Verifier.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/IR/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstVisitor.h"
65#include "llvm/IR/IntrinsicInst.h"
66#include "llvm/IR/LLVMContext.h"
67#include "llvm/IR/Metadata.h"
68#include "llvm/IR/Module.h"
69#include "llvm/IR/PassManager.h"
70#include "llvm/Pass.h"
71#include "llvm/Support/CommandLine.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/ErrorHandling.h"
74#include "llvm/Support/raw_ostream.h"
75#include <algorithm>
76#include <cstdarg>
77using namespace llvm;
78
79static cl::opt<bool> DisableDebugInfoVerifier("disable-debug-info-verifier",
80                                              cl::init(true));
81
82namespace {
83class Verifier : public InstVisitor<Verifier> {
84  friend class InstVisitor<Verifier>;
85
86  raw_ostream &OS;
87  const Module *M;
88  LLVMContext *Context;
89  const DataLayout *DL;
90  DominatorTree DT;
91
92  /// \brief When verifying a basic block, keep track of all of the
93  /// instructions we have seen so far.
94  ///
95  /// This allows us to do efficient dominance checks for the case when an
96  /// instruction has an operand that is an instruction in the same block.
97  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
98
99  /// \brief Keep track of the metadata nodes that have been checked already.
100  SmallPtrSet<MDNode *, 32> MDNodes;
101
102  /// \brief The personality function referenced by the LandingPadInsts.
103  /// All LandingPadInsts within the same function must use the same
104  /// personality function.
105  const Value *PersonalityFn;
106
107  /// \brief Finder keeps track of all debug info MDNodes in a Module.
108  DebugInfoFinder Finder;
109
110  /// \brief Track the brokenness of the module while recursively visiting.
111  bool Broken;
112
113public:
114  explicit Verifier(raw_ostream &OS = dbgs())
115      : OS(OS), M(0), Context(0), DL(0), PersonalityFn(0), Broken(false) {}
116
117  bool verify(const Function &F) {
118    M = F.getParent();
119    Context = &M->getContext();
120
121    // First ensure the function is well-enough formed to compute dominance
122    // information.
123    if (F.empty()) {
124      OS << "Function '" << F.getName()
125         << "' does not contain an entry block!\n";
126      return false;
127    }
128    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
129      if (I->empty() || !I->back().isTerminator()) {
130        OS << "Basic Block in function '" << F.getName()
131           << "' does not have terminator!\n";
132        I->printAsOperand(OS, true);
133        OS << "\n";
134        return false;
135      }
136    }
137
138    // Now directly compute a dominance tree. We don't rely on the pass
139    // manager to provide this as it isolates us from a potentially
140    // out-of-date dominator tree and makes it significantly more complex to
141    // run this code outside of a pass manager.
142    // FIXME: It's really gross that we have to cast away constness here.
143    DT.recalculate(const_cast<Function &>(F));
144
145    Finder.reset();
146    Broken = false;
147    // FIXME: We strip const here because the inst visitor strips const.
148    visit(const_cast<Function &>(F));
149    InstsInThisBlock.clear();
150    PersonalityFn = 0;
151
152    if (!DisableDebugInfoVerifier)
153      // Verify Debug Info.
154      verifyDebugInfo();
155
156    return !Broken;
157  }
158
159  bool verify(const Module &M) {
160    this->M = &M;
161    Context = &M.getContext();
162    Finder.reset();
163    Broken = false;
164
165    // Scan through, checking all of the external function's linkage now...
166    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
167      visitGlobalValue(*I);
168
169      // Check to make sure function prototypes are okay.
170      if (I->isDeclaration())
171        visitFunction(*I);
172    }
173
174    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
175         I != E; ++I)
176      visitGlobalVariable(*I);
177
178    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
179         I != E; ++I)
180      visitGlobalAlias(*I);
181
182    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
183                                               E = M.named_metadata_end();
184         I != E; ++I)
185      visitNamedMDNode(*I);
186
187    visitModuleFlags(M);
188    visitModuleIdents(M);
189
190    if (!DisableDebugInfoVerifier) {
191      Finder.reset();
192      Finder.processModule(M);
193      // Verify Debug Info.
194      verifyDebugInfo();
195    }
196
197    return !Broken;
198  }
199
200private:
201  // Verification methods...
202  void visitGlobalValue(const GlobalValue &GV);
203  void visitGlobalVariable(const GlobalVariable &GV);
204  void visitGlobalAlias(const GlobalAlias &GA);
205  void visitNamedMDNode(const NamedMDNode &NMD);
206  void visitMDNode(MDNode &MD, Function *F);
207  void visitModuleIdents(const Module &M);
208  void visitModuleFlags(const Module &M);
209  void visitModuleFlag(const MDNode *Op,
210                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
211                       SmallVectorImpl<const MDNode *> &Requirements);
212  void visitFunction(const Function &F);
213  void visitBasicBlock(BasicBlock &BB);
214
215  // InstVisitor overrides...
216  using InstVisitor<Verifier>::visit;
217  void visit(Instruction &I);
218
219  void visitTruncInst(TruncInst &I);
220  void visitZExtInst(ZExtInst &I);
221  void visitSExtInst(SExtInst &I);
222  void visitFPTruncInst(FPTruncInst &I);
223  void visitFPExtInst(FPExtInst &I);
224  void visitFPToUIInst(FPToUIInst &I);
225  void visitFPToSIInst(FPToSIInst &I);
226  void visitUIToFPInst(UIToFPInst &I);
227  void visitSIToFPInst(SIToFPInst &I);
228  void visitIntToPtrInst(IntToPtrInst &I);
229  void visitPtrToIntInst(PtrToIntInst &I);
230  void visitBitCastInst(BitCastInst &I);
231  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
232  void visitPHINode(PHINode &PN);
233  void visitBinaryOperator(BinaryOperator &B);
234  void visitICmpInst(ICmpInst &IC);
235  void visitFCmpInst(FCmpInst &FC);
236  void visitExtractElementInst(ExtractElementInst &EI);
237  void visitInsertElementInst(InsertElementInst &EI);
238  void visitShuffleVectorInst(ShuffleVectorInst &EI);
239  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
240  void visitCallInst(CallInst &CI);
241  void visitInvokeInst(InvokeInst &II);
242  void visitGetElementPtrInst(GetElementPtrInst &GEP);
243  void visitLoadInst(LoadInst &LI);
244  void visitStoreInst(StoreInst &SI);
245  void verifyDominatesUse(Instruction &I, unsigned i);
246  void visitInstruction(Instruction &I);
247  void visitTerminatorInst(TerminatorInst &I);
248  void visitBranchInst(BranchInst &BI);
249  void visitReturnInst(ReturnInst &RI);
250  void visitSwitchInst(SwitchInst &SI);
251  void visitIndirectBrInst(IndirectBrInst &BI);
252  void visitSelectInst(SelectInst &SI);
253  void visitUserOp1(Instruction &I);
254  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
255  void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
256  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
257  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
258  void visitFenceInst(FenceInst &FI);
259  void visitAllocaInst(AllocaInst &AI);
260  void visitExtractValueInst(ExtractValueInst &EVI);
261  void visitInsertValueInst(InsertValueInst &IVI);
262  void visitLandingPadInst(LandingPadInst &LPI);
263
264  void VerifyCallSite(CallSite CS);
265  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
266                        unsigned ArgNo, std::string &Suffix);
267  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
268                           SmallVectorImpl<Type *> &ArgTys);
269  bool VerifyIntrinsicIsVarArg(bool isVarArg,
270                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
271  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
272  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
273                            const Value *V);
274  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
275                            bool isReturnValue, const Value *V);
276  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
277                           const Value *V);
278
279  void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
280  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
281
282  void verifyDebugInfo();
283
284  void WriteValue(const Value *V) {
285    if (!V)
286      return;
287    if (isa<Instruction>(V)) {
288      OS << *V << '\n';
289    } else {
290      V->printAsOperand(OS, true, M);
291      OS << '\n';
292    }
293  }
294
295  void WriteType(Type *T) {
296    if (!T)
297      return;
298    OS << ' ' << *T;
299  }
300
301  // CheckFailed - A check failed, so print out the condition and the message
302  // that failed.  This provides a nice place to put a breakpoint if you want
303  // to see why something is not correct.
304  void CheckFailed(const Twine &Message, const Value *V1 = 0,
305                   const Value *V2 = 0, const Value *V3 = 0,
306                   const Value *V4 = 0) {
307    OS << Message.str() << "\n";
308    WriteValue(V1);
309    WriteValue(V2);
310    WriteValue(V3);
311    WriteValue(V4);
312    Broken = true;
313  }
314
315  void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
316                   const Value *V3 = 0) {
317    OS << Message.str() << "\n";
318    WriteValue(V1);
319    WriteType(T2);
320    WriteValue(V3);
321    Broken = true;
322  }
323
324  void CheckFailed(const Twine &Message, Type *T1, Type *T2 = 0, Type *T3 = 0) {
325    OS << Message.str() << "\n";
326    WriteType(T1);
327    WriteType(T2);
328    WriteType(T3);
329    Broken = true;
330  }
331};
332} // End anonymous namespace
333
334// Assert - We know that cond should be true, if not print an error message.
335#define Assert(C, M) \
336  do { if (!(C)) { CheckFailed(M); return; } } while (0)
337#define Assert1(C, M, V1) \
338  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
339#define Assert2(C, M, V1, V2) \
340  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
341#define Assert3(C, M, V1, V2, V3) \
342  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
343#define Assert4(C, M, V1, V2, V3, V4) \
344  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
345
346void Verifier::visit(Instruction &I) {
347  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
348    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
349  InstVisitor<Verifier>::visit(I);
350}
351
352
353void Verifier::visitGlobalValue(const GlobalValue &GV) {
354  Assert1(!GV.isDeclaration() ||
355          GV.isMaterializable() ||
356          GV.hasExternalLinkage() ||
357          GV.hasExternalWeakLinkage() ||
358          (isa<GlobalAlias>(GV) &&
359           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
360          "Global is external, but doesn't have external or weak linkage!",
361          &GV);
362
363  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
364          "Only global variables can have appending linkage!", &GV);
365
366  if (GV.hasAppendingLinkage()) {
367    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
368    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
369            "Only global arrays can have appending linkage!", GVar);
370  }
371}
372
373void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
374  if (GV.hasInitializer()) {
375    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
376            "Global variable initializer type does not match global "
377            "variable type!", &GV);
378
379    // If the global has common linkage, it must have a zero initializer and
380    // cannot be constant.
