Verifier.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/IR/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstIterator.h"
65#include "llvm/IR/InstVisitor.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/PassManager.h"
71#include "llvm/Pass.h"
72#include "llvm/Support/CommandLine.h"
73#include "llvm/Support/Debug.h"
74#include "llvm/Support/ErrorHandling.h"
75#include "llvm/Support/raw_ostream.h"
76#include <algorithm>
77#include <cstdarg>
78using namespace llvm;
79
80static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
81
82namespace {
83struct VerifierSupport {
84  raw_ostream &OS;
85  const Module *M;
86
87  /// \brief Track the brokenness of the module while recursively visiting.
88  bool Broken;
89
90  explicit VerifierSupport(raw_ostream &OS)
91      : OS(OS), M(nullptr), Broken(false) {}
92
93  void WriteValue(const Value *V) {
94    if (!V)
95      return;
96    if (isa<Instruction>(V)) {
97      OS << *V << '\n';
98    } else {
99      V->printAsOperand(OS, true, M);
100      OS << '\n';
101    }
102  }
103
104  void WriteType(Type *T) {
105    if (!T)
106      return;
107    OS << ' ' << *T;
108  }
109
110  // CheckFailed - A check failed, so print out the condition and the message
111  // that failed.  This provides a nice place to put a breakpoint if you want
112  // to see why something is not correct.
113  void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
114                   const Value *V2 = nullptr, const Value *V3 = nullptr,
115                   const Value *V4 = nullptr) {
116    OS << Message.str() << "\n";
117    WriteValue(V1);
118    WriteValue(V2);
119    WriteValue(V3);
120    WriteValue(V4);
121    Broken = true;
122  }
123
124  void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
125                   const Value *V3 = nullptr) {
126    OS << Message.str() << "\n";
127    WriteValue(V1);
128    WriteType(T2);
129    WriteValue(V3);
130    Broken = true;
131  }
132
133  void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
134                   Type *T3 = nullptr) {
135    OS << Message.str() << "\n";
136    WriteType(T1);
137    WriteType(T2);
138    WriteType(T3);
139    Broken = true;
140  }
141};
142class Verifier : public InstVisitor<Verifier>, VerifierSupport {
143  friend class InstVisitor<Verifier>;
144
145  LLVMContext *Context;
146  const DataLayout *DL;
147  DominatorTree DT;
148
149  /// \brief When verifying a basic block, keep track of all of the
150  /// instructions we have seen so far.
151  ///
152  /// This allows us to do efficient dominance checks for the case when an
153  /// instruction has an operand that is an instruction in the same block.
154  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
155
156  /// \brief Keep track of the metadata nodes that have been checked already.
157  SmallPtrSet<MDNode *, 32> MDNodes;
158
159  /// \brief The personality function referenced by the LandingPadInsts.
160  /// All LandingPadInsts within the same function must use the same
161  /// personality function.
162  const Value *PersonalityFn;
163
164public:
165  explicit Verifier(raw_ostream &OS = dbgs())
166      : VerifierSupport(OS), Context(nullptr), DL(nullptr),
167        PersonalityFn(nullptr) {}
168
169  bool verify(const Function &F) {
170    M = F.getParent();
171    Context = &M->getContext();
172
173    // First ensure the function is well-enough formed to compute dominance
174    // information.
175    if (F.empty()) {
176      OS << "Function '" << F.getName()
177         << "' does not contain an entry block!\n";
178      return false;
179    }
180    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
181      if (I->empty() || !I->back().isTerminator()) {
182        OS << "Basic Block in function '" << F.getName()
183           << "' does not have terminator!\n";
184        I->printAsOperand(OS, true);
185        OS << "\n";
186        return false;
187      }
188    }
189
190    // Now directly compute a dominance tree. We don't rely on the pass
191    // manager to provide this as it isolates us from a potentially
192    // out-of-date dominator tree and makes it significantly more complex to
193    // run this code outside of a pass manager.
194    // FIXME: It's really gross that we have to cast away constness here.
195    DT.recalculate(const_cast<Function &>(F));
196
197    Broken = false;
198    // FIXME: We strip const here because the inst visitor strips const.
199    visit(const_cast<Function &>(F));
200    InstsInThisBlock.clear();
201    PersonalityFn = nullptr;
202
203    return !Broken;
204  }
205
206  bool verify(const Module &M) {
207    this->M = &M;
208    Context = &M.getContext();
209    Broken = false;
210
211    // Scan through, checking all of the external function's linkage now...
212    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
213      visitGlobalValue(*I);
214
215      // Check to make sure function prototypes are okay.
216      if (I->isDeclaration())
217        visitFunction(*I);
218    }
219
220    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
221         I != E; ++I)
222      visitGlobalVariable(*I);
223
224    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
225         I != E; ++I)
226      visitGlobalAlias(*I);
227
228    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
229                                               E = M.named_metadata_end();
230         I != E; ++I)
231      visitNamedMDNode(*I);
232
233    visitModuleFlags(M);
234    visitModuleIdents(M);
235
236    return !Broken;
237  }
238
239private:
240  // Verification methods...
241  void visitGlobalValue(const GlobalValue &GV);
242  void visitGlobalVariable(const GlobalVariable &GV);
243  void visitGlobalAlias(const GlobalAlias &GA);
244  void visitNamedMDNode(const NamedMDNode &NMD);
245  void visitMDNode(MDNode &MD, Function *F);
246  void visitModuleIdents(const Module &M);
247  void visitModuleFlags(const Module &M);
248  void visitModuleFlag(const MDNode *Op,
249                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
250                       SmallVectorImpl<const MDNode *> &Requirements);
251  void visitFunction(const Function &F);
252  void visitBasicBlock(BasicBlock &BB);
253
254  // InstVisitor overrides...
255  using InstVisitor<Verifier>::visit;
256  void visit(Instruction &I);
257
258  void visitTruncInst(TruncInst &I);
259  void visitZExtInst(ZExtInst &I);
260  void visitSExtInst(SExtInst &I);
261  void visitFPTruncInst(FPTruncInst &I);
262  void visitFPExtInst(FPExtInst &I);
263  void visitFPToUIInst(FPToUIInst &I);
264  void visitFPToSIInst(FPToSIInst &I);
265  void visitUIToFPInst(UIToFPInst &I);
266  void visitSIToFPInst(SIToFPInst &I);
267  void visitIntToPtrInst(IntToPtrInst &I);
268  void visitPtrToIntInst(PtrToIntInst &I);
269  void visitBitCastInst(BitCastInst &I);
270  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
271  void visitPHINode(PHINode &PN);
272  void visitBinaryOperator(BinaryOperator &B);
273  void visitICmpInst(ICmpInst &IC);
274  void visitFCmpInst(FCmpInst &FC);
275  void visitExtractElementInst(ExtractElementInst &EI);
276  void visitInsertElementInst(InsertElementInst &EI);
277  void visitShuffleVectorInst(ShuffleVectorInst &EI);
278  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
279  void visitCallInst(CallInst &CI);
280  void visitInvokeInst(InvokeInst &II);
281  void visitGetElementPtrInst(GetElementPtrInst &GEP);
282  void visitLoadInst(LoadInst &LI);
283  void visitStoreInst(StoreInst &SI);
284  void verifyDominatesUse(Instruction &I, unsigned i);
285  void visitInstruction(Instruction &I);
286  void visitTerminatorInst(TerminatorInst &I);
287  void visitBranchInst(BranchInst &BI);
288  void visitReturnInst(ReturnInst &RI);
289  void visitSwitchInst(SwitchInst &SI);
290  void visitIndirectBrInst(IndirectBrInst &BI);
291  void visitSelectInst(SelectInst &SI);
292  void visitUserOp1(Instruction &I);
293  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
294  void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
295  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
296  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
297  void visitFenceInst(FenceInst &FI);
298  void visitAllocaInst(AllocaInst &AI);
299  void visitExtractValueInst(ExtractValueInst &EVI);
300  void visitInsertValueInst(InsertValueInst &IVI);
301  void visitLandingPadInst(LandingPadInst &LPI);
302
303  void VerifyCallSite(CallSite CS);
304  void verifyMustTailCall(CallInst &CI);
305  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
306                        unsigned ArgNo, std::string &Suffix);
307  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
308                           SmallVectorImpl<Type *> &ArgTys);
309  bool VerifyIntrinsicIsVarArg(bool isVarArg,
310                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
311  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
312  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
313                            const Value *V);
314  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
315                            bool isReturnValue, const Value *V);
316  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
317                           const Value *V);
318
319  void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
320  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
321};
322class DebugInfoVerifier : public VerifierSupport {
323public:
324  explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
325
326  bool verify(const Module &M) {
327    this->M = &M;
328    verifyDebugInfo();
329    return !Broken;
330  }
331
332private:
333  void verifyDebugInfo();
334  void processInstructions(DebugInfoFinder &Finder);
335  void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
336};
337} // End anonymous namespace
338
339// Assert - We know that cond should be true, if not print an error message.
340#define Assert(C, M) \
341  do { if (!(C)) { CheckFailed(M); return; } } while (0)
342#define Assert1(C, M, V1) \
343  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
344#define Assert2(C, M, V1, V2) \
345  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
346#define Assert3(C, M, V1, V2, V3) \
347  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
348#define Assert4(C, M, V1, V2, V3, V4) \
349  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
350
351void Verifier::visit(Instruction &I) {
352  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
353    Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
354  InstVisitor<Verifier>::visit(I);
355}
356
357
358void Verifier::visitGlobalValue(const GlobalValue &GV) {
359  Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
360              GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
361          "Global is external, but doesn't have external or weak linkage!",
362          &GV);
363
364  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
365          "Only global variables can have appending linkage!", &GV);
366
367  if (GV.hasAppendingLinkage()) {
368    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
369    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
370            "Only global arrays can have appending linkage!", GVar);
371  }
372}
373
374void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
375  if (GV.hasInitializer()) {
376    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
377            "Global variable initializer type does not match global "
378            "variable type!", &GV);
379
380    // If the global has common linkage, it must have a zero initializer and
381    // cannot be constant.
382    if (GV.hasCommonLinkage()) {
383      Assert1(GV.getInitializer()->isNullValue(),
384              "'common' global must have a zero initializer!", &GV);
385      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
386              &GV);
387    }
388  } else {
389    Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
390            "invalid linkage type for global declaration", &GV);
391  }
392
393  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
394                       GV.getName() == "llvm.global_dtors")) {
395    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
396            "invalid linkage for intrinsic global variable", &GV);
397    // Don't worry about emitting an error for it not being an array,
398    // visitGlobalValue will complain on appending non-array.
399    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
400      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
401      PointerType *FuncPtrTy =
402          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
403      // FIXME: Reject the 2-field form in LLVM 4.0.
