989}
1990
1991void Verifier::visitAllocaInst(AllocaInst &AI) {
1992  SmallPtrSet<const Type*, 4> Visited;
1993  PointerType *PTy = AI.getType();
1994  Assert1(PTy->getAddressSpace() == 0,
1995          "Allocation instruction pointer not in the generic address space!",
1996          &AI);
1997  Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
1998          &AI);
1999  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
2000          "Alloca array size must have integer type", &AI);
2001
2002  visitInstruction(AI);
2003}
2004
2005void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2006
2007  // FIXME: more conditions???
2008  Assert1(CXI.getSuccessOrdering() != NotAtomic,
2009          "cmpxchg instructions must be atomic.", &CXI);
2010  Assert1(CXI.getFailureOrdering() != NotAtomic,
2011          "cmpxchg instructions must be atomic.", &CXI);
2012  Assert1(CXI.getSuccessOrdering() != Unordered,
2013          "cmpxchg instructions cannot be unordered.", &CXI);
2014  Assert1(CXI.getFailureOrdering() != Unordered,
2015          "cmpxchg instructions cannot be unordered.", &CXI);
2016  Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2017          "cmpxchg instructions be at least as constrained on success as fail",
2018          &CXI);
2019  Assert1(CXI.getFailureOrdering() != Release &&
2020              CXI.getFailureOrdering() != AcquireRelease,
2021          "cmpxchg failure ordering cannot include release semantics", &CXI);
2022
2023  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2024  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2025  Type *ElTy = PTy->getElementType();
2026  Assert2(ElTy->isIntegerTy(),
2027          "cmpxchg operand must have integer type!",
2028          &CXI, ElTy);
2029  unsigned Size = ElTy->getPrimitiveSizeInBits();
2030  Assert2(Size >= 8 && !(Size & (Size - 1)),
2031          "cmpxchg operand must be power-of-two byte-sized integer",
2032          &CXI, ElTy);
2033  Assert2(ElTy == CXI.getOperand(1)->getType(),
2034          "Expected value type does not match pointer operand type!",
2035          &CXI, ElTy);
2036  Assert2(ElTy == CXI.getOperand(2)->getType(),
2037          "Stored value type does not match pointer operand type!",
2038          &CXI, ElTy);
2039  visitInstruction(CXI);
2040}
2041
2042void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2043  Assert1(RMWI.getOrdering() != NotAtomic,
2044          "atomicrmw instructions must be atomic.", &RMWI);
2045  Assert1(RMWI.getOrdering() != Unordered,
2046          "atomicrmw instructions cannot be unordered.", &RMWI);
2047  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2048  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2049  Type *ElTy = PTy->getElementType();
2050  Assert2(ElTy->isIntegerTy(),
2051          "atomicrmw operand must have integer type!",
2052          &RMWI, ElTy);
2053  unsigned Size = ElTy->getPrimitiveSizeInBits();
2054  Assert2(Size >= 8 && !(Size & (Size - 1)),
2055          "atomicrmw operand must be power-of-two byte-sized integer",
2056          &RMWI, ElTy);
2057  Assert2(ElTy == RMWI.getOperand(1)->getType(),
2058          "Argument value type does not match pointer operand type!",
2059          &RMWI, ElTy);
2060  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2061          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2062          "Invalid binary operation!", &RMWI);
2063  visitInstruction(RMWI);
2064}
2065
2066void Verifier::visitFenceInst(FenceInst &FI) {
2067  const AtomicOrdering Ordering = FI.getOrdering();
2068  Assert1(Ordering == Acquire || Ordering == Release ||
2069          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2070          "fence instructions may only have "
2071          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
2072  visitInstruction(FI);
2073}
2074
2075void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2076  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2077                                           EVI.getIndices()) ==
2078          EVI.getType(),
2079          "Invalid ExtractValueInst operands!", &EVI);
2080
2081  visitInstruction(EVI);
2082}
2083
2084void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2085  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2086                                           IVI.getIndices()) ==
2087          IVI.getOperand(1)->getType(),
2088          "Invalid InsertValueInst operands!", &IVI);
2089
2090  visitInstruction(IVI);
2091}
2092
2093void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2094  BasicBlock *BB = LPI.getParent();
2095
2096  // The landingpad instruction is ill-formed if it doesn't have any clauses and
2097  // isn't a cleanup.