381    if (GV.hasCommonLinkage()) {
382      Assert1(GV.getInitializer()->isNullValue(),
383              "'common' global must have a zero initializer!", &GV);
384      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
385              &GV);
386    }
387  } else {
388    Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
389            "invalid linkage type for global declaration", &GV);
390  }
391
392  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
393                       GV.getName() == "llvm.global_dtors")) {
394    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
395            "invalid linkage for intrinsic global variable", &GV);
396    // Don't worry about emitting an error for it not being an array,
397    // visitGlobalValue will complain on appending non-array.
398    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
399      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
400      PointerType *FuncPtrTy =
401          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
402      Assert1(STy && STy->getNumElements() == 2 &&
403              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
404              STy->getTypeAtIndex(1) == FuncPtrTy,
405              "wrong type for intrinsic global variable", &GV);
406    }
407  }
408
409  if (GV.hasName() && (GV.getName() == "llvm.used" ||
410                       GV.getName() == "llvm.compiler.used")) {
411    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
412            "invalid linkage for intrinsic global variable", &GV);
413    Type *GVType = GV.getType()->getElementType();
414    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
415      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
416      Assert1(PTy, "wrong type for intrinsic global variable", &GV);
417      if (GV.hasInitializer()) {
418        const Constant *Init = GV.getInitializer();
419        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
420        Assert1(InitArray, "wrong initalizer for intrinsic global variable",
421                Init);
422        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
423          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
424          Assert1(
425              isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
426              "invalid llvm.used member", V);
427          Assert1(V->hasName(), "members of llvm.used must be named", V);
428        }
429      }
430    }
431  }
432
433  Assert1(!GV.hasDLLImportStorageClass() ||
434          (GV.isDeclaration() && GV.hasExternalLinkage()) ||
435          GV.hasAvailableExternallyLinkage(),
436          "Global is marked as dllimport, but not external", &GV);
437
438  if (!GV.hasInitializer()) {
439    visitGlobalValue(GV);
440    return;
441  }
442
443  // Walk any aggregate initializers looking for bitcasts between address spaces
444  SmallPtrSet<const Value *, 4> Visited;
445  SmallVector<const Value *, 4> WorkStack;
446  WorkStack.push_back(cast<Value>(GV.getInitializer()));
447
448  while (!WorkStack.empty()) {
449    const Value *V = WorkStack.pop_back_val();
450    if (!Visited.insert(V))
451      continue;
452
453    if (const User *U = dyn_cast<User>(V)) {
454      for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
455        WorkStack.push_back(U->getOperand(I));
456    }
457
458    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
459      VerifyConstantExprBitcastType(CE);
460      if (Broken)
461        return;
462    }
463  }
464
465  visitGlobalValue(GV);
466}
467
468void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
469  Assert1(!GA.getName().empty(),
470          "Alias name cannot be empty!", &GA);
471  Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
472          "Alias should have external or external weak linkage!", &GA);
473  Assert1(GA.getAliasee(),
474          "Aliasee cannot be NULL!", &GA);
475  Assert1(GA.getType() == GA.getAliasee()->getType(),
476          "Alias and aliasee types should match!", &GA);
477  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
478  Assert1(!GA.hasSection(), "Alias cannot have a section!", &GA);
479  Assert1(!GA.getAlignment(), "Alias connot have an alignment", &GA);
480
481  const Constant *Aliasee = GA.getAliasee();
482  const GlobalValue *GV = dyn_cast<GlobalValue>(Aliasee);
483
484  if (!GV) {
485    const ConstantExpr *CE = dyn_cast<ConstantExpr>(Aliasee);
486    if (CE && (CE->getOpcode() == Instruction::BitCast ||
487               CE->getOpcode() == Instruction::AddrSpaceCast ||
488               CE->getOpcode() == Instruction::GetElementPtr))
489      GV = dyn_cast<GlobalValue>(CE->getOperand(0));
490
491    Assert1(GV, "Aliasee should be either GlobalValue, bitcast or "
492                "addrspacecast of GlobalValue",
493            &GA);
494
495    if (CE->getOpcode() == Instruction::BitCast) {
496      unsigned SrcAS = GV->getType()->getPointerAddressSpace();
497      unsigned DstAS = CE->getType()->getPointerAddressSpace();
498
499      Assert1(SrcAS == DstAS,
500              "Alias bitcasts cannot be between different address spaces",
501              &GA);
502    }
503  }
504  Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
505  if (const GlobalAlias *GAAliasee = dyn_cast<GlobalAlias>(GV)) {
506    Assert1(!GAAliasee->mayBeOverridden(), "Alias cannot point to a weak alias",
507            &GA);
508  }
509
510  const GlobalValue *AG = GA.getAliasedGlobal();
511  Assert1(AG, "Aliasing chain should end with function or global variable",
512          &GA);
513
514  visitGlobalValue(GA);
515}
516
517void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
518  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
519    MDNode *MD = NMD.getOperand(i);
520    if (!MD)
521      continue;
522
523    Assert1(!MD->isFunctionLocal(),
524            "Named metadata operand cannot be function local!", MD);
525    visitMDNode(*MD, 0);
526  }
527}
528
529void Verifier::visitMDNode(MDNode &MD, Function *F) {
530  // Only visit each node once.  Metadata can be mutually recursive, so this
531  // avoids infinite recursion here, as well as being an optimization.
532  if (!MDNodes.insert(&MD))
533    return;
534
535  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
536    Value *Op = MD.getOperand(i);
537    if (!Op)
538      continue;
539    if (isa<Constant>(Op) || isa<MDString>(Op))
540      continue;
541    if (MDNode *N = dyn_cast<MDNode>(Op)) {
542      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
543              "Global metadata operand cannot be function local!", &MD, N);
544      visitMDNode(*N, F);
545      continue;
546    }
547    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
548
549    // If this was an instruction, bb, or argument, verify that it is in the
550    // function that we expect.
551    Function *ActualF = 0;
552    if (Instruction *I = dyn_cast<Instruction>(Op))
553      ActualF = I->getParent()->getParent();
554    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
555      ActualF = BB->getParent();
556    else if (Argument *A = dyn_cast<Argument>(Op))
557      ActualF = A->getParent();
558    assert(ActualF && "Unimplemented function local metadata case!");
559
560    Assert2(ActualF == F, "function-local metadata used in wrong function",
561            &MD, Op);
562  }
563}
564
565void Verifier::visitModuleIdents(const Module &M) {
566  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
567  if (!Idents)
568    return;
569
570  // llvm.ident takes a list of metadata entry. Each entry has only one string.
571  // Scan each llvm.ident entry and make sure that this requirement is met.
572  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
573    const MDNode *N = Idents->getOperand(i);
574    Assert1(N->getNumOperands() == 1,
575            "incorrect number of operands in llvm.ident metadata", N);
576    Assert1(isa<MDString>(N->getOperand(0)),
577            ("invalid value for llvm.ident metadata entry operand"
578             "(the operand should be a string)"),
579            N->getOperand(0));
580  }
581}
582
583void Verifier::visitModuleFlags(const Module &M) {
584  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
585  if (!Flags) return;
586
587  // Scan each flag, and track the flags and requirements.
588  DenseMap<const MDString*, const MDNode*> SeenIDs;
589  SmallVector<const MDNode*, 16> Requirements;
590  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
591    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
592  }
593
594  // Validate that the requirements in the module are valid.
595  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
596    const MDNode *Requirement = Requirements[I];
597    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
598    const Value *ReqValue = Requirement->getOperand(1);
599
600    const MDNode *Op = SeenIDs.lookup(Flag);
601    if (!Op) {
602      CheckFailed("invalid requirement on flag, flag is not present in module",
603                  Flag);
604      continue;
605    }
606
607    if (Op->getOperand(2) != ReqValue) {
608      CheckFailed(("invalid requirement on flag, "
609                   "flag does not have the required value"),
610                  Flag);
611      continue;
612    }
613  }
614}
615
616void
617Verifier::visitModuleFlag(const MDNode *Op,
618                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
619                          SmallVectorImpl<const MDNode *> &Requirements) {
620  // Each module flag should have three arguments, the merge behavior (a
621  // constant int), the flag ID (an MDString), and the value.
622  Assert1(Op->getNumOperands() == 3,
623          "incorrect number of operands in module flag", Op);
624  ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
625  MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
626  Assert1(Behavior,
627          "invalid behavior operand in module flag (expected constant integer)",
628          Op->getOperand(0));
629  unsigned BehaviorValue = Behavior->getZExtValue();
630  Assert1(ID,
631          "invalid ID operand in module flag (expected metadata string)",
632          Op->getOperand(1));
633
634  // Sanity check the values for behaviors with additional requirements.
635  switch (BehaviorValue) {
636  default:
637    Assert1(false,
638            "invalid behavior operand in module flag (unexpected constant)",
639            Op->getOperand(0));
640    break;
641
642  case Module::Error:
643  case Module::Warning:
644  case Module::Override:
645    // These behavior types accept any value.
646    break;
647
648  case Module::Require: {
649    // The value should itself be an MDNode with two operands, a flag ID (an
650    // MDString), and a value.
651    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
652    Assert1(Value && Value->getNumOperands() == 2,
653            "invalid value for 'require' module flag (expected metadata pair)",
654            Op->getOperand(2));
655    Assert1(isa<MDString>(Value->getOperand(0)),
656            ("invalid value for 'require' module flag "
657             "(first value operand should be a string)"),
658            Value->getOperand(0));
659
660    // Append it to the list of requirements, to check once all module flags are
661    // scanned.
662    Requirements.push_back(Value);
663    break;
664  }
665
666  case Module::Append:
667  case Module::AppendUnique: {
668    // These behavior types require the operand be an MDNode.
669    Assert1(isa<MDNode>(Op->getOperand(2)),
670            "invalid value for 'append'-type module flag "
671            "(expected a metadata node)", Op->getOperand(2));
672    break;
673  }
674  }
675
676  // Unless this is a "requires" flag, check the ID is unique.