404      Assert1(STy && (STy->getNumElements() == 2 ||
405                      STy->getNumElements() == 3) &&
406              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
407              STy->getTypeAtIndex(1) == FuncPtrTy,
408              "wrong type for intrinsic global variable", &GV);
409      if (STy->getNumElements() == 3) {
410        Type *ETy = STy->getTypeAtIndex(2);
411        Assert1(ETy->isPointerTy() &&
412                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
413                "wrong type for intrinsic global variable", &GV);
414      }
415    }
416  }
417
418  if (GV.hasName() && (GV.getName() == "llvm.used" ||
419                       GV.getName() == "llvm.compiler.used")) {
420    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
421            "invalid linkage for intrinsic global variable", &GV);
422    Type *GVType = GV.getType()->getElementType();
423    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
424      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
425      Assert1(PTy, "wrong type for intrinsic global variable", &GV);
426      if (GV.hasInitializer()) {
427        const Constant *Init = GV.getInitializer();
428        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
429        Assert1(InitArray, "wrong initalizer for intrinsic global variable",
430                Init);
431        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
432          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
433          Assert1(
434              isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
435              "invalid llvm.used member", V);
436          Assert1(V->hasName(), "members of llvm.used must be named", V);
437        }
438      }
439    }
440  }
441
442  Assert1(!GV.hasDLLImportStorageClass() ||
443          (GV.isDeclaration() && GV.hasExternalLinkage()) ||
444          GV.hasAvailableExternallyLinkage(),
445          "Global is marked as dllimport, but not external", &GV);
446
447  if (!GV.hasInitializer()) {
448    visitGlobalValue(GV);
449    return;
450  }
451
452  // Walk any aggregate initializers looking for bitcasts between address spaces
453  SmallPtrSet<const Value *, 4> Visited;
454  SmallVector<const Value *, 4> WorkStack;
455  WorkStack.push_back(cast<Value>(GV.getInitializer()));
456
457  while (!WorkStack.empty()) {
458    const Value *V = WorkStack.pop_back_val();
459    if (!Visited.insert(V))
460      continue;
461
462    if (const User *U = dyn_cast<User>(V)) {
463      for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
464        WorkStack.push_back(U->getOperand(I));
465    }
466
467    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
468      VerifyConstantExprBitcastType(CE);
469      if (Broken)
470        return;
471    }
472  }
473
474  visitGlobalValue(GV);
475}
476
477void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
478  Assert1(!GA.getName().empty(),
479          "Alias name cannot be empty!", &GA);
480  Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
481          "Alias should have external or external weak linkage!", &GA);
482  Assert1(GA.getAliasee(),
483          "Aliasee cannot be NULL!", &GA);
484  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
485
486  const Constant *Aliasee = GA.getAliasee();
487  const GlobalValue *GV = dyn_cast<GlobalValue>(Aliasee);
488
489  if (!GV) {
490    const ConstantExpr *CE = dyn_cast<ConstantExpr>(Aliasee);
491    if (CE && (CE->getOpcode() == Instruction::BitCast ||
492               CE->getOpcode() == Instruction::AddrSpaceCast ||
493               CE->getOpcode() == Instruction::GetElementPtr))
494      GV = dyn_cast<GlobalValue>(CE->getOperand(0));
495
496    Assert1(GV, "Aliasee should be either GlobalValue, bitcast or "
497                "addrspacecast of GlobalValue",
498            &GA);
499
500    VerifyConstantExprBitcastType(CE);
501  }
502  Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
503  if (const GlobalAlias *GAAliasee = dyn_cast<GlobalAlias>(GV)) {
504    Assert1(!GAAliasee->mayBeOverridden(), "Alias cannot point to a weak alias",
505            &GA);
506  }
507
508  visitGlobalValue(GA);
509}
510
511void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
512  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
513    MDNode *MD = NMD.getOperand(i);
514    if (!MD)
515      continue;
516
517    Assert1(!MD->isFunctionLocal(),
518            "Named metadata operand cannot be function local!", MD);
519    visitMDNode(*MD, nullptr);
520  }
521}
522
523void Verifier::visitMDNode(MDNode &MD, Function *F) {
524  // Only visit each node once.  Metadata can be mutually recursive, so this
525  // avoids infinite recursion here, as well as being an optimization.
526  if (!MDNodes.insert(&MD))
527    return;
528
529  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
530    Value *Op = MD.getOperand(i);
531    if (!Op)
532      continue;
533    if (isa<Constant>(Op) || isa<MDString>(Op))
534      continue;
535    if (MDNode *N = dyn_cast<MDNode>(Op)) {
536      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
537              "Global metadata operand cannot be function local!", &MD, N);
538      visitMDNode(*N, F);
539      continue;
540    }
541    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
542
543    // If this was an instruction, bb, or argument, verify that it is in the
544    // function that we expect.
545    Function *ActualF = nullptr;
546    if (Instruction *I = dyn_cast<Instruction>(Op))
547      ActualF = I->getParent()->getParent();
548    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
549      ActualF = BB->getParent();
550    else if (Argument *A = dyn_cast<Argument>(Op))
551      ActualF = A->getParent();
552    assert(ActualF && "Unimplemented function local metadata case!");
553
554    Assert2(ActualF == F, "function-local metadata used in wrong function",
555            &MD, Op);
556  }
557}
558
559void Verifier::visitModuleIdents(const Module &M) {
560  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
561  if (!Idents)
562    return;
563
564  // llvm.ident takes a list of metadata entry. Each entry has only one string.
565  // Scan each llvm.ident entry and make sure that this requirement is met.
566  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
567    const MDNode *N = Idents->getOperand(i);
568    Assert1(N->getNumOperands() == 1,
569            "incorrect number of operands in llvm.ident metadata", N);
570    Assert1(isa<MDString>(N->getOperand(0)),
571            ("invalid value for llvm.ident metadata entry operand"
572             "(the operand should be a string)"),
573            N->getOperand(0));
574  }
575}
576
577void Verifier::visitModuleFlags(const Module &M) {
578  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
579  if (!Flags) return;
580
581  // Scan each flag, and track the flags and requirements.
582  DenseMap<const MDString*, const MDNode*> SeenIDs;
583  SmallVector<const MDNode*, 16> Requirements;
584  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
585    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
586  }
587
588  // Validate that the requirements in the module are valid.
589  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
590    const MDNode *Requirement = Requirements[I];
591    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
592    const Value *ReqValue = Requirement->getOperand(1);
593
594    const MDNode *Op = SeenIDs.lookup(Flag);
595    if (!Op) {
596      CheckFailed("invalid requirement on flag, flag is not present in module",
597                  Flag);
598      continue;
599    }
600
601    if (Op->getOperand(2) != ReqValue) {
602      CheckFailed(("invalid requirement on flag, "
603                   "flag does not have the required value"),
604                  Flag);
605      continue;
606    }
607  }
608}
609
610void
611Verifier::visitModuleFlag(const MDNode *Op,
612                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
613                          SmallVectorImpl<const MDNode *> &Requirements) {
614  // Each module flag should have three arguments, the merge behavior (a
615  // constant int), the flag ID (an MDString), and the value.
616  Assert1(Op->getNumOperands() == 3,
617          "incorrect number of operands in module flag", Op);
618  ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
619  MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
620  Assert1(Behavior,
621          "invalid behavior operand in module flag (expected constant integer)",
622          Op->getOperand(0));
623  unsigned BehaviorValue = Behavior->getZExtValue();
624  Assert1(ID,
625          "invalid ID operand in module flag (expected metadata string)",
626          Op->getOperand(1));
627
628  // Sanity check the values for behaviors with additional requirements.
629  switch (BehaviorValue) {
630  default:
631    Assert1(false,
632            "invalid behavior operand in module flag (unexpected constant)",
633            Op->getOperand(0));
634    break;
635
636  case Module::Error:
637  case Module::Warning:
638  case Module::Override:
639    // These behavior types accept any value.
640    break;
641
642  case Module::Require: {
643    // The value should itself be an MDNode with two operands, a flag ID (an
644    // MDString), and a value.
645    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
646    Assert1(Value && Value->getNumOperands() == 2,
647            "invalid value for 'require' module flag (expected metadata pair)",
648            Op->getOperand(2));
649    Assert1(isa<MDString>(Value->getOperand(0)),
650            ("invalid value for 'require' module flag "
651             "(first value operand should be a string)"),
652            Value->getOperand(0));
653
654    // Append it to the list of requirements, to check once all module flags are
655    // scanned.
656    Requirements.push_back(Value);
657    break;
658  }
659
660  case Module::Append:
661  case Module::AppendUnique: {
662    // These behavior types require the operand be an MDNode.
663    Assert1(isa<MDNode>(Op->getOperand(2)),
664            "invalid value for 'append'-type module flag "
665            "(expected a metadata node)", Op->getOperand(2));
666    break;
667  }
668  }
669
670  // Unless this is a "requires" flag, check the ID is unique.
671  if (BehaviorValue != Module::Require) {
672    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
673    Assert1(Inserted,
674            "module flag identifiers must be unique (or of 'require' type)",
675            ID);
676  }
677}
678
679void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
680                                    bool isFunction, const Value *V) {
681  unsigned Slot = ~0U;
682  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
683    if (Attrs.getSlotIndex(I) == Idx) {
684      Slot = I;
685      break;
686    }
687
688  assert(Slot != ~0U && "Attribute set inconsistency!");
689
690  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
691         I != E; ++I) {
692    if (I->isStringAttribute())
693      continue;
694
695    if (I->getKindAsEnum() == Attribute::NoReturn ||
696        I->getKindAsEnum() == Attribute::NoUnwind ||
697        I->getKindAsEnum() == Attribute::NoInline ||
698        I->getKindAsEnum() == Attribute::AlwaysInline ||
699        I->getKindAsEnum() == Attribute::OptimizeForSize ||
700        I->getKindAsEnum() == Attribute::StackProtect ||
701        I->getKindAsEnum() == Attribute::StackProtectReq ||
702        I->getKindAsEnum() == Attribute::StackProtectStrong ||
703        I->getKindAsEnum() == Attribute::NoRedZone ||
704        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
705        I->getKindAsEnum() == Attribute::Naked ||
706        I->getKindAsEnum() == Attribute::InlineHint ||
707        I->getKindAsEnum() == Attribute::StackAlignment ||
708        I->getKindAsEnum() == Attribute::UWTable ||
709        I->getKindAsEnum() == Attribute::NonLazyBind ||
710        I->getKindAsEnum() == Attribute::ReturnsTwice ||
711        I->getKindAsEnum() == Attribute::SanitizeAddress ||
712        I->getKindAsEnum() == Attribute::SanitizeThread ||
713        I->getKindAsEnum() == Attribute::SanitizeMemory ||
714        I->getKindAsEnum() == Attribute::MinSize ||
715        I->getKindAsEnum() == Attribute::NoDuplicate ||
716        I->getKindAsEnum() == Attribute::Builtin ||
717        I->getKindAsEnum() == Attribute::NoBuiltin ||
718        I->getKindAsEnum() == Attribute::Cold ||
719        I->getKindAsEnum() == Attribute::OptimizeNone) {
720      if (!isFunction) {
721        CheckFailed("Attribute '" + I->getAsString() +
722                    "' only applies to functions!", V);
723        return;
724      }
725    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
726               I->getKindAsEnum() == Attribute::ReadNone) {
727      if (Idx == 0) {
728        CheckFailed("Attribute '" + I->getAsString() +
729                    "' does not apply to function returns");
730        return;
731      }
732    } else if (isFunction) {
733      CheckFailed("Attribute '" + I->getAsString() +
734                  "' does not apply to functions!", V);
735      return;
736    }
737  }
738}
739
740// VerifyParameterAttrs - Check the given attributes for an argument or return
741// value of the specified type.  The value V is printed in error messages.