2098  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2099          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2100
2101  // The landingpad instruction defines its parent as a landing pad block. The
2102  // landing pad block may be branched to only by the unwind edge of an invoke.
2103  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2104    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2105    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2106            "Block containing LandingPadInst must be jumped to "
2107            "only by the unwind edge of an invoke.", &LPI);
2108  }
2109
2110  // The landingpad instruction must be the first non-PHI instruction in the
2111  // block.
2112  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
2113          "LandingPadInst not the first non-PHI instruction in the block.",
2114          &LPI);
2115
2116  // The personality functions for all landingpad instructions within the same
2117  // function should match.
2118  if (PersonalityFn)
2119    Assert1(LPI.getPersonalityFn() == PersonalityFn,
2120            "Personality function doesn't match others in function", &LPI);
2121  PersonalityFn = LPI.getPersonalityFn();
2122
2123  // All operands must be constants.
2124  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
2125          &LPI);
2126  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2127    Constant *Clause = LPI.getClause(i);
2128    if (LPI.isCatch(i)) {
2129      Assert1(isa<PointerType>(Clause->getType()),
2130              "Catch operand does not have pointer type!", &LPI);
2131    } else {
2132      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2133      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2134              "Filter operand is not an array of constants!", &LPI);
2135    }
2136  }
2137
2138  visitInstruction(LPI);
2139}
2140
2141void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2142  Instruction *Op = cast<Instruction>(I.getOperand(i));
2143  // If the we have an invalid invoke, don't try to compute the dominance.
2144  // We already reject it in the invoke specific checks and the dominance
2145  // computation doesn't handle multiple edges.
2146  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2147    if (II->getNormalDest() == II->getUnwindDest())
2148      return;
2149  }
2150
2151  const Use &U = I.getOperandUse(i);
2152  Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2153          "Instruction does not dominate all uses!", Op, &I);
2154}
2155
2156/// verifyInstruction - Verify that an instruction is well formed.
2157///
2158void Verifier::visitInstruction(Instruction &I) {
2159  BasicBlock *BB = I.getParent();
2160  Assert1(BB, "Instruction not embedded in basic block!", &I);
2161
2162  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
2163    for (User *U : I.users()) {
2164      Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
2165              "Only PHI nodes may reference their own value!", &I);
2166    }
2167  }
2168
2169  // Check that void typed values don't have names
2170  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
2171          "Instruction has a name, but provides a void value!", &I);
2172
2173  // Check that the return value of the instruction is either void or a legal
2174  // value type.
2175  Assert1(I.getType()->isVoidTy() ||
2176          I.getType()->isFirstClassType(),
2177          "Instruction returns a non-scalar type!", &I);
2178
2179  // Check that the instruction doesn't produce metadata. Calls are already
2180  // checked against the callee type.
2181  Assert1(!I.getType()->isMetadataTy() ||
2182          isa<CallInst>(I) || isa<InvokeInst>(I),
2183          "Invalid use of metadata!", &I);
2184
2185  // Check that all uses of the instruction, if they are instructions
2186  // themselves, actually have parent basic blocks.  If the use is not an
2187  // instruction, it is an error!
2188  for (Use &U : I.uses()) {
2189    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2190      Assert2(Used->getParent() != nullptr, "Instruction referencing"
2191              " instruction not embedded in a basic block!", &I, Used);
2192    else {
2193      CheckFailed("Use of instruction is not an instruction!", U);
2194      return;
2195    }
2196  }
2197
2198  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2199    Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2200
2201    // Check to make sure that only first-class-values are operands to
2202    // instructions.
2203    if (!I.getOperand(i)->getType()->isFirstClassType()) {
2204      Assert1(0, "Instruction operands must be first-class values!", &I);
2205    }
2206
2207    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2208      // Check to make sure that the "address of" an intrinsic function is never
2209      // taken.