677  if (BehaviorValue != Module::Require) {
678    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
679    Assert1(Inserted,
680            "module flag identifiers must be unique (or of 'require' type)",
681            ID);
682  }
683}
684
685void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
686                                    bool isFunction, const Value *V) {
687  unsigned Slot = ~0U;
688  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
689    if (Attrs.getSlotIndex(I) == Idx) {
690      Slot = I;
691      break;
692    }
693
694  assert(Slot != ~0U && "Attribute set inconsistency!");
695
696  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
697         I != E; ++I) {
698    if (I->isStringAttribute())
699      continue;
700
701    if (I->getKindAsEnum() == Attribute::NoReturn ||
702        I->getKindAsEnum() == Attribute::NoUnwind ||
703        I->getKindAsEnum() == Attribute::NoInline ||
704        I->getKindAsEnum() == Attribute::AlwaysInline ||
705        I->getKindAsEnum() == Attribute::OptimizeForSize ||
706        I->getKindAsEnum() == Attribute::StackProtect ||
707        I->getKindAsEnum() == Attribute::StackProtectReq ||
708        I->getKindAsEnum() == Attribute::StackProtectStrong ||
709        I->getKindAsEnum() == Attribute::NoRedZone ||
710        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
711        I->getKindAsEnum() == Attribute::Naked ||
712        I->getKindAsEnum() == Attribute::InlineHint ||
713        I->getKindAsEnum() == Attribute::StackAlignment ||
714        I->getKindAsEnum() == Attribute::UWTable ||
715        I->getKindAsEnum() == Attribute::NonLazyBind ||
716        I->getKindAsEnum() == Attribute::ReturnsTwice ||
717        I->getKindAsEnum() == Attribute::SanitizeAddress ||
718        I->getKindAsEnum() == Attribute::SanitizeThread ||
719        I->getKindAsEnum() == Attribute::SanitizeMemory ||
720        I->getKindAsEnum() == Attribute::MinSize ||
721        I->getKindAsEnum() == Attribute::NoDuplicate ||
722        I->getKindAsEnum() == Attribute::Builtin ||
723        I->getKindAsEnum() == Attribute::NoBuiltin ||
724        I->getKindAsEnum() == Attribute::Cold ||
725        I->getKindAsEnum() == Attribute::OptimizeNone) {
726      if (!isFunction) {
727        CheckFailed("Attribute '" + I->getAsString() +
728                    "' only applies to functions!", V);
729        return;
730      }
731    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
732               I->getKindAsEnum() == Attribute::ReadNone) {
733      if (Idx == 0) {
734        CheckFailed("Attribute '" + I->getAsString() +
735                    "' does not apply to function returns");
736        return;
737      }
738    } else if (isFunction) {
739      CheckFailed("Attribute '" + I->getAsString() +
740                  "' does not apply to functions!", V);
741      return;
742    }
743  }
744}
745
746// VerifyParameterAttrs - Check the given attributes for an argument or return
747// value of the specified type.  The value V is printed in error messages.
748void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
749                                    bool isReturnValue, const Value *V) {
750  if (!Attrs.hasAttributes(Idx))
751    return;
752
753  VerifyAttributeTypes(Attrs, Idx, false, V);
754
755  if (isReturnValue)
756    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
757            !Attrs.hasAttribute(Idx, Attribute::Nest) &&
758            !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
759            !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
760            !Attrs.hasAttribute(Idx, Attribute::Returned) &&
761            !Attrs.hasAttribute(Idx, Attribute::InAlloca),
762            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
763            "'returned' do not apply to return values!", V);
764
765  // Check for mutually incompatible attributes.  Only inreg is compatible with
766  // sret.
767  unsigned AttrCount = 0;
768  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
769  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
770  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
771               Attrs.hasAttribute(Idx, Attribute::InReg);
772  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
773  Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
774                          "and 'sret' are incompatible!", V);
775
776  Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
777            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
778          "'inalloca and readonly' are incompatible!", V);
779
780  Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
781            Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
782          "'sret and returned' are incompatible!", V);
783
784  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
785            Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
786          "'zeroext and signext' are incompatible!", V);
787
788  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
789            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
790          "'readnone and readonly' are incompatible!", V);
791
792  Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
793            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
794          "'noinline and alwaysinline' are incompatible!", V);
795
796  Assert1(!AttrBuilder(Attrs, Idx).
797            hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
798          "Wrong types for attribute: " +
799          AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
800
801  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
802    if (!PTy->getElementType()->isSized()) {
803      Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
804              !Attrs.hasAttribute(Idx, Attribute::InAlloca),
805              "Attributes 'byval' and 'inalloca' do not support unsized types!",
806              V);
807    }
808  } else {
809    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
810            "Attribute 'byval' only applies to parameters with pointer type!",
811            V);
812  }
813}
814
815// VerifyFunctionAttrs - Check parameter attributes against a function type.
816// The value V is printed in error messages.
817void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
818                                   const Value *V) {
819  if (Attrs.isEmpty())
820    return;
821
822  bool SawNest = false;
823  bool SawReturned = false;
824
825  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
826    unsigned Idx = Attrs.getSlotIndex(i);
827
828    Type *Ty;
829    if (Idx == 0)
830      Ty = FT->getReturnType();
831    else if (Idx-1 < FT->getNumParams())
832      Ty = FT->getParamType(Idx-1);
833    else
834      break;  // VarArgs attributes, verified elsewhere.
835
836    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
837
838    if (Idx == 0)
839      continue;
840
841    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
842      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
843      SawNest = true;
844    }
845
846    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
847      Assert1(!SawReturned, "More than one parameter has attribute returned!",
848              V);
849      Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
850              "argument and return types for 'returned' attribute", V);
851      SawReturned = true;
852    }
853
854    if (Attrs.hasAttribute(Idx, Attribute::StructRet))
855      Assert1(Idx == 1, "Attribute sret is not on first parameter!", V);
856
857    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
858      Assert1(Idx == FT->getNumParams(),
859              "inalloca isn't on the last parameter!", V);
860    }
861  }
862
863  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
864    return;
865
866  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
867
868  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
869                               Attribute::ReadNone) &&
870            Attrs.hasAttribute(AttributeSet::FunctionIndex,
871                               Attribute::ReadOnly)),
872          "Attributes 'readnone and readonly' are incompatible!", V);
873
874  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
875                               Attribute::NoInline) &&
876            Attrs.hasAttribute(AttributeSet::FunctionIndex,
877                               Attribute::AlwaysInline)),
878          "Attributes 'noinline and alwaysinline' are incompatible!", V);
879
880  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
881                         Attribute::OptimizeNone)) {
882    Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
883                               Attribute::NoInline),
884            "Attribute 'optnone' requires 'noinline'!", V);
885
886    Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
887                                Attribute::OptimizeForSize),
888            "Attributes 'optsize and optnone' are incompatible!", V);
889
890    Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
891                                Attribute::MinSize),
892            "Attributes 'minsize and optnone' are incompatible!", V);
893  }
894}
895
896void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
897  // Get the size of the types in bits, we'll need this later
898  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
899  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
900
901  // BitCast implies a no-op cast of type only. No bits change.
902  // However, you can't cast pointers to anything but pointers.
903  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
904          "Bitcast requires both operands to be pointer or neither", V);
905  Assert1(SrcBitSize == DestBitSize,
906          "Bitcast requires types of same width", V);
907
908  // Disallow aggregates.
909  Assert1(!SrcTy->isAggregateType(),
910          "Bitcast operand must not be aggregate", V);
911  Assert1(!DestTy->isAggregateType(),
912          "Bitcast type must not be aggregate", V);
913
914  // Without datalayout, assume all address spaces are the same size.
915  // Don't check if both types are not pointers.
916  // Skip casts between scalars and vectors.
917  if (!DL ||
918      !SrcTy->isPtrOrPtrVectorTy() ||
919      !DestTy->isPtrOrPtrVectorTy() ||
920      SrcTy->isVectorTy() != DestTy->isVectorTy()) {
921    return;
922  }
923
924  unsigned SrcAS = SrcTy->getPointerAddressSpace();
925  unsigned DstAS = DestTy->getPointerAddressSpace();
926
927  Assert1(SrcAS == DstAS,
928          "Bitcasts between pointers of different address spaces is not legal."
929          "Use AddrSpaceCast instead.", V);
930}
931
932void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
933  if (CE->getOpcode() == Instruction::BitCast) {
934    Type *SrcTy = CE->getOperand(0)->getType();
935    Type *DstTy = CE->getType();
936    VerifyBitcastType(CE, DstTy, SrcTy);
937  }
938}
939
940bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
941  if (Attrs.getNumSlots() == 0)
942    return true;
943
944  unsigned LastSlot = Attrs.getNumSlots() - 1;
945  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
946  if (LastIndex <= Params
947      || (LastIndex == AttributeSet::FunctionIndex
948          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
949    return true;
950
951  return false;
952}
953
954// visitFunction - Verify that a function is ok.
955//
956void Verifier::visitFunction(const Function &F) {
957  // Check function arguments.
958  FunctionType *FT = F.getFunctionType();
959  unsigned NumArgs = F.arg_size();
960
961  Assert1(Context == &F.getContext(),
962          "Function context does not match Module context!", &F);
963
964  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
965  Assert2(FT->getNumParams() == NumArgs,
966          "# formal arguments must match # of arguments for function type!",
967          &F, FT);
968  Assert1(F.getReturnType()->isFirstClassType() ||
969          F.getReturnType()->isVoidTy() ||
970          F.getReturnType()->isStructTy(),
971          "Functions cannot return aggregate values!", &F);
972
973  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
974          "Invalid struct return type!", &F);
975
976  AttributeSet Attrs = F.getAttributes();
977
978  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
979          "Attribute after last parameter!", &F);
980
981  // Check function attributes.
982  VerifyFunctionAttrs(FT, Attrs, &F);
983
984  // On function declarations/definitions, we do not support the builtin
985  // attribute. We do not check this in VerifyFunctionAttrs since that is
986  // checking for Attributes that can/can not ever be on functions.
987  Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
988                              Attribute::Builtin),
989          "Attribute 'builtin' can only be applied to a callsite.", &F);
990
991  // Check that this function meets the restrictions on this calling convention.