742void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
743                                    bool isReturnValue, const Value *V) {
744  if (!Attrs.hasAttributes(Idx))
745    return;
746
747  VerifyAttributeTypes(Attrs, Idx, false, V);
748
749  if (isReturnValue)
750    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
751            !Attrs.hasAttribute(Idx, Attribute::Nest) &&
752            !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
753            !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
754            !Attrs.hasAttribute(Idx, Attribute::Returned) &&
755            !Attrs.hasAttribute(Idx, Attribute::InAlloca),
756            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
757            "'returned' do not apply to return values!", V);
758
759  // Check for mutually incompatible attributes.  Only inreg is compatible with
760  // sret.
761  unsigned AttrCount = 0;
762  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
763  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
764  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
765               Attrs.hasAttribute(Idx, Attribute::InReg);
766  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
767  Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
768                          "and 'sret' are incompatible!", V);
769
770  Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
771            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
772          "'inalloca and readonly' are incompatible!", V);
773
774  Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
775            Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
776          "'sret and returned' are incompatible!", V);
777
778  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
779            Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
780          "'zeroext and signext' are incompatible!", V);
781
782  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
783            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
784          "'readnone and readonly' are incompatible!", V);
785
786  Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
787            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
788          "'noinline and alwaysinline' are incompatible!", V);
789
790  Assert1(!AttrBuilder(Attrs, Idx).
791            hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
792          "Wrong types for attribute: " +
793          AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
794
795  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
796    if (!PTy->getElementType()->isSized()) {
797      Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
798              !Attrs.hasAttribute(Idx, Attribute::InAlloca),
799              "Attributes 'byval' and 'inalloca' do not support unsized types!",
800              V);
801    }
802  } else {
803    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
804            "Attribute 'byval' only applies to parameters with pointer type!",
805            V);
806  }
807}
808
809// VerifyFunctionAttrs - Check parameter attributes against a function type.
810// The value V is printed in error messages.
811void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
812                                   const Value *V) {
813  if (Attrs.isEmpty())
814    return;
815
816  bool SawNest = false;
817  bool SawReturned = false;
818  bool SawSRet = false;
819
820  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
821    unsigned Idx = Attrs.getSlotIndex(i);
822
823    Type *Ty;
824    if (Idx == 0)
825      Ty = FT->getReturnType();
826    else if (Idx-1 < FT->getNumParams())
827      Ty = FT->getParamType(Idx-1);
828    else
829      break;  // VarArgs attributes, verified elsewhere.
830
831    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
832
833    if (Idx == 0)
834      continue;
835
836    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
837      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
838      SawNest = true;
839    }
840
841    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
842      Assert1(!SawReturned, "More than one parameter has attribute returned!",
843              V);
844      Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
845              "argument and return types for 'returned' attribute", V);
846      SawReturned = true;
847    }
848
849    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
850      Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
851      Assert1(Idx == 1 || Idx == 2,
852              "Attribute 'sret' is not on first or second parameter!", V);
853      SawSRet = true;
854    }
855
856    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
857      Assert1(Idx == FT->getNumParams(),
858              "inalloca isn't on the last parameter!", V);
859    }
860  }
861
862  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
863    return;
864
865  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
866
867  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
868                               Attribute::ReadNone) &&
869            Attrs.hasAttribute(AttributeSet::FunctionIndex,
870                               Attribute::ReadOnly)),
871          "Attributes 'readnone and readonly' are incompatible!", V);
872
873  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
874                               Attribute::NoInline) &&
875            Attrs.hasAttribute(AttributeSet::FunctionIndex,
876                               Attribute::AlwaysInline)),
877          "Attributes 'noinline and alwaysinline' are incompatible!", V);
878
879  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
880                         Attribute::OptimizeNone)) {
881    Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
882                               Attribute::NoInline),
883            "Attribute 'optnone' requires 'noinline'!", V);
884
885    Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
886                                Attribute::OptimizeForSize),
887            "Attributes 'optsize and optnone' are incompatible!", V);
888
889    Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
890                                Attribute::MinSize),
891            "Attributes 'minsize and optnone' are incompatible!", V);
892  }
893}
894
895void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
896  // Get the size of the types in bits, we'll need this later
897  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
898  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
899
900  // BitCast implies a no-op cast of type only. No bits change.
901  // However, you can't cast pointers to anything but pointers.
902  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
903          "Bitcast requires both operands to be pointer or neither", V);
904  Assert1(SrcBitSize == DestBitSize,
905          "Bitcast requires types of same width", V);
906
907  // Disallow aggregates.
908  Assert1(!SrcTy->isAggregateType(),
909          "Bitcast operand must not be aggregate", V);
910  Assert1(!DestTy->isAggregateType(),
911          "Bitcast type must not be aggregate", V);
912
913  // Without datalayout, assume all address spaces are the same size.
914  // Don't check if both types are not pointers.
915  // Skip casts between scalars and vectors.
916  if (!DL ||
917      !SrcTy->isPtrOrPtrVectorTy() ||
918      !DestTy->isPtrOrPtrVectorTy() ||
919      SrcTy->isVectorTy() != DestTy->isVectorTy()) {
920    return;
921  }
922
923  unsigned SrcAS = SrcTy->getPointerAddressSpace();
924  unsigned DstAS = DestTy->getPointerAddressSpace();
925
926  Assert1(SrcAS == DstAS,
927          "Bitcasts between pointers of different address spaces is not legal."
928          "Use AddrSpaceCast instead.", V);
929}
930
931void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
932  if (CE->getOpcode() == Instruction::BitCast) {
933    Type *SrcTy = CE->getOperand(0)->getType();
934    Type *DstTy = CE->getType();
935    VerifyBitcastType(CE, DstTy, SrcTy);
936  }
937}
938
939bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
940  if (Attrs.getNumSlots() == 0)
941    return true;
942
943  unsigned LastSlot = Attrs.getNumSlots() - 1;
944  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
945  if (LastIndex <= Params
946      || (LastIndex == AttributeSet::FunctionIndex
947          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
948    return true;
949
950  return false;
951}
952
953// visitFunction - Verify that a function is ok.
954//
955void Verifier::visitFunction(const Function &F) {
956  // Check function arguments.
957  FunctionType *FT = F.getFunctionType();
958  unsigned NumArgs = F.arg_size();
959
960  Assert1(Context == &F.getContext(),
961          "Function context does not match Module context!", &F);
962
963  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
964  Assert2(FT->getNumParams() == NumArgs,
965          "# formal arguments must match # of arguments for function type!",
966          &F, FT);
967  Assert1(F.getReturnType()->isFirstClassType() ||
968          F.getReturnType()->isVoidTy() ||
969          F.getReturnType()->isStructTy(),
970          "Functions cannot return aggregate values!", &F);
971
972  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
973          "Invalid struct return type!", &F);
974
975  AttributeSet Attrs = F.getAttributes();
976
977  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
978          "Attribute after last parameter!", &F);
979
980  // Check function attributes.
981  VerifyFunctionAttrs(FT, Attrs, &F);
982
983  // On function declarations/definitions, we do not support the builtin
984  // attribute. We do not check this in VerifyFunctionAttrs since that is
985  // checking for Attributes that can/can not ever be on functions.
986  Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
987                              Attribute::Builtin),
988          "Attribute 'builtin' can only be applied to a callsite.", &F);
989
990  // Check that this function meets the restrictions on this calling convention.
991  switch (F.getCallingConv()) {
992  default:
993    break;
994  case CallingConv::C:
995    break;
996  case CallingConv::Fast:
997  case CallingConv::Cold:
998  case CallingConv::X86_FastCall:
999  case CallingConv::X86_ThisCall:
1000  case CallingConv::Intel_OCL_BI:
1001  case CallingConv::PTX_Kernel:
1002  case CallingConv::PTX_Device:
1003    Assert1(!F.isVarArg(),
1004            "Varargs functions must have C calling conventions!", &F);
1005    break;
1006  }
1007
1008  bool isLLVMdotName = F.getName().size() >= 5 &&
1009                       F.getName().substr(0, 5) == "llvm.";
1010
1011  // Check that the argument values match the function type for this function...
1012  unsigned i = 0;
1013  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1014       ++I, ++i) {
1015    Assert2(I->getType() == FT->getParamType(i),
1016            "Argument value does not match function argument type!",
1017            I, FT->getParamType(i));
1018    Assert1(I->getType()->isFirstClassType(),
1019            "Function arguments must have first-class types!", I);
1020    if (!isLLVMdotName)
1021      Assert2(!I->getType()->isMetadataTy(),
1022              "Function takes metadata but isn't an intrinsic", I, &F);
1023  }
1024
1025  if (F.isMaterializable()) {
1026    // Function has a body somewhere we can't see.
1027  } else if (F.isDeclaration()) {
1028    Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1029            "invalid linkage type for function declaration", &F);
1030  } else {
1031    // Verify that this function (which has a body) is not named "llvm.*".  It
1032    // is not legal to define intrinsics.
1033    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1034
1035    // Check the entry node
1036    const BasicBlock *Entry = &F.getEntryBlock();
1037    Assert1(pred_begin(Entry) == pred_end(Entry),
1038            "Entry block to function must not have predecessors!", Entry);
1039
1040    // The address of the entry block cannot be taken, unless it is dead.
1041    if (Entry->hasAddressTaken()) {
1042      Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
1043              "blockaddress may not be used with the entry block!", Entry);
1044    }
1045  }
1046
1047  // If this function is actually an intrinsic, verify that it is only used in
1048  // direct call/invokes, never having its "address taken".
1049  if (F.getIntrinsicID()) {
1050    const User *U;
1051    if (F.hasAddressTaken(&U))
1052      Assert1(0, "Invalid user of intrinsic instruction!", U);
1053  }
1054
1055  Assert1(!F.hasDLLImportStorageClass() ||
1056          (F.isDeclaration() && F.hasExternalLinkage()) ||
1057          F.hasAvailableExternallyLinkage(),
1058          "Function is marked as dllimport, but not external.", &F);
1059}
1060
1061// verifyBasicBlock - Verify that a basic block is well formed...