2210      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
2211              "Cannot take the address of an intrinsic!", &I);
2212      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
2213              F->getIntrinsicID() == Intrinsic::donothing,
2214              "Cannot invoke an intrinsinc other than donothing", &I);
2215      Assert1(F->getParent() == M, "Referencing function in another module!",
2216              &I);
2217    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2218      Assert1(OpBB->getParent() == BB->getParent(),
2219              "Referring to a basic block in another function!", &I);
2220    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2221      Assert1(OpArg->getParent() == BB->getParent(),
2222              "Referring to an argument in another function!", &I);
2223    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2224      Assert1(GV->getParent() == M, "Referencing global in another module!",
2225              &I);
2226    } else if (isa<Instruction>(I.getOperand(i))) {
2227      verifyDominatesUse(I, i);
2228    } else if (isa<InlineAsm>(I.getOperand(i))) {
2229      Assert1((i + 1 == e && isa<CallInst>(I)) ||
2230              (i + 3 == e && isa<InvokeInst>(I)),
2231              "Cannot take the address of an inline asm!", &I);
2232    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2233      if (CE->getType()->isPtrOrPtrVectorTy()) {
2234        // If we have a ConstantExpr pointer, we need to see if it came from an
2235        // illegal bitcast (inttoptr <constant int> )
2236        SmallVector<const ConstantExpr *, 4> Stack;
2237        SmallPtrSet<const ConstantExpr *, 4> Visited;
2238        Stack.push_back(CE);
2239
2240        while (!Stack.empty()) {
2241          const ConstantExpr *V = Stack.pop_back_val();
2242          if (!Visited.insert(V))
2243            continue;
2244
2245          VerifyConstantExprBitcastType(V);
2246
2247          for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2248            if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2249              Stack.push_back(Op);
2250          }
2251        }
2252      }
2253    }
2254  }
2255
2256  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2257    Assert1(I.getType()->isFPOrFPVectorTy(),
2258            "fpmath requires a floating point result!", &I);
2259    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2260    Value *Op0 = MD->getOperand(0);
2261    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
2262      APFloat Accuracy = CFP0->getValueAPF();
2263      Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2264              "fpmath accuracy not a positive number!", &I);
2265    } else {
2266      Assert1(false, "invalid fpmath accuracy!", &I);
2267    }
2268  }
2269
2270  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
2271  Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
2272          "Ranges are only for loads, calls and invokes!", &I);
2273
2274  InstsInThisBlock.insert(&I);
2275}
2276
2277/// VerifyIntrinsicType - Verify that the specified type (which comes from an
2278/// intrinsic argument or return value) matches the type constraints specified
2279/// by the .td file (e.g. an "any integer" argument really is an integer).
2280///
2281/// This return true on error but does not print a message.
2282bool Verifier::VerifyIntrinsicType(Type *Ty,
2283                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
2284                                   SmallVectorImpl<Type*> &ArgTys) {
2285  using namespace Intrinsic;
2286
2287  // If we ran out of descriptors, there are too many arguments.
2288  if (Infos.empty()) return true;
2289  IITDescriptor D = Infos.front();
2290  Infos = Infos.slice(1);
2291
2292  switch (D.Kind) {
2293  case IITDescriptor::Void: return !Ty->isVoidTy();
2294  case IITDescriptor::VarArg: return true;
2295  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
2296  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2297  case IITDescriptor::Half: return !Ty->isHalfTy();
2298  case IITDescriptor::Float: return !Ty->isFloatTy();
2299  case IITDescriptor::Double: return !Ty->isDoubleTy();
2300  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2301  case IITDescriptor::Vector: {
2302    VectorType *VT = dyn_cast<VectorType>(Ty);
2303    return !VT || VT->getNumElements() != D.Vector_Width ||
2304           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2305  }
2306  case IITDescriptor::Pointer: {
2307    PointerType *PT = dyn_cast<PointerType>(Ty);
2308    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2309           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2310  }
2311
2312  case IITDescriptor::Struct: {
2313    StructType *ST = dyn_cast<StructType>(Ty);
2314    if (!ST || ST->getNumElements() != D.Struct_NumElements)
2315      return true;
2316
2317    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2318      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2319        return true;
2320    return false;
2321  }
2322
2323  case IITDescriptor::Argument:
2324    // Two cases here - If this is the second occurrence of an argument, verify
2325    // that the later instance matches the previous instance.