992  switch (F.getCallingConv()) {
993  default:
994    break;
995  case CallingConv::C:
996    break;
997  case CallingConv::Fast:
998  case CallingConv::Cold:
999  case CallingConv::X86_FastCall:
1000  case CallingConv::X86_ThisCall:
1001  case CallingConv::Intel_OCL_BI:
1002  case CallingConv::PTX_Kernel:
1003  case CallingConv::PTX_Device:
1004    Assert1(!F.isVarArg(),
1005            "Varargs functions must have C calling conventions!", &F);
1006    break;
1007  }
1008
1009  bool isLLVMdotName = F.getName().size() >= 5 &&
1010                       F.getName().substr(0, 5) == "llvm.";
1011
1012  // Check that the argument values match the function type for this function...
1013  unsigned i = 0;
1014  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1015       ++I, ++i) {
1016    Assert2(I->getType() == FT->getParamType(i),
1017            "Argument value does not match function argument type!",
1018            I, FT->getParamType(i));
1019    Assert1(I->getType()->isFirstClassType(),
1020            "Function arguments must have first-class types!", I);
1021    if (!isLLVMdotName)
1022      Assert2(!I->getType()->isMetadataTy(),
1023              "Function takes metadata but isn't an intrinsic", I, &F);
1024  }
1025
1026  if (F.isMaterializable()) {
1027    // Function has a body somewhere we can't see.
1028  } else if (F.isDeclaration()) {
1029    Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1030            "invalid linkage type for function declaration", &F);
1031  } else {
1032    // Verify that this function (which has a body) is not named "llvm.*".  It
1033    // is not legal to define intrinsics.
1034    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1035
1036    // Check the entry node
1037    const BasicBlock *Entry = &F.getEntryBlock();
1038    Assert1(pred_begin(Entry) == pred_end(Entry),
1039            "Entry block to function must not have predecessors!", Entry);
1040
1041    // The address of the entry block cannot be taken, unless it is dead.
1042    if (Entry->hasAddressTaken()) {
1043      Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
1044              "blockaddress may not be used with the entry block!", Entry);
1045    }
1046  }
1047
1048  // If this function is actually an intrinsic, verify that it is only used in
1049  // direct call/invokes, never having its "address taken".
1050  if (F.getIntrinsicID()) {
1051    const User *U;
1052    if (F.hasAddressTaken(&U))
1053      Assert1(0, "Invalid user of intrinsic instruction!", U);
1054  }
1055
1056  Assert1(!F.hasDLLImportStorageClass() ||
1057          (F.isDeclaration() && F.hasExternalLinkage()) ||
1058          F.hasAvailableExternallyLinkage(),
1059          "Function is marked as dllimport, but not external.", &F);
1060}
1061
1062// verifyBasicBlock - Verify that a basic block is well formed...
1063//
1064void Verifier::visitBasicBlock(BasicBlock &BB) {
1065  InstsInThisBlock.clear();
1066
1067  // Ensure that basic blocks have terminators!
1068  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1069
1070  // Check constraints that this basic block imposes on all of the PHI nodes in
1071  // it.
1072  if (isa<PHINode>(BB.front())) {
1073    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1074    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1075    std::sort(Preds.begin(), Preds.end());
1076    PHINode *PN;
1077    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1078      // Ensure that PHI nodes have at least one entry!
1079      Assert1(PN->getNumIncomingValues() != 0,
1080              "PHI nodes must have at least one entry.  If the block is dead, "
1081              "the PHI should be removed!", PN);
1082      Assert1(PN->getNumIncomingValues() == Preds.size(),
1083              "PHINode should have one entry for each predecessor of its "
1084              "parent basic block!", PN);
1085
1086      // Get and sort all incoming values in the PHI node...
1087      Values.clear();
1088      Values.reserve(PN->getNumIncomingValues());
1089      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1090        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1091                                        PN->getIncomingValue(i)));
1092      std::sort(Values.begin(), Values.end());
1093
1094      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1095        // Check to make sure that if there is more than one entry for a
1096        // particular basic block in this PHI node, that the incoming values are
1097        // all identical.
1098        //
1099        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
1100                Values[i].second == Values[i-1].second,
1101                "PHI node has multiple entries for the same basic block with "
1102                "different incoming values!", PN, Values[i].first,
1103                Values[i].second, Values[i-1].second);
1104
1105        // Check to make sure that the predecessors and PHI node entries are
1106        // matched up.
1107        Assert3(Values[i].first == Preds[i],
1108                "PHI node entries do not match predecessors!", PN,
1109                Values[i].first, Preds[i]);
1110      }
1111    }
1112  }
1113}
1114
1115void Verifier::visitTerminatorInst(TerminatorInst &I) {
1116  // Ensure that terminators only exist at the end of the basic block.
1117  Assert1(&I == I.getParent()->getTerminator(),
1118          "Terminator found in the middle of a basic block!", I.getParent());
1119  visitInstruction(I);
1120}
1121
1122void Verifier::visitBranchInst(BranchInst &BI) {
1123  if (BI.isConditional()) {
1124    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
1125            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1126  }
1127  visitTerminatorInst(BI);
1128}
1129
1130void Verifier::visitReturnInst(ReturnInst &RI) {
1131  Function *F = RI.getParent()->getParent();
1132  unsigned N = RI.getNumOperands();
1133  if (F->getReturnType()->isVoidTy())
1134    Assert2(N == 0,
1135            "Found return instr that returns non-void in Function of void "
1136            "return type!", &RI, F->getReturnType());
1137  else
1138    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1139            "Function return type does not match operand "
1140            "type of return inst!", &RI, F->getReturnType());
1141
1142  // Check to make sure that the return value has necessary properties for
1143  // terminators...
1144  visitTerminatorInst(RI);
1145}
1146
1147void Verifier::visitSwitchInst(SwitchInst &SI) {
1148  // Check to make sure that all of the constants in the switch instruction
1149  // have the same type as the switched-on value.
1150  Type *SwitchTy = SI.getCondition()->getType();
1151  SmallPtrSet<ConstantInt*, 32> Constants;
1152  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1153    Assert1(i.getCaseValue()->getType() == SwitchTy,
1154            "Switch constants must all be same type as switch value!", &SI);
1155    Assert2(Constants.insert(i.getCaseValue()),
1156            "Duplicate integer as switch case", &SI, i.getCaseValue());
1157  }
1158
1159  visitTerminatorInst(SI);
1160}
1161
1162void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1163  Assert1(BI.getAddress()->getType()->isPointerTy(),
1164          "Indirectbr operand must have pointer type!", &BI);
1165  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1166    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1167            "Indirectbr destinations must all have pointer type!", &BI);
1168
1169  visitTerminatorInst(BI);
1170}
1171
1172void Verifier::visitSelectInst(SelectInst &SI) {
1173  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1174                                          SI.getOperand(2)),
1175          "Invalid operands for select instruction!", &SI);
1176
1177  Assert1(SI.getTrueValue()->getType() == SI.getType(),
1178          "Select values must have same type as select instruction!", &SI);
1179  visitInstruction(SI);
1180}
1181
1182/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1183/// a pass, if any exist, it's an error.
1184///
1185void Verifier::visitUserOp1(Instruction &I) {
1186  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1187}
1188
1189void Verifier::visitTruncInst(TruncInst &I) {
1190  // Get the source and destination types
1191  Type *SrcTy = I.getOperand(0)->getType();
1192  Type *DestTy = I.getType();
1193
1194  // Get the size of the types in bits, we'll need this later
1195  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1196  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1197
1198  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1199  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1200  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1201          "trunc source and destination must both be a vector or neither", &I);
1202  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1203
1204  visitInstruction(I);
1205}
1206
1207void Verifier::visitZExtInst(ZExtInst &I) {
1208  // Get the source and destination types
1209  Type *SrcTy = I.getOperand(0)->getType();
1210  Type *DestTy = I.getType();
1211
1212  // Get the size of the types in bits, we'll need this later
1213  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1214  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1215  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1216          "zext source and destination must both be a vector or neither", &I);
1217  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1218  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1219
1220  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1221
1222  visitInstruction(I);
1223}
1224
1225void Verifier::visitSExtInst(SExtInst &I) {
1226  // Get the source and destination types
1227  Type *SrcTy = I.getOperand(0)->getType();
1228  Type *DestTy = I.getType();
1229
1230  // Get the size of the types in bits, we'll need this later
1231  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1232  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1233
1234  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1235  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1236  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1237          "sext source and destination must both be a vector or neither", &I);
1238  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1239
1240  visitInstruction(I);
1241}
1242
1243void Verifier::visitFPTruncInst(FPTruncInst &I) {
1244  // Get the source and destination types
1245  Type *SrcTy = I.getOperand(0)->getType();
1246  Type *DestTy = I.getType();
1247  // Get the size of the types in bits, we'll need this later
1248  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1249  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1250
1251  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1252  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1253  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1254          "fptrunc source and destination must both be a vector or neither",&I);
1255  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1256
1257  visitInstruction(I);
1258}
1259
1260void Verifier::visitFPExtInst(FPExtInst &I) {
1261  // Get the source and destination types
1262  Type *SrcTy = I.getOperand(0)->getType();
1263  Type *DestTy = I.getType();
1264
1265  // Get the size of the types in bits, we'll need this later
1266  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1267  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1268
1269  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1270  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1271  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1272          "fpext source and destination must both be a vector or neither", &I);
1273  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1274
1275  visitInstruction(I);
1276}
1277
1278void Verifier::visitUIToFPInst(UIToFPInst &I) {
1279  // Get the source and destination types
1280  Type *SrcTy = I.getOperand(0)->getType();
1281  Type *DestTy = I.getType();
1282
1283  bool SrcVec = SrcTy->isVectorTy();