1062//
1063void Verifier::visitBasicBlock(BasicBlock &BB) {
1064  InstsInThisBlock.clear();
1065
1066  // Ensure that basic blocks have terminators!
1067  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1068
1069  // Check constraints that this basic block imposes on all of the PHI nodes in
1070  // it.
1071  if (isa<PHINode>(BB.front())) {
1072    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1073    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1074    std::sort(Preds.begin(), Preds.end());
1075    PHINode *PN;
1076    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1077      // Ensure that PHI nodes have at least one entry!
1078      Assert1(PN->getNumIncomingValues() != 0,
1079              "PHI nodes must have at least one entry.  If the block is dead, "
1080              "the PHI should be removed!", PN);
1081      Assert1(PN->getNumIncomingValues() == Preds.size(),
1082              "PHINode should have one entry for each predecessor of its "
1083              "parent basic block!", PN);
1084
1085      // Get and sort all incoming values in the PHI node...
1086      Values.clear();
1087      Values.reserve(PN->getNumIncomingValues());
1088      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1089        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1090                                        PN->getIncomingValue(i)));
1091      std::sort(Values.begin(), Values.end());
1092
1093      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1094        // Check to make sure that if there is more than one entry for a
1095        // particular basic block in this PHI node, that the incoming values are
1096        // all identical.
1097        //
1098        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
1099                Values[i].second == Values[i-1].second,
1100                "PHI node has multiple entries for the same basic block with "
1101                "different incoming values!", PN, Values[i].first,
1102                Values[i].second, Values[i-1].second);
1103
1104        // Check to make sure that the predecessors and PHI node entries are
1105        // matched up.
1106        Assert3(Values[i].first == Preds[i],
1107                "PHI node entries do not match predecessors!", PN,
1108                Values[i].first, Preds[i]);
1109      }
1110    }
1111  }
1112}
1113
1114void Verifier::visitTerminatorInst(TerminatorInst &I) {
1115  // Ensure that terminators only exist at the end of the basic block.
1116  Assert1(&I == I.getParent()->getTerminator(),
1117          "Terminator found in the middle of a basic block!", I.getParent());
1118  visitInstruction(I);
1119}
1120
1121void Verifier::visitBranchInst(BranchInst &BI) {
1122  if (BI.isConditional()) {
1123    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
1124            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1125  }
1126  visitTerminatorInst(BI);
1127}
1128
1129void Verifier::visitReturnInst(ReturnInst &RI) {
1130  Function *F = RI.getParent()->getParent();
1131  unsigned N = RI.getNumOperands();
1132  if (F->getReturnType()->isVoidTy())
1133    Assert2(N == 0,
1134            "Found return instr that returns non-void in Function of void "
1135            "return type!", &RI, F->getReturnType());
1136  else
1137    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1138            "Function return type does not match operand "
1139            "type of return inst!", &RI, F->getReturnType());
1140
1141  // Check to make sure that the return value has necessary properties for
1142  // terminators...
1143  visitTerminatorInst(RI);
1144}
1145
1146void Verifier::visitSwitchInst(SwitchInst &SI) {
1147  // Check to make sure that all of the constants in the switch instruction
1148  // have the same type as the switched-on value.
1149  Type *SwitchTy = SI.getCondition()->getType();
1150  SmallPtrSet<ConstantInt*, 32> Constants;
1151  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1152    Assert1(i.getCaseValue()->getType() == SwitchTy,
1153            "Switch constants must all be same type as switch value!", &SI);
1154    Assert2(Constants.insert(i.getCaseValue()),
1155            "Duplicate integer as switch case", &SI, i.getCaseValue());
1156  }
1157
1158  visitTerminatorInst(SI);
1159}
1160
1161void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1162  Assert1(BI.getAddress()->getType()->isPointerTy(),
1163          "Indirectbr operand must have pointer type!", &BI);
1164  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1165    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1166            "Indirectbr destinations must all have pointer type!", &BI);
1167
1168  visitTerminatorInst(BI);
1169}
1170
1171void Verifier::visitSelectInst(SelectInst &SI) {
1172  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1173                                          SI.getOperand(2)),
1174          "Invalid operands for select instruction!", &SI);
1175
1176  Assert1(SI.getTrueValue()->getType() == SI.getType(),
1177          "Select values must have same type as select instruction!", &SI);
1178  visitInstruction(SI);
1179}
1180
1181/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1182/// a pass, if any exist, it's an error.
1183///
1184void Verifier::visitUserOp1(Instruction &I) {
1185  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1186}
1187
1188void Verifier::visitTruncInst(TruncInst &I) {
1189  // Get the source and destination types
1190  Type *SrcTy = I.getOperand(0)->getType();
1191  Type *DestTy = I.getType();
1192
1193  // Get the size of the types in bits, we'll need this later
1194  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1195  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1196
1197  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1198  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1199  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1200          "trunc source and destination must both be a vector or neither", &I);
1201  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1202
1203  visitInstruction(I);
1204}
1205
1206void Verifier::visitZExtInst(ZExtInst &I) {
1207  // Get the source and destination types
1208  Type *SrcTy = I.getOperand(0)->getType();
1209  Type *DestTy = I.getType();
1210
1211  // Get the size of the types in bits, we'll need this later
1212  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1213  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1214  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1215          "zext source and destination must both be a vector or neither", &I);
1216  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1217  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1218
1219  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1220
1221  visitInstruction(I);
1222}
1223
1224void Verifier::visitSExtInst(SExtInst &I) {
1225  // Get the source and destination types
1226  Type *SrcTy = I.getOperand(0)->getType();
1227  Type *DestTy = I.getType();
1228
1229  // Get the size of the types in bits, we'll need this later
1230  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1231  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1232
1233  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1234  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1235  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1236          "sext source and destination must both be a vector or neither", &I);
1237  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1238
1239  visitInstruction(I);
1240}
1241
1242void Verifier::visitFPTruncInst(FPTruncInst &I) {
1243  // Get the source and destination types
1244  Type *SrcTy = I.getOperand(0)->getType();
1245  Type *DestTy = I.getType();
1246  // Get the size of the types in bits, we'll need this later
1247  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1248  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1249
1250  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1251  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1252  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1253          "fptrunc source and destination must both be a vector or neither",&I);
1254  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1255
1256  visitInstruction(I);
1257}
1258
1259void Verifier::visitFPExtInst(FPExtInst &I) {
1260  // Get the source and destination types
1261  Type *SrcTy = I.getOperand(0)->getType();
1262  Type *DestTy = I.getType();
1263
1264  // Get the size of the types in bits, we'll need this later
1265  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1266  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1267
1268  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1269  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1270  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1271          "fpext source and destination must both be a vector or neither", &I);
1272  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1273
1274  visitInstruction(I);
1275}
1276
1277void Verifier::visitUIToFPInst(UIToFPInst &I) {
1278  // Get the source and destination types
1279  Type *SrcTy = I.getOperand(0)->getType();
1280  Type *DestTy = I.getType();
1281
1282  bool SrcVec = SrcTy->isVectorTy();
1283  bool DstVec = DestTy->isVectorTy();
1284
1285  Assert1(SrcVec == DstVec,
1286          "UIToFP source and dest must both be vector or scalar", &I);
1287  Assert1(SrcTy->isIntOrIntVectorTy(),
1288          "UIToFP source must be integer or integer vector", &I);
1289  Assert1(DestTy->isFPOrFPVectorTy(),
1290          "UIToFP result must be FP or FP vector", &I);
1291
1292  if (SrcVec && DstVec)
1293    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1294            cast<VectorType>(DestTy)->getNumElements(),
1295            "UIToFP source and dest vector length mismatch", &I);
1296
1297  visitInstruction(I);
1298}
1299
1300void Verifier::visitSIToFPInst(SIToFPInst &I) {
1301  // Get the source and destination types
1302  Type *SrcTy = I.getOperand(0)->getType();
1303  Type *DestTy = I.getType();
1304
1305  bool SrcVec = SrcTy->isVectorTy();
1306  bool DstVec = DestTy->isVectorTy();
1307
1308  Assert1(SrcVec == DstVec,
1309          "SIToFP source and dest must both be vector or scalar", &I);
1310  Assert1(SrcTy->isIntOrIntVectorTy(),
1311          "SIToFP source must be integer or integer vector", &I);
1312  Assert1(DestTy->isFPOrFPVectorTy(),
1313          "SIToFP result must be FP or FP vector", &I);
1314
1315  if (SrcVec && DstVec)
1316    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1317            cast<VectorType>(DestTy)->getNumElements(),
1318            "SIToFP source and dest vector length mismatch", &I);
1319
1320  visitInstruction(I);
1321}
1322
1323void Verifier::visitFPToUIInst(FPToUIInst &I) {
1324  // Get the source and destination types
1325  Type *SrcTy = I.getOperand(0)->getType();
1326  Type *DestTy = I.getType();
1327
1328  bool SrcVec = SrcTy->isVectorTy();
1329  bool DstVec = DestTy->isVectorTy();
1330
1331  Assert1(SrcVec == DstVec,
1332          "FPToUI source and dest must both be vector or scalar", &I);
1333  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1334          &I);
1335  Assert1(DestTy->isIntOrIntVectorTy(),
1336          "FPToUI result must be integer or integer vector", &I);
1337
1338  if (SrcVec && DstVec)
1339    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1340            cast<VectorType>(DestTy)->getNumElements(),
1341            "FPToUI source and dest vector length mismatch", &I);
1342
1343  visitInstruction(I);
1344}
1345
1346void Verifier::visitFPToSIInst(FPToSIInst &I) {
1347  // Get the source and destination types
1348  Type *SrcTy = I.getOperand(0)->getType();
1349  Type *DestTy = I.getType();
1350
1351  bool SrcVec = SrcTy->isVectorTy();
1352  bool DstVec = DestTy->isVectorTy();
1353
1354  Assert1(SrcVec == DstVec,
1355          "FPToSI source and dest must both be vector or scalar", &I);
1356  Assert1(SrcTy->isFPOrFPVectorTy(),
1357          "FPToSI source must be FP or FP vector", &I);
1358  Assert1(DestTy->isIntOrIntVectorTy(),
1359          "FPToSI result must be integer or integer vector", &I);
1360
1361  if (SrcVec && DstVec)
1362    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1363            cast<VectorType>(DestTy)->getNumElements(),
1364            "FPToSI source and dest vector length mismatch", &I);
1365
1366  visitInstruction(I);
1367}
1368
1369void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1370  // Get the source and destination types
1371  Type *SrcTy = I.getOperand(0)->getType();
1372  Type *DestTy = I.getType();
1373
1374  Assert1(SrcTy->getScalarType()->isPointerTy(),
1375          "PtrToInt source must be pointer", &I);
1376  Assert1(DestTy->getScalarType()->isIntegerTy(),
1377          "PtrToInt result must be integral", &I);
1378  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1379          "PtrToInt type mismatch", &I);
1380
1381  if (SrcTy->isVectorTy()) {
1382    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1383    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1384    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1385          "PtrToInt Vector width mismatch", &I);
1386  }
1387
1388  visitInstruction(I);
1389}
1390
1391void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1392  // Get the source and destination types
1393  Type *SrcTy = I.getOperand(0)->getType();
1394  Type *DestTy = I.getType();
1395
1396  Assert1(SrcTy->getScalarType()->isIntegerTy(),
1397          "IntToPtr source must be an integral", &I);
1398  Assert1(DestTy->getScalarType()->isPointerTy(),
1399          "IntToPtr result must be a pointer",&I);
1400  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1401          "IntToPtr type mismatch", &I);
1402  if (SrcTy->isVectorTy()) {
1403    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1404    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1405    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1406          "IntToPtr Vector width mismatch", &I);
1407  }
1408  visitInstruction(I);
1409}
1410
1411void Verifier::visitBitCastInst(BitCastInst &I) {
1412  Type *SrcTy = I.getOperand(0)->getType();
1413  Type *DestTy = I.getType();
1414  VerifyBitcastType(&I, DestTy, SrcTy);
1415  visitInstruction(I);
1416}
1417
1418void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
1419  Type *SrcTy = I.getOperand(0)->getType();
1420  Type *DestTy = I.getType();
1421
1422  Assert1(SrcTy->isPtrOrPtrVectorTy(),
1423          "AddrSpaceCast source must be a pointer", &I);
1424  Assert1(DestTy->isPtrOrPtrVectorTy(),
1425          "AddrSpaceCast result must be a pointer", &I);
1426  Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
1427          "AddrSpaceCast must be between different address spaces", &I);
1428  if (SrcTy->isVectorTy())
1429    Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
1430            "AddrSpaceCast vector pointer number of elements mismatch", &I);
1431  visitInstruction(I);
1432}
1433
1434/// visitPHINode - Ensure that a PHI node is well formed.