2326    if (D.getArgumentNumber() < ArgTys.size())
2327      return Ty != ArgTys[D.getArgumentNumber()];
2328
2329    // Otherwise, if this is the first instance of an argument, record it and
2330    // verify the "Any" kind.
2331    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2332    ArgTys.push_back(Ty);
2333
2334    switch (D.getArgumentKind()) {
2335    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2336    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
2337    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
2338    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2339    }
2340    llvm_unreachable("all argument kinds not covered");
2341
2342  case IITDescriptor::ExtendArgument: {
2343    // This may only be used when referring to a previous vector argument.
2344    if (D.getArgumentNumber() >= ArgTys.size())
2345      return true;
2346
2347    Type *NewTy = ArgTys[D.getArgumentNumber()];
2348    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2349      NewTy = VectorType::getExtendedElementVectorType(VTy);
2350    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2351      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
2352    else
2353      return true;
2354
2355    return Ty != NewTy;
2356  }
2357  case IITDescriptor::TruncArgument: {
2358    // This may only be used when referring to a previous vector argument.
2359    if (D.getArgumentNumber() >= ArgTys.size())
2360      return true;
2361
2362    Type *NewTy = ArgTys[D.getArgumentNumber()];
2363    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2364      NewTy = VectorType::getTruncatedElementVectorType(VTy);
2365    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2366      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
2367    else
2368      return true;
2369
2370    return Ty != NewTy;
2371  }
2372  case IITDescriptor::HalfVecArgument:
2373    // This may only be used when referring to a previous vector argument.
2374    return D.getArgumentNumber() >= ArgTys.size() ||
2375           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2376           VectorType::getHalfElementsVectorType(
2377                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2378  }
2379  llvm_unreachable("unhandled");
2380}
2381
2382/// \brief Verify if the intrinsic has variable arguments.
2383/// This method is intended to be called after all the fixed arguments have been
2384/// verified first.
2385///
2386/// This method returns true on error and does not print an error message.
2387bool
2388Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
2389                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
2390  using namespace Intrinsic;
2391
2392  // If there are no descriptors left, then it can't be a vararg.
2393  if (Infos.empty())
2394    return isVarArg ? true : false;
2395
2396  // There should be only one descriptor remaining at this point.
2397  if (Infos.size() != 1)
2398    return true;
2399
2400  // Check and verify the descriptor.
2401  IITDescriptor D = Infos.front();
2402  Infos = Infos.slice(1);
2403  if (D.Kind == IITDescriptor::VarArg)
2404    return isVarArg ? false : true;
2405
2406  return true;
2407}
2408
2409/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
2410///
2411void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
2412  Function *IF = CI.getCalledFunction();
2413  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
2414          IF);
2415
2416  // Verify that the intrinsic prototype lines up with what the .td files
2417  // describe.
2418  FunctionType *IFTy = IF->getFunctionType();
2419  bool IsVarArg = IFTy->isVarArg();
2420
2421  SmallVector<Intrinsic::IITDescriptor, 8> Table;
2422  getIntrinsicInfoTableEntries(ID, Table);
2423  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2424
2425  SmallVector<Type *, 4> ArgTys;
2426  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2427          "Intrinsic has incorrect return type!", IF);
2428  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2429    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2430            "Intrinsic has incorrect argument type!", IF);
2431
2432  // Verify if the intrinsic call matches the vararg property.
2433  if (IsVarArg)
2434    Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2435            "Intrinsic was not defined with variable arguments!", IF);
2436  else
2437    Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2438            "Callsite was not defined with variable arguments!", IF);
2439
2440  // All descriptors should be absorbed by now.
2441  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2442
2443  // Now that we have the intrinsic ID and the actual argument types (and we
2444  // know they are legal for the intrinsic!) get the intrinsic name through the
2445  // usual means.  This allows us to verify the mangling of argument types into
2446  // the name.