1284  bool DstVec = DestTy->isVectorTy();
1285
1286  Assert1(SrcVec == DstVec,
1287          "UIToFP source and dest must both be vector or scalar", &I);
1288  Assert1(SrcTy->isIntOrIntVectorTy(),
1289          "UIToFP source must be integer or integer vector", &I);
1290  Assert1(DestTy->isFPOrFPVectorTy(),
1291          "UIToFP result must be FP or FP vector", &I);
1292
1293  if (SrcVec && DstVec)
1294    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1295            cast<VectorType>(DestTy)->getNumElements(),
1296            "UIToFP source and dest vector length mismatch", &I);
1297
1298  visitInstruction(I);
1299}
1300
1301void Verifier::visitSIToFPInst(SIToFPInst &I) {
1302  // Get the source and destination types
1303  Type *SrcTy = I.getOperand(0)->getType();
1304  Type *DestTy = I.getType();
1305
1306  bool SrcVec = SrcTy->isVectorTy();
1307  bool DstVec = DestTy->isVectorTy();
1308
1309  Assert1(SrcVec == DstVec,
1310          "SIToFP source and dest must both be vector or scalar", &I);
1311  Assert1(SrcTy->isIntOrIntVectorTy(),
1312          "SIToFP source must be integer or integer vector", &I);
1313  Assert1(DestTy->isFPOrFPVectorTy(),
1314          "SIToFP result must be FP or FP vector", &I);
1315
1316  if (SrcVec && DstVec)
1317    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1318            cast<VectorType>(DestTy)->getNumElements(),
1319            "SIToFP source and dest vector length mismatch", &I);
1320
1321  visitInstruction(I);
1322}
1323
1324void Verifier::visitFPToUIInst(FPToUIInst &I) {
1325  // Get the source and destination types
1326  Type *SrcTy = I.getOperand(0)->getType();
1327  Type *DestTy = I.getType();
1328
1329  bool SrcVec = SrcTy->isVectorTy();
1330  bool DstVec = DestTy->isVectorTy();
1331
1332  Assert1(SrcVec == DstVec,
1333          "FPToUI source and dest must both be vector or scalar", &I);
1334  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1335          &I);
1336  Assert1(DestTy->isIntOrIntVectorTy(),
1337          "FPToUI result must be integer or integer vector", &I);
1338
1339  if (SrcVec && DstVec)
1340    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1341            cast<VectorType>(DestTy)->getNumElements(),
1342            "FPToUI source and dest vector length mismatch", &I);
1343
1344  visitInstruction(I);
1345}
1346
1347void Verifier::visitFPToSIInst(FPToSIInst &I) {
1348  // Get the source and destination types
1349  Type *SrcTy = I.getOperand(0)->getType();
1350  Type *DestTy = I.getType();
1351
1352  bool SrcVec = SrcTy->isVectorTy();
1353  bool DstVec = DestTy->isVectorTy();
1354
1355  Assert1(SrcVec == DstVec,
1356          "FPToSI source and dest must both be vector or scalar", &I);
1357  Assert1(SrcTy->isFPOrFPVectorTy(),
1358          "FPToSI source must be FP or FP vector", &I);
1359  Assert1(DestTy->isIntOrIntVectorTy(),
1360          "FPToSI result must be integer or integer vector", &I);
1361
1362  if (SrcVec && DstVec)
1363    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1364            cast<VectorType>(DestTy)->getNumElements(),
1365            "FPToSI source and dest vector length mismatch", &I);
1366
1367  visitInstruction(I);
1368}
1369
1370void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1371  // Get the source and destination types
1372  Type *SrcTy = I.getOperand(0)->getType();
1373  Type *DestTy = I.getType();
1374
1375  Assert1(SrcTy->getScalarType()->isPointerTy(),
1376          "PtrToInt source must be pointer", &I);
1377  Assert1(DestTy->getScalarType()->isIntegerTy(),
1378          "PtrToInt result must be integral", &I);
1379  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1380          "PtrToInt type mismatch", &I);
1381
1382  if (SrcTy->isVectorTy()) {
1383    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1384    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1385    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1386          "PtrToInt Vector width mismatch", &I);
1387  }
1388
1389  visitInstruction(I);
1390}
1391
1392void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1393  // Get the source and destination types
1394  Type *SrcTy = I.getOperand(0)->getType();
1395  Type *DestTy = I.getType();
1396
1397  Assert1(SrcTy->getScalarType()->isIntegerTy(),
1398          "IntToPtr source must be an integral", &I);
1399  Assert1(DestTy->getScalarType()->isPointerTy(),
1400          "IntToPtr result must be a pointer",&I);
1401  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1402          "IntToPtr type mismatch", &I);
1403  if (SrcTy->isVectorTy()) {
1404    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1405    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1406    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1407          "IntToPtr Vector width mismatch", &I);
1408  }
1409  visitInstruction(I);
1410}
1411
1412void Verifier::visitBitCastInst(BitCastInst &I) {
1413  Type *SrcTy = I.getOperand(0)->getType();
1414  Type *DestTy = I.getType();
1415  VerifyBitcastType(&I, DestTy, SrcTy);
1416  visitInstruction(I);
1417}
1418
1419void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
1420  Type *SrcTy = I.getOperand(0)->getType();
1421  Type *DestTy = I.getType();
1422
1423  Assert1(SrcTy->isPtrOrPtrVectorTy(),
1424          "AddrSpaceCast source must be a pointer", &I);
1425  Assert1(DestTy->isPtrOrPtrVectorTy(),
1426          "AddrSpaceCast result must be a pointer", &I);
1427  Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
1428          "AddrSpaceCast must be between different address spaces", &I);
1429  if (SrcTy->isVectorTy())
1430    Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
1431            "AddrSpaceCast vector pointer number of elements mismatch", &I);
1432  visitInstruction(I);
1433}
1434
1435/// visitPHINode - Ensure that a PHI node is well formed.
1436///
1437void Verifier::visitPHINode(PHINode &PN) {
1438  // Ensure that the PHI nodes are all grouped together at the top of the block.
1439  // This can be tested by checking whether the instruction before this is
1440  // either nonexistent (because this is begin()) or is a PHI node.  If not,
1441  // then there is some other instruction before a PHI.
1442  Assert2(&PN == &PN.getParent()->front() ||
1443          isa<PHINode>(--BasicBlock::iterator(&PN)),
1444          "PHI nodes not grouped at top of basic block!",
1445          &PN, PN.getParent());
1446
1447  // Check that all of the values of the PHI node have the same type as the
1448  // result, and that the incoming blocks are really basic blocks.
1449  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1450    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1451            "PHI node operands are not the same type as the result!", &PN);
1452  }
1453
1454  // All other PHI node constraints are checked in the visitBasicBlock method.
1455
1456  visitInstruction(PN);
1457}
1458
1459void Verifier::VerifyCallSite(CallSite CS) {
1460  Instruction *I = CS.getInstruction();
1461
1462  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1463          "Called function must be a pointer!", I);
1464  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1465
1466  Assert1(FPTy->getElementType()->isFunctionTy(),
1467          "Called function is not pointer to function type!", I);
1468  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1469
1470  // Verify that the correct number of arguments are being passed
1471  if (FTy->isVarArg())
1472    Assert1(CS.arg_size() >= FTy->getNumParams(),
1473            "Called function requires more parameters than were provided!",I);
1474  else
1475    Assert1(CS.arg_size() == FTy->getNumParams(),
1476            "Incorrect number of arguments passed to called function!", I);
1477
1478  // Verify that all arguments to the call match the function type.
1479  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1480    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1481            "Call parameter type does not match function signature!",
1482            CS.getArgument(i), FTy->getParamType(i), I);
1483
1484  AttributeSet Attrs = CS.getAttributes();
1485
1486  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1487          "Attribute after last parameter!", I);
1488
1489  // Verify call attributes.
1490  VerifyFunctionAttrs(FTy, Attrs, I);
1491
1492  if (FTy->isVarArg()) {
1493    // FIXME? is 'nest' even legal here?
1494    bool SawNest = false;
1495    bool SawReturned = false;
1496
1497    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
1498      if (Attrs.hasAttribute(Idx, Attribute::Nest))
1499        SawNest = true;
1500      if (Attrs.hasAttribute(Idx, Attribute::Returned))
1501        SawReturned = true;
1502    }
1503
1504    // Check attributes on the varargs part.
1505    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1506      Type *Ty = CS.getArgument(Idx-1)->getType();
1507      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
1508
1509      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1510        Assert1(!SawNest, "More than one parameter has attribute nest!", I);
1511        SawNest = true;
1512      }
1513
1514      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1515        Assert1(!SawReturned, "More than one parameter has attribute returned!",
1516                I);
1517        Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
1518                "Incompatible argument and return types for 'returned' "
1519                "attribute", I);
1520        SawReturned = true;
1521      }
1522
1523      Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1524              "Attribute 'sret' cannot be used for vararg call arguments!", I);
1525
1526      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
1527        Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
1528                I);
1529    }
1530  }
1531
1532  // Verify that there's no metadata unless it's a direct call to an intrinsic.
1533  if (CS.getCalledFunction() == 0 ||
1534      !CS.getCalledFunction()->getName().startswith("llvm.")) {
1535    for (FunctionType::param_iterator PI = FTy->param_begin(),
1536           PE = FTy->param_end(); PI != PE; ++PI)
1537      Assert1(!(*PI)->isMetadataTy(),
1538              "Function has metadata parameter but isn't an intrinsic", I);
1539  }
1540
1541  visitInstruction(*I);
1542}
1543
1544void Verifier::visitCallInst(CallInst &CI) {
1545  VerifyCallSite(&CI);
1546
1547  if (Function *F = CI.getCalledFunction())
1548    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1549      visitIntrinsicFunctionCall(ID, CI);
1550}
1551
1552void Verifier::visitInvokeInst(InvokeInst &II) {
1553  VerifyCallSite(&II);
1554
1555  // Verify that there is a landingpad instruction as the first non-PHI
1556  // instruction of the 'unwind' destination.
1557  Assert1(II.getUnwindDest()->isLandingPad(),
1558          "The unwind destination does not have a landingpad instruction!",&II);
1559
1560  visitTerminatorInst(II);
1561}
1562
1563/// visitBinaryOperator - Check that both arguments to the binary operator are
1564/// of the same type!
1565///
1566void Verifier::visitBinaryOperator(BinaryOperator &B) {
1567  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1568          "Both operands to a binary operator are not of the same type!", &B);
1569
1570  switch (B.getOpcode()) {
1571  // Check that integer arithmetic operators are only used with
1572  // integral operands.
1573  case Instruction::Add:
1574  case Instruction::Sub:
1575  case Instruction::Mul:
1576  case Instruction::SDiv:
1577  case Instruction::UDiv:
1578  case Instruction::SRem:
1579  case Instruction::URem:
1580    Assert1(B.getType()->isIntOrIntVectorTy(),
1581            "Integer arithmetic operators only work with integral types!", &B);
1582    Assert1(B.getType() == B.getOperand(0)->getType(),
1583            "Integer arithmetic operators must have same type "
1584            "for operands and result!", &B);
1585    break;
1586  // Check that floating-point arithmetic operators are only used with
1587  // floating-point operands.