1435///
1436void Verifier::visitPHINode(PHINode &PN) {
1437  // Ensure that the PHI nodes are all grouped together at the top of the block.
1438  // This can be tested by checking whether the instruction before this is
1439  // either nonexistent (because this is begin()) or is a PHI node.  If not,
1440  // then there is some other instruction before a PHI.
1441  Assert2(&PN == &PN.getParent()->front() ||
1442          isa<PHINode>(--BasicBlock::iterator(&PN)),
1443          "PHI nodes not grouped at top of basic block!",
1444          &PN, PN.getParent());
1445
1446  // Check that all of the values of the PHI node have the same type as the
1447  // result, and that the incoming blocks are really basic blocks.
1448  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1449    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1450            "PHI node operands are not the same type as the result!", &PN);
1451  }
1452
1453  // All other PHI node constraints are checked in the visitBasicBlock method.
1454
1455  visitInstruction(PN);
1456}
1457
1458void Verifier::VerifyCallSite(CallSite CS) {
1459  Instruction *I = CS.getInstruction();
1460
1461  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1462          "Called function must be a pointer!", I);
1463  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1464
1465  Assert1(FPTy->getElementType()->isFunctionTy(),
1466          "Called function is not pointer to function type!", I);
1467  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1468
1469  // Verify that the correct number of arguments are being passed
1470  if (FTy->isVarArg())
1471    Assert1(CS.arg_size() >= FTy->getNumParams(),
1472            "Called function requires more parameters than were provided!",I);
1473  else
1474    Assert1(CS.arg_size() == FTy->getNumParams(),
1475            "Incorrect number of arguments passed to called function!", I);
1476
1477  // Verify that all arguments to the call match the function type.
1478  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1479    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1480            "Call parameter type does not match function signature!",
1481            CS.getArgument(i), FTy->getParamType(i), I);
1482
1483  AttributeSet Attrs = CS.getAttributes();
1484
1485  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1486          "Attribute after last parameter!", I);
1487
1488  // Verify call attributes.
1489  VerifyFunctionAttrs(FTy, Attrs, I);
1490
1491  // Conservatively check the inalloca argument.
1492  // We have a bug if we can find that there is an underlying alloca without
1493  // inalloca.
1494  if (CS.hasInAllocaArgument()) {
1495    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
1496    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
1497      Assert2(AI->isUsedWithInAlloca(),
1498              "inalloca argument for call has mismatched alloca", AI, I);
1499  }
1500
1501  if (FTy->isVarArg()) {
1502    // FIXME? is 'nest' even legal here?
1503    bool SawNest = false;
1504    bool SawReturned = false;
1505
1506    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
1507      if (Attrs.hasAttribute(Idx, Attribute::Nest))
1508        SawNest = true;
1509      if (Attrs.hasAttribute(Idx, Attribute::Returned))
1510        SawReturned = true;
1511    }
1512
1513    // Check attributes on the varargs part.
1514    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1515      Type *Ty = CS.getArgument(Idx-1)->getType();
1516      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
1517
1518      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1519        Assert1(!SawNest, "More than one parameter has attribute nest!", I);
1520        SawNest = true;
1521      }
1522
1523      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1524        Assert1(!SawReturned, "More than one parameter has attribute returned!",
1525                I);
1526        Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
1527                "Incompatible argument and return types for 'returned' "
1528                "attribute", I);
1529        SawReturned = true;
1530      }
1531
1532      Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1533              "Attribute 'sret' cannot be used for vararg call arguments!", I);
1534
1535      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
1536        Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
1537                I);
1538    }
1539  }
1540
1541  // Verify that there's no metadata unless it's a direct call to an intrinsic.
1542  if (CS.getCalledFunction() == nullptr ||
1543      !CS.getCalledFunction()->getName().startswith("llvm.")) {
1544    for (FunctionType::param_iterator PI = FTy->param_begin(),
1545           PE = FTy->param_end(); PI != PE; ++PI)
1546      Assert1(!(*PI)->isMetadataTy(),
1547              "Function has metadata parameter but isn't an intrinsic", I);
1548  }
1549
1550  visitInstruction(*I);
1551}
1552
1553/// Two types are "congruent" if they are identical, or if they are both pointer
1554/// types with different pointee types and the same address space.
1555static bool isTypeCongruent(Type *L, Type *R) {
1556  if (L == R)
1557    return true;
1558  PointerType *PL = dyn_cast<PointerType>(L);
1559  PointerType *PR = dyn_cast<PointerType>(R);
1560  if (!PL || !PR)
1561    return false;
1562  return PL->getAddressSpace() == PR->getAddressSpace();
1563}
1564
1565static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
1566  static const Attribute::AttrKind ABIAttrs[] = {
1567      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
1568      Attribute::InReg, Attribute::Returned};
1569  AttrBuilder Copy;
1570  for (auto AK : ABIAttrs) {
1571    if (Attrs.hasAttribute(I + 1, AK))
1572      Copy.addAttribute(AK);
1573  }
1574  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
1575    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
1576  return Copy;
1577}
1578
1579void Verifier::verifyMustTailCall(CallInst &CI) {
1580  Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
1581
1582  // - The caller and callee prototypes must match.  Pointer types of
1583  //   parameters or return types may differ in pointee type, but not
1584  //   address space.
1585  Function *F = CI.getParent()->getParent();
1586  auto GetFnTy = [](Value *V) {
1587    return cast<FunctionType>(
1588        cast<PointerType>(V->getType())->getElementType());
1589  };
1590  FunctionType *CallerTy = GetFnTy(F);
1591  FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
1592  Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
1593          "cannot guarantee tail call due to mismatched parameter counts", &CI);
1594  Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
1595          "cannot guarantee tail call due to mismatched varargs", &CI);
1596  Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
1597          "cannot guarantee tail call due to mismatched return types", &CI);
1598  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1599    Assert1(
1600        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
1601        "cannot guarantee tail call due to mismatched parameter types", &CI);
1602  }
1603
1604  // - The calling conventions of the caller and callee must match.
1605  Assert1(F->getCallingConv() == CI.getCallingConv(),
1606          "cannot guarantee tail call due to mismatched calling conv", &CI);
1607
1608  // - All ABI-impacting function attributes, such as sret, byval, inreg,
1609  //   returned, and inalloca, must match.
1610  AttributeSet CallerAttrs = F->getAttributes();
1611  AttributeSet CalleeAttrs = CI.getAttributes();
1612  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1613    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
1614    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
1615    Assert2(CallerABIAttrs == CalleeABIAttrs,
1616            "cannot guarantee tail call due to mismatched ABI impacting "
1617            "function attributes", &CI, CI.getOperand(I));
1618  }
1619
1620  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
1621  //   or a pointer bitcast followed by a ret instruction.
1622  // - The ret instruction must return the (possibly bitcasted) value
1623  //   produced by the call or void.
1624  Value *RetVal = &CI;
1625  Instruction *Next = CI.getNextNode();
1626
1627  // Handle the optional bitcast.
1628  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
1629    Assert1(BI->getOperand(0) == RetVal,
1630            "bitcast following musttail call must use the call", BI);
1631    RetVal = BI;
1632    Next = BI->getNextNode();
1633  }
1634
1635  // Check the return.
1636  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
1637  Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
1638          &CI);
1639  Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
1640          "musttail call result must be returned", Ret);
1641}
1642
1643void Verifier::visitCallInst(CallInst &CI) {
1644  VerifyCallSite(&CI);
1645
1646  if (CI.isMustTailCall())
1647    verifyMustTailCall(CI);
1648
1649  if (Function *F = CI.getCalledFunction())
1650    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1651      visitIntrinsicFunctionCall(ID, CI);
1652}
1653
1654void Verifier::visitInvokeInst(InvokeInst &II) {
1655  VerifyCallSite(&II);
1656
1657  // Verify that there is a landingpad instruction as the first non-PHI
1658  // instruction of the 'unwind' destination.
1659  Assert1(II.getUnwindDest()->isLandingPad(),
1660          "The unwind destination does not have a landingpad instruction!",&II);
1661
1662  visitTerminatorInst(II);
1663}
1664
1665/// visitBinaryOperator - Check that both arguments to the binary operator are
1666/// of the same type!
1667///
1668void Verifier::visitBinaryOperator(BinaryOperator &B) {
1669  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1670          "Both operands to a binary operator are not of the same type!", &B);
1671
1672  switch (B.getOpcode()) {
1673  // Check that integer arithmetic operators are only used with
1674  // integral operands.
1675  case Instruction::Add:
1676  case Instruction::Sub:
1677  case Instruction::Mul:
1678  case Instruction::SDiv:
1679  case Instruction::UDiv:
1680  case Instruction::SRem:
1681  case Instruction::URem:
1682    Assert1(B.getType()->isIntOrIntVectorTy(),
1683            "Integer arithmetic operators only work with integral types!", &B);
1684    Assert1(B.getType() == B.getOperand(0)->getType(),
1685            "Integer arithmetic operators must have same type "
1686            "for operands and result!", &B);
1687    break;
1688  // Check that floating-point arithmetic operators are only used with
1689  // floating-point operands.