2447  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
2448  Assert1(ExpectedName == IF->getName(),
2449          "Intrinsic name not mangled correctly for type arguments! "
2450          "Should be: " + ExpectedName, IF);
2451
2452  // If the intrinsic takes MDNode arguments, verify that they are either global
2453  // or are local to *this* function.
2454  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2455    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2456      visitMDNode(*MD, CI.getParent()->getParent());
2457
2458  switch (ID) {
2459  default:
2460    break;
2461  case Intrinsic::ctlz:  // llvm.ctlz
2462  case Intrinsic::cttz:  // llvm.cttz
2463    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2464            "is_zero_undef argument of bit counting intrinsics must be a "
2465            "constant int", &CI);
2466    break;
2467  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
2468    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2469                "invalid llvm.dbg.declare intrinsic call 1", &CI);
2470    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2471    Assert1(MD->getNumOperands() == 1,
2472                "invalid llvm.dbg.declare intrinsic call 2", &CI);
2473  } break;
2474  case Intrinsic::memcpy:
2475  case Intrinsic::memmove:
2476  case Intrinsic::memset:
2477    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2478            "alignment argument of memory intrinsics must be a constant int",
2479            &CI);
2480    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2481            "isvolatile argument of memory intrinsics must be a constant int",
2482            &CI);
2483    break;
2484  case Intrinsic::gcroot:
2485  case Intrinsic::gcwrite:
2486  case Intrinsic::gcread:
2487    if (ID == Intrinsic::gcroot) {
2488      AllocaInst *AI =
2489        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2490      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2491      Assert1(isa<Constant>(CI.getArgOperand(1)),
2492              "llvm.gcroot parameter #2 must be a constant.", &CI);
2493      if (!AI->getType()->getElementType()->isPointerTy()) {
2494        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2495                "llvm.gcroot parameter #1 must either be a pointer alloca, "
2496                "or argument #2 must be a non-null constant.", &CI);
2497      }
2498    }
2499
2500    Assert1(CI.getParent()->getParent()->hasGC(),
2501            "Enclosing function does not use GC.", &CI);
2502    break;
2503  case Intrinsic::init_trampoline:
2504    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2505            "llvm.init_trampoline parameter #2 must resolve to a function.",
2506            &CI);
2507    break;
2508  case Intrinsic::prefetch:
2509    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2510            isa<ConstantInt>(CI.getArgOperand(2)) &&
2511            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2512            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2513            "invalid arguments to llvm.prefetch",
2514            &CI);
2515    break;
2516  case Intrinsic::stackprotector:
2517    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2518            "llvm.stackprotector parameter #2 must resolve to an alloca.",
2519            &CI);
2520    break;
2521  case Intrinsic::lifetime_start:
2522  case Intrinsic::lifetime_end:
2523  case Intrinsic::invariant_start:
2524    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2525            "size argument of memory use markers must be a constant integer",
2526            &CI);
2527    break;
2528  case Intrinsic::invariant_end:
2529    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2530            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2531    break;
2532  }
2533}
2534
2535void DebugInfoVerifier::verifyDebugInfo() {
2536  if (!VerifyDebugInfo)
2537    return;
2538
2539  DebugInfoFinder Finder;
2540  Finder.processModule(*M);
2541  processInstructions(Finder);
2542
2543  // Verify Debug Info.
2544  //
2545  // NOTE:  The loud braces are necessary for MSVC compatibility.
2546  for (DICompileUnit CU : Finder.compile_units()) {
2547    Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
2548  }
2549  for (DISubprogram S : Finder.subprograms()) {
2550    Assert1(S.Verify(), "DISubprogram does not Verify!", S);
2551  }
2552  for (DIGlobalVariable GV : Finder.global_variables()) {
2553    Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
2554  }
2555  for (DIType T : Finder.types()) {
2556    Assert1(T.Verify(), "DIType does not Verify!", T);
2557  }
2558  for (DIScope S : Finder.scopes()) {
2559    Assert1(S.Verify(), "DIScope does not Verify!", S);
2560  }
2561}
2562
2563void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
2564  for (const Function &F : *M)
2565    for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2566      if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
2567        Finder.processLocation(*M, DILocation(MD));
2568      if (const CallInst *CI = dyn_cast<CallInst>(&*I))
2569        processCallInst(Finder, *CI);
2570    }
2571}
2572
2573void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
2574                                        const CallInst &CI) {
2575  if (Function *F = CI.getCalledFunction())
2576    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2577      switch (ID) {
2578      case Intrinsic::dbg_declare:
2579        Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
2580        break;
2581      case Intrinsic::dbg_value:
2582        Finder.processValue(*M, cast<DbgValueInst>(&CI));
2583        break;
2584      default:
2585        break;
2586      }
2587}
2588
2589//===----------------------------------------------------------------------===//
2590//  Implement the public interfaces to this file...