1588  case Instruction::FAdd:
1589  case Instruction::FSub:
1590  case Instruction::FMul:
1591  case Instruction::FDiv:
1592  case Instruction::FRem:
1593    Assert1(B.getType()->isFPOrFPVectorTy(),
1594            "Floating-point arithmetic operators only work with "
1595            "floating-point types!", &B);
1596    Assert1(B.getType() == B.getOperand(0)->getType(),
1597            "Floating-point arithmetic operators must have same type "
1598            "for operands and result!", &B);
1599    break;
1600  // Check that logical operators are only used with integral operands.
1601  case Instruction::And:
1602  case Instruction::Or:
1603  case Instruction::Xor:
1604    Assert1(B.getType()->isIntOrIntVectorTy(),
1605            "Logical operators only work with integral types!", &B);
1606    Assert1(B.getType() == B.getOperand(0)->getType(),
1607            "Logical operators must have same type for operands and result!",
1608            &B);
1609    break;
1610  case Instruction::Shl:
1611  case Instruction::LShr:
1612  case Instruction::AShr:
1613    Assert1(B.getType()->isIntOrIntVectorTy(),
1614            "Shifts only work with integral types!", &B);
1615    Assert1(B.getType() == B.getOperand(0)->getType(),
1616            "Shift return type must be same as operands!", &B);
1617    break;
1618  default:
1619    llvm_unreachable("Unknown BinaryOperator opcode!");
1620  }
1621
1622  visitInstruction(B);
1623}
1624
1625void Verifier::visitICmpInst(ICmpInst &IC) {
1626  // Check that the operands are the same type
1627  Type *Op0Ty = IC.getOperand(0)->getType();
1628  Type *Op1Ty = IC.getOperand(1)->getType();
1629  Assert1(Op0Ty == Op1Ty,
1630          "Both operands to ICmp instruction are not of the same type!", &IC);
1631  // Check that the operands are the right type
1632  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1633          "Invalid operand types for ICmp instruction", &IC);
1634  // Check that the predicate is valid.
1635  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1636          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1637          "Invalid predicate in ICmp instruction!", &IC);
1638
1639  visitInstruction(IC);
1640}
1641
1642void Verifier::visitFCmpInst(FCmpInst &FC) {
1643  // Check that the operands are the same type
1644  Type *Op0Ty = FC.getOperand(0)->getType();
1645  Type *Op1Ty = FC.getOperand(1)->getType();
1646  Assert1(Op0Ty == Op1Ty,
1647          "Both operands to FCmp instruction are not of the same type!", &FC);
1648  // Check that the operands are the right type
1649  Assert1(Op0Ty->isFPOrFPVectorTy(),
1650          "Invalid operand types for FCmp instruction", &FC);
1651  // Check that the predicate is valid.
1652  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1653          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1654          "Invalid predicate in FCmp instruction!", &FC);
1655
1656  visitInstruction(FC);
1657}
1658
1659void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1660  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1661                                              EI.getOperand(1)),
1662          "Invalid extractelement operands!", &EI);
1663  visitInstruction(EI);
1664}
1665
1666void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1667  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1668                                             IE.getOperand(1),
1669                                             IE.getOperand(2)),
1670          "Invalid insertelement operands!", &IE);
1671  visitInstruction(IE);
1672}
1673
1674void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1675  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1676                                             SV.getOperand(2)),
1677          "Invalid shufflevector operands!", &SV);
1678  visitInstruction(SV);
1679}
1680
1681void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1682  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1683
1684  Assert1(isa<PointerType>(TargetTy),
1685    "GEP base pointer is not a vector or a vector of pointers", &GEP);
1686  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1687          "GEP into unsized type!", &GEP);
1688  Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1689          GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1690          &GEP);
1691
1692  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1693  Type *ElTy =
1694    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1695  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1696
1697  Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1698          cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1699          == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1700
1701  if (GEP.getPointerOperandType()->isVectorTy()) {
1702    // Additional checks for vector GEPs.
1703    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1704    Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1705            "Vector GEP result width doesn't match operand's", &GEP);
1706    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1707      Type *IndexTy = Idxs[i]->getType();
1708      Assert1(IndexTy->isVectorTy(),
1709              "Vector GEP must have vector indices!", &GEP);
1710      unsigned IndexWidth = IndexTy->getVectorNumElements();
1711      Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1712    }
1713  }
1714  visitInstruction(GEP);
1715}
1716
1717static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1718  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1719}
1720
1721void Verifier::visitLoadInst(LoadInst &LI) {
1722  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1723  Assert1(PTy, "Load operand must be a pointer.", &LI);
1724  Type *ElTy = PTy->getElementType();
1725  Assert2(ElTy == LI.getType(),
1726          "Load result type does not match pointer operand type!", &LI, ElTy);
1727  if (LI.isAtomic()) {
1728    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1729            "Load cannot have Release ordering", &LI);
1730    Assert1(LI.getAlignment() != 0,
1731            "Atomic load must specify explicit alignment", &LI);
1732    if (!ElTy->isPointerTy()) {
1733      Assert2(ElTy->isIntegerTy(),
1734              "atomic store operand must have integer type!",
1735              &LI, ElTy);
1736      unsigned Size = ElTy->getPrimitiveSizeInBits();
1737      Assert2(Size >= 8 && !(Size & (Size - 1)),
1738              "atomic store operand must be power-of-two byte-sized integer",
1739              &LI, ElTy);
1740    }
1741  } else {
1742    Assert1(LI.getSynchScope() == CrossThread,
1743            "Non-atomic load cannot have SynchronizationScope specified", &LI);
1744  }
1745
1746  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1747    unsigned NumOperands = Range->getNumOperands();
1748    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1749    unsigned NumRanges = NumOperands / 2;
1750    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1751
1752    ConstantRange LastRange(1); // Dummy initial value
1753    for (unsigned i = 0; i < NumRanges; ++i) {
1754      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1755      Assert1(Low, "The lower limit must be an integer!", Low);
1756      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1757      Assert1(High, "The upper limit must be an integer!", High);
1758      Assert1(High->getType() == Low->getType() &&
1759              High->getType() == ElTy, "Range types must match load type!",
1760              &LI);
1761
1762      APInt HighV = High->getValue();
1763      APInt LowV = Low->getValue();
1764      ConstantRange CurRange(LowV, HighV);
1765      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1766              "Range must not be empty!", Range);
1767      if (i != 0) {
1768        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1769                "Intervals are overlapping", Range);
1770        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1771                Range);
1772        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1773                Range);
1774      }
1775      LastRange = ConstantRange(LowV, HighV);
1776    }
1777    if (NumRanges > 2) {
1778      APInt FirstLow =
1779        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1780      APInt FirstHigh =
1781        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1782      ConstantRange FirstRange(FirstLow, FirstHigh);
1783      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1784              "Intervals are overlapping", Range);
1785      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1786              Range);
1787    }
1788
1789
1790  }
1791
1792  visitInstruction(LI);
1793}
1794
1795void Verifier::visitStoreInst(StoreInst &SI) {
1796  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1797  Assert1(PTy, "Store operand must be a pointer.", &SI);
1798  Type *ElTy = PTy->getElementType();
1799  Assert2(ElTy == SI.getOperand(0)->getType(),
1800          "Stored value type does not match pointer operand type!",
1801          &SI, ElTy);
1802  if (SI.isAtomic()) {
1803    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1804            "Store cannot have Acquire ordering", &SI);
1805    Assert1(SI.getAlignment() != 0,
1806            "Atomic store must specify explicit alignment", &SI);
1807    if (!ElTy->isPointerTy()) {
1808      Assert2(ElTy->isIntegerTy(),
1809              "atomic store operand must have integer type!",
1810              &SI, ElTy);
1811      unsigned Size = ElTy->getPrimitiveSizeInBits();
1812      Assert2(Size >= 8 && !(Size & (Size - 1)),
1813              "atomic store operand must be power-of-two byte-sized integer",
1814              &SI, ElTy);
1815    }
1816  } else {
1817    Assert1(SI.getSynchScope() == CrossThread,
1818            "Non-atomic store cannot have SynchronizationScope specified", &SI);
1819  }
1820  visitInstruction(SI);
1821}
1822
1823void Verifier::visitAllocaInst(AllocaInst &AI) {
1824  SmallPtrSet<const Type*, 4> Visited;
1825  PointerType *PTy = AI.getType();
1826  Assert1(PTy->getAddressSpace() == 0,
1827          "Allocation instruction pointer not in the generic address space!",
1828          &AI);
1829  Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
1830          &AI);
1831  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1832          "Alloca array size must have integer type", &AI);
1833
1834  visitInstruction(AI);
1835}
1836
1837void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1838
1839  // FIXME: more conditions???