1690  case Instruction::FAdd:
1691  case Instruction::FSub:
1692  case Instruction::FMul:
1693  case Instruction::FDiv:
1694  case Instruction::FRem:
1695    Assert1(B.getType()->isFPOrFPVectorTy(),
1696            "Floating-point arithmetic operators only work with "
1697            "floating-point types!", &B);
1698    Assert1(B.getType() == B.getOperand(0)->getType(),
1699            "Floating-point arithmetic operators must have same type "
1700            "for operands and result!", &B);
1701    break;
1702  // Check that logical operators are only used with integral operands.
1703  case Instruction::And:
1704  case Instruction::Or:
1705  case Instruction::Xor:
1706    Assert1(B.getType()->isIntOrIntVectorTy(),
1707            "Logical operators only work with integral types!", &B);
1708    Assert1(B.getType() == B.getOperand(0)->getType(),
1709            "Logical operators must have same type for operands and result!",
1710            &B);
1711    break;
1712  case Instruction::Shl:
1713  case Instruction::LShr:
1714  case Instruction::AShr:
1715    Assert1(B.getType()->isIntOrIntVectorTy(),
1716            "Shifts only work with integral types!", &B);
1717    Assert1(B.getType() == B.getOperand(0)->getType(),
1718            "Shift return type must be same as operands!", &B);
1719    break;
1720  default:
1721    llvm_unreachable("Unknown BinaryOperator opcode!");
1722  }
1723
1724  visitInstruction(B);
1725}
1726
1727void Verifier::visitICmpInst(ICmpInst &IC) {
1728  // Check that the operands are the same type
1729  Type *Op0Ty = IC.getOperand(0)->getType();
1730  Type *Op1Ty = IC.getOperand(1)->getType();
1731  Assert1(Op0Ty == Op1Ty,
1732          "Both operands to ICmp instruction are not of the same type!", &IC);
1733  // Check that the operands are the right type
1734  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1735          "Invalid operand types for ICmp instruction", &IC);
1736  // Check that the predicate is valid.
1737  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1738          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1739          "Invalid predicate in ICmp instruction!", &IC);
1740
1741  visitInstruction(IC);
1742}
1743
1744void Verifier::visitFCmpInst(FCmpInst &FC) {
1745  // Check that the operands are the same type
1746  Type *Op0Ty = FC.getOperand(0)->getType();
1747  Type *Op1Ty = FC.getOperand(1)->getType();
1748  Assert1(Op0Ty == Op1Ty,
1749          "Both operands to FCmp instruction are not of the same type!", &FC);
1750  // Check that the operands are the right type
1751  Assert1(Op0Ty->isFPOrFPVectorTy(),
1752          "Invalid operand types for FCmp instruction", &FC);
1753  // Check that the predicate is valid.
1754  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1755          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1756          "Invalid predicate in FCmp instruction!", &FC);
1757
1758  visitInstruction(FC);
1759}
1760
1761void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1762  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1763                                              EI.getOperand(1)),
1764          "Invalid extractelement operands!", &EI);
1765  visitInstruction(EI);
1766}
1767
1768void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1769  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1770                                             IE.getOperand(1),
1771                                             IE.getOperand(2)),
1772          "Invalid insertelement operands!", &IE);
1773  visitInstruction(IE);
1774}
1775
1776void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1777  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1778                                             SV.getOperand(2)),
1779          "Invalid shufflevector operands!", &SV);
1780  visitInstruction(SV);
1781}
1782
1783void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1784  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1785
1786  Assert1(isa<PointerType>(TargetTy),
1787    "GEP base pointer is not a vector or a vector of pointers", &GEP);
1788  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1789          "GEP into unsized type!", &GEP);
1790  Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1791          GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1792          &GEP);
1793
1794  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1795  Type *ElTy =
1796    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1797  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1798
1799  Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1800          cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1801          == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1802
1803  if (GEP.getPointerOperandType()->isVectorTy()) {
1804    // Additional checks for vector GEPs.
1805    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1806    Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1807            "Vector GEP result width doesn't match operand's", &GEP);
1808    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1809      Type *IndexTy = Idxs[i]->getType();
1810      Assert1(IndexTy->isVectorTy(),
1811              "Vector GEP must have vector indices!", &GEP);
1812      unsigned IndexWidth = IndexTy->getVectorNumElements();
1813      Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1814    }
1815  }
1816  visitInstruction(GEP);
1817}
1818
1819static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1820  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1821}
1822
1823void Verifier::visitLoadInst(LoadInst &LI) {
1824  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1825  Assert1(PTy, "Load operand must be a pointer.", &LI);
1826  Type *ElTy = PTy->getElementType();
1827  Assert2(ElTy == LI.getType(),
1828          "Load result type does not match pointer operand type!", &LI, ElTy);
1829  if (LI.isAtomic()) {
1830    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1831            "Load cannot have Release ordering", &LI);
1832    Assert1(LI.getAlignment() != 0,
1833            "Atomic load must specify explicit alignment", &LI);
1834    if (!ElTy->isPointerTy()) {
1835      Assert2(ElTy->isIntegerTy(),
1836              "atomic load operand must have integer type!",
1837              &LI, ElTy);
1838      unsigned Size = ElTy->getPrimitiveSizeInBits();
1839      Assert2(Size >= 8 && !(Size & (Size - 1)),
1840              "atomic load operand must be power-of-two byte-sized integer",
1841              &LI, ElTy);
1842    }
1843  } else {
1844    Assert1(LI.getSynchScope() == CrossThread,
1845            "Non-atomic load cannot have SynchronizationScope specified", &LI);
1846  }
1847
1848  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1849    unsigned NumOperands = Range->getNumOperands();
1850    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1851    unsigned NumRanges = NumOperands / 2;
1852    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1853
1854    ConstantRange LastRange(1); // Dummy initial value
1855    for (unsigned i = 0; i < NumRanges; ++i) {
1856      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1857      Assert1(Low, "The lower limit must be an integer!", Low);
1858      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1859      Assert1(High, "The upper limit must be an integer!", High);
1860      Assert1(High->getType() == Low->getType() &&
1861              High->getType() == ElTy, "Range types must match load type!",
1862              &LI);
1863
1864      APInt HighV = High->getValue();
1865      APInt LowV = Low->getValue();
1866      ConstantRange CurRange(LowV, HighV);
1867      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1868              "Range must not be empty!", Range);
1869      if (i != 0) {
1870        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1871                "Intervals are overlapping", Range);
1872        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1873                Range);
1874        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1875                Range);
1876      }
1877      LastRange = ConstantRange(LowV, HighV);
1878    }
1879    if (NumRanges > 2) {
1880      APInt FirstLow =
1881        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1882      APInt FirstHigh =
1883        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1884      ConstantRange FirstRange(FirstLow, FirstHigh);
1885      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1886              "Intervals are overlapping", Range);
1887      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1888              Range);
1889    }
1890
1891
1892  }
1893
1894  visitInstruction(LI);
1895}
1896
1897void Verifier::visitStoreInst(StoreInst &SI) {
1898  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1899  Assert1(PTy, "Store operand must be a pointer.", &SI);
1900  Type *ElTy = PTy->getElementType();
1901  Assert2(ElTy == SI.getOperand(0)->getType(),
1902          "Stored value type does not match pointer operand type!",
1903          &SI, ElTy);
1904  if (SI.isAtomic()) {
1905    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1906            "Store cannot have Acquire ordering", &SI);
1907    Assert1(SI.getAlignment() != 0,
1908            "Atomic store must specify explicit alignment", &SI);
1909    if (!ElTy->isPointerTy()) {
1910      Assert2(ElTy->isIntegerTy(),
1911              "atomic store operand must have integer type!",
1912              &SI, ElTy);
1913      unsigned Size = ElTy->getPrimitiveSizeInBits();
1914      Assert2(Size >= 8 && !(Size & (Size - 1)),
1915              "atomic store operand must be power-of-two byte-sized integer",
1916              &SI, ElTy);
1917    }
1918  } else {
1919    Assert1(SI.getSynchScope() == CrossThread,
1920            "Non-atomic store cannot have SynchronizationScope specified", &SI);
1921  }
1922  visitInstruction(SI);
1923}
1924
1925void Verifier::visitAllocaInst(AllocaInst &AI) {
1926  SmallPtrSet<const Type*, 4> Visited;
1927  PointerType *PTy = AI.getType();
1928  Assert1(PTy->getAddressSpace() == 0,
1929          "Allocation instruction pointer not in the generic address space!",
1930          &AI);
1931  Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
1932          &AI);
1933  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1934          "Alloca array size must have integer type", &AI);
1935
1936  visitInstruction(AI);
1937}
1938
1939void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1940
1941  // FIXME: more conditions???
1942  Assert1(CXI.getSuccessOrdering() != NotAtomic,
1943          "cmpxchg instructions must be atomic.", &CXI);
1944  Assert1(CXI.getFailureOrdering() != NotAtomic,
1945          "cmpxchg instructions must be atomic.", &CXI);
1946  Assert1(CXI.getSuccessOrdering() != Unordered,
1947          "cmpxchg instructions cannot be unordered.", &CXI);
1948  Assert1(CXI.getFailureOrdering() != Unordered,
1949          "cmpxchg instructions cannot be unordered.", &CXI);
1950  Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
1951          "cmpxchg instructions be at least as constrained on success as fail",
1952          &CXI);
1953  Assert1(CXI.getFailureOrdering() != Release &&
1954              CXI.getFailureOrdering() != AcquireRelease,
1955          "cmpxchg failure ordering cannot include release semantics", &CXI);
1956
1957  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1958  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1959  Type *ElTy = PTy->getElementType();
1960  Assert2(ElTy->isIntegerTy(),
1961          "cmpxchg operand must have integer type!",
1962          &CXI, ElTy);
1963  unsigned Size = ElTy->getPrimitiveSizeInBits();
1964  Assert2(Size >= 8 && !(Size & (Size - 1)),
1965          "cmpxchg operand must be power-of-two byte-sized integer",
1966          &CXI, ElTy);
1967  Assert2(ElTy == CXI.getOperand(1)->getType(),
1968          "Expected value type does not match pointer operand type!",
1969          &CXI, ElTy);
1970  Assert2(ElTy == CXI.getOperand(2)->getType(),
1971          "Stored value type does not match pointer operand type!",
1972          &CXI, ElTy);
1973  visitInstruction(CXI);
1974}
1975
1976void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1977  Assert1(RMWI.getOrdering() != NotAtomic,
1978          "atomicrmw instructions must be atomic.", &RMWI);
1979  Assert1(RMWI.getOrdering() != Unordered,
1980          "atomicrmw instructions cannot be unordered.", &RMWI);
1981  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1982  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1983  Type *ElTy = PTy->getElementType();
1984  Assert2(ElTy->isIntegerTy(),
1985          "atomicrmw operand must have integer type!",
1986          &RMWI, ElTy);
1987  unsigned Size = ElTy->getPrimitiveSizeInBits();
1988  Assert2(Size >= 8 && !(Size & (Size - 1)),
1989          "atomicrmw operand must be power-of-two byte-sized integer",
1990          &RMWI, ElTy);
1991  Assert2(ElTy == RMWI.getOperand(1)->getType(),
1992          "Argument value type does not match pointer operand type!",
1993          &RMWI, ElTy);
1994  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1995          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1996          "Invalid binary operation!", &RMWI);
1997  visitInstruction(RMWI);
1998}
1999
2000void Verifier::visitFenceInst(FenceInst &FI) {
2001  const AtomicOrdering Ordering = FI.getOrdering();
2002  Assert1(Ordering == Acquire || Ordering == Release ||
2003          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2004          "fence instructions may only have "
2005          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
2006  visitInstruction(FI);
2007}
2008
2009void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2010  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2011                                           EVI.getIndices()) ==
2012          EVI.getType(),
2013          "Invalid ExtractValueInst operands!", &EVI);
2014
2015  visitInstruction(EVI);
2016}
2017
2018void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2019  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2020                                           IVI.getIndices()) ==
2021          IVI.getOperand(1)->getType(),
2022          "Invalid InsertValueInst operands!", &IVI);
2023
2024  visitInstruction(IVI);
2025}
2026
2027void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2028  BasicBlock *BB = LPI.getParent();
2029
2030  // The landingpad instruction is ill-formed if it doesn't have any clauses and
2031  // isn't a cleanup.