2591//===----------------------------------------------------------------------===//
2592
2593bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
2594  Function &F = const_cast<Function &>(f);
2595  assert(!F.isDeclaration() && "Cannot verify external functions");
2596
2597  raw_null_ostream NullStr;
2598  Verifier V(OS ? *OS : NullStr);
2599
2600  // Note that this function's return value is inverted from what you would
2601  // expect of a function called "verify".
2602  return !V.verify(F);
2603}
2604
2605bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
2606  raw_null_ostream NullStr;
2607  Verifier V(OS ? *OS : NullStr);
2608
2609  bool Broken = false;
2610  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
2611    if (!I->isDeclaration())
2612      Broken |= !V.verify(*I);
2613
2614  // Note that this function's return value is inverted from what you would
2615  // expect of a function called "verify".
2616  DebugInfoVerifier DIV(OS ? *OS : NullStr);
2617  return !V.verify(M) || !DIV.verify(M) || Broken;
2618}
2619
2620namespace {
2621struct VerifierLegacyPass : public FunctionPass {
2622  static char ID;
2623
2624  Verifier V;
2625  bool FatalErrors;
2626
2627  VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
2628    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2629  }
2630  explicit VerifierLegacyPass(bool FatalErrors)
2631      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2632    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2633  }
2634
2635  bool runOnFunction(Function &F) override {
2636    if (!V.verify(F) && FatalErrors)
2637      report_fatal_error("Broken function found, compilation aborted!");
2638
2639    return false;
2640  }
2641
2642  bool doFinalization(Module &M) override {
2643    if (!V.verify(M) && FatalErrors)
2644      report_fatal_error("Broken module found, compilation aborted!");
2645
2646    return false;
2647  }
2648
2649  void getAnalysisUsage(AnalysisUsage &AU) const override {
2650    AU.setPreservesAll();
2651  }
2652};
2653struct DebugInfoVerifierLegacyPass : public ModulePass {
2654  static char ID;
2655
2656  DebugInfoVerifier V;
2657  bool FatalErrors;
2658
2659  DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
2660    initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2661  }
2662  explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
2663      : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2664    initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2665  }
2666
2667  bool runOnModule(Module &M) override {
2668    if (!V.verify(M) && FatalErrors)
2669      report_fatal_error("Broken debug info found, compilation aborted!");
2670
2671    return false;
2672  }
2673
2674  void getAnalysisUsage(AnalysisUsage &AU) const override {
2675    AU.setPreservesAll();
2676  }
2677};
2678}
2679
2680char VerifierLegacyPass::ID = 0;
2681INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
2682
2683char DebugInfoVerifierLegacyPass::ID = 0;
2684INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
2685                false, false)
2686
2687FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
2688  return new VerifierLegacyPass(FatalErrors);
2689}
2690
2691ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
2692  return new DebugInfoVerifierLegacyPass(FatalErrors);
2693}
2694
2695PreservedAnalyses VerifierPass::run(Module *M) {
2696  if (verifyModule(*M, &dbgs()) && FatalErrors)
2697    report_fatal_error("Broken module found, compilation aborted!");
2698
2699  return PreservedAnalyses::all();
2700}
2701
2702PreservedAnalyses VerifierPass::run(Function *F) {
2703  if (verifyFunction(*F, &dbgs()) && FatalErrors)
2704    report_fatal_error("Broken function found, compilation aborted!");
2705
2706  return PreservedAnalyses::all();
2707}
2708