1840  Assert1(CXI.getSuccessOrdering() != NotAtomic,
1841          "cmpxchg instructions must be atomic.", &CXI);
1842  Assert1(CXI.getFailureOrdering() != NotAtomic,
1843          "cmpxchg instructions must be atomic.", &CXI);
1844  Assert1(CXI.getSuccessOrdering() != Unordered,
1845          "cmpxchg instructions cannot be unordered.", &CXI);
1846  Assert1(CXI.getFailureOrdering() != Unordered,
1847          "cmpxchg instructions cannot be unordered.", &CXI);
1848  Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
1849          "cmpxchg instructions be at least as constrained on success as fail",
1850          &CXI);
1851  Assert1(CXI.getFailureOrdering() != Release &&
1852              CXI.getFailureOrdering() != AcquireRelease,
1853          "cmpxchg failure ordering cannot include release semantics", &CXI);
1854
1855  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1856  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1857  Type *ElTy = PTy->getElementType();
1858  Assert2(ElTy->isIntegerTy(),
1859          "cmpxchg operand must have integer type!",
1860          &CXI, ElTy);
1861  unsigned Size = ElTy->getPrimitiveSizeInBits();
1862  Assert2(Size >= 8 && !(Size & (Size - 1)),
1863          "cmpxchg operand must be power-of-two byte-sized integer",
1864          &CXI, ElTy);
1865  Assert2(ElTy == CXI.getOperand(1)->getType(),
1866          "Expected value type does not match pointer operand type!",
1867          &CXI, ElTy);
1868  Assert2(ElTy == CXI.getOperand(2)->getType(),
1869          "Stored value type does not match pointer operand type!",
1870          &CXI, ElTy);
1871  visitInstruction(CXI);
1872}
1873
1874void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1875  Assert1(RMWI.getOrdering() != NotAtomic,
1876          "atomicrmw instructions must be atomic.", &RMWI);
1877  Assert1(RMWI.getOrdering() != Unordered,
1878          "atomicrmw instructions cannot be unordered.", &RMWI);
1879  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1880  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1881  Type *ElTy = PTy->getElementType();
1882  Assert2(ElTy->isIntegerTy(),
1883          "atomicrmw operand must have integer type!",
1884          &RMWI, ElTy);
1885  unsigned Size = ElTy->getPrimitiveSizeInBits();
1886  Assert2(Size >= 8 && !(Size & (Size - 1)),
1887          "atomicrmw operand must be power-of-two byte-sized integer",
1888          &RMWI, ElTy);
1889  Assert2(ElTy == RMWI.getOperand(1)->getType(),
1890          "Argument value type does not match pointer operand type!",
1891          &RMWI, ElTy);
1892  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1893          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1894          "Invalid binary operation!", &RMWI);
1895  visitInstruction(RMWI);
1896}
1897
1898void Verifier::visitFenceInst(FenceInst &FI) {
1899  const AtomicOrdering Ordering = FI.getOrdering();
1900  Assert1(Ordering == Acquire || Ordering == Release ||
1901          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1902          "fence instructions may only have "
1903          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1904  visitInstruction(FI);
1905}
1906
1907void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1908  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1909                                           EVI.getIndices()) ==
1910          EVI.getType(),
1911          "Invalid ExtractValueInst operands!", &EVI);
1912
1913  visitInstruction(EVI);
1914}
1915
1916void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1917  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1918                                           IVI.getIndices()) ==
1919          IVI.getOperand(1)->getType(),
1920          "Invalid InsertValueInst operands!", &IVI);
1921
1922  visitInstruction(IVI);
1923}
1924
1925void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1926  BasicBlock *BB = LPI.getParent();
1927
1928  // The landingpad instruction is ill-formed if it doesn't have any clauses and
1929  // isn't a cleanup.
1930  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1931          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1932
1933  // The landingpad instruction defines its parent as a landing pad block. The
1934  // landing pad block may be branched to only by the unwind edge of an invoke.
1935  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1936    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1937    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1938            "Block containing LandingPadInst must be jumped to "
1939            "only by the unwind edge of an invoke.", &LPI);
1940  }
1941
1942  // The landingpad instruction must be the first non-PHI instruction in the
1943  // block.
1944  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1945          "LandingPadInst not the first non-PHI instruction in the block.",
1946          &LPI);
1947
1948  // The personality functions for all landingpad instructions within the same
1949  // function should match.
1950  if (PersonalityFn)
1951    Assert1(LPI.getPersonalityFn() == PersonalityFn,
1952            "Personality function doesn't match others in function", &LPI);
1953  PersonalityFn = LPI.getPersonalityFn();
1954
1955  // All operands must be constants.
1956  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1957          &LPI);
1958  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1959    Value *Clause = LPI.getClause(i);
1960    Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1961    if (LPI.isCatch(i)) {
1962      Assert1(isa<PointerType>(Clause->getType()),
1963              "Catch operand does not have pointer type!", &LPI);
1964    } else {
1965      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1966      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1967              "Filter operand is not an array of constants!", &LPI);
1968    }
1969  }
1970
1971  visitInstruction(LPI);
1972}
1973
1974void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
1975  Instruction *Op = cast<Instruction>(I.getOperand(i));
1976  // If the we have an invalid invoke, don't try to compute the dominance.
1977  // We already reject it in the invoke specific checks and the dominance
1978  // computation doesn't handle multiple edges.
1979  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1980    if (II->getNormalDest() == II->getUnwindDest())
1981      return;
1982  }
1983
1984  const Use &U = I.getOperandUse(i);
1985  Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
1986          "Instruction does not dominate all uses!", Op, &I);
1987}
1988
1989/// verifyInstruction - Verify that an instruction is well formed.
1990///
1991void Verifier::visitInstruction(Instruction &I) {
1992  BasicBlock *BB = I.getParent();
1993  Assert1(BB, "Instruction not embedded in basic block!", &I);
1994
1995  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
1996    for (User *U : I.users()) {
1997      Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
1998              "Only PHI nodes may reference their own value!", &I);
1999    }
2000  }
2001
2002  // Check that void typed values don't have names
2003  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
2004          "Instruction has a name, but provides a void value!", &I);
2005
2006  // Check that the return value of the instruction is either void or a legal
2007  // value type.
2008  Assert1(I.getType()->isVoidTy() ||
2009          I.getType()->isFirstClassType(),
2010          "Instruction returns a non-scalar type!", &I);
2011
2012  // Check that the instruction doesn't produce metadata. Calls are already
2013  // checked against the callee type.
2014  Assert1(!I.getType()->isMetadataTy() ||
2015          isa<CallInst>(I) || isa<InvokeInst>(I),
2016          "Invalid use of metadata!", &I);
2017
2018  // Check that all uses of the instruction, if they are instructions
2019  // themselves, actually have parent basic blocks.  If the use is not an
2020  // instruction, it is an error!
2021  for (Use &U : I.uses()) {
2022    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2023      Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
2024              " embedded in a basic block!", &I, Used);
2025    else {
2026      CheckFailed("Use of instruction is not an instruction!", U);
2027      return;
2028    }
2029  }
2030
2031  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2032    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
2033
2034    // Check to make sure that only first-class-values are operands to
2035    // instructions.
2036    if (!I.getOperand(i)->getType()->isFirstClassType()) {
2037      Assert1(0, "Instruction operands must be first-class values!", &I);
2038    }
2039
2040    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2041      // Check to make sure that the "address of" an intrinsic function is never
2042      // taken.
2043      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
2044              "Cannot take the address of an intrinsic!", &I);
2045      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
2046              F->getIntrinsicID() == Intrinsic::donothing,
2047              "Cannot invoke an intrinsinc other than donothing", &I);
2048      Assert1(F->getParent() == M, "Referencing function in another module!",
2049              &I);
2050    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2051      Assert1(OpBB->getParent() == BB->getParent(),
2052              "Referring to a basic block in another function!", &I);
2053    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2054      Assert1(OpArg->getParent() == BB->getParent(),
2055              "Referring to an argument in another function!", &I);
2056    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2057      Assert1(GV->getParent() == M, "Referencing global in another module!",
2058              &I);
2059    } else if (isa<Instruction>(I.getOperand(i))) {
2060      verifyDominatesUse(I, i);
2061    } else if (isa<InlineAsm>(I.getOperand(i))) {
2062      Assert1((i + 1 == e && isa<CallInst>(I)) ||
2063              (i + 3 == e && isa<InvokeInst>(I)),
2064              "Cannot take the address of an inline asm!", &I);
2065    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2066      if (CE->getType()->isPtrOrPtrVectorTy()) {
2067        // If we have a ConstantExpr pointer, we need to see if it came from an
2068        // illegal bitcast (inttoptr <constant int> )
2069        SmallVector<const ConstantExpr *, 4> Stack;
2070        SmallPtrSet<const ConstantExpr *, 4> Visited;
2071        Stack.push_back(CE);
2072
2073        while (!Stack.empty()) {
2074          const ConstantExpr *V = Stack.pop_back_val();
2075          if (!Visited.insert(V))
2076            continue;
2077
2078          VerifyConstantExprBitcastType(V);
2079
2080          for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2081            if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2082              Stack.push_back(Op);
2083          }
2084        }
2085      }
2086    }
2087  }
2088
2089  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2090    Assert1(I.getType()->isFPOrFPVectorTy(),
2091            "fpmath requires a floating point result!", &I);
2092    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2093    Value *Op0 = MD->getOperand(0);
2094    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
2095      APFloat Accuracy = CFP0->getValueAPF();
2096      Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2097              "fpmath accuracy not a positive number!", &I);
2098    } else {
2099      Assert1(false, "invalid fpmath accuracy!", &I);
2100    }
2101  }
2102
2103  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
2104  Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
2105
2106  if (!DisableDebugInfoVerifier) {
2107    MD = I.getMetadata(LLVMContext::MD_dbg);
2108    Finder.processLocation(*M, DILocation(MD));
2109  }
2110
2111  InstsInThisBlock.insert(&I);
2112}
2113
2114/// VerifyIntrinsicType - Verify that the specified type (which comes from an
2115/// intrinsic argument or return value) matches the type constraints specified
2116/// by the .td file (e.g. an "any integer" argument really is an integer).
2117///
2118/// This return true on error but does not print a message.
2119bool Verifier::VerifyIntrinsicType(Type *Ty,
2120                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
2121                                   SmallVectorImpl<Type*> &ArgTys) {
2122  using namespace Intrinsic;
2123
2124  // If we ran out of descriptors, there are too many arguments.
2125  if (Infos.empty()) return true;
2126  IITDescriptor D = Infos.front();
2127  Infos = Infos.slice(1);
2128
2129  switch (D.Kind) {
2130  case IITDescriptor::Void: return !Ty->isVoidTy();
2131  case IITDescriptor::VarArg: return true;
2132  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
2133  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2134  case IITDescriptor::Half: return !Ty->isHalfTy();
2135  case IITDescriptor::Float: return !Ty->isFloatTy();
2136  case IITDescriptor::Double: return !Ty->isDoubleTy();
2137  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2138  case IITDescriptor::Vector: {
2139    VectorType *VT = dyn_cast<VectorType>(Ty);
2140    return VT == 0 || VT->getNumElements() != D.Vector_Width ||
2141           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2142  }
2143  case IITDescriptor::Pointer: {
2144    PointerType *PT = dyn_cast<PointerType>(Ty);
2145    return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2146           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2147  }
2148
2149  case IITDescriptor::Struct: {
2150    StructType *ST = dyn_cast<StructType>(Ty);
2151    if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
2152      return true;
2153
2154    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2155      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2156        return true;
2157    return false;
2158  }
2159
2160  case IITDescriptor::Argument:
2161    // Two cases here - If this is the second occurrence of an argument, verify
2162    // that the later instance matches the previous instance.
2163    if (D.getArgumentNumber() < ArgTys.size())
2164      return Ty != ArgTys[D.getArgumentNumber()];
2165
2166    // Otherwise, if this is the first instance of an argument, record it and
2167    // verify the "Any" kind.