2032  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2033          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2034
2035  // The landingpad instruction defines its parent as a landing pad block. The
2036  // landing pad block may be branched to only by the unwind edge of an invoke.
2037  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2038    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2039    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2040            "Block containing LandingPadInst must be jumped to "
2041            "only by the unwind edge of an invoke.", &LPI);
2042  }
2043
2044  // The landingpad instruction must be the first non-PHI instruction in the
2045  // block.
2046  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
2047          "LandingPadInst not the first non-PHI instruction in the block.",
2048          &LPI);
2049
2050  // The personality functions for all landingpad instructions within the same
2051  // function should match.
2052  if (PersonalityFn)
2053    Assert1(LPI.getPersonalityFn() == PersonalityFn,
2054            "Personality function doesn't match others in function", &LPI);
2055  PersonalityFn = LPI.getPersonalityFn();
2056
2057  // All operands must be constants.
2058  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
2059          &LPI);
2060  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2061    Value *Clause = LPI.getClause(i);
2062    Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
2063    if (LPI.isCatch(i)) {
2064      Assert1(isa<PointerType>(Clause->getType()),
2065              "Catch operand does not have pointer type!", &LPI);
2066    } else {
2067      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2068      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2069              "Filter operand is not an array of constants!", &LPI);
2070    }
2071  }
2072
2073  visitInstruction(LPI);
2074}
2075
2076void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2077  Instruction *Op = cast<Instruction>(I.getOperand(i));
2078  // If the we have an invalid invoke, don't try to compute the dominance.
2079  // We already reject it in the invoke specific checks and the dominance
2080  // computation doesn't handle multiple edges.
2081  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2082    if (II->getNormalDest() == II->getUnwindDest())
2083      return;
2084  }
2085
2086  const Use &U = I.getOperandUse(i);
2087  Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2088          "Instruction does not dominate all uses!", Op, &I);
2089}
2090
2091/// verifyInstruction - Verify that an instruction is well formed.
2092///
2093void Verifier::visitInstruction(Instruction &I) {
2094  BasicBlock *BB = I.getParent();
2095  Assert1(BB, "Instruction not embedded in basic block!", &I);
2096
2097  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
2098    for (User *U : I.users()) {
2099      Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
2100              "Only PHI nodes may reference their own value!", &I);
2101    }
2102  }
2103
2104  // Check that void typed values don't have names
2105  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
2106          "Instruction has a name, but provides a void value!", &I);
2107
2108  // Check that the return value of the instruction is either void or a legal
2109  // value type.
2110  Assert1(I.getType()->isVoidTy() ||
2111          I.getType()->isFirstClassType(),
2112          "Instruction returns a non-scalar type!", &I);
2113
2114  // Check that the instruction doesn't produce metadata. Calls are already
2115  // checked against the callee type.
2116  Assert1(!I.getType()->isMetadataTy() ||
2117          isa<CallInst>(I) || isa<InvokeInst>(I),
2118          "Invalid use of metadata!", &I);
2119
2120  // Check that all uses of the instruction, if they are instructions
2121  // themselves, actually have parent basic blocks.  If the use is not an
2122  // instruction, it is an error!
2123  for (Use &U : I.uses()) {
2124    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2125      Assert2(Used->getParent() != nullptr, "Instruction referencing"
2126              " instruction not embedded in a basic block!", &I, Used);
2127    else {
2128      CheckFailed("Use of instruction is not an instruction!", U);
2129      return;
2130    }
2131  }
2132
2133  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2134    Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2135
2136    // Check to make sure that only first-class-values are operands to
2137    // instructions.
2138    if (!I.getOperand(i)->getType()->isFirstClassType()) {
2139      Assert1(0, "Instruction operands must be first-class values!", &I);
2140    }
2141
2142    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2143      // Check to make sure that the "address of" an intrinsic function is never
2144      // taken.
2145      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
2146              "Cannot take the address of an intrinsic!", &I);
2147      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
2148              F->getIntrinsicID() == Intrinsic::donothing,
2149              "Cannot invoke an intrinsinc other than donothing", &I);
2150      Assert1(F->getParent() == M, "Referencing function in another module!",
2151              &I);
2152    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2153      Assert1(OpBB->getParent() == BB->getParent(),
2154              "Referring to a basic block in another function!", &I);
2155    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2156      Assert1(OpArg->getParent() == BB->getParent(),
2157              "Referring to an argument in another function!", &I);
2158    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2159      Assert1(GV->getParent() == M, "Referencing global in another module!",
2160              &I);
2161    } else if (isa<Instruction>(I.getOperand(i))) {
2162      verifyDominatesUse(I, i);
2163    } else if (isa<InlineAsm>(I.getOperand(i))) {
2164      Assert1((i + 1 == e && isa<CallInst>(I)) ||
2165              (i + 3 == e && isa<InvokeInst>(I)),
2166              "Cannot take the address of an inline asm!", &I);
2167    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2168      if (CE->getType()->isPtrOrPtrVectorTy()) {
2169        // If we have a ConstantExpr pointer, we need to see if it came from an
2170        // illegal bitcast (inttoptr <constant int> )
2171        SmallVector<const ConstantExpr *, 4> Stack;
2172        SmallPtrSet<const ConstantExpr *, 4> Visited;
2173        Stack.push_back(CE);
2174
2175        while (!Stack.empty()) {
2176          const ConstantExpr *V = Stack.pop_back_val();
2177          if (!Visited.insert(V))
2178            continue;
2179
2180          VerifyConstantExprBitcastType(V);
2181
2182          for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2183            if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2184              Stack.push_back(Op);
2185          }
2186        }
2187      }
2188    }
2189  }
2190
2191  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2192    Assert1(I.getType()->isFPOrFPVectorTy(),
2193            "fpmath requires a floating point result!", &I);
2194    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2195    Value *Op0 = MD->getOperand(0);
2196    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
2197      APFloat Accuracy = CFP0->getValueAPF();
2198      Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2199              "fpmath accuracy not a positive number!", &I);
2200    } else {
2201      Assert1(false, "invalid fpmath accuracy!", &I);
2202    }
2203  }
2204
2205  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
2206  Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
2207
2208  InstsInThisBlock.insert(&I);
2209}
2210
2211/// VerifyIntrinsicType - Verify that the specified type (which comes from an
2212/// intrinsic argument or return value) matches the type constraints specified
2213/// by the .td file (e.g. an "any integer" argument really is an integer).
2214///
2215/// This return true on error but does not print a message.
2216bool Verifier::VerifyIntrinsicType(Type *Ty,
2217                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
2218                                   SmallVectorImpl<Type*> &ArgTys) {
2219  using namespace Intrinsic;
2220
2221  // If we ran out of descriptors, there are too many arguments.
2222  if (Infos.empty()) return true;
2223  IITDescriptor D = Infos.front();
2224  Infos = Infos.slice(1);
2225
2226  switch (D.Kind) {
2227  case IITDescriptor::Void: return !Ty->isVoidTy();
2228  case IITDescriptor::VarArg: return true;
2229  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
2230  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2231  case IITDescriptor::Half: return !Ty->isHalfTy();
2232  case IITDescriptor::Float: return !Ty->isFloatTy();
2233  case IITDescriptor::Double: return !Ty->isDoubleTy();
2234  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2235  case IITDescriptor::Vector: {
2236    VectorType *VT = dyn_cast<VectorType>(Ty);
2237    return !VT || VT->getNumElements() != D.Vector_Width ||
2238           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2239  }
2240  case IITDescriptor::Pointer: {
2241    PointerType *PT = dyn_cast<PointerType>(Ty);
2242    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2243           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2244  }
2245
2246  case IITDescriptor::Struct: {
2247    StructType *ST = dyn_cast<StructType>(Ty);
2248    if (!ST || ST->getNumElements() != D.Struct_NumElements)
2249      return true;
2250
2251    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2252      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2253        return true;
2254    return false;
2255  }
2256
2257  case IITDescriptor::Argument:
2258    // Two cases here - If this is the second occurrence of an argument, verify
2259    // that the later instance matches the previous instance.
2260    if (D.getArgumentNumber() < ArgTys.size())
2261      return Ty != ArgTys[D.getArgumentNumber()];
2262
2263    // Otherwise, if this is the first instance of an argument, record it and
2264    // verify the "Any" kind.
2265    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2266    ArgTys.push_back(Ty);
2267
2268    switch (D.getArgumentKind()) {
2269    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2270    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
2271    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
2272    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2273    }
2274    llvm_unreachable("all argument kinds not covered");
2275
2276  case IITDescriptor::ExtendArgument: {
2277    // This may only be used when referring to a previous vector argument.
2278    if (D.getArgumentNumber() >= ArgTys.size())
2279      return true;
2280
2281    Type *NewTy = ArgTys[D.getArgumentNumber()];
2282    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2283      NewTy = VectorType::getExtendedElementVectorType(VTy);
2284    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2285      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
2286    else
2287      return true;
2288
2289    return Ty != NewTy;
2290  }
2291  case IITDescriptor::TruncArgument: {
2292    // This may only be used when referring to a previous vector argument.