2168    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2169    ArgTys.push_back(Ty);
2170
2171    switch (D.getArgumentKind()) {
2172    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2173    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
2174    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
2175    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2176    }
2177    llvm_unreachable("all argument kinds not covered");
2178
2179  case IITDescriptor::ExtendArgument: {
2180    // This may only be used when referring to a previous vector argument.
2181    if (D.getArgumentNumber() >= ArgTys.size())
2182      return true;
2183
2184    Type *NewTy = ArgTys[D.getArgumentNumber()];
2185    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2186      NewTy = VectorType::getExtendedElementVectorType(VTy);
2187    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2188      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
2189    else
2190      return true;
2191
2192    return Ty != NewTy;
2193  }
2194  case IITDescriptor::TruncArgument: {
2195    // This may only be used when referring to a previous vector argument.
2196    if (D.getArgumentNumber() >= ArgTys.size())
2197      return true;
2198
2199    Type *NewTy = ArgTys[D.getArgumentNumber()];
2200    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2201      NewTy = VectorType::getTruncatedElementVectorType(VTy);
2202    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2203      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
2204    else
2205      return true;
2206
2207    return Ty != NewTy;
2208  }
2209  case IITDescriptor::HalfVecArgument:
2210    // This may only be used when referring to a previous vector argument.
2211    return D.getArgumentNumber() >= ArgTys.size() ||
2212           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2213           VectorType::getHalfElementsVectorType(
2214                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2215  }
2216  llvm_unreachable("unhandled");
2217}
2218
2219/// \brief Verify if the intrinsic has variable arguments.
2220/// This method is intended to be called after all the fixed arguments have been
2221/// verified first.
2222///
2223/// This method returns true on error and does not print an error message.
2224bool
2225Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
2226                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
2227  using namespace Intrinsic;
2228
2229  // If there are no descriptors left, then it can't be a vararg.
2230  if (Infos.empty())
2231    return isVarArg ? true : false;
2232
2233  // There should be only one descriptor remaining at this point.
2234  if (Infos.size() != 1)
2235    return true;
2236
2237  // Check and verify the descriptor.
2238  IITDescriptor D = Infos.front();
2239  Infos = Infos.slice(1);
2240  if (D.Kind == IITDescriptor::VarArg)
2241    return isVarArg ? false : true;
2242
2243  return true;
2244}
2245
2246/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
2247///
2248void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
2249  Function *IF = CI.getCalledFunction();
2250  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
2251          IF);
2252
2253  // Verify that the intrinsic prototype lines up with what the .td files
2254  // describe.
2255  FunctionType *IFTy = IF->getFunctionType();
2256  bool IsVarArg = IFTy->isVarArg();
2257
2258  SmallVector<Intrinsic::IITDescriptor, 8> Table;
2259  getIntrinsicInfoTableEntries(ID, Table);
2260  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2261
2262  SmallVector<Type *, 4> ArgTys;
2263  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2264          "Intrinsic has incorrect return type!", IF);
2265  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2266    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2267            "Intrinsic has incorrect argument type!", IF);
2268
2269  // Verify if the intrinsic call matches the vararg property.
2270  if (IsVarArg)
2271    Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2272            "Intrinsic was not defined with variable arguments!", IF);
2273  else
2274    Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2275            "Callsite was not defined with variable arguments!", IF);
2276
2277  // All descriptors should be absorbed by now.
2278  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2279
2280  // Now that we have the intrinsic ID and the actual argument types (and we
2281  // know they are legal for the intrinsic!) get the intrinsic name through the
2282  // usual means.  This allows us to verify the mangling of argument types into
2283  // the name.
2284  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
2285  Assert1(ExpectedName == IF->getName(),
2286          "Intrinsic name not mangled correctly for type arguments! "
2287          "Should be: " + ExpectedName, IF);
2288
2289  // If the intrinsic takes MDNode arguments, verify that they are either global
2290  // or are local to *this* function.
2291  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2292    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2293      visitMDNode(*MD, CI.getParent()->getParent());
2294
2295  switch (ID) {
2296  default:
2297    break;
2298  case Intrinsic::ctlz:  // llvm.ctlz
2299  case Intrinsic::cttz:  // llvm.cttz
2300    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2301            "is_zero_undef argument of bit counting intrinsics must be a "
2302            "constant int", &CI);
2303    break;
2304  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
2305    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2306                "invalid llvm.dbg.declare intrinsic call 1", &CI);
2307    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2308    Assert1(MD->getNumOperands() == 1,
2309                "invalid llvm.dbg.declare intrinsic call 2", &CI);
2310    if (!DisableDebugInfoVerifier)
2311      Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
2312  } break;
2313  case Intrinsic::dbg_value: { //llvm.dbg.value
2314    if (!DisableDebugInfoVerifier) {
2315      Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2316              "invalid llvm.dbg.value intrinsic call 1", &CI);
2317      Finder.processValue(*M, cast<DbgValueInst>(&CI));
2318    }
2319    break;
2320  }
2321  case Intrinsic::memcpy:
2322  case Intrinsic::memmove:
2323  case Intrinsic::memset:
2324    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2325            "alignment argument of memory intrinsics must be a constant int",
2326            &CI);
2327    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2328            "isvolatile argument of memory intrinsics must be a constant int",
2329            &CI);
2330    break;
2331  case Intrinsic::gcroot:
2332  case Intrinsic::gcwrite:
2333  case Intrinsic::gcread:
2334    if (ID == Intrinsic::gcroot) {
2335      AllocaInst *AI =
2336        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2337      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2338      Assert1(isa<Constant>(CI.getArgOperand(1)),
2339              "llvm.gcroot parameter #2 must be a constant.", &CI);
2340      if (!AI->getType()->getElementType()->isPointerTy()) {
2341        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2342                "llvm.gcroot parameter #1 must either be a pointer alloca, "
2343                "or argument #2 must be a non-null constant.", &CI);
2344      }
2345    }
2346
2347    Assert1(CI.getParent()->getParent()->hasGC(),
2348            "Enclosing function does not use GC.", &CI);
2349    break;
2350  case Intrinsic::init_trampoline:
2351    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2352            "llvm.init_trampoline parameter #2 must resolve to a function.",
2353            &CI);
2354    break;
2355  case Intrinsic::prefetch:
2356    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2357            isa<ConstantInt>(CI.getArgOperand(2)) &&
2358            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2359            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2360            "invalid arguments to llvm.prefetch",
2361            &CI);
2362    break;
2363  case Intrinsic::stackprotector:
2364    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2365            "llvm.stackprotector parameter #2 must resolve to an alloca.",
2366            &CI);
2367    break;
2368  case Intrinsic::lifetime_start:
2369  case Intrinsic::lifetime_end:
2370  case Intrinsic::invariant_start:
2371    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2372            "size argument of memory use markers must be a constant integer",
2373            &CI);
2374    break;
2375  case Intrinsic::invariant_end:
2376    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2377            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2378    break;
2379  }
2380}
2381
2382void Verifier::verifyDebugInfo() {
2383  // Verify Debug Info.
2384  if (!DisableDebugInfoVerifier) {
2385    for (DICompileUnit CU : Finder.compile_units()) {
2386      Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
2387    }
2388    for (DISubprogram S : Finder.subprograms()) {
2389      Assert1(S.Verify(), "DISubprogram does not Verify!", S);
2390    }
2391    for (DIGlobalVariable GV : Finder.global_variables()) {
2392      Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
2393    }
2394    for (DIType T : Finder.types()) {
2395      Assert1(T.Verify(), "DIType does not Verify!", T);
2396    }
2397    for (DIScope S : Finder.scopes()) {
2398      Assert1(S.Verify(), "DIScope does not Verify!", S);
2399    }
2400  }
2401}
2402
2403//===----------------------------------------------------------------------===//
2404//  Implement the public interfaces to this file...
2405//===----------------------------------------------------------------------===//
2406
2407bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
2408  Function &F = const_cast<Function &>(f);
2409  assert(!F.isDeclaration() && "Cannot verify external functions");
2410
2411  raw_null_ostream NullStr;
2412  Verifier V(OS ? *OS : NullStr);
2413
2414  // Note that this function's return value is inverted from what you would
2415  // expect of a function called "verify".
2416  return !V.verify(F);
2417}
2418
2419bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
2420  raw_null_ostream NullStr;
2421  Verifier V(OS ? *OS : NullStr);
2422
2423  bool Broken = false;
2424  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
2425    if (!I->isDeclaration())
2426      Broken |= !V.verify(*I);
2427
2428  // Note that this function's return value is inverted from what you would
2429  // expect of a function called "verify".
2430  return !V.verify(M) || Broken;
2431}
2432
2433namespace {
2434struct VerifierLegacyPass : public FunctionPass {
2435  static char ID;
2436
2437  Verifier V;
2438  bool FatalErrors;
2439
2440  VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
2441    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2442  }
2443  explicit VerifierLegacyPass(bool FatalErrors)
2444      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2445    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2446  }
2447
2448  bool runOnFunction(Function &F) override {
2449    if (!V.verify(F) && FatalErrors)
2450      report_fatal_error("Broken function found, compilation aborted!");
2451
2452    return false;
2453  }
2454
2455  bool doFinalization(Module &M) override {
2456    if (!V.verify(M) && FatalErrors)
2457      report_fatal_error("Broken module found, compilation aborted!");
2458
2459    return false;
2460  }
2461
2462  void getAnalysisUsage(AnalysisUsage &AU) const override {
2463    AU.setPreservesAll();
2464  }
2465};
2466}
2467
2468char VerifierLegacyPass::ID = 0;
2469INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
2470
2471FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
2472  return new VerifierLegacyPass(FatalErrors);
2473}
2474
2475PreservedAnalyses VerifierPass::run(Module *M) {
2476  if (verifyModule(*M, &dbgs()) && FatalErrors)
2477    report_fatal_error("Broken module found, compilation aborted!");
2478
2479  return PreservedAnalyses::all();
2480}
2481
2482PreservedAnalyses VerifierPass::run(Function *F) {
2483  if (verifyFunction(*F, &dbgs()) && FatalErrors)
2484    report_fatal_error("Broken function found, compilation aborted!");
2485
2486  return PreservedAnalyses::all();
2487}
2488