2293    if (D.getArgumentNumber() >= ArgTys.size())
2294      return true;
2295
2296    Type *NewTy = ArgTys[D.getArgumentNumber()];
2297    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2298      NewTy = VectorType::getTruncatedElementVectorType(VTy);
2299    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2300      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
2301    else
2302      return true;
2303
2304    return Ty != NewTy;
2305  }
2306  case IITDescriptor::HalfVecArgument:
2307    // This may only be used when referring to a previous vector argument.
2308    return D.getArgumentNumber() >= ArgTys.size() ||
2309           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2310           VectorType::getHalfElementsVectorType(
2311                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2312  }
2313  llvm_unreachable("unhandled");
2314}
2315
2316/// \brief Verify if the intrinsic has variable arguments.
2317/// This method is intended to be called after all the fixed arguments have been
2318/// verified first.
2319///
2320/// This method returns true on error and does not print an error message.
2321bool
2322Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
2323                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
2324  using namespace Intrinsic;
2325
2326  // If there are no descriptors left, then it can't be a vararg.
2327  if (Infos.empty())
2328    return isVarArg ? true : false;
2329
2330  // There should be only one descriptor remaining at this point.
2331  if (Infos.size() != 1)
2332    return true;
2333
2334  // Check and verify the descriptor.
2335  IITDescriptor D = Infos.front();
2336  Infos = Infos.slice(1);
2337  if (D.Kind == IITDescriptor::VarArg)
2338    return isVarArg ? false : true;
2339
2340  return true;
2341}
2342
2343/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
2344///
2345void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
2346  Function *IF = CI.getCalledFunction();
2347  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
2348          IF);
2349
2350  // Verify that the intrinsic prototype lines up with what the .td files
2351  // describe.
2352  FunctionType *IFTy = IF->getFunctionType();
2353  bool IsVarArg = IFTy->isVarArg();
2354
2355  SmallVector<Intrinsic::IITDescriptor, 8> Table;
2356  getIntrinsicInfoTableEntries(ID, Table);
2357  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2358
2359  SmallVector<Type *, 4> ArgTys;
2360  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2361          "Intrinsic has incorrect return type!", IF);
2362  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2363    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2364            "Intrinsic has incorrect argument type!", IF);
2365
2366  // Verify if the intrinsic call matches the vararg property.
2367  if (IsVarArg)
2368    Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2369            "Intrinsic was not defined with variable arguments!", IF);
2370  else
2371    Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2372            "Callsite was not defined with variable arguments!", IF);
2373
2374  // All descriptors should be absorbed by now.
2375  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2376
2377  // Now that we have the intrinsic ID and the actual argument types (and we
2378  // know they are legal for the intrinsic!) get the intrinsic name through the
2379  // usual means.  This allows us to verify the mangling of argument types into
2380  // the name.
2381  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
2382  Assert1(ExpectedName == IF->getName(),
2383          "Intrinsic name not mangled correctly for type arguments! "
2384          "Should be: " + ExpectedName, IF);
2385
2386  // If the intrinsic takes MDNode arguments, verify that they are either global
2387  // or are local to *this* function.
2388  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2389    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2390      visitMDNode(*MD, CI.getParent()->getParent());
2391
2392  switch (ID) {
2393  default:
2394    break;
2395  case Intrinsic::ctlz:  // llvm.ctlz
2396  case Intrinsic::cttz:  // llvm.cttz
2397    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2398            "is_zero_undef argument of bit counting intrinsics must be a "
2399            "constant int", &CI);
2400    break;
2401  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
2402    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2403                "invalid llvm.dbg.declare intrinsic call 1", &CI);
2404    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2405    Assert1(MD->getNumOperands() == 1,
2406                "invalid llvm.dbg.declare intrinsic call 2", &CI);
2407  } break;
2408  case Intrinsic::memcpy:
2409  case Intrinsic::memmove:
2410  case Intrinsic::memset:
2411    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2412            "alignment argument of memory intrinsics must be a constant int",
2413            &CI);
2414    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2415            "isvolatile argument of memory intrinsics must be a constant int",
2416            &CI);
2417    break;
2418  case Intrinsic::gcroot:
2419  case Intrinsic::gcwrite:
2420  case Intrinsic::gcread:
2421    if (ID == Intrinsic::gcroot) {
2422      AllocaInst *AI =
2423        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2424      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2425      Assert1(isa<Constant>(CI.getArgOperand(1)),
2426              "llvm.gcroot parameter #2 must be a constant.", &CI);
2427      if (!AI->getType()->getElementType()->isPointerTy()) {
2428        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2429                "llvm.gcroot parameter #1 must either be a pointer alloca, "
2430                "or argument #2 must be a non-null constant.", &CI);
2431      }
2432    }
2433
2434    Assert1(CI.getParent()->getParent()->hasGC(),
2435            "Enclosing function does not use GC.", &CI);
2436    break;
2437  case Intrinsic::init_trampoline:
2438    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2439            "llvm.init_trampoline parameter #2 must resolve to a function.",
2440            &CI);
2441    break;
2442  case Intrinsic::prefetch:
2443    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2444            isa<ConstantInt>(CI.getArgOperand(2)) &&
2445            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2446            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2447            "invalid arguments to llvm.prefetch",
2448            &CI);
2449    break;
2450  case Intrinsic::stackprotector:
2451    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2452            "llvm.stackprotector parameter #2 must resolve to an alloca.",
2453            &CI);
2454    break;
2455  case Intrinsic::lifetime_start:
2456  case Intrinsic::lifetime_end:
2457  case Intrinsic::invariant_start:
2458    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2459            "size argument of memory use markers must be a constant integer",
2460            &CI);
2461    break;
2462  case Intrinsic::invariant_end:
2463    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2464            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2465    break;
2466  }
2467}
2468
2469void DebugInfoVerifier::verifyDebugInfo() {
2470  if (!VerifyDebugInfo)
2471    return;
2472
2473  DebugInfoFinder Finder;
2474  Finder.processModule(*M);
2475  processInstructions(Finder);
2476
2477  // Verify Debug Info.
2478  //
2479  // NOTE:  The loud braces are necessary for MSVC compatibility.
2480  for (DICompileUnit CU : Finder.compile_units()) {
2481    Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
2482  }
2483  for (DISubprogram S : Finder.subprograms()) {
2484    Assert1(S.Verify(), "DISubprogram does not Verify!", S);
2485  }
2486  for (DIGlobalVariable GV : Finder.global_variables()) {
2487    Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
2488  }
2489  for (DIType T : Finder.types()) {
2490    Assert1(T.Verify(), "DIType does not Verify!", T);
2491  }
2492  for (DIScope S : Finder.scopes()) {
2493    Assert1(S.Verify(), "DIScope does not Verify!", S);
2494  }
2495}
2496
2497void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
2498  for (const Function &F : *M)
2499    for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2500      if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
2501        Finder.processLocation(*M, DILocation(MD));
2502      if (const CallInst *CI = dyn_cast<CallInst>(&*I))
2503        processCallInst(Finder, *CI);
2504    }
2505}
2506
2507void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
2508                                        const CallInst &CI) {
2509  if (Function *F = CI.getCalledFunction())
2510    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2511      switch (ID) {
2512      case Intrinsic::dbg_declare:
2513        Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
2514        break;
2515      case Intrinsic::dbg_value:
2516        Finder.processValue(*M, cast<DbgValueInst>(&CI));
2517        break;
2518      default:
2519        break;
2520      }
2521}
2522
2523//===----------------------------------------------------------------------===//
2524//  Implement the public interfaces to this file...
2525//===----------------------------------------------------------------------===//
2526
2527bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
2528  Function &F = const_cast<Function &>(f);
2529  assert(!F.isDeclaration() && "Cannot verify external functions");
2530
2531  raw_null_ostream NullStr;
2532  Verifier V(OS ? *OS : NullStr);
2533
2534  // Note that this function's return value is inverted from what you would
2535  // expect of a function called "verify".
2536  return !V.verify(F);
2537}
2538
2539bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
2540  raw_null_ostream NullStr;
2541  Verifier V(OS ? *OS : NullStr);
2542
2543  bool Broken = false;
2544  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
2545    if (!I->isDeclaration())
2546      Broken |= !V.verify(*I);
2547
2548  // Note that this function's return value is inverted from what you would
2549  // expect of a function called "verify".
2550  DebugInfoVerifier DIV(OS ? *OS : NullStr);
2551  return !V.verify(M) || !DIV.verify(M) || Broken;
2552}
2553
2554namespace {
2555struct VerifierLegacyPass : public FunctionPass {
2556  static char ID;
2557
2558  Verifier V;
2559  bool FatalErrors;
2560
2561  VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
2562    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2563  }
2564  explicit VerifierLegacyPass(bool FatalErrors)
2565      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2566    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2567  }
2568
2569  bool runOnFunction(Function &F) override {
2570    if (!V.verify(F) && FatalErrors)
2571      report_fatal_error("Broken function found, compilation aborted!");
2572
2573    return false;
2574  }
2575
2576  bool doFinalization(Module &M) override {
2577    if (!V.verify(M) && FatalErrors)
2578      report_fatal_error("Broken module found, compilation aborted!");
2579
2580    return false;
2581  }
2582
2583  void getAnalysisUsage(AnalysisUsage &AU) const override {
2584    AU.setPreservesAll();
2585  }
2586};
2587struct DebugInfoVerifierLegacyPass : public ModulePass {
2588  static char ID;
2589
2590  DebugInfoVerifier V;
2591  bool FatalErrors;
2592
2593  DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
2594    initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2595  }
2596  explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
2597      : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2598    initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2599  }
2600
2601  bool runOnModule(Module &M) override {
2602    if (!V.verify(M) && FatalErrors)
2603      report_fatal_error("Broken debug info found, compilation aborted!");
2604
2605    return false;
2606  }
2607
2608  void getAnalysisUsage(AnalysisUsage &AU) const override {
2609    AU.setPreservesAll();
2610  }
2611};
2612}
2613
2614char VerifierLegacyPass::ID = 0;
2615INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
2616
2617char DebugInfoVerifierLegacyPass::ID = 0;
2618INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
2619                false, false)
2620
2621FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
2622  return new VerifierLegacyPass(FatalErrors);
2623}
2624
2625ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
2626  return new DebugInfoVerifierLegacyPass(FatalErrors);
2627}
2628
2629PreservedAnalyses VerifierPass::run(Module *M) {
2630  if (verifyModule(*M, &dbgs()) && FatalErrors)
2631    report_fatal_error("Broken module found, compilation aborted!");
2632
2633  return PreservedAnalyses::all();
2634}
2635
2636PreservedAnalyses VerifierPass::run(Function *F) {
2637  if (verifyFunction(*F, &dbgs()) && FatalErrors)
2638    report_fatal_error("Broken function found, compilation aborted!");
2639
2640  return PreservedAnalyses::all();
2641}
2642